
A fault-tolerant communication mechanism for
cooperative robots

Joyce El Haddad∗ Serge Haddad

Lamsade Laboratory, CNRS-UMR 7024
University of Paris Dauphine

Place du Maréchal De Lattre de Tassigny
75775 Paris Cedex 16, France

Tel : +33.1.44.05.41.20
Fax : +33.1.44.05.40.91

{elhaddad,haddad}@lamsade.dauphine.fr

Key words : multi-robots systems, fault tolerance, self-stabilization, Petri nets,
Markov chains.

∗Corresponding author.

A fault-tolerant communication mechanism for
cooperative robots

Joyce El Haddad Serge Haddad

Lamsade Laboratory, CNRS-UMR7024, University of Paris Dauphine

Abstract

Operations in unpredictable environments require coordinating teams of robots.
This coordination implies peer-to-peer communication between the team’s robots,
resource allocation, and coordination. We address here the problem of autonomous
robots which alternate between execution of individual tasks and peer-to-peer com-
munication. Each robot keeps in its permanent memory a set of locations where it
can meet some of the other robots. The proposed protocol is constructed by two
layered modules (sub-algorithms: a self-stabilizing scheduling and a construction
of a minimum-hop path forest). The first self-stabilizing algorithm solves the man-
agement of visits to these locations ensuring that after the stabilizing phase, every
visit to a location will lead to a communication. We model the untimed behaviour
of a robot by a Petri net and the timed behaviour by an (infinite) Discrete Time
Markov Chain. Theoretical results in this area are then combined in order to es-
tablish the proof of the algorithm. The second self-stabilizing algorithm computes
the minimum-hop path between a specific robot’s location and the locations of all
the other robots of the system in order to implement routing.

1 Introduction

As robots become more on more autonomous and sophisticated, they are increas-
ingly used for complex tasks. For some of them, a team of robots is needed to
achieve some goal in too dangerous or undesirable areas for humans. Such tasks
could include maintaining of nuclear reactors, as well as participating in search and
rescue missions. For instance, it would be much better to deploy several robots for
the maintenance of nuclear reactors where one robot identifies the faulty compo-
nent and another one follows to replace it with a new one.

For many other tasks, not only multiple robots are necessary, but explicit co-
ordination amongst them is imperative. There has been an increasing research
interest in coordination and cooperation as a step towards achieving systems of
multiple mobile robots engaged in a collective behaviour (Caoet al.1997, Luzeaux

1

2000, Defago and Konagaya 2002). Furthermore, by working simultaneously, each
robot of the team can achieve its own task. One such application domain is the ex-
ploration of the surface of Mars. In fact, Sojourner, a US rover, has already landed
on Mars in1997, and two more NASA rovers are planned to land on Mars in2004,
each having much more autonomy and capabilities than Sojourner. Their mission
is to perform different individual tasks, such as picking up rocks, and to jointly
achieve common objectives, such as communicating their measures of the atmo-
spheric pressure and temperature.

An important reason for using several small rovers instead of a single large
rover during a Mars mission is to increase efficiency. Indeed, several small rovers
can provide a greater scientific return than a single large rover by exploring a
greater surface area. Another important reason is cost reduction, smaller rovers
are less costly to build and to land on Mars. Finally, such an organisation is
fault tolerant since the failure of a single rover will not incapacitate the whole
mission. In such an environment, there are two kinds of protocols to design: a
synchronization protocol between neighboring robots in order to establish (tempo-
rary) point-to-point communications and a routing protocol in order to exchange
packets between two robots (and in particular distant ones). Although there has
been significant work related to cooperating robots (Park and Corson 1997, Hu
et al. 1998, Prencipe 2001), very few authors approaches incorporate fault toler-
ance mechanisms. Our research focuses on the introduction of self-stabilization
as an efficient property that makes the system tolerant to faults and takes into ac-
count the limited resources of the robots in term of processor, memory and energy.
Roughly speaking, a self-stabilizing protocol is designed to recover from an un-
safe state caused by a fault to a safe state by itself. The study of self-stabilization
started with the fundamental paper of Dijkstra (1974). Following this paper, a
great amount of works has been done in this area (Schneider 1993, Dolev 2000).
However, in the presence of mobility and dynamic changes, existing communica-
tion protocols, meant for self-stabilizing networks, are no more appropriate.

In this work, we first describe, in Section 2, a scheduling protocol and then
we use Petri nets theory to give a new proof of its correctness. Next in Section 3,
we present a transformation of the above protocol into a uniform self-stabilizing
scheduling protocol that manages visits to the locations ensuring that after the sta-
bilizing phase, every visit to a location will lead to a communication. We model
the executions of the resulting protocol by a discrete time Markov chain. Based
on this stochastic semantic, we prove the correctness of our protocol in Section 4.
In Section 5, we present how to compute the minimum-hop path between a spe-
cific robot’s location and any location of another robot of the system in order to
implement routing. Finally, in Section 6, we give its correctness proof.

