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Abstract: Structural model abstraction is a powerful technique for reducing the
complexity of a state based enumeration analysis. We present in this paper accurate
reductions for high-level Petri nets based on new ordinary Petri nets reductions.
These reductions involve only structural and algebraical conditions. They preserve
the liveness of the net and any LTL formula that does not observe the reduced
transitions of the net. The mixed use of structural and algebraical conditions
significantly enlarges their application area. Furthermore the specification of the
transformation is parametric with respect to the cardinalities of coloured domains.
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1. INTRODUCTION

The use of formal methods in software design may
be decomposed in two steps: a modelling stage
which must lead to a model as close as possible to
the analysed software and a verification stage in-
volving properties expression and model checking
via adequate algorithms.

Two kinds of verification techniques can be used.
The state enumeration based methods lead to a
complete verification but the analysis is restricted
by the combinatory explosion factor. The struc-
tural methods are generally efficient but they do
not ensure the complete correctness of the mod-
elled system.

Thus an attractive trade-off would be to first per-
form structural abstractions in order to obtain a
simplified model on which an enumeration based
method can more easily be applied. The model
may be abstracted in two ways: data abstraction
and operation abstraction. Here we will focus on
the latter one which merges consecutive instruc-
tions into a virtual atomic one. Such a transforma-

tion drastically reduces the combinatory explosion
due to the elimination of the intermediate states.
In the context of (high-level) Petri nets this ab-
straction is called a net reduction. A reduction
is characterised by some application conditions, a
transformation rule and the properties for which
the initial and the reduced models are equivalent.
In order to obtain reductions with a broad range
of applications while preserving a large set of
properties, we base our coloured reductions on
new efficient ordinary Petri nets reductions (see
Haddad and Pradat-Peyre (2004)) and we use the
following approach to extend them to coloured
models. We characterise some properties of the
coloured functions labelling an arc which ensure
that the unfolding of this arc will be appropriate
for the conditions involved in ordinary reductions.
We exhibit coloured flows which lead to the sat-
isfaction of the algebraic conditions of ordinary
reductions. We show how the use of composition,
inverse and transpose of mappings enables us to
handle the transformation of the labelling of arcs
in the reduced net. Given a subclass of the Well-



formed nets, Chiola et al. (1990), we specify re-
ductions at a syntactic level in order to efficiently
check the conditions and apply the transforma-
tions. We will not describe this part which can
be found in Evangelista et al. (2004). Compared
to previous works concerning high-level nets re-
ductions, Colom et al. (1986), Genrich (1991),
Haddad (1991), our new coloured reductions lie
on accurate application conditions (since they are
based on efficient ordinary Petri nets reductions)
and then permit to reduce more realistic models.
Moreover, this analysis does not need to fix a value
for the parameters of the model (which is not
the case for methods that reduce the reachability
graph) and can be followed by any other analysis
method.

The paper is organised as follows. In the next
section, we recall the basics of coloured Petri nets
with a focus on the coloured functions. In the third
section, we first demonstrate that existing reduc-
tions do not cover typical patterns of concurrent
programming. Then we show how the analysis of
coloured functions and coloured invariants helps
to accurately characterise behavioural conditions
on the net. At last, we formally develop the post-
agglomeration. In the fourth section, an example
illustrates the power of these new reductions. The
appendix includes additional definitions.

2. DEFINITIONS AND NOTATIONS

Coloured Petri nets handle tokens that are typed
(or coloured) upon non empty finite sets called
colour domains; a marking is then a multi-set over
a colour domain and we denote Bag(C) the set of
multi-sets over C (the related definitions can be
found in the appendix).

Definition 2.1. A coloured net is a 5-tuple
CN = 〈P, T, C,W+,W−〉 with :

• P a non empty and finite set of places;
• T a non empty and finite set of transitions

(disjoint of P );
• C is the colour mapping from P

⋃
T to ω

where ω is a set of finite and non empty sets.
An item of C(s) is called a colour of s and
C(s) denotes the colour domain of s.

• W+ (resp. W−) is the post (resp. pre) inci-
dence mapping that associates to each place
p and each transition t a colour mapping form
C(t) to Bag(C(p)). We note W = W+ −W−.

We note ε = {•} the domain reduced to the single
value • (the neutral token); so, ordinary Petri nets
can be viewed as particular coloured Petri nets
(the unique and common colour domain is ε).

