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Abstract

We address the problem of transient and steady-state

analysis of stochastic discrete event systems which include

concurrent activities with multiple time scales finite support

distributions (and consequently non Markovian). Rather

than computing an approximate distribution of the model

(as done in previous methods), we develop an exact anal-

ysis of an approximate model. The design of this method

leads to a uniform handling for the computation of the tran-

sient and steady-state behaviour of the model. We extend a

previous result restricted to one time scale in order to han-

dle different time scales. Furthermore, we show that some

useful classes of non ergodic systems can be analyzed in

an exact way with this method. We have evaluated our al-

gorithms on standard queuing models benchmarks. Our re-

sults demonstrate that in most of the cases the solution of

the approximate model converges quickly to the solution of

the exact model, and in the difficult cases (e.g. an heavy

load on the queue) our method is more robust than the pre-

vious ones.

1. Introduction

The transient and steady-state analysis of Markovian dis-

crete event systems is now well established with numerous

tools at the disposal of the modelers. The main open issue is

the reduction of the space complexity induced by this anal-

ysis. However in a realistic system, the distribution of the

occurrence (or the duration) of some events can not be de-

scribed by a exponential law (e.g. the triggering of a time-

out). Theoretically any “reasonable” distribution is approxi-

mated by a phase-type distribution enabling again a Marko-

vian analysis [Cox, 1955b]. Unfortunately the continuous

time Markov chain (CTMC) associated to this approxima-

tion is so huge that it forbids its analysis (indeed even its

construction). Such a phenomenon often occurs when the

non exponential distribution has a finite support i.e. when

the whole probability mass is included in a finite subset of

IR+ (non null Dirac, uniform, etc.); then a good phase-type

approximation requires too much stages for its specifica-

tion.

Hence the research has focused on alternative meth-

ods. In the case of a single realization of a non Marko-

vian distribution at any time, successful methods have

been proposed [German et al., 1995] both for the transient

and steady state analysis, especially in the Stochas-

tic Petri Net (SPN) modelling framework. Let us

cite, for instance, the method of supplementary vari-

ables [Cox, 1955a, German and Lindemann, 1994]

or the method of the subordinated Markov

chains [Ajmone Marsan and Chiola, 1987].

The general case (i.e. simultaneous multiple realiza-

tions of such distributions) is more intricate. The method

of supplementary variables is still theoretically applica-

ble but the required space and the computation time limit its

use to very small examples. An alternative approach is de-

scribed for non null Dirac distributions (i.e. “determinis-

tic” durations) in [Lindemann and Schedler, 1996]. The

stochastic process, which is a General State space Markov

Process (GSMP) is observed at periodic moments of time

({h∆ | h ∈ IN}) and this new process is expressed by a sys-

tem of integro-differential equations and solved numer-

ically. The steady-state distributions of these processes

are identical and, with another computation, one ob-

tains the transient distribution of the original process

from some transient distribution of the transformed pro-

cess. This method has been implemented in the DSPNex-

press tool [Lindemann et al., 1999] (but currently for only

two concurrent “deterministic” events with same duration).



By imposing conditions on the simultaneous occurrences of

concurrent activities, other authors have also designed effi-

cient algorithms [German, 1999, Puliafito et al., 1998,

Bobbio and Telek, 2002, Jones and Ciardo, 2001,

Horváth et al., 2000] (see the Related Works section

for more details).

In a previous work [Haddad et al., 2004] we have pro-

posed a different approach to deal with multiple concur-

rent events with finite support distributions. Moreover, in

contrast with other works, our solution does not require

specific synchronization between these events such as non

overlapped or nested events. The main idea is to define an

approximate model on which we perform an exact analy-

sis. To this end, given a time interval (say ∆) we describe

the behaviour of the stochastic model by two components:

a CTMC and a discrete time Markov chain (DTMC). Dur-

ing an interval (h∆,(h+1)∆) the behaviour is driven by the

CTMC which corresponds to Markovian events occurring in

(h∆,(h + 1)∆). Non Markovian activities are taken into ac-

count at h∆ instants only: the untimed probabilistic changes

of state are processed according to a DTMC.

In our approximate process, the Markovian events are

in fact exactly modelled since the set {h∆ | h ∈ IN} has a

null measure. The approximation comes from non Marko-

vian events: the distribution of a non Markovian event is

approximated by a discrete random variable expressing the

number of points h∆ that must be reached before its occur-

rence. Thus the residual number of points to be met is in-

cluded in the state of our approximate process. At any mo-

ment h∆, the current residual numbers are decreased and the

corresponding events occur when their residues are null.

