
Design and Evaluation of a Symbolic and
Abstraction-Based Model Checker

Serge Haddad1, Jean-Michel Ilié2, and Kais Klai2

1 Lamsade CNRS UMR 7024 Université de Paris Dauphine, Place du Maréchal de
Lattre de Tassigny 75775 Paris Cedex 16 France

contact author tel: 33 1 44 05 41 20
haddad@lamsade.dauphine.fr

2 Lip6 laboratory, Paris 6 University, 8 Rue du Capitaine Scott, 75015 Paris, France
{Jean-Michel.ilie,Kais.Klai}@lip6.fr

Abstract. Symbolic model-checking usually includes two steps: the
building of a compact representation of a state graph and the evaluation
of the properties of the system upon this data structure. In case of
properties expressed with a linear time logic, it appears that the second
step is often more time consuming than the first one. In this work, we
present a mixed solution which builds an observation graph represented
in a non symbolic way but where the nodes are essentially symbolic
set of states. Due to the small number of events to be observed in
a typical formula, this graph has a very moderate size and thus the
complexity time of verification is neglectible w.r.t. the time to build the
observation graph. Thus we propose different symbolic implementations
for the construction of the nodes of this graph. The evaluations we have
done on standard examples show that our method outperforms the pure
symbolic methods which makes it attractive.

Keywords: OBDD, Model Checking, Abstraction

1 Introduction

Checking properties of a dynamic system often leads to the building of a graph
corresponding either to the state graph of the system or to some synchronized
product of it with an automaton. In both cases, one has to tackle with the state
explosion problem, i.e. the exponential increasing in the number of states w.r.t.
the number of system’s components.

Among the numerous techniques proposed to cope with such an explosion,
the ordered binary decision diagrams (OBDDs) approach can be described as
follows [1,2]. Each potential state is viewed as a vector of boolean variables by
choosing the appropriate variables describing the system. Then the set of reach-
able states is equivalent to the boolean function which returns true iff the input
vector corresponds to a reachable state. The boolean expression associated with
the function can now be represented in a compact way by factorising the multiple
occurences of the same subexpression. Hence the final structure is a rooted di-
rected acyclic graph (DAG) where the subgraph rooted at each node corresponds

F. Wang (Ed.): ATVA 2004, LNCS 3299, pp. 196–210, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Design and Evaluation of a Symbolic and Abstraction-Based Model Checker 197

to a subexpression and the root corresponds to the function to be represented.
In case of multiple functions there is one “root” per different function (here the
structure is sometimes called shared OBDD).
The benefit of OBDDs comes from the fact that a small OBBD can often repre-
sent a huge set of states, and the “symbolic” operations like the set operations
(union, intersection, complementation) and the membership test are cheap as
long as the OBDDs are small. Equally important are the operations associated
to an event of the system and a set of states: the subset of states for which this
event is enabled, the “image” of this set obtained by the occurrence of the event
and the “preimage” of the set i.e. the set of states where the occurrence of this
event leads to a state of the specified set. Generally these latter algorithms have
a time complexity proportionnal to the size of the OBDD on which they are
applied.

Once the OBBD has been built, the reachability problem is straightforwardly
answered by the membership test. However checking a temporal formula requires
a more complex algorithm. It is shown in [3] that checking CTL and LTL for-
mulae can be essentially reduced to the search of particular cycles in either the
reachability graph or in some synchronized product. Thus the key point for an
efficient OBDD-based formulae checking is the design of an OBDD-algorithm for
the search of such cycles. The earliest algorithm is known as the Emerson-Lei
algorithm [4]. Its worst case time complexity is quadratic w.r.t. the size of the
reachability space (n). So different improvements have been proposed and ana-
lyzed [5]. With a relaxed definition of a symbolic algorithm, the worst case time
complexity has been first reduced to O(n log(n)) [6], then to O(n) [7]. How-
ever since these algorithms repeatedly build sets reduced to a singleton, their
empirical complexity is often worse than the Emerson-Lei algorithm. In [3], the
authors study variants of Emerson-Lei algorithm (e.g. CTY, OWCTY) with the
same worst case time complexity but outperforming it on practical examples.