Definition 2.2. A marking is a mapping that
associates to each place p a value in Bag(C(p)).
We note m0 the initial marking of a net. A
transition t is fireable for an instance ct ∈ C(t)
from a marking m (denoted by m[t, ct〉) if

∀p ∈ P,m(p) ≥W−(p, t)(ct)

The firing of t, ct from m leads to the mark-
ing m′ (m[t, ct〉m

′) defined by ∀p ∈ P,m′(p) =
m(p) + W (p, t)(ct). A marking m′ is reach-
able from a marking m if there exists a se-
quence t1, c1, . . . , tk, ck such that m[t1, c1〉m1,
m1[t2, c2〉m2, . . . , mk−1[tk, ck〉m′. We denote by
Reach(CN,m0) the set of all reachable markings
from m0. As usual, an infinite sequence is a fir-
ing sequence iff all its finite prefixes are firing
sequences.

To each coloured net corresponds a unique Petri
net which is called the underlying Petri net. This
net is composed by the set of places, p[cp] where
p ∈ P and cp ∈ C(p) and the set of transitions t[ct],
t ∈ T , ct ∈ C(t). The pre and the post conditions
are defined by the instantiation of colour function.
This unfolded net is defined in the appendix.

We now introduce the coloured flows and invari-
ants. These invariants can be used to characterise
specific behaviours like, for instance, mutual ex-
clusion. In order to obtain a sound definition of
flows, we extend by linearity a function from C to
Bag(D) to a function from Bag(C) to Bag(D).

Definition 2.3. A flow F , on a domain C(F),
is a vector over P , noted as the formal sum
F =

∑
p∈P λp.Fp.p, where ∀p ∈ P , λp ∈ Z and

Fp a mapping from Bag(C(p)) to Bag(C(F)) such
that: ∀t ∈ T,

∑
p∈P λp.Fp ◦W (p, t) = 0 1 .

F induces the invariant:
∀m ∈ Reach(CN,m0),∑

p∈P λp.Fp(m(p)) =
∑

p∈P λp.Fp(m0(p))
An invariant F is positive if ∀p ∈ P , λp ≥ 0. It is
binary if ∀c ∈ C(F),

∑
p∈P λp.Fp(m0(p))(c) = 1.

It is a synchronisation invariant if ∀c ∈ C(F),∑
p∈P λp.Fp(m0(p))(c) = 0.

When no confusion is possible (i.e. the initial
marking is given), we will not distinguish the
flow and its corresponding invariant. We want
to analyse the structure of the underlying Petri
net using the structure and the functions of the
coloured Petri net. This requires to characterise
and manipulate coloured functions. The following
definition and notations are enough for our pur-
poses.

Definition 2.4. Let f be a mapping fromBag(C)
to Bag(C ′).

1 0 denotes here the null mapping from C(t) to Bag(C(F))



• t(f) is the mapping defined from Bag(C ′) to
Bag(C) by t(f)(c′)(c) = f(c)(c′)

• f is defined from P(C) to P(C ′) by f(D) =
{c′ ∈ C ′ | ∃d ∈ D, f(d)(c′) 6= 0} where P(C)
denotes the power set of C. Note that the
linearity is preserved by this transformation
(substituting ∪ to +) and that f may be
viewed as a function from C to P(C ′).

Definition 2.5. Let f and g be two linear map-
pings from P(C) to P(C ′). We note f v g if
∀c ∈ Bag(C), f(c) ⊆ g(c).

Below we list particular mappings. An orthonor-

mal mapping is a colour domain permutation, a
unitary mapping produces at most one token per
colour, a projection is a canonic mapping from
Bag(C ×D) to Bag(C), an ortho-projection is
the composition of an orthonormal mapping with
a projection. f is a quasi-one to one mapping if
∀c 6= d f(c) ∩ f(d) = ∅. f is a quasi-onto map-
ping from Bag(C) to Bag(D) if f(C) = D. The
complete definitions are given in the appendix.

3. COLOURED AGGLOMERATIONS

We suppose in the sequel that the set of transi-
tions of the net is partitioned as : T = T0

⊎
H

⊎
F .

The underlying idea of this decomposition is that
the couple (H,F ) defines transitions sets that are
causally dependent : an occurrence of f ∈ F in a
firing sequence may always be related to a previ-
ous occurrence of some h ∈ H in this sequence.