It is well known that stochastic systems with events hav-

ing very different time scales often lead to difficulties dur-

ing numerical transient or steady-state analysis. This is even

worse when these events are non Markovian for most of the

above mentioned methods. These difficulties mainly arise

because we need to study the stochastic process during the

largest time scale but with a precision which is driven by the

smallest time scale. Thus the resulting state space is gener-

ally huge.

In this paper we introduce in contrast an extension of

our basic method which efficiently deals with very different

non Markovian time scales. We first define different time

scales. Then we associate to each non Markovian event a

time scale and the residue of the event (when activated) is

measured w.r.t. to its time scale. For instance, in case of two

time scales ∆ and ∆′ = d∆, we describe the behaviour of

the approximate process during intervals (h∆,(h + 1)∆) by

a CTMC and at times h∆ with h mod d 6= 0 by a DTMC re-

lated to the events associated to the ∆ scale and at times

hd∆ by another DTMC related to both the events associ-

ated to the ∆ scale or the ∆′ scale. This approach avoids the

state space explosion of the initial method.

Our approximate process may be analyzed either in tran-

sient mode or in steady-state. The transient analysis is done

by successively computing the state distribution at the in-

stants ∆,2∆, . . . ,h∆, . . . applying a transient analysis of the

CTMC during an interval ∆ (via the uniformization tech-

nique [Gross and Miller, 1984]) followed by a “step” of the

appropriate DTMC depending on h. In order to smooth the

effect of the discretization, we average the distribution upon

the last largest interval (with length Dmax) with a variant of

uniformization. Since the steady-state distribution depends

on the relative position w.r.t. the points h∆, the approximate

process is not ergodic but is asymptotically periodic. Hence,

for the steady-state analysis, one computes the steady-state

distribution at the instants h∆ and then starting from this

distribution, one again averages the steady-state distribution

upon the interval Dmax.

Another interest of our approach is related to non ergodic

systems with finite support distributions. For instance, a

transactional system including batch tasks launched at fixed

time of the day is not ergodic. However, it has an asymp-

totical periodic behaviour, one wants to study. To the best

of our knowledge, none of the standard tools allows to deal

with this kind of systems. It turns out that our method deals

with a significant class of such systems in an exact way.

The balance of the paper is the following one. In sec-

tion 2 we detail our approach. Introducing a standard exam-

ple, we report empirical evaluations of the method in sec-

tion 3 including comparisons with the mono-scale solution.

In section 4, we show that all the previous methods han-

dle particular cases of the systems that we are able to anal-

yse. To conclude, we present the application of our method

to non ergodic systems and we give indications on future de-

velopments of our work.

2. The approximate method

The method we develop below allows any number of

time scales. However, in order to keep simple notations, we

limit the presentation to two time scales. The generaliza-

tion to any number of time scales is straightforward.

2.1. Principle

As mentioned in the introduction, we define an approxi-

mate model (say Y (∆)) of the initial model (say X), on which

we perform an exact analysis. The main idea is to choose a

time interval ∆ and to restrict in Y (∆) the non Markovian

events to only occur at times th = h∆. We then study in

an exact way the evolution of the stochastic process Y (∆)

in each interval (th, th+1) and during the state changes at

time th . We stress that the starting times of the active non

Markovian events are in no way related. We obtain such a

model Y (∆) from a general model with non Markovian fi-

nite support distributions as follows. The set of non Marko-



Figure 1. Time decomposition

vian events is split in two subsets E1 and E2 depending on

the size of their support. For short sizes, the distribution is

approximated by a discrete time distribution lying on points

h∆. For large sizes, the distribution is approximated by a

discrete time distribution lying on points h∆2 = hd2∆ with

d2 integer. We postpone the discussion about this approxi-

mation to a later section. Let us note that although ∆ seems

to be the approximation parameter, the appropriate param-

eter is the maximum number of points used to express the

distribution. Moreover this indicator is the key factor for the

complexity of our analysis (see the Experimentations sec-

tion).

In the approximate process, the Markovian events occur

during the intervals (h∆,(h + 1)∆). Non Markovian events

always occur in {h∆ | h ∈ IN}. Let us describe how they

are scheduled. When a non Markovian event of Ei (i = 1,2)

is enabled in an interval (h∆,(h + 1)∆) due to the occur-

rence of a Markovian event, then its approximate distribu-

tion is interpreted as the number of points kdi∆ that must be

met before its occurrence (with d1 = 1). Here we can choose

whether we count the next point (i.e. an under-evaluation of

the approximated distribution) or not (i.e. an overestimation

of the approximated distribution). The impact of this choice

will be discussed later. Thus the residual number of points

to be met is included in the state of Y (∆). At any moment

h∆, the current residual numbers corresponding to events

of Ei are decreased if h mod di = 0. If some residues are

null then the corresponding (non Markovian) events occur

with possibly some probabilistic choice in case of conflicts.