2

2 Scheduling protocol

In this section, we present the non self-stabilizing scheduling protocol of Bracka
et al. (2003) for a robotic network. Let us first describe the system model and give
some assumptions

2.1 The system model

1. The system consists of a finite set ofm robots denoted by{r1, . . . , rm} and
an ordered set ofN meeting points, henceforthlocations. In this section,
robots areanonymousin the sense that, they do not know their identifiers
(the subscripti of ri is used for convenience of explanation), they cannot be
distinguished by their appearances, and they all use the same algorithm for
determining the next position. Each location has its own distinct identity,
that does not change during the protocol execution. We will denote this set
by {l1, . . . , lN} in increasing order. A pair of robots is associated with each
location where a temporary communication can be established, if both of the
robots are present.

2. Each robotri has hardwired an array of the locations where it can go. This
array, of lengthni, is sorted in increasing order of the identifiers and each
entry stores the identifier of thejth location of the robotri given by the
functionf(i, j) for 1 ≤ i ≤ m and0 ≤ j ≤ ni − 1.

3. Between any pair of robotsri andri′ , there is a sequence of robotsri =
ri0 , ri1 , . . . , riK = ri′ such that for all0 ≤ k < K, rik andrik+1

share a lo-
cation. This hypothesis ensures that there is a (potential) global connectivity
between robots.

The aim of the protocol is to schedule the visits of the locations for each robot in
such a way that every location is infinitely often visited. The obvious requirement is
that a robot cannot leave a location without establishing a communication with the
other robot, henceforth calledpeer, associated with this location. In the scheduling
algorithm of Brackaet al.(2003) each robot infinitely visits its locations following
the order of its array starting from the first one. Brackaet al. developed a specific,
yet rather lengthy, proof that no (partial or global) deadlock can occur. With the
help of Petri net theory, we gave a shorter and simpler proof of the algorithm (El
Haddad and Haddad 2003). We recall this proof since it will be the basis of the
self-stabilizing version, presented in the following section, of the above protocol.
A basic knowledge of Petri nets syntax and semantics is assumed; otherwise, a
good introduction to this topic can be found in Reisig (1985).

2.2 The correctness proof of the protocol

Petri nets are generic enough to provide modelling of a wide variety of systems.
Although due to their asynchronous nature, they are more commonly used for dis-

3

Figure 1: The cycle of visits for robotri

tributed systems. However, their use in distributed systems by no means excludes
applications to the field of robotics. In fact, robots themselves form part of the
distributed system, and the activity of each one of them can be easily modelled
by a local Petri net. Figure 1 shows the local Petri net model associated with an
individual robotri. We denote it byNi = (Pi, Ti, P rei, Posti,M0i) where

1. Pi = {p(i,0), . . . , p(i,j), . . . , p(i,ni−1)} is the set of places. Whenp(i,j) is
marked,ri is going to itsjth location, or waiting there for its peer.

2. Ti = {tf(i,0), ..., tf(i,j), ..., tf(i,ni−1)} is the set of transitions. Whentf(i,j)

is fired, the communication has happened at thejth location and the robot
goes to its next location.

3. Prei is the precondition matrix,Prei : Pi×Ti → {0, 1} defined, according
to the behaviour, i.e.

Prei(p, t) =
{

1 if p = p(i,j) and t = tf(i,j) for some j

0 otherwise

4. Posti is the postcondition matrix,Posti : Pi × Ti → {0, 1} defined, ac-
cording to the behaviour, i.e.,

Posti(p, t) =
{

1 if p = p(i,(j+1) modulo ni) and t = tf(i,j) for some j

0 otherwise

5. M0i is the initial marking defined, according to the behaviour, i.e.

M0i(p(i,j)) =
{

1 if j = 0
0 otherwise

As a result of the point-to-point communication between robots, a global Petri net
is formed by the union of local Petri nets where transitions with the same identity
are merged. Thereby, the scheduling protocol is modelled by the global Petri net
N = (P, T, Pre, Post, M0) where

4

Figure 2: A global Petri net model for an instance of the protocol

1. P =
⊎

Pi, is the disjoint union of places of local Petri net models.

2. T =
⋃

Ti, is the (non disjoint) union of transitions of local Petri net models.

3. Pre, Post are the Precondition and Postcondition matrices, defined from
P × T over{0, 1}, by

Pre(p, t) =
{

Prei(p, t) if p ∈ Pi and t ∈ Ti for some i
0 otherwise

Post(p, t) =
{

Posti(p, t) if p ∈ Pi and t ∈ Ti for some i
0 otherwise

4. M0 the initial matrix is defined byM0(p) = M0i(p) if p ∈ Pi.

For instance, consider a system formed by a team of six autonomous robots
and six locations. The following table 1 represents the array of locations for each
robot. The graphical version of the corresponding global Petri net model of the
above system is given by figure 2.