We have extended two kinds of agglomerations:
the pre and the post agglomeration. Informally
stated, in the pre-agglomeration scheme, firing
a transition h ∈ H is only useful for firing any
transition of f ∈ F . Thus in the reduced net, the
firings of h are postponed until the corresponding
firing of f . In the post-agglomeration scheme,
the firing of any transition f ∈ F is mainly
conditioned by the firing of the transitions of H .
Thus, in the reduced net, one fires f immediately
after the firing of some h ∈ H .

3.1 An introducing example

In the following coloured net (see Fig.1), the tran-
sition h models the update of a variable modelled
by the place V 1: the value X is replaced by the
value G1(X) where G1 models a mapping from
C to C. Initially, this variable has the value x0.
Similarly, the transition f models the update of a
second variable modelled by the place V 2. Gener-
ally, this model does not have the same behaviour
as the one of the model depicted in Fig.2 where
the two updates are performed simultaneously.

p

r

h

q

V1 : C< X >

< G1(X) >

<x0>

< G2(Y) >
f

< Y >
<y0>

V2 : C

Fig. 1. Updating variables sequentially

r

< G2(Y) >

< Y >
<y0>

V2 : C

hf

q

V1 : C< X >
<x0>

< G1(X) >

Fig. 2. Updating variables atomically

However, there exist many cases for which these
two models are equivalent. In particular, as soon
as we can prove that either the value of V 1 does
not change when q or p are marked or the value
of V 2 does not change when p is marked, the two
models share a large set of properties.

Indeed let us suppose that, in the first model, the
value of V 1 does not change when q is marked.
The variable V 1 cannot be modified when p is
marked. So, we can delay the update of the
variable V 1 until we are ready to perform the
update of the variable V 2 without modifying
the properties of the model. This corresponds to
the scheme of the pre-agglomeration: h can be
delayed until f is fireable. In the second case,
updating V 2 after having waited in state p or
updating V 2 just after having updated V 1 is
equivalent since value of V 2 cannot change when
p is marked. This corresponds to the scheme of
the post-agglomeration: f is fireable as soon as h
is fired.

Nevertheless, whereas these behaviours corre-
spond to the scheme of the pre or of the post
agglomeration, none of the previously defined re-
ductions cover such behaviours. The present work
is based on reductions for ordinary Petri nets that
we proposed in Haddad and Pradat-Peyre (2004).
Such reductions cover a large range of patterns
by introducing algebraical conditions whereas the
previously defined ones solely lie on structural
conditions. However the extension of the condi-
tions and the transformation of these reductions
to high-level nets require careful analysis of the
coloured functions labelling the arcs of the net.
Due to the lack of space, we focus in this paper
on the post-agglomeration; complete results can
be found in Evangelista et al. (2004).



3.2 Exploiting coloured functions and invariants

The structure of a coloured net does not necessar-
ily reflect the structure of the underlying Petri
net since we have to take into account colour
mappings. Especially, we need to follow colour
transformation using composition or transposition
of colour mappings. Let us consider the follow-
ing coloured Petri net and suppose that, given a

h

f

p: C

Ψ

Φ

Fig. 3. Colour mapping manipulation illustration

colour cf ∈ C(f), we want to compute the colours
{ch ∈ C(h)} such that the firing of h for a colour
ch may help the firing of f for the instance cf
(by producing useful tokens in place p). We have
to start from cf and to find the instances of p
that are linked to f [cf ]. By definition, this set is
Φ(cf ). Then we have to find instances of h that are
linked to a place p[cp], cp ∈ Φ(cf ). These instances
are the set {ch ∈ C(h),Ψ(ch) ∩ Φ(cf ) 6= ∅}. By
definition of the transposition of a function, this
set is tΨ(Φ(cf )). Thus, the set of colours we look

for is (tΨ ◦ Φ)(cf ). In an opposite way, the set of
instances of f that are causally dependent of an
instance ch of h, are (Ψ ◦ tΦ)(ch).

Let us consider now the following coloured Petri
net where p is an ordinary place (see Fig.4).

