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Abstract In this work, we address the problem of transient and steady-state analysis of a
stochastic discrete event system which includes non Markovian distributions with a finite
support. Rather than computing an approximate distribution of the model (as done in the
previous methods), we develop an exact analysis of an approximate model. The design of
this method leads to a uniform handling for the computation of the transient and steady-
state behaviour of the model. We have evaluated our method ona standard benchmark
(the queuing modelM/D/S/K). Our results demonstrate that: in most of the cases the
solution of the approximate model converges quickly to the solution of the exact model,
in the difficult cases (e.g. an heavy load on the queue) our method is more robust than the
previous ones.
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1. INTRODUCTION

The transient and steady-state analysis of Markovian
discrete event systems is now well established with
numerous tools at the disposal of the modellers. The
main open issue is the reduction of the space com-
plexity induced by this analysis. However in a re-
alistic system, the distribution of the occurrence (or
the duration) of some events can not be described by
a exponential law (e.g. the triggering of a time-out).
Theoretically any “reasonable” distribution is approx-
imated by a phase-type distribution enabling again a
Markovian analysis (Cox 1955b). Unfortunately the
continuous time Markov chain (CTMC) associated to
this approximation is so huge that it forbids its analy-
sis (indeed even its construction). Such a phenomenon
often occurs when the non exponential distribution has
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a finite support (non null dirac, uniform, etc.); then
a good phase-type approximation requires too much
stages for its specification.

Hence the research has focused on alternative meth-
ods. In the case of a single realization of a non Marko-
vian distribution at any time, successful methods have
been proposed (Germanet al.1995) both for the tran-
sient and steady state analysis. Let us cite, for in-
stance, the method of supplementary variables (Cox
1955a, German and Lindemann 1994) or the method
of the subordinated Markov chains (Ajmone Marsan
and Chiola 1987).

The general case (i.e. simultaneous multiple realiza-
tions of such distributions) is more intricate. The
method of supplementary variables is still theoreti-
cally applicable but the required space and the com-
putation time limit its use to very small examples. An



alternative approach is described for non null Dirac
distributions in (Lindemann and Schedler 1996). The
stochastic process is observed at periodic moments
of time ({i∆ | i ∈ IN}) and this new process is ex-
pressed by a system of integro-differential equations
and solved numerically. The steady-state distributions
of these processes are identical and, with another com-
putation, one obtains the transient distribution of the
original process from some transient distribution of
the transformed process. This method has been im-
plemented in the DSPNexpress tool (Lindemannet
al. 1999).

Here we propose to define an approximate model on
which we perform an exact analysis. Let us first de-
scribe the kind of model we will analyse: its behaviour
is described by a CTMC, a discrete time Markov chain
(DTMC) and a time interval (say∆). During an inter-
val (i∆,(i +1)∆) the behaviour is driven by the CTMC
and at an instanti∆ a untimed probabilistic change of
state is processed according to the DTMC.

Now we describe how we obtain such a model from
a general model with non Markovian finite support
distributions. At first, we transform such a distribu-
tion into a discrete distribution concentrated on the
instantsi∆ included in the support. This step can be
done numerically in a straightforward way from the
distribution function. So we will not develop it in the
remaining paper. Let us note that∆ seems to be the
approximation parameter but a better parameter is the
ratio between∆ and the size of the support (moreover
this indicator is the key factor for the complexity of
our analysis).

In the approximate process, the Markovian events oc-
cur during the intervals(i∆,(i +1)∆) and their logical
occurrence is specified within the CTMC. Let us note
that this is not an approximation since the set{i∆ | i ∈
IN} has a null measure. Non Markovian events always
occur in{i∆ | i ∈ IN}. Let us describe how they are
scheduled. When a non Markovian event is enabled
in an interval(i∆,(i + 1)∆) due to the occurrence of
a Markovian event then its approximate distribution is
interpreted as the number of pointsi∆ that must be met
before its occurrence. Here we can choose whether we
count the next point (an under-evaluation) or not (i.e.
an overestimation). The impact of this choice will be
discussed later. Thus the residual number of points to
be met is included in the state. At any momenti∆,
the current residual numbers are decreased. If some
residues are null then the corresponding events occur
with possibly some probabilistic choice in case of
conflicts. The occurrence of these events may enable
new non Markovian events. Such events are handled
similarly except that the next point is always counted
since now it corresponds to a complete interval.

