
EXPLOITING PARTIAL SYMMETRIES IN
WELL-FORMED NETS FOR THE

REACHABILITY AND THE LINEAR TIME
MODEL CHECKING PROBLEMS

Soheib Baarir ∗∗,2 Serge Haddad ∗,1
Jean-Michel Ilié ∗∗,2

∗ LAMSADE, UMR CNRS 7024, Université Paris
Dauphine, Place du Maréchal de Lattre de Tassigny, 75775

PARIS, FRANCE
∗∗ LIP6, Université PARIS VI, 8 rue du Capitaine

Scott,75015 PARIS, FRANCE

Abstract : Taking advantage of the symmetries of a system is an efficient way
to cope with the combinatory explosion involved by the verification process.
Whereas numerous algorithms and tools efficiently deal with the verification
of a symmetrical formula on a symmetrical model, the management of partial
symmetries is still an open research topic. In this work, we present the design
and the evaluation of two methods applicable on coloured Petri nets. These two
methods are extensions of the symbolic reachability graph construction for the well-
formed Petri nets. The first algorithm, called the extended symbolic reachability
graph construction, tackles the reachability problem. The second one, called the
symbolic synchronized product, checks a partially symmetric linear time formula
on a net. The evaluations show that these two methods outperform the previous
approaches dealing with partial symmetries. Furthermore they are complementary
ones since the former while being less general gives better results than the latter
when applied to the reachability problem.
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1. INTRODUCTION

The coloured Petri nets formalism is an expres-
sive model extending the representation of con-
currency by Petri nets with a data management
via the coloured domains and functions. However
this expressiveness leads in practice to huge state
graphs considerably restricting their use for the
reachability and the model checking problems.
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Therefore, a recurrent research topic is the build-
ing of a reduced graph equivalent to the original
one w.r.t. some set of properties. Among the pro-
posed approaches, the symmetry based method
builds a symbolic reachability graph (SRG) where
a node corresponds to a set of states leading to
an equivalent behaviour up to some “admissible”
colour permutation. In order to be applicable,
such a method must detect the admissible per-
mutations by a syntactical examination of the
net. This requirement has motivated the intro-
duction of the well-formed nets model which is



equivalent to the coloured Petri net model but
with a restricted syntax allowing the automatic
computation of the SRG (Chiola et al. 1993).
On this reduced graph, one solves the reachabil-
ity problem and more generally the linear time
temporal logic formula truth whenever the atomic
propositions of the formula are symmetrical (e.g.
ANDc∈C(p)m(p)(c) = 1). (Clarke et al. 1996)
establish the correctness of this checking in a
general framework.

However, the previous approach suffers from two
limitations. On the one hand, it is well-known that
without process identities, many distributed prob-
lems do not have solutions. Indeed in distributed
algorithms, identities comparisons break deadlock
situations. Modelling such algorithms produces
nets whose behaviour is symmetrical with the ex-
ception of a small set of transitions. Symmetrical
methods are not able to efficiently handle partial
symmetries since they require a symmetry upon
the whole model.

On the other hand, many usual formulas have
asymmetric propositions. For instance, the fair-
ness formula “If some process is waiting for a
resource, then it will get it” implies to distinguish
a process (i.e. a colour in the net). By detect-
ing the symmetries of the automaton related to
the formula, (Emerson and Prasad Sistla 1996)
efficiently handle this kind of formula. Unfortu-
nately this technique fails when analyzing the
automaton associated to the asymmetric formula:
“If some process is waiting for a resource then it
will get it, provided none of the processes with
higher identity will require the resource in the
future”. Again viewed as a model, the automaton
is partially symmetric. A more refined analysis of
the automaton slightly extends the range of ap-
plication but the main limitations remain (Ajami
et al. 1998, Emerson and Trefler 1999).