���
���
���
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���
���
���

h

p

α2 α1

q1q2

f2 : C2 f1 : C1

Fq2
= t(α2 ◦ AllC2

)

α1 and α2 are unitary one to one mappings

∀m ∈ Reach(CN, m0),Fq1
(m(q1)) + F q2

(m(q2)) = c

Fq1
= t(α1 ◦ AllC1

)

Fig. 4. An invariant controlling f1 and f2

Let us prove that there is always an instance of f1

or of f2 that is fireable when p is marked.

• The interpretation of the invariant F is
the following one: there is at least one to-
ken either in the place q1 or in q2 whose
colour is either in the set α1(AllC1

(•)) or in
α2(AllC2

(•)).
• Since tαi (i=1,2) is an unitary quasi-one to

one mapping, each firing instance (fi, ci) re-
quires, when αi(ci) 6= 0, in addition to the
token in p, exactly a token in the place qi

which colour is in the singleton αi(ci).
• Combining these two facts, an instance (fi, ci)

for some i is always fireable when p is marked.

Remark that this reasoning is still valid if we only
require that ∀i, Fqi

v t(αi ◦AllCi
).

3.3 Post-agglomeration hypotheses

We present the four conditions of the post-
agglomeration: the potentially post-agglome-

rability, the HF -interchangeability, the F -

independence and the F -continuation.

The potentially post-agglomerability ensures
that in any fireable sequence the number of occur-
rences of H is greater or equal than the number
of occurrences of F .

Definition 3.1. (Hypothesis R1). A coloured net
is potentially post-agglomerable (p-post-agglo-
merable) if ∃ H ⊂ T , F ⊂ T , p ∈ P such that

(1) •p = H , p• = F and m0(p) = 0
(2) ∀f ∈ F , C(f) = C(p) × Cf and W−(p, f) is

an ortho-projection from C(p) × Cf to C(p);
(3) ∀h ∈ H W+(p, h) is a unitary quasi-onto

mapping such that t(W+(p, h)) is a quasi-
onto mapping

The first point ensures that place p models an
intermediate state between the firing of a transi-
tion in H and the firing of a transition in F . The
second one ensures that any firing of a transition
f requires exactly one token in p. The last point
guarantees that all instances of any firing of h ∈ H

produces a token in the place p and that any
coloured token of C(p) may be produced by a firing
of some transition h ∈ H .

The HF -interchangeability hypothesis mainly
restricts either the set H or F to be a singleton in
order to avoid the case where h ∈ H and f ∈ F

are live in the original net whereas the transition
hf is not live in the reduced net.

Definition 3.2. (Hypothesis R2). A p-post-agglo-
merable coloured net isHF -interchangeable if one
of these conditions is fulfilled :

(1) H = {h} and W+(p, h) is orthonormal
(2) F = {f}, C(f) = C(p) (thus W−(p, f) is

orthonormal)

In the following, we will assume w.l.o.g. that de-
pending on the item of the above definition either
W+(p, h) is the identity function and W−(p, f) is
a projection or W−(p, f) is the identity function.
Indeed applying the reduction called orthonor-
malization leads to this situation (see Haddad
(1991)).

The F -independence hypothesis ensures that
when the place p is marked, no transition that can
produce tokens useful for the firing of a transition
in F can be fired.



Definition 3.3. (Hypothesis R3). A p-post-agglo-
merable coloured net is F -independent if ∀f ∈ F ,
∀q ∈ (•f \ {p}), ∀t ∈ •q \ F , ∃pt ∈ •t, such that

(1) there exists a binary coloured positive invari-
ant F =

∑
r∈P Fr.r on a domain D

(2) let us note
φ = t(W+(q, t)) ◦W−(q, f) ◦ t(W−(p, f))
ψ = t(W−(pt, t)) ◦ t(Fpt

) ◦ Fp

then φ v ψ

Furthermore, if there exists a binary positive
invariant F ′ on the domain C(p) such that tF ′

p

is a quasi-onto mapping then the net is strongly

F -independent.

These two points ensure that the transitions of
•(•f [cf ]) (dashed transitions of figure Fig. 5) are
not fireable when the related instance p[cp] of
place p is marked. This behaviour is obtained
by the use of a binary positive invariant that
ensures a mutual exclusion of the place p[cp]
with place pt[cpt

] which are pre-conditions of
these transitions t. The mapping ψ allows us to
highlight the instances of the transition t that
are linked to an instance of pt covered by the
a positive invariant (in the unfolded net) which
covers a given instance of p.
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q[...]

q[...]

q[...]

p[..]

f[...] f[...]

t[...]

t[...]
t[...]

pt[..]