In this paper, we study the checking of an evenemential linear time formula
(formulas over events). We propose an hybrid method which builds:

– a standard representation for the observation graph i.e. the abstraction of
the reachability graph w.r.t. the events occurring in the formula,

– an OBDD representation of each node of this graph which is indeed the
closure of some set of states under the occurrences of unobserved events.

Once this structure is obtained, a standard model-checking algorithm is ap-
plied on the observation graph. Even in case of a huge reachability graph, the
observation graph is quite small and the execution time of this last step is neg-
ligible w.r.t. the execution time of the building of the observation graph.

So we have paid attention to an efficient building of the observation graph.
The critical factor is the “accumulated” size of the OBDD corresponding to the
sets associated to each node of this graph. Our goal is to reduce both the number
of the nodes of the graph and the size of the set of states associated to each node.

– Two nodes corresponding to different sets of states can be regarded as equal if
they have the same subset of states enabling observed events (thus the same

198 S. Haddad, J.-M. Ilié, and K. Klai

successors) and the same behavior w.r.t. the deadlock and the divergence
properties.

– Once a new node is built, we substitute to the corresponding set of states,
the subset consisting of one representant per initial strongly connected com-
ponent (SCC) of the subgraph spanned by this set. Indeed these subsets are
sufficient to check equality between the original sets. We call this step the
canonization.

The evaluations on typical cases (see section 3) show that the size of this struc-
ture is either of the same magnitude order of the size of the OBDD of the
reachablity graph or even of a smaller order. More importantly the maximum
size of the intermediate OBDDs is often much smaller than the corresponding
size for the reachability graph. Thus w.r.t. the space complexity our method
achieves its goal.

The critical procedure w.r.t. the time complexity is the canonization step.
We have observed that a standard symbolic search algorithm of initial SCCs of
a graph (see for instance [8,6]) may have a bad time complexity. Thus we have
developed a specific procedure which takes advantage of the parallelism of the
system under observation. For this kind of systems, our procedure outperforms
the standard procedure.

The paper is organized as follows. In the second section, we briefly introduce
the model-cheking problem and we develop our method describing and analyzing
the main algorithms. In the third section, we evaluate our method on a bench-
mark of problems. We also briefly discuss how to exhibit counter-examples when
the formula is invalidated. At last, we conclude and give some perspectives to
this work.

2 The Observation Graph

2.1 Model Checking of an Evenemential Linear Formula

We introduce here the context of our model-checking problem. The system we
want to study is given by:

– A state description represented by a fixed vector of boolean variables. An
initial state is associated to the system.

– A finite set of events T . To each event is associated an identifier, an enabling
predicate on states and a tranformation function.

We suppose that the dynamics of the system can be symbolically evaluated by
the following operations: Img(S, t) which returns the set of immediate successors
of the states of S by the occurrence of the event t and Preimg(S, t) which returns
the set of immediate predecessors of the states of S by the occurrence of the event
t. We derive from these operations and the boolean ones, other useful operations
with straightforward interpretations:

Design and Evaluation of a Symbolic and Abstraction-Based Model Checker 199

Img(S, T ′) =
⋃

t∈T ′ Img(S, t)
Preimg(S, T ′) =

⋃
t∈T ′ Preimg(S, t)

Enab(S, T ′) = S ∩ Preimg(Img(S, T ′), T ′)
Enab(S, T ′) selects all states in S which have (at least) one successor by

occurrence of some event in T ′.
Our method does not rely on the particular syntax and semantic of a temporal
logic over events but we make two assumptions. The first hypothesis is that given
the events T ′ occurring in the formula φ, the satisfaction of φ by a sequence of
events σ depends only on the observed sequence Proj(σ, T ′), the projection of σ
on the events of T ′ (the sequence obtained by removing, from σ, all events not
in T ′).

So our method builds a finite automaton called the observation graph which
includes enough information to express three kinds of sequences of the system
(i.e. three languages).

– LT ′
inf = {σ′ = Proj(σ, T ′) ∈ T ′∞ |σ is an execution sequence} the infinite

observable sequences,
– LT ′

max = {σ′ = Proj(σ, T ′) |σ ∈ T ∗ is a maximal execution sequence} the
finite maximal sequences,

– LT ′
div = {σ′ = Proj(σ, T ′) ∈ T ′∗ |σ ∈ T∞ is an execution sequence} the

divergent sequences.