Here, we present the efficient design of two meth-
ods for partially symmetric models and/or formu-
las in well-formed nets. The first method which
solves the reachability problem and refines the one
presented in (Haddad et al. 1995), may be summa-
rized as follows: (1) partition the transitions in two
subsets, the symmetrical and the asymmetrical
ones; (2)build an Extended Symbolic Reachability
Graph (ESRG), where each node corresponds to
a set of symbolic states of the SRG which are
developed as soon as an asymmetrical transition
is fireable; (3) fire symbolically the symmetrical
transitions from the representant of the node and
asymmetrical ones from the developed symbolic
markings ; (4) as soon as the symbolic markings
associated to a node are no more relevant (i.e.
the asymmetrical transitions have been fired and
all the symbolic markings are reachable), they are
deleted.

The second method solves the linear time model
checking problem and applies on a symmetric
well-formed net and an asymmetric Büchi au-
tomaton. It is an instanciation of a generic
method presented in (Haddad et al. 2000). To
any state of this automaton is associated a local
partition of each colour class such that two colours
inside the same partition are equivalent w.r.t. the
atomic propositions labelling the state. Then a
Symbolic Synchronized Product (SSP) is built
where a state of this product is composed by a
symbolic marking and a state of the automaton.
Contrary to the SRG building, the decomposition
of coloured classes into static subclasses is local
to each state. Furthermore when building a state,
we analyze its structure in order to minimize the
decomposition into static subclasses whereas pre-
serving the equivalence with the ordinary synchro-
nized product.

The balance of the remaining paper is the fol-
lowing one. In the second section, we informally
present the well-formed Petri nets and the stan-
dard model checking methods. Then we depict the
principles of our methods. In the forth section,
we evaluate them on two examples. At last, we
conclude and we give perspectives to this work.

2. PRELIMINARIES

Below, we describe the main features of WFN.
The reader can refer to (Chiola et al. 1993) for a
formal definition :

• In a WFN, a colour domain is a carte-
sian product of colour classes which may be
viewed as primitive domains. This product is
possibly empty (e.g. a place which contains
neutral tokens) and may include repetitions
(e.g. a transition which synchronises two
colours inside a class). A class is divided into
static subclasses. The colours of a class have
the same nature (processes, resources, etc.)
whereas the colours inside a static subclass
have the same potential behaviour (batch
processes, interactive processes, etc.).

• In a WFN, a colour function is built by stan-
dard operations (linear combination, compo-
sition, etc.) on basic functions. There are
three basic functions: a projection which se-
lects an item of a tuple and is denoted by
a typed variable (e.g. X, Y ); a diffusion, a
constant function which returns the bag com-
posed by all the colours of a class or a sub-
class and is denoted SC where C is the corre-
sponding (sub)class; and a successor function
which applies on an orderered class and re-
turns the colour following a given colour.

• In a WFN, transitions are guarded by expres-
sions (in fact even the coloured functions may



be guarded but we do not describe here this
feature). An expression is a boolean combi-
nation of atomic predicates. An atomic predi-
cate either identifies two variables [X = Y ] or
restricts the domain of a variable to a static
subclass [X ∈ D].
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Figure 1. Modelling a distributed algorithm with
priorities for a critical section

The WFN of Figure 1 models a distributed algo-
rithm for critical section accesses. There is a single
class C which represents the processes. The vari-
ables X and Y are typed by C. Since no confusion
is possible, the constant SC has been abbreviated
by S. Let us note, for instance, that the colour
domain of Rq is C and the colour domain of
t5 is C × C. Roughly speaking, the distributed
algorithm builds successive waves of requests (by
firings of t2 until some firing of t3). Then one
decides between the requests of a wave (inside
the places Wv, Wt, Sl) according to the order
of the processes identities. This tie break is done
by the asymmetric transition t5 which exchanges
requests between Wt and Sl. This transition has
priority over the other ones, thus t6 is fireable
when no more exchange is possible.