Robots r1 r2 r3 r4 r5 r6

1 2 1 3 5 6
Locations 3 4 2 4

5 6

Table 1: The locations array

5

By construction, the global netN belongs to a particular subclass of Petri nets
calledevent graphsdefined by the restriction that each place has exactly one input
transition and one output transition. In such nets, most of the behavioural properties
including livenessanddeadlock avoidanceare structurally characterized. A net is
said to be live when, whatever the state reached by the net, all the transitions remain
fireable in the future. The following lemma of the theory of event graphs will be
sufficient for our purposes. We recall the proof since the associated constructions
will be used in the proof of self-stabilization.

Lemma 1 LetN be an event graph such that every cycle has an initially marked
place, thenN is live.

Proof: An important observation is that given a cycleC of the event graphN ,
the only transitions that produce or consume tokens in the places of the cycle are
the transitions of the cycle. Thus, the number of tokens in every cycle remains
constant.

Suppose that every cycle is initially marked. By the previous observation, we claim
that every cycle of every reachable markingM , is also initially marked. For such
a markingM , we define a binary relationhelpsM between transitions such that
t helpsM t′ if and only if there is a placep with M(p) = 0 and which is an output
place fort and an input one fort′. Let precedesM be the transitive closure of
helpsM . We claim thatprecedesM is a partial order; otherwise, there may exist
transitionst andt′ for which t precedesM t′ andt′ precedesM t. According to the
definition of precedesM , this implies that there is a path fromt to t′ and a path
from t′ to t where every place is unmarked. As usual, one can extract from the
concatenation of these two paths, an unmarked cycle contradicting the assumption.

Since every partial order on a finite set can be extended to at least one total order,
let t1, . . . , tn be the ordered set of transitions induced byprecedesM . We claim
that t1 . . . tn is a firing sequence starting from the markingM . Indeed,t1 is fire-
able since all its input places are marked inM . By induction, the firing of the
sequencet1 . . . ti, starting fromM , leads to a new marking,M ′. Thereafter, all the
input places of the transitionti+1 are marked inM ′ since either they were already
marked inM , or a token has been produced in it by the firing of sometj with j ≤ i
and not consumed since a transition does not share its input places. Therefore, the
firing sequence can be extended toti+1 and the netN is live. ¥

The correctness of the protocol is expressed in the following proposition.

Proposition 2 LetN be a net modelling the protocol for some system, thenN is
live.

Proof: Consider a cycleC of the event graphN and lettk be the transition with
the smallest identifier occurring in this cycle,p(i,j) the input place oftk and tk′

the input transition ofp(i,j) in the cycle. By construction ofN , k = f(i, j) and

6

k′ = f(i, (j − 1) modulo ni). The choice oftk implies thatk < k′, althoughf is
increasing with regard to its second argument. Thus, the only possible value forj
is 0. As p(i,0) is initially marked, we have proved that every cycle has an initially
marked place. By lemma 1,N is live. ¥

This result can be straightforwardly generalized to the case ofn-ary rendez-
vous between robots. However, the networks we study are useful due to their
flexibility. Introducingn-ary rendez-vous withn > 2 decreases such flexibility.
So for sake of simplicity, we will restrict ourselves to the initial case of binary
synchronization.

3 A self-stabilizing scheduling protocol

A possible enhancement to the previous protocol would be to add fault tolerant
properties. In this section, we present a randomized self-stabilizing scheduling
protocol based on the previous one. To simplify the discussion and bring forth the
fundamental issues, the protocol maintains the following additional assumptions

1. The robots cannot observe the absolute time of their actions, but they have
access to timers. A timer is a real-valued variable, whose value continu-
ously decreases in time. More precisely, each robotri has a timer, denoted
timeouti and taking any value in the range0 to N + 1, that wakes it up on
expiration. Note that these timers run exactly, in the sense that duringδ time
unit (tu) they decrease by exactlyδ . We shall discuss this assumption, in the
concluding remarks.

2. The trip between two locations takes at most1 tu. This hypothesis can al-
ways be fulfilled by an appropriate choice of the time unit.

3. Each robotri maintains an hardwired array of its locations, sorted by in-
creasing order of the locations identity and denotedMPi[0 . . . ni − 1].

4. The robots are equipped with sensors for detecting their positions. More
precisely, each robotri has a sensor, giving its current position, denoted
positioni and holding any value in the set{0, . . . , ni − 1} ∪ {nowhere},
indicating either the index, inMPi, of the location whereri is waiting, or
thatri is between two locations.