Fig. 5. A subset of φ(cp), cp ∈ C(p)

The third hypothesis, the F -continuation, means
that an excess of occurrences of h ∈ H can always
be reduced by subsequent firings of transitions of
F (when the place p is marked, a transition of F
is necessarily fireable).

Definition 3.4. (Hypothesis R4). A p-post-agglo-
merable net is F -continuable if either ∃f ∈ F such
that •f = {p} or ∃ Fs ⊂ F such that :

(1) ∀f ∈ Fs,
•f = {p, pf},

(2) ∀f ∈ Fs,
t(W−(pf , f)) is a quasi-one to one

mapping,
(3) there exists a flow on C(p) with

F =
∑

f∈Fs

Fpf
.pf − λ.Fp.p

∀f ∈ Fs, W
−(pf , f) ◦ 〈XC(p), AllCf

〉 = tFpf

and such that
(a) either λ = 0 and F induces a binary

positive invariant
(b) or λ = 1 and F induces a synchronisation

invariant

3.4 Post-agglomeration transformation

We define now the transformation associated to
the coloured post-agglomeration. The reduced net
is the same as the original one except that we
merge any transition of H with transitions of F
(we form couples (hf)).

Definition 3.5. The reduced net (CNr,m0r)
obtained from a coloured net (CN,M0) by a
coloured post-agglomeration is defined by:

• Pr = P and Tr = T \ (H ∪ F ) ∪ (H × F ); we
note hf a new transition (h, f) ∈ H × F .

• ∀p′ ∈ Pr,m0r(p
′) = m0(p

′)
• ∀t ∈ Tr \ (H × F ), ∀p′ ∈ Pr, W

−

r (p′, t) =
W−(p′, t) and W+

r (p′, t) = W+(p′, t)
• ∀hf ∈ (H × F ), ∀q ∈ Pr

· W−

r (q, hf) = max(Γ1,Γ2)
· W+

r (q, hf) = Υ +W−

r (q, hf))
where
when H = {h}, then, C(hf) = C(f) and

· Γ1 = W−(q, h) ◦W−(p, f),
· Γ2 = W−(q, f) −W (q, h) ◦W−(p, f)
· Υ = W (q, f) +W (q, h) ◦W−(p, f)

when F = {f}, then C(hf) = C(h) and
· Γ1 = W−(q, h)
· Γ2 = W−(q, f) ◦W+(p, h) −W (q, h)
· Υ = W (q, f) ◦W+(p, h) +W (q, h)

This transformation preserves the Petri net live-
ness and the properties related to the maximal or
infinite sequences (e.g. deadlock, fairness, mutual-
exclusion,etc.). The corresponding theorem can be
found in the appendix.

3.5 An example

The following coloured net (Fig. 6) models the
allocation of resources (C2) to processes (C1).
When receiving a request from a process X , the
server chooses a free resource Y , sends this re-
source identity to the process and stores locally
(in place Taken) this allocation (ts1). Upon recep-
tion of a resource release request (t3) the server
services this request (ts2) when the request cor-
responds to an already stored allocation (a token
(X,Y) is in the place Taken).

Let us describe the reduction process on this net
in order to look for possible deadlocks. At first, we
delete the implicit places Server and Att2. Then
we apply a post-agglomeration of the transition t2

with the transition t3 and a post-agglomeration
of the transition ts2 with the transition t4. Note
that these agglomerations would be still possi-
ble with the reductions of Haddad (1991). But
on the reduced net of Fig.7 no reductions previ-
ously defined are applicable. However, the post-
agglomeration of h = ts1 with f = t2 around



AllC1

AllC2

Att1: C1

Att2: C1

Work: C1xC2

Idle: C1

< X >

< X >

< X,Y >

< X >

< X >

t1

t2

t3

t4

Lock
< X >

< X,Y >

< X >

< X >

< X,Y >

< Y >

< X >

Mess2: C1xC2

Ack2: C1

Ack1: C2

Mess1: C1

< X,Y >

< X,Y >

ts1

ts2

Server

< X,Y >

< X >

Taken: C1xC2

< Y >

< Y >

Resources: C2

< X >

< Y >

Fig. 6. Typed resource allocation

AllC1
Lock

AllC2

Att1: C1

Idle: C1

< X >

< X >

t1

t2

< X >

< X >

< Y >

< X >

< Y >
ts1

< Y >
Ack1: C2

Mess1: C1
< X >

Resources: C2

< X,Y >

Taken: C1xC2

< X,Y >

ts2
< Y >

< X,Y > < X,Y >

Mess2: C1xC2

Fig. 7. No more standard reductions

the place p = Ack1 is applicable. Indeed, C(f) =
C(p) × C2, W−(p, f) is an ortho-projection, H =
{h}, W+(p, h) is an ortho-projection so the net
is p-post agglomerable (but does not verify the
HF -interchangeability).