This process is not exactly ergodic since the steady-
state distribution depends on the relative position w.r.t.
the pointsi∆. The transient analysis is done by suc-
cessively computing the state distribution at the in-

stants∆,2∆, . . . applying a transient analysis of the
CTMC during an interval∆ (via the uniformization
technique (Gross and Miller 1984)) followed by a
“step” of the DTMC. In order to smooth the effect
of the discretization, we average the distribution on
the last interval (with a variant of the uniformization).
For the steady-state analysis, one computes the steady-
state distribution at the instantsi∆ and then starting
from this distribution, one averages the steady-state
distribution upon an interval.

The balance of the paper is the following one. In
section 2 we present our approach. Section 3 reports
evaluations of the method applied to a first model.
At last, we conclude and give indications on future
developments of our work.

2. A NEW APPROXIMATE METHOD

2.1 Definition of the approximate process

As discussed in the introduction, we choose a time
interval ∆. We approximate the original stochastic
processX with the processY. Roughly speaking, the
approximation is related to the non Markovian events
which can only occur at timesth = h∆. The impact
of this approximation will be evaluated in the next
section.

We then study the evolution of the stochastic processY
in each interval(th, th+1) and during the state changes
at time th. We denote byt−h (t+h ) the "time" before
(after) the state change inth.

The processY is defined by two components:

• the subordinated process in(th, th+1) associated
to states att+h records only exponential events. It
is then a CTMC defined by its generatorQ.

• the state changes atth are defined by a stochastic
matrixP[i, j] = Pr(X(h∆+) = j | X(h∆−) = i).

ThusY is fully defined by its initial probability vector
π(0) and the matrices(P,Q). These three components
depends obviously on∆ since for instance the state
space includes the residual number of instants.

2.2 Transient analysis

Let π(h∆ + τ) the probability vector of the processY
at timeh∆ + τ. We haveπ(h∆ + τ) = π(h∆+)eQτ for
0 ≤ τ < ∆, andπ((h+ 1)∆−) = π(h∆+)eQ∆, so that
π((h+1)∆+) = π(h∆+)eQ∆P and finally

π((h+1)∆+) = π(0)(eQ∆P)h+1 (1)

Since we want to smooth the discretization effect, we
define the approximate valueπ(a)(h∆) of πX(h∆) as
the averaged value of the probabilities of the states of



Y in (th, th+1): π
(a)(h∆) = 1

∆
∫ (h+1)∆

h∆ π(τ)dτ.
Using (1) we have then:

π
(a)(h∆) =

1
∆

π(0)(eQ∆P)h

∆
∫

0

eQτdτ (2)

Finally, we are in general interested by performance
measures defined on the statesof the system, and not
on the states of the stochastic processY. Hence, all
components ofπ(a)(t) corresponding to a given state
of the original system (i.e. when forgetting the residual
numbers) are summed up to compute performance
measures (see the example in section 3).

2.3 Steady-state analysis

We also set the approximate valueπ
(a) of π as the

averaged value of the steady-state probabilities of
the states ofY over (th, th+1) since this steady-state
distribution depends on the relative position in the
interval. If π

(∆) is the steady-state distribution of the
DTMC with initial distribution π(0) and transition
probabilitiesP(∆) = eQ∆P then

π
(a) =

1
∆

π
(∆)

∆
∫

0

eQτdτ (3)

By definition,π(∆) is the probability vector solution of
π = π.P(∆).

As in the transient case, all components ofπ
(a) corre-

sponding to a given state of the system are summed up
to compute performance indices.

2.4 Numerical considerations

Formulae (2) and (3) for transient and steady-state
probabilities involve vector-matrix products with pos-
sibly very large matrices, eithereQ∆ or I (∆) =

∫ ∆
0 eQτdτ.

Moreover, it is well known that, althoughQ is gener-
ally very sparse (see section 3 for an example),eQτ

is not sparse (the “fill in” phenomenon). The usual
approach to compute these matrices is then based on
series expansion and numerical summation until a re-
quired precision level. We have implemented a similar
algorithm to compute the vector-matrix products di-
rectly using the series expansions.