3.1 Description of the protocol

The behaviour of a robot is event-driven: the occurrence of an event triggers the
execution of a code depending also on its current state. In our case, there are two
events: the timer expiration and the detection of another robot. We denote such
an event a peer detection with the obvious meaning that the two robots are both
present at some location. We do not consider that the arrival at a location is an
event; instead when a robot reaches a location, it just stops. As a robot refills its

7

timer to 1tu before going to a new location, the timer will expire after the end of
the trip, and then the robot will execute the actions corresponding to the arrival.
The crucial point here is that, with this mechanism,the duration of a trip between
two locations becomes exactly1 tu. A variablestatusi, that takes as value either
moving or waiting, has a special role on the behaviour of the robot w.r.t. the
events handling. When this variable is set tomoving, the robot can neither detect
another robot, nor can it be detected by another one. Looking at the proposed
protocol, this means that even if a robot arrives at a destination where its peer is
already waiting, the communication between them will happenonly after the timer
of the arriving robot expires.

As shown in the program, a robot has four actions:SYNC, WAIT , RECOVER

andM ISS. SYNC andWAIT correspond to the actions of the original algorithm.
In order to recognize that a timer expiration corresponds to an arrival, we use the
variablestatusi. It is set tomoving when the robot goes to a new location, and
set towaiting when the timer of a robot arriving at a location expires. However,
WAIT is different from the corresponding action of the previous algorithm as the
robot sets its timer toN + 1 (recall thatN is the number of the locations). When
the timer of a robot arriving at a location expires and a peer is already waiting then
it will firstly execute itsWAIT action, and as its status is becomingwaiting both
will execute theirSYNC action.

When recovering from a crash, the timer of a robot triggers an action. The
actionRECOVER is executed by a robot at most once in our protocol (depending
on the initial state), and necessarily as the first action of the robot. It happens if
the robot is between two locations after the crash. Then the robot goes to its first
location.

The key action for the stabilization isM ISS. It happens either initially, or when
the robot is waiting for a peer at a location and its timer has expired. Then the robot
makes a (uniform) random choice between two behaviours:

• it waits again for1 tu;

• it goes to its first location.

When it is called, the random function Uniform-Choice sets its single parame-
ter to a value among{0, 1}.

An execution of this algorithm can be seen as an infinite timed sequence
{tn, An}n∈IN, where{tn} is a strictly increasing sequence of times going to infin-
ity and eachAn is the non-empty set of actions that have been triggered at timetn
(at most two actions per robot in the case when it executesWAIT and immediately
afterSYNC). With this formalization, we can state what is a stabilizing execution.

Definition 3 An execution{tn, An}n∈IN of the protocol is stabilizing if the number
of occurrences ofRECOVERandM ISS is finite.

8

Constant : N, ni;
MPi[0 . . . ni − 1];

Timer : timeouti ∈ [0 . . . N + 1];
Sensor : positioni ∈ {0, . . . , ni − 1} ∪ {nowhere};
Variables : statusi ∈ {waiting,moving};

choicei ∈ {0, 1};

ON PEER DETECTION // SYNC

// on ri arrival or on peer arrival while the other is already waiting
// necessarilystatusi is waiting

Exchange messages;
Refill(timeouti,1);
statusi = moving;
Go toMPi[(positioni + 1) modulo ni];

ON TIMER EXPIRATION

// ri arrives at the location
If (positioni! = nowhere) And (statusi == moving) Then // WAIT

Refill(timeouti,N + 1);
statusi = waiting;

Endif

// recovery from a crash while the robot were between two locations
If (positioni == nowhere) Then // RECOVER

Refill(timeouti,1);
statusi = moving;
Go toMPi[0];

Endif

// expiration of the timer whileri is waiting for a peer
If (positioni! = nowhere) And (statusi == waiting) Then // M ISS

Uniform-Choice(choicei);
Case(choicei)

0 : Refill(timeouti,1);
1 : Refill(timeouti,1);

statusi = moving;
Go toMPi[0];

Endcase
Endif

Figure 3: Protocol specification for robotri

9

In other words, after a finite time, the protocol behaves like the original algorithm.
Let us remind thatRECOVER can occur at most once per robot. The next section
will be devoted to prove the following proposition.

Proposition 4 Given any initial state, the probability that an execution will stabi-
lize is 1 and the mean time until the stabilization is finite.

4 Proof of stabilization

Without loss of generality, we consider that the initial state is a state obtained after
each robot has executed at least one action. Thus we do not have to take into
account the actionRECOVER. With this hypothesis and for a better understanding
of the protocol, a state graph of a robot is presented in figure 4.

4.1 Probabilistic semantics of the protocol

We assume that the code execution is instantaneous: indeed, the time that takes for
a robot to execute internal computation is negligibly small with regard to the time
it takes for the robot to move to a new location. Thus in our protocol, the single
source of indeterminism is the random choice of theM ISS action since all trips
take exactly 1tu. Consequently, the probabilistic semantics of our protocol is a
Markov chain whose description is given below.