The occurrence of these events may enable new non Marko-

vian events. Such events are handled similarly except that

the next point is always counted since now it corresponds to

a complete interval. If we denote by t−h (t+h ) the “time” be-

fore (after) the state change in th, the process Y (∆) is defined

by three components:

• the subordinated process in (th, th+1) associated to states

at t+h records only exponential events. It is then a CTMC de-

fined by its generator Q.

• the state changes at th (h mod d2 6= 0) are defined by a

stochastic matrix P1[i, j] = Pr(Y (∆)(h∆+) = j |Y (∆)(h∆−) =
i,h mod d2 6= 0).
• the state changes at th (h mod d2 = 0) are defined by a

stochastic matrix P2[i, j] = Pr(Y (∆)(h∆+) = j |Y (∆)(h∆−) =
i,h mod d2 = 0).

Thus the Markov Regenerative Process (MRGP) Y (∆) is

fully defined by its initial probability vector π(0) and the

matrices P1,P2,Q (figure 1). These four components de-

pend on ∆ since the state space includes the residual num-

ber of instants per activated event. We stress however that,

even if non Markovian events occurs at h∆, all kinds of con-

currency are allowed between the activities of the system,

contrary to the previous methods.

It is important to note that in the approximate process,

the Markovian events are in fact exactly modelled since the

set {h∆ | h ∈ IN} has a null measure. The only approxima-

tion comes from non Markovian events: their approximate

distribution is interpreted as the number of points kdi∆ that

must be met before their occurrence.

Our approximate process may be analyzed either in tran-

sient mode or in steady-state. The proposed analysis is an

adaptation of the classical Markovian renewal theory meth-

ods.

Transient analysis The transient analysis is done by suc-

cessively computing the state distribution at the in-

stants ∆,2∆, . . . applying a transient analysis of the

CTMC during an interval ∆ (via the uniformization tech-

nique [Gross and Miller, 1984]) followed by a “step”

of one of the two DTMCs. In order to smooth the ef-

fect of the discretization, we average the distribution on

the last largest interval (with a variant of the uniformiza-

tion).

Let π(h∆+) the probability vector of the process Y (∆) at

time h∆ after the discrete time change. We have:

π((kd2 +l)∆+)=

{

π((kd2 + l−1)∆+)(eQ∆P1) (0 < l < d2)
π((kd2 + l−1)∆+)(eQ∆P2) (l = 0).

Since we want to smooth the discretization effect, we de-

fine the approximate value π
(a)(hd2∆) of πX (hd2∆) as the

averaged value of the probabilities of the states of Y (∆) in

[thd2
, t(h+1)d2

):

π
(a)(hd2∆)

de f
=

1

d2

d2−1

∑
k=0

Z (hd2+k+1)∆

(hd2+k)∆
π(τ)dτ (1)

=
1

∆2

d2−1

∑
k=0

π((hd2 + k)∆+)
Z ∆

0
eQτdτ.

Finally, we are in general interested by performance mea-

sures defined on the states of the system, and not on the

states of the stochastic process Y (∆). Hence, all components

of π
(a)(t) corresponding to a given state of the original sys-

tem (i.e. when forgetting the residual numbers) are summed

up to compute performance measures (see the example be-

low).

Steady-state analysis Since the steady-state distribu-

tion depends on the relative position w.r.t. the points h∆, the

approximate process is not ergodic but asymptotically peri-

odic. We first compute the (approximate) steady-state dis-

tribution at times k∆2: π
(∆2) de f

= limm→∞ π(m∆+
2 ) where

π(m∆+
2 ) = π(md2∆+). This steady-state distribution is



computed by a transient analysis stopped when the distri-

bution is stabilized. Since Y (∆) is asymptotically periodic

with ∆2 as period, we average the steady-state distribu-

tions on an interval [m∆2,(m + 1)∆2). Let us introduce the

steady-state distribution π
(∆2,k) at times m∆2 + k∆ with

0 < k < d2: π
(∆2,k) de f

= π
(∆2,k−1)

(

eQ∆P1

)k
for 0 < k < d2

with π
(∆2,0) = π

(∆2). Then the approximate steady-state dis-

tribution is given by:

π
(a) de f

=
1

∆2

d2−1

∑
k=0

π
(∆2,k)

Z ∆

0
eQτdτ. (2)

As in the transient case, all components of π
(a) correspond-

ing to a given state of the system are summed up to compute

performance indices.