The class C is split into D1, . . . , Dn static sub-
classes (one per colour). This decomposition is
required to express the predicate [Y < X] which
is an abbreviation of ORi<j([Y ∈ Di] AND [X ∈
Dj ]).
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Figure 2. Modelling a distributed algorithm for a
critical section

The WFN of Figure 2 represents a similar algo-
rithm except that in a wave, the accesses to the
critical section are not controlled. Since the po-
tential behaviours of all processes are equivalent,
the class is not splitted (i.e. it is composed by a
single static subclass).

The symbolic reachability graph (SRG) building
lies on a compact representation for a set of equiv-
alent ordinary markings called a symbolic mark-
ing. In a symbolic marking, each static subclass is
divided into dynamical subclasses. A dynamical
subclass is only specified by its size, thus each
consistent choice of colours for the dynamical sub-
classes leads to an ordinary marking. The implicit
colours of a dynamical subclass are supposed to
be in the same state. Consequently the marking
of places is defined w.r.t. to dynamical subclasses
instead of colours.

In order to build the SRG, a symbolic firing rule
is applied. This rule is similar to the ordinary one
except that the dynamical subclasses instanciat-
ing the firing must be reduced to singletons by
an appropriate splitting. At last, different repre-
sentations of a symbolic marking are possible. So
a canonical one is defined and each time a new
symbolic marking is built, it is canonized.

As an illustration, building the SRG of Figure 2
leads to exponential savings of space w.r.t. the
ordinary reachability graph (RG). However, the
SRG of Figure 1 has exactly the same size of the
ordinary graph. Indeed the static decomposition
of C forbids any saving by the standard SRG.

We briefly recall the principles of the standard
model checking of a linear time temporal logic
formula. At first, one builds the Büchi automaton
of the negation of the formula. This automaton
is then synchronized with the state graph i.e. a
state of the synchronized product is composed by
a state of the automaton and a state of the reach-
ability graph which fulfills the atomic properties
labelling the automaton state. There is an edge
in the synchronized product iff the corresponding
edges are present in the state graph and in the
automaton. If a successful path is found on the
synchronized product, the formula is invalidated.
Usually, all the constructions are done on-the-fly.

As discussed in the introduction, using the SRG
for a partially symmetric formula often requires to
define “artificial” static subclasses. For instance,
expressing the wave construction of the net of
Figure 2 leads to the following LTL formula:

G(Rq1 AND Wt2 ⇒ (NOT Cs1 U Cs2)) (1)

Here the two colours 1 and 2 must be singleton
static subclasses in order to apply a synchronized
product between the SRG and the automaton.

3. DESCRIPTION OF THE TWO METHODS

The common idea of both methods is to treat
dynamically (on-the-fly) asymmetries.

Regarding the reachability problem, the asymme-
try is due to the existence of some transitions



whose treatment depends on colours. The ESRG
method exploits the fact that these dependencies
are only local so can be abstracted for other tran-
sitions.

Concerning model-checking, asymmetries can arise
due the need to observe particular colours during
the system runs. However, this particular observa-
tion is not relevant for all parts of the verification
process. The SSP method takes profit from such
observations to construct the more adapted group
of symmetries.

The ESRG method: The first step of the
method consists to partition the transitions in two
subsets: the asymmetric transitions which involve
a static subclass occurring either in some coloured
function around the transition or in the guard and
the other ones called the symmetric transitions.

Each node of the ESRG contains a symbolic mark-
ing which does not take into account the static
subclasses (i.e. to each class corresponds a single
subclass). Such symbolic marking is called sym-
metrical representation (SR). When an asymmet-
rical transition is enabled in a node, it is com-
pleted with all the possible symbolic markings
which refine the SR by taking into account the
static subclasses. Such markings are called the
eventualities of the SR. The firing of an asym-
metrical transition is always processed from the
eventualities of a node. The firing of a symmetrical
transition is processed from the eventualities of a
node if some of them (but not all) are present.
A key point of the method is the removal of the
eventualities of a node. It occurs when all the
possible eventualities are present (i.e. the whole
states represented by the SR are reachable) and
all the asymmetric transitions fireable from the
eventualities have been fired. We call this kind
of node a saturated node. In order to accelerate
this removal, we give priority to the firing of
asymmetric transitions from nodes with all the
eventualities present and then to the firing of
symmetric transitions from saturated nodes since
the reached node is immediately saturated.

