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Abstract In this work, we address the problem of transiedt sieady-state analysis of a
stochastic discrete event system which includes non Maakalistributions with a finite
support. Rather than computing an approximate distributfcthe model (as done in the
previous methods), we develop an exact analysis of an appatx model. The design of
this method leads to a uniform handling for the computatibthe transient and steady-
state behaviour of the model. We have evaluated our methad standard benchmark
(the queuing modeM /D/S/K). Our results demonstrate that: in most of the cases the
solution of the approximate model converges quickly to thiatfon of the exact model,

in the difficult cases (e.g. an heavy load on the queue) ounadds more robust than the
previous ones.
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1. INTRODUCTION a finite support (non null dirac, uniform, etc.); then
a good phase-type approximation requires too much
The transient and steady-state analysis of Markovianstages for its specification.
discrete event systems is now well established with
numerous tools at the disposal of the modellers. The

main open issue is the reduction of the space com-" e Ld .
plexity induced by this analysis. However in a re- Vian distribution at any time, successful methods have

alistic system, the distribution of the occurrence (or P€€N proposed (Germatal. 1995) both for the tran-

the duration) of some events can not be described bySient and steady state analysis. Let us cite, for in-
a exponential law (e.g. the triggering of a time-out). stance, the method o_f supplementary variables (Cox
Theoretically any “reasonable” distribution is approx- 19°%, Gérman and Lindemann 1994) or the method

imated by a phase-type distribution enabling again o 0f the subordinated Markov chains (Ajmone Marsan

Markovian analysis (Cox 19%§. Unfortunately the ~ and Chiola 1987).

continuous time Markov chain (CTMC) associated t0 The general case (i.e. simultaneous multiple realiza-
this approximation is so huge that it forbids its analy- tions of such distributions) is more intricate. The

sis (indeed even its construction). Such a phenomenonmethod of supplementary variables is still theoreti-
often occurs when the non exponential distribution has cally applicable but the required space and the com-
putation time limit its use to very small examples. An

Hence the research has focused on alternative meth-
ods. In the case of a single realization of a non Marko-
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alternative approach is described for non null Dirac stantsA,2A,... applying a transient analysis of the
distributions in (Lindemann and Schedler 1996). The CTMC during an intervalA (via the uniformization
stochastic process is observed at periodic momentgechnique (Gross and Miller 1984)) followed by a
of time ({iA | i € IN}) and this new process is ex- “step” of the DTMC. In order to smooth the effect
pressed by a system of integro-differential equations of the discretization, we average the distribution on
and solved numerically. The steady-state distributionsthe last interval (with a variant of the uniformization).

of these processes are identical and, with another com+or the steady-state analysis, one computes the steady-
putation, one obtains the transient distribution of the state distribution at the instantd and then starting
original process from some transient distribution of from this distribution, one averages the steady-state
the transformed process. This method has been im-distribution upon an interval.

plemented in the DSPNexpress tool (Lindemastn The balance of the paper is the following one. In

al. 1999). . X

section 2 we present our approach. Section 3 reports
Here we propose to define an approximate model onevaluations of the method applied to a first model.
which we perform an exact analysis. Let us first de- At last, we conclude and give indications on future
scribe the kind of model we will analyse: its behaviour developments of our work.
is described by a CTMC, a discrete time Markov chain
(DTMC) and a time interval (sag). During an inter-
val (iA, (i+1)A) the behaviour is driven by the CTMC
and at an instanf\ a untimed probabilistic change of 2. ANEW APPROXIMATE METHOD

state is processed according to the DTMC. o _
) _ 2.1 Definition of the approximate process
Now we describe how we obtain such a model from

a general model with non Markovian finite Support as giscussed in the introduction, we choose a time

Qistri_butions._At first, we trapsform such a distribu- interval A. We approximate the original stochastic
tion into a discrete distribution concentrated on the processX with the proces¥. Roughly speaking, the

instantsiA in_clude(_j in the s_upport. This step can be approximation is related to the non Markovian events
done numerically in a straightforward way from the |, 1.h can only occur at time, = hA. The impact

distribution function. So we will not develop it in the ¢ his approximation will be evaluated in the next
remaining paper. Let us note thatseems to be the  gqction.

approximation parameter but a better parameter is the . _
ratio betweer\ and the size of the support (moreover We then study the evolution of the stochastic prodess

this indicator is the key factor for the complexity of in each intervalth,th;1) and during the state changes
our analysis). at timety,. We denote by, (t;’) the "time" before