2.2. Numerical considerations

Formulae (1) and (2) for transient and steady-state prob-

abilities involve vector-matrix products with possibly very

large matrices, either eQ∆ or I(∆) =
R ∆

0 eQτdτ. Moreover, it is

well known (and reported as the “fill in” phenomenon) that,

although Q is generally very sparse (see examples below),

eQτ is not sparse at all. Since these matrices are only re-

quired through products vector-matrix, the usual approach

[Sidje and Stewart, 1999] is to never compute these matri-

ces explicitly but to compute directly the products vector-

matrix avoiding the fill in phenomenon. The products of

a vector by an exponential matrix are based on the se-

ries expansion of the exponential matrix (uniformization)

and numerical summation until a required precision level is

reached. This is the method that we have implemented.

When we need eQτ we follows the uniformization ap-

proach [Stewart, 1994]. If P(u) = I+ 1
u
Q is the uniformized

matrix of Q with rate u > maxi{|qii|}, we have

eQτ = ∑
k≥0

e−ut (uτ)k

k!
(P(u))

k
. (3)

For the transient solution (1), π(0)(eQ∆P)h is computed

iteratively. During the algorithm only one current vector

W indexed on the state space is required (two for the in-

termediate computations) and for each step we apply the

vector-matrix product method to W.eQ∆P. The computa-

tion of I(∆) =
R ∆

0 eQτdτ is based on (3). By definition,

I(∆) = ∑k≥0

[

R ∆
0 e−ut (ut)k

k!
dt

]

(P(u))
k
. An elementary deriva-

tion with integration by parts and summation gives us:

I(∆) =
1

u
∑
k≥0

[

1− e−u∆
h=k

∑
h=0

(u∆)h

h!

]

(P(u))
k

(4)

As for eQ∆, we only need I(∆) through products 1
∆ .W.I(∆).

We compute these products iteratively to avoid the fill in.

Algorithm 2.1 : Computing the approximate probabil-
ity distribution (time horizon h)

// ε is the required precision

// n0 is the initial value of n = D/∆,

// the subdivision factor of the support

// δ is the additive term applied to n at each step of the iteration

begin

n← n0

compute π
(L)
n (h) and π

(H)
n (h)

V← (π
(L)
n (h)+π

(H)
n (h))/2

repeat

n← n+δ
oldV← V

oldπ
(L)
n (h)← π

(L)
n (h)

oldπ
(H)
n (h)← π

(H)
n (h)

compute π
(L)
n (h) and π

(H)
n (h)

d
(L)
n ← 1

‖π
(L)
n (h)−oldπ

(L)
n (h)‖

d
(H)
n ← 1

‖π
(H)
n (h)−oldπ

(H)
n (h)‖

V← 1

d
(L)
n +d

(H)
n

(

d
(L)
n π

(L)
n (h)+d

(H)
n π

(H)
n (h)

)

d←‖ V−oldV ‖
until d ≤ ε
// V is the approximation

end

An analogous approach was used in [German, 2001] for

steady-state solution of Deterministic Stochastic Petri Nets

(DSPN) but restricted to one deterministic event at any

given time.

Steady-state solution is obtained in a similar way, steps

W(m+1) = W(m).eQ∆P being computed until convergence.

2.2.1. Choosing an approximate probability vector Re-

call that our goal is to give an approximate probability vec-

tor π
(a) either at time t or in steady-state for models with fi-

nite support distributions. Let us suppose that the lengths of

the short size supports (i.e. related to E1) are bounded by D.

Then the precision of the approximation is given by the pa-

rameter n leading to ∆ = D/n.

The computation of the approximate π
(a)(h) is given in

Algorithm 2.1 for the transient case with a given time hori-

zon h. The main idea is to compute successive approxima-

tion vectors until a given level ε of precision is reached. At

each step we increase the precision of the approximation by

decreasing the size ∆ of the elementary interval. In all the

paper, we use the L1 norm ‖ π2−π2 ‖= ∑i |π1[i]−π2[i]|
to compare two probability distributions π1 and π2 and the

precision of the approximation is given by the distance be-

tween successive vectors.