A state of this Markov chain is composed by the specification of a state for each
robot. The state of a robotri is defined by its vector< si, li, toi, αi >, where:

• si: the robot’s status that takes value in the set{waiting, moving} depend-
ing on whether the robot is waiting at a location or moving to it,

• li: the location where the robot is waiting or moving to,

• toi: given by the formuladtimeouti−1ewheredxe denotes the least integer
greater than, or or equal tox. toi takes its value in{0, . . . , N},

• αi: given by the formulaαi = timeouti − toi, it takes its value in]0 . . . 1].
We will call it the residual value.

The last attributes deserve some attention. As we consider states after the ex-
ecution of the actions, the variablestimeouti are never null: this explains the
range of these attributes. Moreover, these attributes are simply a decomposition
of timeouti. However the interest of this decomposition will become clear in the
next paragraph. So, a statee will be defined by:e =

∏m
i=1 < si, li, toi, αi >.

Let us note that the set of states is infinite and even uncountable since theαi’s
take their values in an interval ofR. However, we show that we can lump this chain
into a finite Markov chain with the help of an equivalence relation that fulfills the
conditions of strong lumpability Kemeny and Snell (1960).

10

Figure 4: A state graph forri

Definition 5 Two statese1 =
∏m

i=1 < s1
i , l

1
i , to

1
i , α

1
i > and e2 =

∏m
i=1 <

s2
i , l

2
i , to

2
i , α

2
i > are equivalent if:

1. ∀ i, s1
i = s2

i , l
1
i = l2i , to

1
i = to2

i ,

2. ∀ i, j, α1
i < α1

j ⇐⇒ α2
i < α2

j

An equivalence class (denoted byc) of this relation is characterized by:c =∏m
i=1 < si, li, toi > × position, whereposition represents the relative positions

of theαi’s. It is easy to show that there are at mostm! · 2m−1 distinct positions.
Thus, the number of equivalence classes is finite. The next proposition establishes
the condition of strong lumpability.

Proposition 6 Let c andc′ two equivalence classes,lete1 ande2 be two states of
the classc, then: ∑

e∈c′
P [e1, e] =

∑

e∈c′
P [e2, e]

whereP denotes the transition matrix of the Markov chain.

Proof: The proof is omitted, see El Haddad and Haddad (2003). ¥
A Markov chain can be viewed as a graph where there is an edge between one

states and anothers′ iff there is a non null probability to go from the former to the
latter (i.e. P [s, s′] 6= 0). The edge is labelled by this probability. The following
lemma (only valid for finite chains) will make the proof of correctness easier.

Lemma 7 (Feller 1968) LetS′ be a subset of states of a finite Markov chain. Let
us suppose that for any states, there is a path froms to somes′ ∈ S′. Then
whatever the initial state, the probability to reach (some state of)S′ is 1 and the
mean time to reach it is finite.

11

Figure 5: The level of transitions of a deadlock-free marking

4.2 Stable states

In this subsection, we exhibit a condition on states that ensures that, in an execu-
tion starting from a state fulfilling such a condition, theM ISS action will never
occur. We need some preliminary definitions based on the Petri net modelling of
the original protocol.

Definition 8 Let e =
∏m

i=1 < si, li, toi, αi > be a state of the system. Then the
marking M(e) of the netN modelling the protocol is defined by:M(e)(pi,j) = 1 If
li = f(i, j) Else0.

In fact, the markingM(e) is an abstraction of the statee where the timed informa-
tions and the status of the robot are forgotten.

Definition 9 Let N be a net modelling the protocol andM be a marking ofN ,
thenM is said to be deadlock-free if for the markingM , all the cycles ofN are
marked.

In a state modelled by a deadlock-free marking, if we execute the original
protocol, then no deadlock will never happen. However, due to the values of the
timer, it may happen that for a statee with M(e) being deadlock-free, aM ISS

action happens (for instance, on timer expiration of a waiting robot while its peer
is still moving). Thus we must add timed constraints to the statee in order to forbid
such behaviour.

If M is deadlock-free, then the relationhelpsM introduced in lemma 1 defines
a directed acyclic graph (DAG) between transitions. We definelevelM (t) as the
length of the longest path of this DAG ending int. Here the length of a path is
the number of vertices of this path. In figure 5, we have represented the level of
transitions for the initial marking of the net of figure 2. We are now ready to define
our condition on states.

Definition 10 Let e =
∏m

i=1 < si, li, toi, αi > be a state of the system. Thene is
stable if M(e) is deadlock-free and,∀i, si = waiting ⇒ toi ≥ levelM(e)(tli).

The next lemma shows that the definition of stable states is appropriate.

12

Lemma 11 In an execution starting from a stable state, the actionM ISSwill never
happen.