) ) (after) the state change in
In the approximate process, the Markovian events oc-

cur during the interval§id, (i + 1)A) and their logical  The proces¥ is defined by two components:
occurrence is specified within the CTMC. Letus note , the sybordinated process th,tn.1) associated

that this is not an approximation since the §ét| i € to states at;" records only exponential events. It
IN} has a null measure. Non Markovian events always is then a CTMC defined by its generafr

occur in{iA | i € IN}. Let us describe how they are e state changes ttare defined by a stochastic
.sched'uled. W.hen.a non Markovian event is enabled matrix PJi, j] = Pr(X(hA*) = j | X(hA™) = ).

in an interval(iA, (i + 1)A) due to the occurrence of

a Markovian event then its approximate distribution is ThusY is fully defined by its initial probability vector
interpreted as the number of poiitsthat must be met 7 (0) and the matricegP, Q). These three components
before its occurrence. Here we can choose whether wedepends obviously o since for instance the state
count the next point (an under-evaluation) or not (i.e. space includes the residual number of instants.

an overestimation). The impact of this choice will be

discussed later. Thus the residual number of points to

be met is included in the state. At any momeft
the current residual numbers are decreased. If som

residues are null then the corresponding events occurL A h babili fth
with possibly some probabilistic choice in case of et w(hA+-1) the probability vector of the process

. i — +)eQ
conflicts. The occurrence of these events may enable?t timehA +1. We havew(r_]A+T) N ”(MA)e * for
h+1)A") = w(hat)eR?, so that

. 0<1<A andn((
new non Markovian events. Such events are handled

o 7S +) — +1eQ0 :
similarly except that the next point is always counted w((h+1)A") = m(hA™)e*"P and finally
since now it corresponds to a complete interval. r((h+1)A") = ﬂ_(o)(eQAP)hH 1)

e2.2 Transient analysis

This process is not exactly ergodic since the steady-

state distribution depends on the relative pOSition W.I.1. Since we want to smooth the discretization effect, we
the p0|ntSIA The transient analySiS is done by SUC- define the approximate Va|ue(a>(hA) of Tl')((hA) as
cessively computing the state distribution at the in- the averaged value of the probabilities of the states of



Y in (th,the1): 7@ (ha) = £ (YA 7 (1)dr. The computation of @ = [}e?dt is based on (4).

Using (1) we have then: By definition,

A
i Y (TILO e
ﬂ(a)(hA):%W(O)(eQAP)h/eQTdT @ I(A>:k§o O/e St (PW)
0

Using an integration by part,

k

Finally, we are in general interested by performance

A —ut (uk
measures defined on the statdéthe systemand not h=Joe - dtmay be expressed as

on the states of the stochastic proc¥sHence, all e—UA(uA)k
components ofr(@ (t) corresponding to a given state h=——ju Tl fork=1
of the original system (i.e. when forgetting the residual Hence,
numbers) are summed up to compute performance
measures (see the example in section 3). T
="y
1 h=k (yA)D
2.3 Steady-state analysis =1 [19 UAhZO( h!)
We also set the approximate valué? of & as the and finally
averaged value of the steady-state probabilities of
the states ofY over (ty,th1) Since this steady-state h=k h
distribution dependé on th)e relative position in the 1 :% [1—(9% > (uﬁ) (P(u))k (5)
interval. If w2 is the steady-state distribution of the k=0 h=0 "
DTMC with initial distribution 7v(0) and transition
probabilitiesP®) = eR2P then As for €@ we only needl® through products
1 W.I®). Hence we compute these products itera-
1 4 tively to avoid the fill in. An analogous approach was
nl® = ZF(A) / et (3)  usedin (German 2001) for steady-state solution of De-
0 terministic Stochastic Petri Nets (DSPN) but restricted

to one deterministic event at any given time.

By definition, 2 is the probability vector solution of
w=m.Pb),
3. APPLICATION: THEM/D/S/K QUEUE

As in the transient case, all componentst? corre-
sponding to a given state of the system are summed U order to evaluate it, we apply our method to the
to compute performance indices. M/D/S/K queue (Poisson arrival with rafe deter-
ministic service time with duratiod, S servers and
finite capacityK). TheM/D/S/K queue is an inter-
esting case study for several reasons. First, this model
presentamultiple non exponential concurremictivi-
ties (for 1< S< K). Second, no analytical results are
available for the transient or even steady-stigtri-
bution of the queue length or other performance in-
dices of this queueing model (f&> 1) unlessS=K.
It is thus significant to get quickly an approximation
of these performance indices. Finally, due to the sim-
Iglicity of the underlying process, we are able to easily

ompare our results with existing analytical or numer-
ical tools forS< 2.