The special feature of the algorithm lies in the defini-

tion of our approximate vector (V). Recall that for a given n

(hence ∆) we can choose between two approximations de-

pending whether we count or not the next k∆ to be met in the

value returned by the discrete random variable correspond-



ing the distribution of a non Markovian event. This gives

us two approximate vectors at time h∆ denoted by π
(L)
n (h)

and π
(H)
n (h). We observed during our experiments that the

sequences (π
(L)
n (h))n∈{n0+kδ} and (π

(H)
n (h))n∈{n0+kδ} are

both convergent but that ‖ π
(L)
n (h)−π

(H)
n (h) ‖ n∈{n0+kδ}

does not necessarily converge to 0. Moreover, several com-

parisons have shown that depending on the parameters, one

of the two sequences converges faster than the other and

that the corresponding limit is closer to the exact distribu-

tion (when available) than the other one. These behaviours

have led us to define the approximate distribution for n as a

weighed sum of π
(L)
n (h) and π

(H)
n (h) based on their respec-

tive convergence rate as given in the algorithm.

The steady-state approximate distribution is defined sim-

ilarly except that the successive approximations are com-

puted with the method explained in the Steady-state analy-

sis section.

Note that we compute iteratively the sums (1) and (2) so

that we only store two probability vectors during computa-

tion and no (full) exponential matrix.

3. Experimentations

We study the application of our method to a queue-

ing system with Poisson arrival (rate λ), two determinis-

tic servers with delays D1 and D2 and a K sized buffer. We

term such a queue as a M/D1,2/K station.

3.1. The approximate process

In this section, we present the method assuming D2 is an

integer multiple of D1 (D2 = d2D1) for sake of simplicity.

The general case is described below. In this particular case,

we relate each server to one time scale: ∆ for the fast ser-

vice (delay D1) and ∆2 for the slower service (delay D2).

So, we have D2/∆2 = D1/∆ = n, that is we count the same

number of discretization points for each time scale. Recall

that we define two approximate processes (H) and (L) cor-

responding to n(∗) = n or n + 1. A state of each model is

〈c,(x1,x2)〉 where

• c is the number of clients in the queue with 0≤ c≤ K;

• x1 (resp. x2) is the fast (D1) (resp. slow, (D2)) service state:

0≤ xi ≤ n(∗).

Note that the states do not depend explicitly on the ratio

D2/D1 which is the major advantage of our refined method.

The state 〈0,−〉 corresponds to an empty queue and it is

the initial state of the system. States are ordered w.r.t. to the

numbering function sno:

sno(c,x) =







∑2
i=1 xi(n

∗+1)i−1 +1 ∀c≤ 2,
(n∗+1)2 +(c−3)(n∗)2

+∑2
i=1(xi−1)(n∗)i−1 +1 ∀c > 2.

The cardinality of the state-spaces S
(L)
n and S

(H)
n for a

given n is |S
(∗)
n |= (n∗+1)2 +(K−2)(n∗)2.

K n = 10 n = 100 n = 200 n = 300

5 507 41007 162007 363007

10 1112 92012 364012 816012

The table above gives the values of S
(H)
n for some parame-

ters.

The computation of the Q matrix defined in sec-

tion 2.1 is straightforward. From each state 〈c,x〉 (with

c < K) the only exponential event is the Poisson ar-

rival of a new client (rate λ), thus we have the transitions:

〈0,−〉
λ
−−→ 〈1,(n∗,0)〉,

∀x > 0, 〈1,(x,0)〉
λ
−−→ 〈1,(x,n∗)〉,

∀y > 0, 〈1,(0,y)〉
λ
−−→ 〈2,(n∗,y)〉,

∀2 < c < K, x > 0,y > 0, 〈c,(x,y)〉
λ
−−→ 〈c+1,(x,y)〉.

The first transition reflects that a client chooses the fastest

server when both servers are idle. If c = K there is no tran-

sition from 〈c,x〉.

The P1 matrix records state changes due to non ex-

ponential events at times h∆ when h mod d2 6= 0. There

is no change for the state of the second server. P1 has

only one non null term per row (with c > 0) corre-

sponding to the decrease of the remaining first service

time which possibly leads to the end of the service fol-

lowed possibly by the start of a new service when there is

at least one waiting client. Then, the transitions of P1 are:

〈1,(1,0)〉
1
−−→ 〈0〉,

∀x > 1, 〈1,(x,0)〉
1
−−→ 〈1,(x−1,0)〉,

∀y > 0, 〈1,(0,y)〉
1
−−→ 〈1,(0,y)〉,

∀y > 0, 〈2,(1,y)〉
1
−−→ 〈1,(0,y)〉,

∀2 < c≤ K, ∀y > 0, 〈c,(1,y)〉
1
−−→ 〈c−1,(n∗,y)〉,

∀2≤ c≤ K, x > 1, ∀y > 0, 〈c,(x,y)〉
1
−−→ 〈c,(x−1,y)〉.