When we needeQτ we follows the uniformization
approach (Stewart 1994). IfP(u) = I + 1

uQ is the
uniformized matrix ofQ with rateu> maxi{|qii |}, we
have

eQτ = ∑
k≥0

e−uτ (uτ)k

k!
(P(u))

k
(4)

The computation ofI (∆) =
∫ ∆

0 eQτdτ is based on (4).
By definition,

I (∆) = ∑
k≥0





∆
∫

0

e−ut (ut)k

k!
dt



(P(u))
k

Using an integration by part,

Ik =
∫ ∆

0 e−ut (ut)k

k! dt may be expressed as

Ik = −
e−u∆(u∆)k

uk!
+ Ik−1 for k≥ 1

Hence,

I0 =−
e−u∆

u
+

1
u

Ik =
1
u

[

1−e−u∆
h=k

∑
h=0

(u∆)h

h!

]

and finally

I (∆) =
1
u ∑

k≥0

[

1−e−u∆
h=k

∑
h=0

(u∆)h

h!

]

(P(u))
k

(5)

As for e(Q∆), we only needI (∆) through products
1
∆ .W.I (∆). Hence we compute these products itera-
tively to avoid the fill in. An analogous approach was
used in (German 2001) for steady-state solution of De-
terministic Stochastic Petri Nets (DSPN) but restricted
to one deterministic event at any given time.

3. APPLICATION: THEM/D/S/K QUEUE

In order to evaluate it, we apply our method to the
M/D/S/K queue (Poisson arrival with rateλ, deter-
ministic service time with durationD, S servers and
finite capacityK). The M/D/S/K queue is an inter-
esting case study for several reasons. First, this model
presentsmultiple non exponential concurrentactivi-
ties (for 1< S≤ K). Second, no analytical results are
available for the transient or even steady-statedistri-
bution of the queue length or other performance in-
dices of this queueing model (forS> 1) unlessS= K.
It is thus significant to get quickly an approximation
of these performance indices. Finally, due to the sim-
plicity of the underlying process, we are able to easily
compare our results with existing analytical or numer-
ical tools forS≤ 2.

3.1 The approximate process

Let us recall that our approximation lies in the fact that
non exponential events, i.e. the ends of (deterministic)
service are recorded only at timesh∆. For ease of
notation, we set∆ = D/n so thatn will be the indicator
of the precision of the approximation in the rest of the
paper.



S K n = 10 n = 100 n = 200 n = 300

1 10 101 911 1811 2711
2 10 597 46362 182712 409062
3 5 894 531984 4126459 13783434
3 10 2324 1416239 1416239 36736189

Table 1. Cardinalities of the state space of
the approximate process

When we take into account these events, we may
choose between two approximate strategies: either un-
derestimate the (new) requested service time, choos-
ing n∆ (“low” (L) choice) or in contrast overesti-
mate this service time, choosing(n+1)∆ (“high” (H)
choice). This leads to two series of parameters and
approximate distributions that we denote byL or H
superscript or∗ for any of them;n(∗) stands forn or
n+1.

A state of the model is then〈c,x〉 where

• c is the number of clients in the queue with
0≤ c≤ K;

• x = (x1,x2, . . . ,xmin(c,S)) is the tuple of service

states of each served client withn(∗) ≥ x1 ≥ x2 ≥
. . . ≥ xmin(c,S).

The state〈0,−〉 corresponds to an empty queue and
is the initial state of the system. States are ordered
w.r.t. a kind of lexicographic order: the first state is
〈0,−〉 and 〈c,x〉 < 〈c′,x′〉 iff c < c′ or c = c′ and
x = (x1, . . . ,xu) ≤ x′ = (x′1, . . . ,x

′
v) i.e. u < v or u = v

and there iswsuch thatxi = x′i for all i < w andxw < x′w
(lexical order between vectors).

There is no simple closed form for the cardinality of

these state-spacesS(L)
n and S(H)

n . They are obviously
bounded by(K + 1)(n+ 1)S but this is a very high

bound. Table 1 gives the values ofS(H)
n for some

parameters.

In the M/D/S/K case, theQ matrix defined in sec-
tion 2 is very simple (in fact upper-triangular). From
each state〈c,x〉 (with c < K) the only exponential
event is the Poisson arrival of a new client (rateλ),
thus

〈c′,x′〉 =

{

〈c+1,x〉 (S≤ c < K)

〈c+1,(n(∗)x1, . . . ,xmin(c,S))〉 (c < S)

If c = K there is no transition from〈c,x〉.