2.4 Numerical considerations

Formulae (2) and (3) for transient and steady-state
probabilities involve vector-matrix products with pos-
sibly very large matrices, eitheR? or| (&) = [ eQ7dr.
Moreover, it is well known that, althoud® is gener-
ally very sparse (see section 3 for an examp&y,

is not sparse (the “fill in” phenomenon). The usual
approach to compute these matrices is then based o
series expansion and numerical summation until a re-
quired precision level. We have implemented a similar
algorithm to compute the vector-matrix products di-

rectly using the series expansions. 3.1 The approximate process

When we need?" we follows the uniformization

approach (Stewart 1994). PV = | + %Q is the Let us recall that our approximation lies in the fact that
uniformized matrix ofQ with rateu > max{|gi|},we  non exponential events, i.e. the ends of (deterministic)
have service are recorded only at timba. For ease of

‘ notation, we seh = D/n so thatn will be the indicator
QT Z)e_m (ule) (P(u))k 4) of the precision of the approximation in the rest of the
K> : paper.



[STK][n=10] n=100] n=200] n=300] <C—e»(n(*),-~,n(*),xl—17~~,Xmin(c,3)7e—1)>

1710 101 911 1811 2711

2| 10 597 46362 | 182712 409062 with b occurrences of*) on the left side ok'. There
3] 5 894 | 531984 | 4126459 | 13783434 is no transition from(0, —) (P[1,1] = 0.0).

3] 10 2324 | 1416239 | 1416239 | 36736189

Table 1. Cardinalities of the state space of

the approximate process
3.2 Solving the approximate process

When we take into account these events, we maywe compute approximate distributions (see section 2)
choose between two approximate strategies: either Uno jncreasing values oh until they are as close

derestimate the (new) requested service time, choosys the required precision. Transient distributions are
ing nA (*low” (L) choice) or in contrast overesti-  computed for discrete time horizofg. In all the
mate this service time, choosiig+ 1)A (“high” (H) paper, we use the L1 norihm, — 72 ||= 5 |mli] —

choice). This Igar:is to two series of parameters andﬂ.z[i” to compare two probability distributions, and
approximate distributions that we denote byr H .

superscript ok for any of them;n*) stands fom or

n+1. Let us denoterﬁ")(h) (resp.ﬁﬁm(h)) the distribution

at time hA computed for a given elementary time

stepA = D/n by taking approximate service delay

e c is the number of clients in the queue with nA (resp.(n+1)A). We observed that each of the
0<c<K; sequenceg i~ (h)), and (w4 (h))n converges to

e X= (xl,xz,...,xmin(qs)) is the tuple of service ﬂ.(L)(h) and 7‘.(H)(h) but that|| 7rr<1|')(h) _ nﬁ,H)(h) I
states of each served client witht) > x; > x, > does not necessarily converge to 0. Moreover, several
-+ 2 Xmin(c,)- comparisons showed that depending on the parame-

g ters, one of the two sequences converges faster than

is the initial state of the system. States are orderedthe other and also that one of the two limits is closer

w.r.t. a kind of lexicographic order: the first state is to the exact distribution than the other, but we did
(0,—) and (c,x) < (¢,X) iff c < ¢ orc=c and not found any clear rule to choose between the two

X= (X,... %) <X =(X,... X)ieu<voru=v approximate distri.butionsl. Thesg behaviours I_ead usto
and(thlere is)\(/us)ugh thatg i X fo);V;II i <wandxy < X, define the approximate distribution foas a weighed
(|exica| order between Vectors). sum Ofﬂ'r(qL>(h) andTﬁgH)(h) based on their reSpeCtiVe

. . o convergence rate:
There is no simple closed form for the cardinality of

A state of the model is theft, x) where

The state(0,—) corresponds to an empty queue an

these state—spacé") andst. They are obviously m(]a)(h) = ﬁ (d,(]")wﬁ,")(h) +d,(1H)1r,(1H)(h))
bounded by(K + 1)(n+ 1)S but this is a very high dn ' +dn

. H)
bound. Table 1 gives the values &) for some with %) = - 1 ——. andn is the previous
parameters. ll7en” (h)— " ()]

value used in the iterative approximation process. The
steady-state approximate distribution is defined simi-
larly.