There is no transition from 〈0,−〉 (P1[1,1] = 0.0).

The P2 matrix records state changes due to non exponen-

tial events at times h∆2. P2 has only one non null term per

row (with c > 0) corresponding to decrease of (both when-

ever possible) service times and possible (both) ends of ser-

vice followed by starts of service for waiting clients. Hence,

the transitions encoded in P2 are:

〈1,(1,0)〉
1
−−→ 〈0〉,

∀x > 1, 〈1,(x,0)〉
1
−−→ 〈1,(x−1,0)〉,

〈1,(0,1)〉
1
−→ 〈0〉,

∀y > 1, 〈1,(0,y)〉
1
−−→ 〈1,(0,y−1)〉,

〈2,(1,1)〉
1
−−→ 〈0〉,

∀y > 1, 〈2,(1,y)〉
1
−−→ 〈1,(0,y−1)〉,

∀x > 1, 〈2,(x,1)〉
1
−−→ 〈1,(x−1,0)〉,

∀x > 1,y > 1, 〈2,(x,y)〉
1
−−→ 〈2,(x−1,y−1)〉,



〈3,(1,1)〉
1
−−→ 〈1,(n∗,0)〉,

∀x > 1, 〈3,(x,1)〉
1
−−→ 〈2,(x−1,n∗)〉,

∀y > 1, 〈3,(1,y)〉
1
−−→ 〈2,(n∗,y−1)〉,

∀x > 1,y > 1, 〈3,(x,y)〉
1
−−→ 〈3,(x−1,y−1)〉,

∀3 < c≤ K, 〈c,(1,1)〉
1
−−→ 〈c−2,(n∗,n∗)〉,

∀3 < c≤ K,x > 1, 〈c,(x,1)〉
1
−−→ 〈c−1,(x−1,n∗)〉,

∀3 < c≤ K,y > 1, 〈c,(1,y)〉
1
−−→ 〈c−1,(n∗,y−1)〉,

∀3 < c≤ K,x > 1,y > 1, 〈c,(x,y)〉
1
−−→ 〈c,(x−1,y−1)〉.

There is no transition from 〈0,−〉 (P2[1,1] = 0.0).

3.2. Numerical results

All our computations were done on a Pentium-PC

2.6Ghz, 512MB, with Python 2.3.3 [Python team, 2004]

and the Numerical [Dubois, 2004] and the sparse

[Geus, 2004] packages under SuSE Linux 8.2.

We first computed our approximate transient distribu-

tion for various values of K and time horizon t. Results

for K = 10, d2 = 5,50 and various values of the load fac-

tor ρ = λD1/2 are reported in the table below.

time horizon (d2 = 5/d2 = 50)

ρ 10D2 50D2 100D2

0.1 40/100 60/100 60/100

1.0 80/160 60/200 100/220

10.0 140/180 120/160 120/160

For d2 = 5, we observe that the required n to get a stable

approximation remains relatively low, although it increases

with ρ as in the single time scale case. For d2 = 50, the

minimal n to reach stability is significantly greater than for

n = 5: this could be explained by the fact that the influence

of the D2 "events" on the transient distribution requires suf-

ficient D2 "cycles" to be perceptible. More results are re-

ported in the section devoted to the comparison with the sin-

gle scale method. Steady-state numerical experiments ex-

hibits same trends. Due to lack of space, detailed numer-

ical results including performance measures will be avail-

able from our Internet home page.

Non integer multiple delays We explain now how we deal

with non integer multiple time delays. In the sequel a given

interval ∆, or equivalently a given n is fixed. Let us assume

that D2 = n∆2 + r with 0 < r < ∆2. The problem is in fact

to approximate a general distribution G by a discrete dis-

tribution concentrated on points h∆2. Suppose that G has a

continuous component F with density f and total probabil-

ity pF ≤ 1 and a discrete component D with total probabil-

ity pD = 1− pF . We propose the following method to ap-

proximate G on points h.∆:

• the approximation of the continuous component is set to:

P(F)(h∆) =
R (h+1/2)∆
(h−1/2)∆ f (t)dt

• let px the probability mass of D in x with h∆ ≤ x <
(h + 1)∆. Then the amount of probability mass of px to the

discrete approximation is set to P(D,x)((h+1)∆) = px.
x−h∆

∆

for the point (h + 1)∆ and to P(D,x)(h∆) = px.
(

1− x−h∆
∆

)

for the point h∆.