Proof: We will proceed by induction on the states of the system at discrete time
0, 1, 2, We noteen the state of the system at timen. e0 is the initial stable state.
Be aware that these states do not correspond to the successive states of the Markov
chain, but it does not matter since we will not use here any probabilistic argument.
Our induction hypothesis is that until timen no M ISS action has happened, anden

is stable. Forn = 0, it is just the hypothesis of the lemma. Let us examine what
happens between timen andn + 1.

Let us look at a robot waiting at a location at timen. Since its timer is greater than
1 (by the stability hypothesis and the fact thatαi > 0), it will not expire untiln+1.
Let us now look at a robot moving to a location at timen. It will arrive during the
interval[n . . . n+1] and will refill its timer toN +1. In both cases, either aSYNC

will happen and the robot will be moving at timen + 1, or it will still be waiting.
Thus we have proved that noM ISS action happens during this interval.

It remains to show thaten+1 is a stable state. Since noM ISS action happens dur-
ing the interval, the execution (without taking into account the timer values) cor-
responds to the execution of the non self-stabilizing protocol. ThusM(en+1) is a
marking reached by a firing sequence fromM(en), and so all the cycles are marked
in this new marking.

Let t be a transition of level1 for M(en). t has its two places marked, meaning
that the two associated robots are either waiting at the corresponding location, or
moving to it. Thus the synchronization will happen before timen + 1.

Let t be a transition of level> 1 for M(en). t has one of its places unmarked, that
means that one of the robots associated with the corresponding location is neither
waiting at this location, nor it is moving to. Thus a synchronization at the location
is impossible during this interval. Sot will not be fired during the interval.

Suppose now that a robotri is waiting at timen + 1 at a location. If this robot has
arrived during the interval, it has set its timer toN + 1, and thus at timen + 1, toi

is still equal toN , which is an upper bound for the level.

Finally, suppose that this robot has been waiting during the whole interval. Then
its timer (and sotoi) is decreased by one at timen + 1, but the level of the corre-
sponding transition was greater than one at timen and has not been fired. All the
transitions of level1 have been fired, so its level at timen + 1 is also decreased by
1 (since the paths to this transition in the new DAG are exactly the paths to it in
the old DAG truncated by their origin). Thus the timed constraints are still verified
anden+1 is a stable state. ¥

4.3 From an initial state to a stable state

In this section, we show that given any initial state, there is a path from this state
to a stable state in the Markov chain. Thus the proposition 4 will follow almost

13

directly from lemmas 7 and 11. The single non trivial observation to make is that
given two equivalent statess ands′ (see definition 5), thens is stable iffs′ is stable
since the stability does not involve the residual times. Thus the path found below
gives a path in the finite aggregated Markov chain where the final state is a set of
stable states.

Lemma 12 Given any initial state, there is a path in the Markov chain from this
state to a stable state.

Proof: As we look for a path in the Markov chain, each time theM ISS action
happens, we can choose its random output. So, when in what follows we will
choose, during a part of execution, the first choice (staying at the location), we will
say that we simulate the original algorithm.

If the initial state is stable, then we are done. So we suppose that the initial statee
is not stable. We examine the two following cases:

1. M(e) is deadlock-free.

Here the timed constraints of stability are not verified bye. By simulating
the original algorithm, we claim that a stable state will be reached. First, all
successive markings associated with the states will be deadlock-free since
they are reachable fromM(e) in the netN .

Second, we decompose time into intervals of 1tu. During each interval, all
the locations corresponding to the transitions of level 1 will be the support
of SYNC actions. A robot that will execute such aSYNC action will have
its timed constraint fulfilled since it is moving. Moreover, using exactly
the same proof as the one of lemma 11, it can be shown that when a timed
constraint is fulfilled, it will always be fulfilled. Thus after each robot has
executed at least oneSYNC action, we have reached a stable state.

2. M(e) is not deadlock-free.

Since there is a chain of synchronization locations between any pair of robots,
applying the original algorithm would lead us to a global deadlock. Thus we
simulate the original algorithm until every robot is blocked alone at a loca-
tion, and then has executed at least once itsM ISS action. This means that all
timers have their values≤ 1.

Now we choose for every robot the second alternative of theM ISS action.
All these actions happen in less than1 tu. So after the lastM ISS action has
been executed, every robot is still moving to its first location. In this state
denoted bye′, M(e′) is the initial marking of the net modelling the original
protocol. ThusM(e′) is deadlock-free and we complete the current path by
the path of the first case. ¥

14

5 A routing table maintenance algorithm

In this section, the robots are no more anonymous since they exchange messages
using the identities to refer the destination. A natural method for trying to provide
routing in multi-robots networks is to consider each mobile robot as a router and
to run a routing protocol between them. The objective of most routing protocols
is to find a path to the destination which is optimal with respect to a given metric.
In this section, we present a minimum-hop, self-stabilizing algorithm for maintain-
ing routing tables which is an extension of Dolevet al. (1989). Whereas routing
via minimum-hop is still required, the routing decision made when forwarding a
messagedependson the destination of the message (and the contents of the routing
tables) and the current position of the forwarding robot.