Then the second hypothesis is that such a formula could be checked by the search
for particular paths in some appropriate synchronized product between the ob-
servation graph and an automaton related to the formula. Such an hypothesis
is very standard and covers the case of formula languages like LTL or the linear
time µ-calculus.
In conclusion, by preserving the above three kinds of sequences, the obtained
observation graph preserves the validity of formulas written in classical Manna-
Pnueli linear time logic [9] (LTL) from which the ”next operator” (X) has been
removed (see [10,11]). This logic is extremely important in verification of con-
current systems. Even if Manna-Pnueli linear time logic is state-based logic,
interpretation of this logic in an event-based (or action-based) setting is possi-
ble. This can be done in more than one way. An alternative interpretation that is
perhaps more relevant for practical verification than the original one was given
in [12] (more easily found in [13] pp. 498 − 499).

2.2 Algorithms

The algorithm BuildOG builds the (deterministic) observation graph related to
an initial state s0 and a set of observable events Obs ⊆ T (T is the set of all
events of the system). The data structures manipulated by the algorithm are
the following ones:

– a shared OBDD which contains symbolic representations of subsets of reach-
ables sets,

200 S. Haddad, J.-M. Ilié, and K. Klai

Algorithm 2.1 Building of the observation graph

1: BuildOG (state s0 , Events Obs)
2: set S′; vertex v,v′;
3: Vertices V ; Edges E;
4: Events Unobs = T \ Obs; stack st;
5: S′ = Saturate({s0}, Unobs);
6: v.dead = DetectDead(S′);
7: v.loop = DetectLoop(S′, Unobs);
8: v.set = Reduce(S′, Unobs);
9: V = {v}; E = ∅;

10: st.Push(〈v, S′〉);
11: repeat

12: st.Pop(〈v, S〉);
13: for t ∈ Obs do

14: S′ = Img(S, t);
15: if (S′ 	= ∅) then

16: S′ = Saturate(S′, Unobs);
17: v′.dead = DetectDead(S′);
18: v′.loop = DetectLoop(S′, Unobs);
19: v′.set = Reduce(S′, Unobs);
20: if (∃w ∈ V s.t.w == v′) then

21: E = E ∪ {v t−→w};
22: else

23: V = V ∪ {v′};
24: E = E ∪ {v t−→v′};
25: st.Push(〈v′, S′〉);
26: end if

27: end if

28: end for

29: until st == ∅;

1: Saturate(set S, Events Unobs)
2: set From, Reach, To;
3: From = S; Reach = S;
4: repeat

5: To = Img(From, Unobs);
6: From = To \ Reach;
7: Reach = Reach ∪ To;
8: until From == ∅;
9: return Reach;

1: DetectDead(set S)
2: return Enab(S, T) 	= S;

1: DetectLoop(set S, Events Unobs)
2: set From, Reach;
3: From = S;
4: repeat

5: Reach = Img(From, Unobs);
6: if Reach == From then

7: return TRUE;
8: end if

9: From = Reach;
10: until Reach == ∅;
11: return FALSE;

– a standard graph representation with a set of vertices (V) and a set of edges
(E). Three attributes are associated to a node v: a symbolic subset of states
v.set characterizing the behaviour of the system starting from this node, v.loop

a boolean indicating that any sequence of observable events leading to this
node is the projection of a divergent sequence and v.dead a boolean indicating
that any sequence of observable events leading to this node is the projection
of a finite maximal sequence,

– a stack whose items are tuples composed by a node of the graph and a
symbolic subset of states (the interpretation of this set is given below).

The initialization step of the algorithm (lines 5 − 9) allows to compute the first
(initial) node of the observation graph (lines 5 − 8) and to initialize the graph
structure (line 9). An iteration of the main loop consists in picking and processing
an item 〈v, S〉 of the stack until it is empty. The goal of the iteration is to
generate the successors of the current node in the observation graph. The set of

Design and Evaluation of a Symbolic and Abstraction-Based Model Checker 201

states S corresponds to the states reached by any sequence of observed events
leading from the initial node of the observation graph to v. Thus one successively
computes the image S′ of S by each observed event. If S′ is not empty, it generates
a new edge of the observation graph labelled by the event.