The unique transition related to the F -inde-
pendency hypothesis is the transition t1 (which
may put token in place Att). The flow F =
〈AllC1〉.Lock+ 〈AllC1〉.Mess1 + 〈AllC1〉.Ack1 on
C1 induces the binary positive invariant : ∀m ∈
Reach(N,m0), m(Lock) +

∑
c∈C1m(Mess1)(c)

+
∑

c∈C2m(Ack1)(c) = 1. Using notation of the
hypothesis conditions, φ = AllC1 and ψ = AllC1.
So, φ v ψ and since t(AllC1) = AllC1 is a quasi-
onto mapping the net is strongly F -independent.

At last, the flowF = 〈AllC2〉.Mess1+〈AllC2〉.Ack1−
〈AllC2〉.Att1 induces the synchronisation invari-
ant ∀m ∈ Reach(N,m0),

∑
c∈C1m(Mess1)(c)

+
∑

c∈C2m(Ack1)(c) −
∑

c∈C1m(Att11)(c) = 0
which fulfils the conditions of the F -continuation
hypothesis (t2 is fireable as soon as Att1 is
marked). Applying this reduction leads to the
net depicted Fig.8. Finally the implicit places
Mess2 and Att1 are deleted and then a post-
agglomeration of ts1 with ts2 followed by a post-
agglomeration of t1 with ts1 produces the net
depicted Fig.9 where all the places being implicit
may be deleted. As the final net is live, the original
one is also live (see Theorem 1 in appendix).

AllC1

AllC2

Idle: C1

t1

< X >

Mess1: C1
< X >

< Y >

ts1

< X,Y >

Taken: C1xC2
Resources: C2

< X >

< X,Y >
< X,Y >

Mess2: C1xC2
< X,Y >

< X >
< X >

Att1: C1Lock

< X > < Y >
ts2

Fig. 8. Application of a post-agglomeration

AllC1

AllC2

Idle: C1

t1

< Y >

< Y >

Resources: C2

Lock

< X >

< X >

Fig. 9. A live net

4. CONCLUSION

We have presented in this paper new coloured
reductions and we have precisely defined one of
them: the post-agglomeration. These reductions
are based on accurate conditions using linear
invariants that cover more realistic concurrent
software behaviours (compared to initial condi-
tions which were only based on the structure of
the model). We are integrating a syntactic ver-
sion of these reductions in the Quasar tool, a
framework for verifying concurrent programs (see
http://quasar.cnam.fr).
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APPENDIX

Definition .1. (Multisets). A multiset over a fi-
nite and non empty set C is an application from
C to IN. We note Bag(C) the set of multisets over
C and we represent a multiset by the formal sum
a =

∑
y∈C a(y).y. If a and b are two multisets over

C, then a + b is the multiset over C defined by
a+ b =

∑
y∈C(a(y)+ b(y)).y and if λ is a natural,

then λ.a is the multiset over C defined by λ.a =∑
y∈C(λ.a(x)).x. We define a − b as the multiset

overC by ∀x ∈ C, (a−b)(x) = max(0, a(x)−b(x)).
One say that a is greater or equal than b, denoted
a ≥ b if and only if ∀y ∈ C, a(y) ≥ b(y).

Definition .2. (Unfolded Petri net). Let CN =
〈P, T, C,W+,W−〉 be a coloured net. The corre-
sponding unfolded (or underlying) Petri net is the
net 〈Pd, Td,W

+
d ,W

−

d 〉 defined :

• Pd = ∪
p∈P,cp∈C(p)p[cp] the set of places;

• Td = ∪
t∈T,ct∈C(t)t[ct] the set of transitions;

• W+
d (resp. W−

d ) is the forward (resp. back-
ward) incidence mapping from Pd × Td to
IN defined by : ∀p[cp] ∈ Pd, t[ct] ∈ Td,
W+

d (p[cp], t[ct]) = W+(p, t)(ct)(cp) (resp.
W−

d (p[cp], t[ct]) = W−(p, t)(ct)(cp)).