The continuous part P(F) accounts for the F-probability of

the interval centered on h∆. The discrete part P(D,x) is the

D-probability split with weights proportional to the distance

of the mass point x w.r.t. the k.∆ points. If X(h) is the set of

mass points of D in [h∆,(h+1)∆), the discretization P of G

is then:

P(h∆) =

Z (h+1/2)∆

(h−1/2)∆
f (t)dt + ∑

x∈X(h−1)∪X(h)

P(D,x)(h∆) (5)

In our special case, G is the deterministic distribution

with delay D2 = n.∆2 + r with 0 < r < ∆2, its discretiza-

tion is concentrated on two points: n.∆2 with a probabil-

ity mass (1− r)/∆2 and (n + 1)∆2 with a probability mass

r/∆2.

3.3. Comparison with the single time scale method

We have also tried to analyse the M/D1,2/K station with

the single time scale method [Haddad et al., 2004]. In this

case, a state of the approximate process is 〈c,(x1,x2)〉 with

0≤ c≤K, 0≤ x1 ≤ n∗ and 0≤ x2 ≤ d2n∗. We have ordered

the states with the function sno:

sno(c,x)=







∑2
i=1 xi(n

∗+1)i−1 +1 ∀c≤ 2,
(n∗+1)(d2n∗+1)+(c−3)d2(n

∗)2

+∑2
i=1(xi−1)(n∗)i−1 +1 ∀c > 2.

Complexity comparison The cardinality of the state-

spaces S
(L)
n and S

(H)
n is now |S∗n| = (n∗ + 1)(d2n∗ + 1) +

(K−2)d2(n
∗)2. The ratio (r) of the cardinalities of the state

spaces for the single time scale and the multiple time scales

methods is roughly d2 (as this could have been predicted).

For instance, with n = 100 and n∗ = n + 1, r(d2 = 10) =
9.99,r(d2 = 50) = 49.95 and r(d2 = 100) = 99.89.

Computation time ratios are also approximatively linear

w.r.t. d2 when performing the transient analysis. Indeed, for

each method we carry out nd2 times the following sequence

of operations: a product W.eQ∆P, a computation of the in-

tegral I(∆) and one more vector-matrix product. Due to the

sparse structure of the matrices of our example, a vector-

matrix product requires roughly 2T double floating point

products and sums where T is the state space size. The

number of sequences of operations may be large (for in-

stance for a 100D2 time horizon and n=100, we compute

104 sequences). Thus even when we can manage the state

space for the first method, the d2 time complexity ratio for-

bids its use even for medium sized parameters. Indeed, we

have only computed results for d2 = 5, ρ = 0.1, K = 10 and

t = 10D2,50D2,100D2.

Precision of the results If we fix a given computation

time, the multiple scales method outperforms the single



scale method both in transient and steady-state modes. This

is confirmed if we compare the two methods by fixing a

given level of precision for the approximate probability vec-

tor. Let n2 (two scales) and n1 (one scale) the required n to

reach this precision. When the convergence is very fast, we

found n1 ≃ n2: for ε = 10−2,d2 = 5,K = 10 and ρ = 0.1
we found n1 = n2 = 80 for t = 10D2 with a computation

time ratio (c.t.r.) of 4.85 and n1 = 80,n2 = 60 for t = 50D2

(c.t.r. = 10.5). If we set ρ = 1.0, the convergence is slower

for large t and n1 becomes larger than n2: n1 = n2 = 80 for

t = 10D2 (c.t.r.= 5.20), n1 = 70,n2 = 60 for t = 50D2 (c.t.r.

= 7.5) and n1 = 130,n2 = 100 for t = 100D2 (c.t.r. = 12.8).

Note that in all cases, the computation time ratio is sig-

nificant, especially for large time horizon: although specific

to our computation software environment, we experienced

several hours of computation in the worst cases.

4. Related works

Since we deal with systems composed of general and ex-

ponential distributions, it is impossible, except for special

cases, to derive analytical expressions of the transient or

even steady-state distributions of the states. Thus most re-

sults are developed on so-called state based models and they

involve numerical solution algorithms.

When the system exhibits complex synchronization, the

Queueing Network (QN) framework becomes frequently

too restrictive and in fact, many works have studied non

exponential activities with the help of the non Markovian

Stochastic Petri Nets (NMSPN) formalism, some of them

being adapted to general distributions and other ones to de-

terministic distributions only. In this context, there are two

main categories of works (see also the introduction for the

approach based on GSMPs).