Now one must check whether the node reached by this edge is a new one.
So we compute the different attributes of this node. At first, we compute the
closure of S′ under the action of the unobserved events (via Saturate). Then we
check the existence of dead states with the help of the symbolic operation Enab

(via DetectDead) and the existence of a loop of unobserved events by applying
a kind of topologic sort of the underlying graph of S′ (via DetectLoop). At last,
we compute from S′ a subset of states characterizing the observable behaviour
starting from S′ (via Reduce).

Finally, we look for an identical node in the graph. If such a node is not
present we add a new node in the graph and push it on the stack with S′. In
fact, we could avoid to push S′ and retrieve the significant information from v.set

but this would complicate the presentation.
We devote the next subsection to the presentation of Reduce since its ap-

plications lead to important memory savings but may involve a large additional
computation time.

2.3 Canonization

In this section, we detail the Reduce function which extracts from a set of states
S, a subset sufficient to characterize the observed behaviour starting from S.
At first, since S is closed under the action of the unobserved events, we can
restrict S to the subset of states enabling any observed event. In practice, this
first reduction does not lead to memory savings perhaps because such a set has a
more irregular structure than the original one w.r.t. the OBDD representation.
So we will not present evaluations of this variant.

Taking the unobserved events as edges, S may be viewed as a graph and it
is sufficient to extract one representant per initial SCC of this graph in order to
preserve the observed behaviour starting from S.

Whereas a symbolic search for all the SCCs of a graph is a theoretical issue
(see [8,6,7]), the search of initial SCCs can easily be done in a number of oper-
ations proportional to the number of states as shown by the algorithm SCAN.
Each iteration of the external loop, starting from a single state Max, computes
its forward closure F and then begins to compute its backward closure B. As
soon as B is no more included in F we know that Max does not belong to an
initial SCC, so we prune F from the current set R and we start a new iteration
with a state which is a predecessor of Max (Maxpick extracts a singleton set re-
duced to the maximal state of a set w.r.t. the lexicographic order induced by the
variables of the OBDD). In the other case, B is an initial SCC including Max, so
we add its representant to the set of representatives, we prune F and we start a
new iteration with an arbitrary remaining state.

Unfortunately, this algorithm has a bad empirical time complexity much
greater than the complexity of the saturation. Thus we have designed a new

202 S. Haddad, J.-M. Ilié, and K. Klai

Algorithm 2.2 Standard and dichotomic canonization

1: SCAN (set S, Events Un)
2: set R, F , B, Frt, Max, Repr, Pred;
3: R = S; Repr = ∅; Max = MaxPick(R);
4: repeat

5: F = Max;
6: Frt = F ;
7: repeat

8: Frt = (Img(Frt, Un) ∩ R) \ F ;
9: F = Frt ∪ F ;

10: until Frt == ∅;
11: B = Max;
12: Frt = B;
13: repeat

14: Frt = (Preimg(Frt, Un) ∩ R) \ B;
15: B = Frt ∪ B;
16: Pred = Frt \ F ;
17: until (Frt == ∅) or (Pred 	= ∅);
18: R = R \ F ;
19: if (Frt == ∅) then

20: Repr = Repr ∪ MaxPick(B);
21: Max = MaxPick(R);
22: else

23: Max = MaxPick(Pred);
24: end if

25: until (R = ∅);
26: return Repr;

1: DCAN (set S, Events Un, int i)
2: set S[0..1], Front, Reach, Repr;
3: S[1] = S ∩ ite(xi, 1, 0);
4: S[0] = S \ S[1];
5: if (S[0] 	= ∅) and (S[1] 	= ∅) then

6: Front = S[1]; Reach = S[1];
7: repeat

8: Front = Img(Front, Un) \ Reach;
9: Reach = Reach ∪ Front;

10: S[0] = S[0] \ Front;
11: until (Front == ∅) or (S[0] == ∅);
12: end if

13: if (S[0] 	= ∅) and (S[1] 	= ∅) then

14: Front = S[0]; Reach = S[0];
15: repeat

16: Front = Img(Front, Un) \ Reach;
17: Reach = Reach ∪ Front;
18: S[1] = S[1] \ Front;
19: until (Front == ∅) or (S[1] == ∅);
20: end if