In the same way, each coloured marking m can
be “unfolded” into a un-coloured marking md by :
∀p[cp] ∈ Pd,md(p[cp]) = m(p)(cp). Using these
definitions we obtain obviously that the semantic
of a coloured net is the same than the one of
its corresponding underlying Petri net : m[t, ct >
m′ in CN if and only if md[t[ct] > m′

d in the
underlying net.

Definition .3. (Tuple and composition). Let f1

be a mapping from Bag(C1) to Bag(C ′

1), f2
a mapping from Bag(C2) to Bag(C ′

2) and g a
mapping from Bag(C) to Bag(C1).

• < f1, f2 > is the mapping defined from
Bag(C1) × Bag(C ′

1) to Bag(C2) × Bag(C ′

2)
by < f1, f2 > (c1, c2) =< f1(c1), f2(c2) >

• f1 ◦g is the mapping defined from Bag(C) to
Bag(C ′

1) by (f1 ◦ g)(c) = f(g(c))
• f1 ◦ g = f1 ◦ g
• if h is a mapping from Bag(C) to Bag(C1)

then h + g is the mapping defined by : ∀c ∈
Bag(C), (h+ g)(c) = h(c)∪ g(c) (so h+ g =
h+ g)

Definition .4. (Mapping characterisation). Let f
be a mapping from Bag(C) to Bag(C ′).

• f is orthonormal iff C = C ′ and there
exists a substitution σ of C such that ∀c ∈
C, f(c) = σ(c)

• f is unitary iff ∀c′ ∈ C ′, ∀c ∈ C, f(c)(c′) =
0 or f(c)(c′) = 1

• f is a projection iff C = C ′ × C1 and
∀c = (c′, c1) ∈ C, f(c) = c′

• f is an ortho-projection iff C = C ′ × C1

and f = f ′ ◦ g with g a projection from C to
C ′ and f ′ an orthonormal mapping on C ′.

Definition .5. (Particular colour functions). We
use in our models some specific colour functions.
Let C = C1 × C2 × . . .× Ck be a colour domain :

• 〈XCi
〉 denotes the projection from C to Ci.

When there is no ambiguity, we simply note
〈X〉 or 〈Y 〉;

• 〈AllC′〉 denotes the constant broadcast de-
fined by ∀c ∈ C, AllC′(c) =

∑
c′∈C′ c′.

A coloured net defines a set of behaviours that can
be characterised either by general properties (like
liveness) or using maximal and infinite fireable
sequences.

Definition .6. Let (CN,m0) be a coloured net.

• (CN,m0) is live iff ∀m ∈ Reach(N,m0),
∀t ∈ T , ∀ct ∈ C(t), ∃s ∈ T ∗ m[s.(t, ct)〉;

• L(N,m0) = {s ∈ (T × C(T ))∗|m0[s〉} is the
language of finite sequences,

• m is a dead marking if ∀t ∈ T , ∀ct ∈ C(t),
NOT (m[t, ct〉;

• LMax(N,m0) = {s ∈ (T ×C(T ))∗|∃m a dead
marking, m0[s〉m} is the language of finite
maximal sequences,

• L∞(N,m0) = {s ∈ (T × C(T ))∞|m0[s〉} is
the language of infinite sequences,

Theorem 1. Let N = (CN,m0) be a coloured
net andNr = (CNr,m0) be the post-agglomerated
net.

• If N verifies R1, R2 and R3 then

N is live =⇒Nr is live

• If N verifies R1, R3 and R4 then

N is live ⇐=Nr is live

• If N verifies R1, R3 and R4 then

ΠT0∪F (Lmax(N)) = ΠT0∪F (φhf (Lmax(Nr)))

• If N verifies R1, R3 (strong) and R4 then

ΠT0∪F (L∞(N)) = ΠT0∪F (φhf (L∞(Nr)))

where φhf is the mapping from T ∗

r to T ∗ (or its
extension from T∞

r to T∞) defined by ∀t ∈ T0,
φhf (t) = t and ∀hf ∈ (H × F ), φhf (hf) = h.f .