From an implementation point of view, since the
eventualities are also symbolic markings, no spe-
cific development is required for the firing rule.
However a symbolic firing is more time consuming
since both the symbolic marking and optionally
the eventuality are computed and canonized.

The expected reduction of the space complexity
of the ESRG building w.r.t. the SRG building is
mainly related to the proportion of asymmetric
transitions in the WFN. When all transitions are
symmetric, the ESRG is the SRG. We expect that
the reduction is maximal when the proportion
of asymmetric transitions is small. Furthermore
when this ratio increases, the reduction may re-

main important whenever the saturation effect is
predominant.

The SSP method: The Symbolic Synchronized
Product method (SSP) aims at synchronizing a
partially symmetric Büchi automaton with the
runs of a symmetrical system. The reader can
refer to (Haddad et al. 2000) for the generaliza-
tion to asymmetrical system specifications. The
first step of the method consists to analyze the
atomic propositions labelling a node of the Büchi
automaton. Local static subclasses are associated
to each node so that two colours inside a static
subclass are equivalent w.r.t. the propositions (i.e.
permuting the two colours let invariant the set of
atomic propositions). Given a state b, we denote
its local static decomposition by ls(b).

A state of the synchronized product is defined by:
a local decomposition into static subclasses LS, a
symbolic marking defined upon these subclasses
SM and a state of the automaton b. The atomic
propositions of b are satisfied by all the ordinary
markings associated to the symbolic marking.

The key point is the building of the successors of a
node. We choose a successor for b, say b′. Then we
apply a symbolic firing rule on SM and we obtain
a new symbolic marking, say SM ′. The next step
consists to obtain the subset of ordinary markings
of SM ′ which fulfill the atomic propositions of
b′. We do it in a symbolic way by refining the
static decomposition LS into LS ∩ ls(b′). This
refinement leads to replace SM ′ by a set of
symbolic markings where we straightforwardly
decide for each one if all of its ordinary markings
satisfy the atomic propositions of b′ (or none). We
then check on the subset of remaining symbolic
markings whether we can group some of them.
The involved techniques are intricate and will not
be described here.

Compared to the static method of (Ilié and
Ajami 1997) for the model checking using the
SRG, the expected reduction of space complexity
depends on the degree of symmetry of the states
of the Büchi automaton induced by the atomic
propositions.

4. EVALUATION

We have implemented our symbolic methods by
reusing the core implementation of the Great-
SPN software. GreatSPN is a well-known software
which computes the SRG of well formed nets, in-
cluding the management of the symbolic marking
representation (Chiola and Gaeta 1995).

Since both SSP and ESRG methods are based on
the notion of dynamic symmetries we first imple-
mented the module DySy, a dynamic manager of



symmetries. Then we reused the GreatSPN core
without significant changes in its internal struc-
tures, and we developed a modular implementa-
tion of the SSP and the ESRG methods. The com-
putation of the SSP requires an external module
which processes the synchronized product with
the Büchi automata of an LTL formula, in order
to perform the model checking. The LTL model
checker called SPOT (see http://spot.lip6.fr), has
been used (fig. 3).
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Figure 3. Architecture of the system

In the next subsections, the time spent as well as
the memory consumed are measured for our two
symbolic approaches, in comparison with previous
ones. The memory consumption is measured in
number of nodes.
It is worth noting that we used a 2 Ghz Intel
Pentium IV machine, with 775 Mbytes memory
size and working on Linux 9.1 Operating System.

4.1 ESRG Evaluation

Table 1 shows how ESRG and SRG behave on the
asymmetrical model of Figure 1. On this example,
the SRG is the RG because of the partition of the
colors of the color class C in elementary static
subclasses. In Table 1, columns denoted CPU
Time shows the CPU construction time of each
structure. The Column SM represent the number
of symbolic markings in the SRG. The number of
saturated and unsaturated ESMs are shown in the
columns (#ESM, #SAT) and (#ESM, #NOT
SAT), respectively. The total number of stored
eventualities are given away in the column E.
The last column (denoted Ratio) highlights the
obtained space gain.