In the M/D/S/K case, theQ matrix defined in sec-
tion 2 is very simple (in fact upper-triangular). From
each state(c,x) (with ¢ < K) the only exponential
event is the Poisson arrival of a new client (rabe For a givemn, in both transient and steady-state cases,
thus we first compute the matricd%,(1">,P§1H>, qu‘),QﬁH).
The initial probability vector is defined as,(0)[1] =

c+1,x) (S<c<K) . ;
¢, X :{< S 1 andm,(0)[j]=0forall j > 1.
(c,x) (C+1,(N)xa,... Xnine,g)) (€< ol )[J.] ’ _
In the transient case (see (2)) we first compute the
If c=K there is no transition fronic, x). vector
The P matrix records state changes due to non expo- V= %ﬂ’n(O) (ng*)A(Pr(f))h)

nential events at timeBA. It has one only non null
term per row (withc > 0) corresponding to decrease of then the product

remaining service times and possible ends of service A
followeq by starts of service of waiting client® {s 7Tr<'|*>(h) _ V./eQWTdt
lower-triangular). Lee= |[{x; | x = 1}| be the number

of servers which will end their service at néxt time 0
in s= (c,x). Thenb = maxmin(e,c — S),0) is the
number of servers that will start a new servicehAt
from s (such a server may have been busy or idle
beforehA). Then, from(c,x), there is a transition with I the steady-state case (see (3)), we first compute

probability 1 to(c’,x') equal to the solutionmi™® of = = =.PFY with P2 =

o)
Note that we never compute neithe?» 2 nor the
integral matrices to avoid fill in.



time horizon with t. For K = 10, we have observed however that
P 10 | 50 | 100 for p > 1, the variation onr'® (h) first decreases
01] 40-10" | 40-10° [ 40-10" (n < 300) but then increased with This indicates
10 [ 120-10% | 140-10° | 150-10° clearly that for largen, numerical computations be-
100 | 110 - N/A 145 - N/A 7250 -N/A i come unstable. In all cases, we observed a difference
Table 2. Minimaln for d < 10"~ and preci- lower than 1023 between our approximation and the
sion of the approximation fd8=2,K =5 result given by DSPNexpress-NG.

(*) . N
e 'AplY) using an iterative method. Then we com-

pute the product 3.3.2. Steady-state analysisWe did the same ex-

periments for the steady-state case. As suspected by

*) (+.) i ol the transient analysis, the requiredo reach a fixed
T = Zﬂ'n" /e ntdt precision depends largely @nIn fact, since we force
o the end of service time atA only, our method pro-

vides an almost exact result when either the servers

From the two vectorsr(]L)(h),m(]H)(h) (ortheirsteady- are almost always idlep(<< 1) or busy p > 1). We
state Versions) we denver(]a)(h) and we iterate (in- reCOgnize this beha..V.iOUr both in the hlgher valuen of
creasingn by some step value) until 7rr<1a>(h) B gnd the 'Iower precision. This property of our method

(a) . . is also illustrated by the results (not reported here
W<n’>(h) I reaches a given precision level due to lack of space) for the special c&e K for
which the exact result is known to be equal to the
M/M/S/S queue. In this infinite server case, every
end of service is immediately followed by a beginning
of service when the system is heavily loaded. In these
cases we have obtained small valuemndb get the
approximation. In contrast, f@r= 1, the convergence
is slow (h =~ 200— 300) and the approximation is not
so good (precision=1%). ForK =5 (resp.K = 10)
andp = 4.5 (resp.p > 1.75), we have noticed that
DSPNexpress-NG gives erroneous probabilities (i.e.
negative values) so that we could not compare our
result with an “exact” numerical value.

3.3 Numerical results

We did several comparisons to validate our method
and study its behaviour w.r.t. to the convergence and
the precision of the approximation. All our compu-
tations were done on a Pentium-PC 2.6Ghz, 512MB,
with Scilab 2.7.2 (INRIA 2002) under SUSE Linux.
For all these measures, we have fixed 103, K =
5,10. As we will show, the behaviour of the imple-
mentation depends heavily on the rappo= AD/S
which can be seen as the load indicator of the queue.
Hence we have fixed= 1.0 in all experiments and we
vary p in {0.1,0.5,1.0,5.0,10.0}, that is to say from

a very low to a very high loaded system. FoE 1

we used several tools, mainly based on SPN: DSP- 4. CONCLUSIONS AND PERSPECTIVES
Nexpres (Lindemann 2003), GreatSPN (P.E. Group

2002), SPNica and TimeNET (German 2000). We We have presented a new approximate method for
also deve|0ped an exact solution based on the SupStOChaStiC processes with multlple non Markovian
plementary variable approach (Cox 185%erman concurrent activities. Contrary to the other methods,
and Lindemann 1994) and we compared our approx-We have approximated the model and applied an exact
imation with this method too. FoB = 2, we used Method rather than the opposite way to do. The key
DSPNepress-NG, the last version of DSPNexpress,faCtor for the quality of this approximation is that
the only analytical tool available to the best of our the occurrence of Markovian events are not approxi-
know|edge for two concurrent deterministic events mated as |t WOUId be in a naiVe discretization proceSS.
(see (Lindemann 1998, Lindemart al. 2000) for Furthermore, the design of its analysis is based on
a detailed presentation). We do not report detailed robust numerical methods (i.e. uniformization) and the
resu|ts do to Space ||m|tat|on We S|mp|y indicate the Steady-State and transient cases are handled S|m||ar|y

main trends we have observed. The examples have shown that our method is robust.