The first family of solutions defines conditions under

which i) the underlying stochastic process is a MRGP

and ii) the parameters of this MRGP can be derived from

the NMSPN definition. In [German, 1999], the author in-

troduces “Cascaded” Deterministic SPN (C-DSPN). A C-

DSPN is a DSPN for which when two or more deterministic

transitions (activities) are concurrently enabled they are en-

abled in the same states. With the additional constraint that

the (k+1)th firing time is a multiple of the kth one, it is pos-

sible to compute efficiently the probability distribution as

we do. In [Puliafito et al., 1998], the authors derive the ele-

ments of the MRGP underlying a SPN with general finite

support distributions. However, the NMSPN must satisfy

the condition that several generally distributed transitions

concurrently enabled must become enabled at the same time

(being able to become disabled at various times). The tran-

sient analysis is achieved first in the Laplace transform do-

main and then by a numerical Laplace anti-transformation.

A simpler method is used for the steady-state solution.

The second family of solutions is based on Phase-

type distributions, either continuous (CPHD) or discrete

(DPHD). In [Bobbio and Telek, 2002], the authors com-

pare the qualities of fitting general distributions with DPHD

or CPHD. It is shown that the time step (the scale fac-

tor) of DPHD plays a essential role in the quality of the

fitting. [Jones and Ciardo, 2001] introduces the Phased De-

lay SPNs (PDSPN) which mix CPHD and DCPHD

(general distributions must have been fitted to such distri-

butions by the modeller). As pointed out by the authors,

without any restriction, the transient or steady-state so-

lutions of PDSPN can only be computed by stochastic

simulation. However when synchronization is imposed be-

tween firings of a CPHD transition and resamplings

of DPHD transitions the underlying stochastic pro-

cess is a MRGP and its parameters can be derived from

the reachability graph of the PDSPN. The approach of

[Horváth et al., 2000] is based on full discretization of

the process. The distributions of the transitions are ei-

ther DPHD or exponential (general distributions must be

fitted with DPHD). For an adapted time step δ, all ex-

ponential distributions are then discretized as DPHD

and the solution is computed through the resulting pro-

cess which is a DTMC. We note that discretization

may introduce simultaneous event occurrences corre-

sponding to end of continuous Markovian activities, an

eventuality with zero probability in the continuous set-

ting.

In contrast to our approach, SPN approaches derive the

stochastic process underlying the SPN which is then solved,

possibly with approximate methods. However, restrictions

on the concurrency between generally distributed activities

are always imposed in order to design efficient methods for

transient or steady-state solutions.

5. Conclusions and perspectives

Main results We have presented a new approximate

method for stochastic processes with multiple non Marko-

vian concurrent activities. Contrary to the other methods,

we have approximated the model and applied an exact anal-

ysis rather than the opposite way to do. The key factor for

the quality of this approximation is that the occurrences

of Markovian events are not approximated as it would be

in a naive discretization process. Furthermore, the design

of its analysis is based on robust numerical methods (i.e.

uniformization) and the steady-state and transient cases are

handled similarly. Our method efficiently handles distribu-

tions whose support have different magnitude orders. Fur-

thermore, the examples have shown that our method is more

robust w.r.t. the numerical parameters of the model than the

tools we have experimented.

Analysis of non ergodic systems We informally illus-

trate here the usefulness of our method for some classes of

non ergodic systems. Let us suppose that we want to an-

alyze a database associated to a library. At any time, in-



teractive research transactions may be activated by local or

remote clients. In addition, every day at midnight, a batch

transaction is performed corresponding to the update of the

database by downloading remote information from a cen-

tral database. In case of an overloaded database, the previ-

ous update may be still active. Thus the new update is not

launched. Even if the modeller considers that all the trans-

actions durations are defined by memoryless distributions,

this non Markovian model is not ergodic. However apply-

ing the current tools for non Markovian models will give the

modeller a useless steady-state distribution with no clear in-

terpretation. Instead we can model such a system in an ex-

act way with our hybrid model. In this simple case, the sin-

gle time scale model is sufficient. Then with a slight adap-

tation of our method, the modeller may analyse the asymp-

totic load of its system at different moments of the day in

order to manage to additional load due to the batch transac-

tion.

Another application area of our method is the real-time

systems domain. Such systems are often composed by pe-

riodic tasks and sporadic tasks both with deadlines. With

our hybrid model, we can compute the probability of dead-

line missing tasks.

Future work We are currently extending our method in the

following direction. We plane to introduce tensorial expres-

sions for the matrices in order to manage the space com-

plexity associated to systems with many non Markovian

concurrent activities. At last, we are currently developing

a high-level model associated with an automatic generation

of our “low-level” model. This would be the starting point

for more involved case studies.
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