21: i + +; Repr = ∅;
22: for j from 0 to 1 do

23: if size(S[j]) ≤ 1 then

24: Repr = Repr ∪ S[j];
25: else

26: Repr = Repr ∪ DCAN(S[j], Un, i);
27: end if

28: end for

29: return Repr;

algorithm DCAN adapted to the parallel systems. This recursive algorithm splits
the set of states into two subsets (S[1] and S[0]) w.r.t. the value of the current
variable (xi, with i initially equal to 1). It prunes from the second subset all the
states which are in the forward closure of the first subset. Such a deleted state
either does not belong to an initial SCC or the representant of its SCC is in the
first subset. Now S[0] contains states not reachable from S[1]. We now eliminate
the states of S[1] reachable from S[0] since they do not belong to an initial SCC.
After this double reduction, both these subsets may be independently analyzed
in order to find the representatives of the initial SCCs. This leads to at most two
recursive calls. Of course when a set is a singleton, we have found a representant.

A last improvement is possible: an initial SCC obviously contains a state of
S′ in line 14 in the main algorithm before its saturation in line 16. Thus we can

Design and Evaluation of a Symbolic and Abstraction-Based Model Checker 203

restrict our search to the intersection of the backward and the forward closure
(by the unobserved events) of S′ before its saturation.

Even if DCAN has a worse theoretical complexity than SCAN (quadratic
versus linear), it is more convenient to parallel systems. To explain the former
assertion, let us illustrate the time complexity (number of img and preimg ex-
ecutions) of these two algorithms on the toy parallel program x1 = true|x2 =
true| . . . |xm = true with all the variables initialized to false. Depending on the
number of variables, the state space of such a program can be illustrated by an
hypercube. When m = 3, the state space is given by one of the two cubes of the
figure depending on the encoding of true by 1 or 0. This would modify the initial
choice of Max in the SCAN algorithm which has a time complexity either linear
(m + 2) or exponential (2m+1) w.r.t. m, whereas DCAN has in both cases a linear
complexity. We give below an informal proof of these claims.

Fig. 1. Possible State space graphs of a parallel program

Let first consider the SCAN algorithm.

- true = 1: The canonization is performed in as many iterations as the number
of the cube nodes (2m). At each step a maximum node is picked (111, 110,
101, . . . , 000 successively). By performing once img, leading to now successor,
followed by one preimg operation, leading to some predecessors which are not
successors, the picked node is removed from the whole set. The total number
of img and preimg operations is hence 2 ∗ n where n = 2m is the number of the
cube nodes.

- true = 0: The canonization is here performed in the first iteration. By taking
the maximal node 111, we perform three img steps to reach all cube nodes
(plus one saturation execution), then one preimg is sufficient to know that
this node has no predecessor. All successors are so moved and 111 is selected
as the representant of this elementary SCC.

We consider now the DCAN algorithm:

204 S. Haddad, J.-M. Ilié, and K. Klai

- In both cases (true = 1 and true = 0): The canonization is performed in
m = 3 iterations. At each step the current state space is split into two equal
subsets. At the first iteration, taking states where v1 has true value (i.e.
nodes belonging to one face of the cube) leads to move in one img step all
remaining nodes (i.e. all nodes belonging to the opposite face). The same
thing is done in the two next iterations by removing in one step the n/2
nodes from the n existing ones. In conclusion, if n is the number of the cube
nodes, then we need to accomplish log2(n) = m img steps in order to canonize
the hole space state.

Note that when m > 3 the proof is identical.