For instance when analysing an heavy queue the pre-
3.3.1. Transient analysis In the transient case, we cisionis still correct (i.e. 10* whereas DSPNexpress-
did computations for time horizoris= 10D,50D and NG (a very efficient tool in general) gives negative
100D which correspond th=10n,50nand 10&ifora  Probabilities!
given value of (which varies during the computation  \ve are currently extending our method in two direc-
of the approximation). To evaluate the convergence of tjons. The first one is to adapt the approach to models
the approximation, we computed the mininmesuch  exhibiting very different durations (stiff models). In
that d || w (h) —Wg?,n(h) |< 1073 Results for  such cases, the determination Afuniquely based
S= 2 are given in Table 2. In all cases, the minimal on the smallest deterministic delay would lead to in-
n was between 100 and 200 and is increasing slowly tractable matrices and vectors.



The second extension is related to the introduction 29th Int. Symp. on Fault Tolerant Computing

of tensorial expressions for the matrices in order to Madison, Wisconsin.

manage the space complexity associated to systemgingemann, C. and G.S. Schedler (1996). Numerical

with many non Markovian concurrent activities. analysis of deterministic and stochastic Petri nets
with concurrent deterministic transitiorRerfor-

Acknowledgments We would like to thank the au- mance Evaluatio®7—28 576-582. special issue:

thors of the different solvers we have used for provid- Proc. of PERFORMANCE’96.

ing us the last version of their software. PE. Group (2002). GreatSPN home page:

http://ww. di.unito.it/~greatspn.
Stewart, W. J. (1994)introduction to the numerical
REFERENCES solution of Markov chainsPrinceton University

Ajmone Marsan, M. and G. Chiola (1987). On Petri Press, USA.
nets with deterministic and exponentially dis-
tributed firing times. In:Advances in Petri Nets
1987(G. Rozenberg, Ed.). pp. 132-145. Number
266 In:LNCS Springer—Verlag.

Cox, D. R. (1958). The analysis of non-Markov
stochastic processes by the inclusion of supple-
mentary variables?roc. Cambridge Philosophi-
cal Society (Math. and Phys. SciencBg) 433—
441.

Cox, D. R. (1958). A use of complex probabilities
in the theory of stochastic processBgoc. Cam-
bridge Philosophical Sociefyp. 313—-319.

German, R. (2000Performance analysis of commu-
nication systemslohn Wiley & Sons,Ltd. Chich-
ester, England.

German, R. (2001). Iterative analysis of Markov
regenerative modelsPerformance Evaluation
44, 51-72.

German, R. and C. Lindemann (1994). Analysis of
stochastic Petri nets by the method of supplemen-
tary variables.Performance Evaluatior?0(1—

3), 317-335. special issue: Peformance’93.

German, R., D. Logothesis and K.S. Trivedi (1995).
Tran-
sient analysis of Markov regenerative stochastic
Petri nets: A comparison of approaches.Rroc.
of the 6th International Workshop on Petri Nets
and Performance Model$EEE Computer Soci-
ety Press. Durham, NC, USA. pp. 103-112.

Gross, D. and D.R. Miller (1984). The randomization
technique as a modeling tool an solution proce-
dure for transient markov process&perations
Researct82(2), 343-361.

INRIA (2002). Scilab home page:
http://ww. scil ab. org.

Lindemann, C. (1998)Performance Modelling with
Deterministic and Stochastic Petri Ned®hn Wi-
ley & Sons.

Lindemann, C. (2003). DSPNexpress home page:
http://ww. dspnexpress. de. .

Lindemann, C., a. Klemm, M. Lohmann and O. Wal-
horst (2000). Quantitative system evaluation
with DSPNexpress 2000. IrProc. of the2nd
Int. Workshop on Software and Performance
(WOSP) Ottawa, canada. pp. 12-17.

Lindemann, C., A. Reuys and A. Thimmler (1999).
DSPNexpress 2.000 performance and depend-
ability modeling environment. InProc. of the