The P matrix records state changes due to non expo-
nential events at timesh∆. It has one only non null
term per row (withc> 0) corresponding to decrease of
remaining service times and possible ends of service
followed by starts of service of waiting clients (P is
lower-triangular). Lete= |{xi | xi = 1}| be the number
of servers which will end their service at nexth∆ time
in s = 〈c,x〉. Then b = max(min(e,c− S),0) is the
number of servers that will start a new service ath∆
from s (such a server may have been busy or idle
beforeh∆). Then, from〈c,x〉, there is a transition with
probability 1 to〈c′,x′〉 equal to

〈c−e,(n(∗), . . . ,n(∗),x1−1, . . . ,xmin(c,S)−e−1)〉

with b occurrences ofn(∗) on the left side ofx′. There
is no transition from〈0,−〉 (P[1,1] = 0.0).

3.2 Solving the approximate process

We compute approximate distributions (see section 2)
for increasing values ofn until they are as close
as the required precision. Transient distributions are
computed for discrete time horizonsh∆. In all the
paper, we use the L1 norm‖ π2 −π2 ‖= ∑i |π1[i]−
π2[i]| to compare two probability distributionsπ1 and
π2.

Let us denoteπ(L)
n (h) (resp.π(H)

n (h)) the distribution
at time h∆ computed for a given elementary time
step ∆ = D/n by taking approximate service delay
n∆ (resp. (n + 1)∆). We observed that each of the

sequences(π(L)
n (h))n and (π

(H)
n (h))n converges to

π
(L)(h) and π

(H)(h) but that‖ π
(L)
n (h)−π

(H)
n (h) ‖

does not necessarily converge to 0. Moreover, several
comparisons showed that depending on the parame-
ters, one of the two sequences converges faster than
the other and also that one of the two limits is closer
to the exact distribution than the other, but we did
not found any clear rule to choose between the two
approximate distributions. These behaviours lead us to
define the approximate distribution forn as a weighed

sum ofπ(L)
n (h) andπ

(H)
n (h) based on their respective

convergence rate:

π
(a)
n (h) =

1

d(L)
n +d(H)

n

(

d(L)
n π

(L)
n (h)+d(H)

n π
(H)
n (h)

)

with d(∗)
n = 1

‖π
(∗)
n (h)−π

(∗)

n′
(h)‖

. and n′ is the previous

value used in the iterative approximation process. The
steady-state approximate distribution is defined simi-
larly.

For a givenn, in both transient and steady-state cases,

we first compute the matricesP(L)
n ,P(H)

n , Q(L)
n ,Q(H)

n .
The initial probability vector is defined asπn(0)[1] =
1 andπn(0)[ j] = 0 for all j > 1.

In the transient case (see (2)) we first compute the
vector

V =
1
∆

πn(0)

(

eQ(∗)
n ∆(P(∗)

n )h
)

then the product

π
(∗)
n (h) = V.

∆
∫

0

eQ(∗)
n τdτ

Note that we never compute neithereQ(∗)
n ∆ nor the

integral matrices to avoid fill in.

In the steady-state case (see (3)), we first compute

the solutionπ
(∗,∆)
n of π = π.P(∗,∆)

n with P(∗,∆)
n =



time horizon
ρ 10D 50D 100D

0.1 40 - 10−4 40 - 10−4 40 - 10−4

1.0 120 - 10−4 140 - 10−3 150 - 10−3

10.0 110 - N/A 145 - N/A 150 - N/A

Table 2. Minimaln for d ≤ 10−3 and preci-
sion of the approximation forS= 2,K = 5

eQ(∗)
n ∆P(∗)

n using an iterative method. Then we com-
pute the product

π
(∗)
n =

1
∆

π
(∗,∆)
n

∆
∫

0

eQ(∗)
n τdτ

From the two vectorsπ(L)
n (h),π

(H)
n (h) (or their steady-

state versions) we deriveπ(a)
n (h) and we iterate (in-

creasingn by some step value) until‖ π
(a)
n (h) −

π
(a)
(n′)(h) ‖ reaches a given precision levelε.