3 Evaluation of the Observation Method

In this section, we report the results obtained with the observation graph com-
pared to those obtained with a symbolic approach both for the building and the
analysis of the state space. We also compare the two algorithms of canonization
described in section 2. In general, time and memory consumption is very sensi-
tive to the implementation details of the OBDD tool. Here, our goal is not to
reach performances of existent tools [14,15], but we want to demonstrate that,
given some software, the construction of the observation graph decreases time
and space consumption with respect to an OBDD-based construction of some
state space followed by a symbolic search of fair cycles. Therefore, we have de-
veloped our algorithms with the free package BuDDy [16] for both the symbolic
observation graph construction and the whole state space construction. The im-
plementation of the Img and Preimg operations is similar to the one of [17]. All
the tested examples are parameterized and the size of the reachable states space
is exponential with respect to the parameter value. For each example, there
are two observed events occurring in a linear time formula expressing a fairness
property.
The following three examples were used:
1. Dining philosophers: The system consists of a ring of n dining philosophers. Each
philosopher has two variables that model the state of his left and right forks (up
or down). A philosopher first picks up his left fork, then his right, then, after he
finishes eating, puts down his left, and finally his right, returning to his initial
state. A fork can only be picked up if the neighbor that shares the fork is not
using it.
2. Distributed database: The system consists of a database distributed among n

sites (each site has a copy of the database). Its modifications are done in mutual
exclusion. After such an operation, the site broadcasts its transaction. Upon re-
ception, the other sites update their local copy and send back a grant message.
When all the grants are received, the database is released.
3. Slotted ring: The system models a protocol for Local Area Networks called slot-
ted ring [17]. The network is composed of n vertices. Each node shares two events
with his neighbor: Free(i+1) mod n and Used(i+1) mod n.

Design and Evaluation of a Symbolic and Abstraction-Based Model Checker 205

Table 1. Experimental results

The table 1 includes performance results obtained for both the symbolic
reachability space and the observation graph constructions. Its first column spec-
ifies the system parameter (i.e. the number of components). The second one lists
the size of the reachability space. The remaining columns are divided into subsets
of columns corresponding to measurements for the standard OBDD algorithm
and the observation graph. The comparison criteria are the number of symbolic
operations, the CPU time and the number of OBDD vertices. In addition, we
give for each observation graph the number of its vertices and edges and the
sum of the sizes of the sets associated to each vertex (i.e. Σvsize(v.set)). The last
four columns compare the CPU time of the construction depending on the used
canonization algorithm.
The analysis of this table brings out the following statements:

- The size of the OBDD associated to the observation graph is significantly
smaller than the size of the OBDD associated to the reachability space (e.g.
18% for 30 philosophers, 4% for 10 nodes in the slotted ring, 25% for 30
copies of the database).

- For the three examples, the size of the observation graph is independent of
the value of the parameters. More generally, other experimentations have
confirmed that the size of this graph is neglictible w.r.t. the OBDD size and
grows slowly w.r.t. the parameter.

- The computation of the initial SCCs leads to drastic differences depending
on the use of SCAN or DCAN. The latter has a smaller time consumption

206 S. Haddad, J.-M. Ilié, and K. Klai

than the former (1% for 30 philosophers, 34% for 30 copies of the database).
Its time consumption has the same order as the symbolic building of the
reachability space.

- There are more symbolic operations for the observation graph than for the
reachability space. Combined with the previous statement, one concludes
that the mean size of the manipulated OBBDs is smaller for the first one.

Fig. 2. Evolution of intermediary OBDDs sizes for 20 dining philosophers

It is well known that the ratio between the maximal size of the OBDD during
the computation and its final size may be important. So we have analyzed the
size of these intermediary OBDDs. The figure 2 depicts the evolution of the
intermediary OBDD sizes for the dining philosophers example. The first curve
is related to the symbolic reachability space building while the two other ones
correspond to the observation graph (one with two observed events and the other
with four events). We point out that the size of the intermediary OBDDs are
also reduced by our algorithm and depends on the number of observed events.
Generally increasing the number of observed events leads to smaller intermediary
OBDDs.

Finally, we compare the complete verification process using the observation
graph with a whole symbolic model-checking. We have chosen two robust and
efficient symbolic algorithms: the Emerson-Lei and OWCTY algorithms [3]. The
considered formula expresses that a philosopher will never indefinitely wait to
eat.

Design and Evaluation of a Symbolic and Abstraction-Based Model Checker 207

Table 2. Model checking : SOG vs Emerson-Lei and OWCTY algorithms

The table 2 lists the measurements. Since the complete symbolic approach
builds an OBDD representation of a synchronized product (thus different from
the reachability space of the system), we have taken into account space and time
comparison criteria.

First the construction of the observation graph consumes less CPU time
and less memory than the construction of the symbolic synchronized product.
Moreover, the CPU time consumed by the OWCTY algorithm (resp. Emerson-
Lei) may be as large as (resp. two times larger than) the one of the whole state
space construction.