Since the management of each destination robot is independent, we fix an ar-
bitrary robotr0 called the destination robot.

The algorithm is based on a communicationorientedgraph where the vertices
of the graph are the locations of the robots with two vertices per location (i.e. one
per peer). There is an edge betweenu andv iff:

• ∃ r, r′ two robots∃ l a common location ofr andr′ such thatu = (r, l) and
v = (r′, l), or

• ∃ ri a robot∃ 1 ≤ j ≤ ni such thatu = (ri, f(i, j)) andv = (ri, f(i, (j +
1) mod ni))

Let us suppose that upon stabilization, the algorithm computes a forest ofn0

trees each one rooted at a location ofr0 spanning the graph with minimum-hop
paths towardsr0. Let us consider a robotr currently at a locationl shared withr′

which needs to send a message tor0. If the father of(r, l) is the next location of
r then the robot keeps the message until it reaches the next location. Else if the
father is(r′, l) then the robot sends the message tor′. With such a data srtcuture,
it is straightforward to show that the message will reachr0.

The self-stabilizing algorithm we propose is depicted in figure 6. Each robotri

maintains the following variables:

• distancei[0 . . . ni − 1]: an array of integer, wheredistancei[j] is the esti-
mation byri of the distance between its locationMPi[j] and the destination
r0. A distance variable can store an integer value between0 and2N − 1,
whereN is the number of locations in the whole system.

• exiti[0 . . . ni − 1]: an array of booleans. Ifexiti[j] is true then the father of
the vertex(ri,MPi[j]) is the vertex(rk,MPi[j]) with rk corresponding to
the peer ofri for the locationMPi[j]. If exiti[j] is false then the father of
the vertex(ri,MPi[j]) is the vertex(ri,MPi[j + 1 mod ni])

15

Variables : distancei[1 . . . ni] ∈ [0 . . . 2N − 1];
exiti[1 . . . ni];

For noder0 only
do periodically

for j = 0 to n0 − 1 do distance0[j] = 0;
enddo

On synchronization withrk at locationMPi[j]
Send adistancei[j] to r′;
Received from r′;
if (ri! = r0) then

d′ = min(d, distancei[(j + 1) mod ni]);
if (d′ < 2N − 1) then
distancei[j] = d′ + 1;
exiti[j] = (d == d′);

endif
endif

Figure 6: The routing table maintenance algorithm

The exemple given in table 2 specifies the part of the routing table ofr1 w.r.t. the
destinationr6, in the system illustrated by the figure 2. For instance, ifr1 standing
at location5 wants to send a message tor6, it will wait to be at location1 and will
forward it tor3.

distance exit
(r1, 1) 6 true
(r1, 3) 5 true
(r1, 5) 7 false

Table 2: The stabilized routing table entries ofr1 towardsr6

Thedistance table ofr0 is periodically set to0. Thus starting from any state
this table is correct after one itération of this loop. An entry of the tables of any
other robot corresponding to locationl is updated when synchronizing at this loca-
tion by:

• The exchange of the current estimation of the distance by the robots between
this location andr0.

16

• The new estimation is the minimum between the distance of the peer incre-
mented by one and the distance of the next location of the robot incremented
by one. The corresponding entry of theexit table is set to true iff the mini-
mum is obtained by the distance of the peer.

6 Proof of correctness

Since this algorithm is composed with the previous one, we suppose that in an ini-
tial state, the scheduling algorithm has stabilized. Let us introduce some concepts
associated to an execution. An execution sequence is decomposed into successive
rounds. Each round starts at the end of the previous one and finishes when all the
robots have performed at least one visit per location. By convention, the first round
starts whenr0 has set to zero its tabledistance.

A floating distancein some configurationc is a value in a distance variable that
is smaller than the real distance. Thesmallest floating distancein some configu-
ration c is the smallest value among the floating distances. If there is no floating
values in some configuration, thensfd = ∞. The lemma below, shows that, in
every execution, a safe configuration is reached.

Lemma 13 For everyk ≥ 0 and for every configuration that follows the firstk
rounds, it holds that:

Assertion1: If there exists a floating distance, then the value ofsfd is at leastk

Assertion2: The nodes with distance values less than or equal tok consist a
forest of minimum-hop trees.

Preuve : Let sfvk denote the smallest floating distance at the end of thekth round
andsfd0 the initial smallest floating distance. We prove the lemma by induction
overk.

For k = 1, the distances stored in the variables are non-negative; thus the value
of the smallest floating distance is at least0 in the first configuration. This proves
assertion1. To prove assertion2, note that before the first round, the destination
robot r0 sets all its distances variables to0. Once these distances are computed,
they will never be changed. Therefore, each location ofr0 is the root of a tree and
the assertion2 holds as well.