3.3 Numerical results

We did several comparisons to validate our method
and study its behaviour w.r.t. to the convergence and
the precision of the approximation. All our compu-
tations were done on a Pentium-PC 2.6Ghz, 512MB,
with Scilab 2.7.2 (INRIA 2002) under SuSE Linux.
For all these measures, we have fixedε = 10−3, K =
5,10. As we will show, the behaviour of the imple-
mentation depends heavily on the ratioρ = λD/S
which can be seen as the load indicator of the queue.
Hence we have fixedλ = 1.0 in all experiments and we
vary ρ in {0.1,0.5,1.0,5.0,10.0}, that is to say from
a very low to a very high loaded system. ForS= 1
we used several tools, mainly based on SPN: DSP-
Nexpres (Lindemann 2003), GreatSPN (P.E. Group
2002), SPNica and TimeNET (German 2000). We
also developed an exact solution based on the sup-
plementary variable approach (Cox 1955a, German
and Lindemann 1994) and we compared our approx-
imation with this method too. ForS = 2, we used
DSPNepress-NG, the last version of DSPNexpress,
the only analytical tool available to the best of our
knowledge for two concurrent deterministic events
(see (Lindemann 1998, Lindemannet al. 2000) for
a detailed presentation). We do not report detailed
results do to space limitation. We simply indicate the
main trends we have observed.

3.3.1. Transient analysis In the transient case, we
did computations for time horizonst = 10D,50D and
100D which correspond toh= 10n,50n and 100n for a
given value ofn (which varies during the computation
of the approximation). To evaluate the convergence of
the approximation, we computed the minimaln such

that d =‖ π
(a)
n (h)−π

(a)
(n−1)(h) ‖≤ 10−3. Results for

S= 2 are given in Table 2. In all cases, the minimal
n was between 100 and 200 and is increasing slowly

with t. For K = 10, we have observed however that
for ρ ≫ 1, the variation onπ(a)

n (h) first decreases
(n ≤ 300) but then increased withn. This indicates
clearly that for largen, numerical computations be-
come unstable. In all cases, we observed a difference
lower than 10−3 between our approximation and the
result given by DSPNexpress-NG.

3.3.2. Steady-state analysisWe did the same ex-
periments for the steady-state case. As suspected by
the transient analysis, the requiredn to reach a fixed
precision depends largely onρ. In fact, since we force
the end of service time atn∆ only, our method pro-
vides an almost exact result when either the servers
are almost always idle (ρ ≪ 1) or busy (ρ ≫ 1). We
recognize this behaviour both in the higher values ofn
and the lower precision. This property of our method
is also illustrated by the results (not reported here
due to lack of space) for the special caseS= K for
which the exact result is known to be equal to the
M/M/S/S queue. In this infinite server case, every
end of service is immediately followed by a beginning
of service when the system is heavily loaded. In these
cases we have obtained small values ofn to get the
approximation. In contrast, forρ ≈ 1, the convergence
is slow (n≈ 200−300) and the approximation is not
so good (precision=10−3). For K = 5 (resp.K = 10)
and ρ = 4.5 (resp.ρ > 1.75), we have noticed that
DSPNexpress-NG gives erroneous probabilities (i.e.
negative values) so that we could not compare our
result with an “exact” numerical value.

4. CONCLUSIONS AND PERSPECTIVES

We have presented a new approximate method for
stochastic processes with multiple non Markovian
concurrent activities. Contrary to the other methods,
we have approximated the model and applied an exact
method rather than the opposite way to do. The key
factor for the quality of this approximation is that
the occurrence of Markovian events are not approxi-
mated as it would be in a naive discretization process.
Furthermore, the design of its analysis is based on
robust numerical methods (i.e. uniformization) and the
steady-state and transient cases are handled similarly.

The examples have shown that our method is robust.
For instance when analysing an heavy queue the pre-
cision is still correct (i.e. 10−3 whereas DSPNexpress-
NG (a very efficient tool in general) gives negative
probabilities!

We are currently extending our method in two direc-
tions. The first one is to adapt the approach to models
exhibiting very different durations (stiff models). In
such cases, the determination of∆ uniquely based
on the smallest deterministic delay would lead to in-
tractable matrices and vectors.



The second extension is related to the introduction
of tensorial expressions for the matrices in order to
manage the space complexity associated to systems
with many non Markovian concurrent activities.
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