4 Search of a Counter Example

Once a given property has been proven not to hold on a system, the modeller
needs to modify its design. In order to help this process, providing a counter ex-
ample is useful. It should be clear that the verification process based on the ob-
servation graph exhibits a sequence of observed events invalidating the formula.
Such a sequence σ corresponds to a path in the observation graph. Sometimes,
this is sufficient for the engineer to correct the design of its system. However,
when the abstraction induced by the unobserved events is too strong, the mod-
eller needs a sequence of the system whose projection on the observed events
is σ.

We first handle the case of a finite maximal sequence which corresponds to
a path v0

o1−→v1
o2−→ . . . vn with vn.deadlock = true. At first, we develop again the sets

of states Si corresponding to the nodes vi and we also memorize S′
i the subset of

Si corresponding to the set S′ in line 14 of the main algorithm. We call S′
i the

entry points of Si.
Using DetectDead, one determines the set of dead states Sdead included in

vn. We compute the backward closure of Sdead stacking the different fronts until
we reach at least one entry point of Sn, say sin. Then we compute an explicit
subsequence from sin leading to a dead state through the fronts which are popped
from the stack. With the Preimg({sin}, on)∩Sn−1 operation, we obtain a transition
sn−1

on−→sin with sn−1 ∈ Sn−1. Iterating this backward process starting from sn−1

we eventually reach s0 and build the searched sequence.

208 S. Haddad, J.-M. Ilié, and K. Klai

We now handle the case of an infinite observable sequence which corresponds
to a path v0

o1−→v1
o2−→ . . . vm . . . vn with vm = vn. We detail the search of a circuit

which passes a finite number of times (not necessarily 1) through vm, vm+1, . . . , vn.
As shown on the figure 3, to the circuit Sl

o1−→Sm
o2−→Sl in the observation graph cor-

responds for instance the circuit s1, s5, s8, s11, s2, s6, s9, s12, s3, s1 in the state graph.
We explain our algorithm on this example. We encode sets of couples of

states C = {〈s, s′〉} with an OBDD representation where each variable is dupli-
cated. We transform the image operation as follows: Img(C, t) = {〈s, s”〉|∃〈s, s′〉 ∈
C and s′ t−→s”}. In other words, the image operates on the right item. We handle
a sequence of sets C0, C′

0, C1, C′
1, . . . where 〈s, s′〉 ∈ Ci if s′ ∈ Sl is reachable from

s ∈ Sl by a sequence whose projection on the observed events is (o1o2)i and where
〈s, s′〉 ∈ C′

i if s′ ∈ Sm is reachable from s ∈ Sl by a sequence whose projection on
the observed events is (o1o2)io1.

We start with C0 = {〈s, s〉|s ∈ Sl}. Then we iterate simultaneously on the Ci

and the C′
i as follows.

C0 = C0 ∪ Img(C0, Unobs) Ci+1 = Ci+1 ∪ Img(Ci+1, Unobs) ∪ Img(C′
i, o2)

C′
i = C′

i ∪ Img(C′
i, Unobs) ∪ Img(Ci, o1)

We stop as soon as some Ci for i > 0 contains a couple 〈sloop, sloop〉. Now we
restrict the sets Hj , H′

j to items 〈sloop, s〉 and we project them on their second
component obtaining sets that we denote Hj , H′

j . Then we apply a construction
for sloop similar to the one for sdead through the sets H0, H′

0, . . . , H′
i−1.

At last, the construction of the prefix which leads from s0 to sloop is identical
to the construction of the sequence from s0 to sdead.

Fig. 3. Example of cyclic path in the symbolic observed graph

The case of a divergent sequence is similarly handled except that we remain
inside the set of states associated to the final node of the path of the observation
graph.

Design and Evaluation of a Symbolic and Abstraction-Based Model Checker 209

Our algorithms are currently evaluated and the results will be presented in
a forthcoming paper. However we anticipate that the critical factor will be the
management of the sets of couples.