Assume correctness fork ≥ 0 and prove fork + 1. Let m ≥ k be the smallest
floating distance in the configuration that follows the firstk rounds. During the
roundk + 1, each robot that recompute its distance variables, either assigns the
correct value or choosesm as the smallest value and assignsm + 1 to its distance
variable. Therefore, the smallest floating distance value ism + 1. This proves
assertion1.

17

Since the smallest floating distance ism ≥ k, it is clear that each robot that receives
the distancek of a peer, computes the smaller distance value betweenk and the
distance of its next location. The new value is eitherk + 1 or the distance of its
next location incremented by one. In the case ofk + 1, the robot distance value
equals its real distance. In the other case, it equals a floating distance greater than
or equal tok. Note that, once the value in the variable of robot is equal to its
distance from the root, then it joins one of the trees of the forest by choosing either
its peer or its next location, as its father in the tree. ¥
The next corollary is implied by lemma 13.

Corollary 14 The routing algorithm presented above stabilizes after2N rounds.

7 Concluding Remarks

We have designed a uniform self-stabilizing scheduling protocol for a network of
robots. The interest of this work is twofold. On the one hand, self-stabilization
is an important and desirable feature of protocols for these environments. On the
other hand, the use of formal models for proofs of stabilizing algorithms is not so
frequent. Here, with the help of Petri nets theory, we have simplified the proof of
the non stabilizing version of the algorithm. A part of the proof of stabilization is
also based on this model.

The assumption that timers run exactly is only important during the stabiliza-
tion step. Once the algorithm reaches a stable state, we can show that the protocol
still works if the timers are prone to small deviations. Moreover in practice, if the
stabilization step is not too long, then the deviations of the timers will not disturb
it.

The next stage of our research is to prove that no deterministic self-stabilizing
algorithm exists for the scheduling task, to explore how should new robots be in-
corporate in the system without bringing it down and to develop self-stabilizing
algorithms for dynamic systems supporting that some robots may join or leave the
system.

References

BRACKA, P., MIDONNET, S., and ROUSSEL, G., 2003, Scheduling and Routing
in an Ad Hoc Network of Robots. IASTED International Conference on Com-
puter Science and Technology, Cancun, Mexico.

CAO, Y. U., FUKUNAGA, A., and KAHNG, A., 1997, Cooperative mobile
robotics : Antecedents and directions.Autonomous Robots, 4, 7-23.

18

DEFAGO, X., and KONAGAYA, A., 2002, Circle formation for oblivious anony-
mous mobile robots with no common sens of orientation. Workshop on self sta-
bilizing, POMC’02, pp. 97-104.

DIJKSTRA, E., 1974, Self-stabilizing systems in spite of distributed control.Com-
munications of the ACM, 17, 643-644.

DOLEV, S., ISRAELI, A., and MORAN, S., 1989, Self-stabilization of dynamic
systems. Proceedings of the MCC Workshop on Self-stabilizing systems, MCC
Technical Report No. STP-379-89

DOLEV, S., 2000,Self-stabilization(MIT Press).

DOLEV, S., and HERMAN, T., 1999, Parallel composition of stabilizing algo-
rithms. Workshop on Self Stabilizing, country, pp. 25-32.

El HADDAD, J., and HADDAD, S., 2003, Self-stabilizing scheduling algorithm
for cooperating robots. ACS/IEEE International Conference on Computer Sys-
tems and Applications,Tunisia.

FELLER, W., 1968,An introduction to probability theory and its applications,
(John Wiley and Sons), volume1.

HU, H., KELLY, I., KEATING, D., and VINAGRE, D., 1998, Coodination of mul-
tiple mobile robots via communication. Proceedings of SPIE, Mobile Robots
XIII and Intelligent Transportation Systems, Boston, Massachusetts, pp. 94-103.

KEMENY, J., and SNELL, J., 1960,Finite Markov Chains(Van Nostrand, NJ :
Princeton).

LUZEAUX, D., 2000, Autonomous small robots for military applications. Confer-
ence on Unnamed Groud Vehicle Technology, USA.

PARK, V., and CORSON, M., 1997, A highly adaptive distributed routing algo-
rithm for mobile wireless networks.Sixteenth Annual Joint Conference of the
IEEE Computer and Communications Societies, 3, 1405-1413.

PRENCIPE, G., 2001, Corda : Distributed coordination of a set of autonomous
mobile robots. European Research Seminar on Advances in Distributed Systems,
Ersads.

REISIG, W., 1985,Petri Nets: an Introduction(Springer Verlag).

SCHNEIDER, M., 1993. Self-stabilization.ACM Symposium Computing Surveys,
25, 45-67.

19