Time evaluation :
Regarding the time spent for building each struc-
ture, we find similar values. This can be easily ex-
plained by the fact that the number of computed
eventualities is equal to the number of SM in the
SRG. Actually, the enabling of the asymmetrical

Table 1. Evaluation of the ESRG
method

transitions in the ESRG approach is tested on the
eventualities.

Space evaluation :
There is a super-linear (Figure 4) gain in memory
occupation because numerous ESM are saturated,
and then are saved without their eventualities.
We also observe that the number of eventualities,
E, progresses much more slowly than the SM
one. This is due to the fact that the progression
of the number of eventualities depends on the
number of unsaturated ESM, which are in a very
small proportion compared to the total number
of ESM (#SAT + #NOT SAT ). On a model
with a less important proportion of asymmetric
transitions, we would obtain an even greater re-
duction. We also notice that the last SM value
(for 11 processes) in the Table 1 is estimated
from the ESRG construction, because GreatSPN
reaches its limit when computing the SRG of the
asymmetric model with 10 processes.

Figure 4. Ratio of SM w.r.t (#ESM + E)

4.2 Symbolic Synchronized Product Evaluation

In order to test our LTL verification method, we
choose to check the formula 1 on the symmetric
WFN of Figure 2 wherein the whole synchronized
product structure is constructed, because of the
truth of the formula 1 of section 2. Table 2
compares the SSP approach against both the
standard synchronized product (SP-rg) and the
symbolic one, obtained from the SP-srg presented
in (Ilié and Ajami 1997). The columns designed
by CPU Time, show the CPU construction time
for each structure. The columns denoted #States,
represent the number of states for each structure.
The last two columns depicted s-rg/s-ssp and s-
srg/s-ssp represent the obtained space gain.



Table 2. Evaluation of the SSP method.

Time evaluation :
Regarding the CPU time, the SSP building goes
slightly slower than the SP-srg. Actually, the SSP
requires more operations than the SP-srg, even if
it contains less nodes. In contrast, the building of
the SSP goes faster than the SP-rg because it is
two order magnitude smaller (column s-rg/s-ssp).

Space evaluation :
A linear order reduction (Figure 5) is witnessed
when comparing the space used by the SSP and
the SP-srg (column s-srg/s-ssp). Generally, the re-
duction obtained by larger sets of ordinary mark-
ings than those allowed in the SRG is more impor-
tant that the increase due to the fact that these
sets may have a non empty intersection.

Figure 5. Ratio of s-srg w.r.t s-ssp

5. CONCLUSION AND PERSPECTIVES

In this work, we have presented the design and the
evaluation of two verification methods exploiting
partial symmetries and applicable on well-formed
Petri nets. These two methods are extensions of
the symbolic reachability graph construction for
the well-formed Petri nets. The extended sym-
bolic reachability graph construction tackles the
reachability problem. The symbolic synchronised
product checks a partially symmetric linear time
formula on a net. On standard case studies, we
have shown that these two methods outperform
the previous approaches dealing with partial sym-
metries.

We plan to extend this work in two directions.
On the one hand, we notice that the asymmetry
is often introduced by the presence of guards on
transitions like X < Y . Expressing such guards in
the well-formed nets formalism implies to split the
colour class of these variables into singleton static
subclasses. So we want to handle in a dynamic way
these guards (i.e. during the symbolic construc-
tion). On the other hand, as a method for the
reachability problem, the symbolic synchronized

product suffers from the following drawback: given
two nodes of the product, it does not detect that
the set of states associated to one of them is
included in the set of states associated to other
one. We are currently developping this additional
test in the tool. However, taking advantage of this
test for the model-checking problem requires a
theoretical development on which we are working.
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