5 Conclusion

In this work, we have presented a new method for the symbolic model checking
problem. This method builds an observation graph represented in a non sym-
bolic way but where the nodes are essentially symbolic sets of states. Then a
standard model checking is applied on this graph which usually has a very mod-
erate size. Thus we have focused our work on efficient symbolic algorithms for
subproblems involved in the construction of this graph. The evaluations we have
done on standard examples have shown that our method outperforms the pure
symbolic methods which makes it attractive. We pursue this work on different
directions. At first, it is straightforward to adapt our method for a stuttering
invariant propositional linear time logic. From a software point of view, we want
to transform our prototype in a intermediate library which can be bound with
different OBDD software packages and called by a verification framework. We
have noticed that the performance of our method depends on the events to be
observed much more than on the number of these events. Since the choice of
a superset of these events is still possible, we want to investigate heuristics for
this choice based on the structure of the model and more particularly on a Petri
net model. At last, we are looking for some characterization of the parallel sys-
tems for which our dichotomic symbolic search of initial SCCs of the state graph
outperforms a standard symbolic search.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35 (1986) 677–691

2. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Application. SIAM Monographs on Discrete Mathematics and Applications (2000)

3. Fisler, K., Fraer, R., Khami, G., Vardi, M., Yang, Z.: Is there a best symbolic cycle-
detection algorithm? Tools and Algorithms for the Construction and Analysis of
Systems, 7th International Conference, TACAS 2001 2031 (2001) 420–434

4. Emerson, E., Lei, C.: Efficient model-checking in fragments of propositional model
mu-calculus. Proceedings of LICS86 (1986) 267–278

5. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for
the computation of fair cycles. In: International Conference on Formal Methods
for Computer-Aided Verification. L.N.C.S., Springer-Verlag (2000) 143–160

6. Bloem, R., Gabow, H., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. In: International Conference on Formal
Methods for Computer-Aided Verification. L.N.C.S., Springer-Verlag (2000) 37–54

7. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proceedings of International Symposium
on Discrete Algorithms (SODA’03), ACM/SIAM (2003) 573–582

210 S. Haddad, J.-M. Ilié, and K. Klai

8. Xie, A., Beerel, P.: Implicit enumeration of strongly connected components and an
application to formal verification. IEEETCAD: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 19 (2000)

9. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Volume 1. Springer-Verlag New York, Inc. (1992)

10. Kaivola, R., Valmari, A.: The weakest compositional semantic equivalence pre-
serving nexttime-less linear temporal logic. In: International Conference on Con-
currency Theory. (1992) 207–221

11. Puhakka, A., Valmari, A.: Weakest-congruence results for livelock-preserving
equivalences. In: Proceedings of the 10th International Conference on Concur-
rency Theory, Springer-Verlag (1999) 510–524

12. Valmari, A.: Failure-based equivalences are faster than many believe. In Desel, J.,
ed.: Structures in Concurrency Theory, Proceedings of the International Workshop
on Structures in Concurrency Theory (STRICT), Berlin, 11-13 May 1995. (1995)
326–340

13. Valmari, A.: The state explosion problem. In: Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets, Springer-Verlag (1998) 429–528

14. Miner, A., Ciardo, G.: Efficient reachability set generation and storage using de-
cision diagrams. In: International Conference on Application and Theory of Petri
Nets. LNCS, Springer-Verlag (1999) 388–393

15. Geldenhuys, J., Valmari, A.: Techniques for smaller intermediary bdds. In: CON-
CUR 2001 - Concurrency Theory, 12th International Conference. Volume 2154 of
Lecture Notes in Computer Science., Springer (2001) 233–247

16. Lind-Nielsen, J.: Buddy, a binary decision diagram package. Technical Report IT-
TR 1999-028, Institute of Information Technology Technical University of Denmark
(1999) http://cs.it.dtu.dk/buddy.

17. Pastor, E., Roig, O., Cortadella, J., Badia, R.M.: Petri net analysis using boolean
manipulation. In Valette, R., ed.: Proc. of the 15th Int. Conf. on Application and
Theory of Petri Nets (PNPM’94), Zaragosa, Spain. LNCS 815, Springer (1994)
416–435

	Introduction
	The Observation Graph
	Model Checking of an Evenemential Linear Formula
	Algorithms
	Canonization

	Evaluation of the Observation Method
	Search of a Counter Example
	Conclusion

