
Syntactical Colored Petri Nets Reductions

S. Evangelista1, S.Haddad2, and J.-F. Pradat-Peyre1

1 CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

2 LAMSADE-CNRS UMR 7024 Université Paris-Dauphine
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

Abstract. In this paper, we develop a syntactical version of elaborated reduc-
tions for high-level Petri nets. These reductions simplify the model by merging
some sequential transitions into an atomic one. Their conditions combine local
structural ones (e.g. related to the actions of a thread) and global algebraic ones
(e.g. related to the threads synchronization). We show that these conditions are
performed in a syntactical way, when a syntax of the color mappings is given. We
show also how our method outperforms previous ones on a recent case study with
regard both to the reduction ratio and the automatization of their application.

1 Introduction

The concurrent programming paradigm is a powerful tool for the implementation of
complex software. However it may lead to applications where the interaction between
threads or processes produces subtle behaviours that are difficult to predict. In this con-
text, it is necessary to include in the application development life cycle a complete and
systematic verification step.

Two kinds of verification techniques are usually performed : state enumeration based
methods and structural methods. The state enumeration based methods lead to a com-
plete verification of the modeled system but the analysis is restricted by the combina-
tory explosion factor (i.e. the number of control states may grow exponentially w.r.t.
the number of threads and the size of the application). The structural methods are gen-
erally efficient but they do not ensure the complete correctness of the system. Thus an
attractive trade-off is to combine both methods.

In this context, an efficient strategy is to examine the structure of the model for
reducing the number of execution traces that are to be analyzed. The obtained reduction
ratio depends on the kind of considered properties. The more specific are the properties,
the greater is the reduction.

Again, two distinct approaches can be followed to obtain such a reduction. On the
one hand, it’s possible to apply on-the-fly techniques when building the state graph.
These techniques are based on the detection that in a given state,

– some enabled actions may be forgotten since they lead to an already visited state [GW93],
– some enabled actions may be safely delayed [Val93],
– some enabled actions may be executed simultaneously [VM97].

On the other hand, one can work at the model level in order to simplify it before
building a reduced state graph. In this framework, a frequent approach is the merging of
consecutive statements into a virtual atomic one whose effect is the composition of the
effects of these statements. Such a transformation presents the following advantages:

– the combinatory explosion is drastically reduced by the elimination of the interme-
diate states,

– the induced overhead computation is negligible w.r.t. the cost of the state graph
building,

– this abstraction is potentially applicable to “parameterized” programs (e.g. indepen-
dent of the number of instances of a process class) and this feature is not covered
by the on-the-fly techniques.

We have chosen to explore this approach by proposing new colored Petri nets re-
ductions that simplify the model by merging some sequential transitions [EHPP04].
These reductions enlarge earlier ones by weakening application conditions but also by
defining precisely which conditions are sufficient to preserve some specific properties
(i.e. liveness and linear temporal formulae defined on maximal or infinite sequences)
We show here, that given a syntax for colored net, application conditions and transfor-
mation rules of these reductions can performed with only fully automatic syntactical
operations.

The paper is organized as follows. In Section 2 we recall the definition of colored
nets and the definition of the colored post-agglomeration. Section 3 shows how to define
syntactical conditions enabling the manipulation of colored mapping with a well chosen
syntax for colored Petri nets. Section 4 highlights the interest of our reductions by
applying them on a recently published case study. Before concluding, we present in
Section 5 related works.

2 Colored Petri nets and agglomerations

We assume that the reader is familiar with Petri nets and usual mathematics notions
such as multisets or powersets. We denote by Bag(S) = INS the set of multisets over the
finite set S, and by P (S) = {true, f alse}S the set of powersets over S.
We first give in this Section some definitions related to colored Petri nets. Then, we
recall some definitions concerning color mappings properties and handling. At last, we
detail the application conditions of the post-agglomeration. For space constraint, the
pre-agglomeration will not be mentioned in this paper. The pre-agglomeration is treated
in [EHPP04].

2.1 Colored Petri nets

Definition 1. A colored Petri net (CPN for short) is a tuple N = 〈P,T,Σ,C,W −,W +〉
where P is a finite set of places; T is a finite set of transitions, with P∩T = /0; Σ, the
colors set, is a finite set of finite and non empty sets; C, the color domain application,
is a mapping from P∪ T to Σ; W− and W+, the backward and forward incidence
matrixes associate to each (p, t) ∈ P×T a color mapping from C(t) to Bag(C(p)).

A couple (e,c) with e ∈ P∪T and c ∈C(e) is called an instance of e. In the remainder
of the paper mappings from C to Bag(C′) will be extended to mappings from Bag(C) to
Bag(C′) by the two following rules : f (λ.c) = λ. f (c) and f (c1 + c2) = f (c1)+ f (c2).
Given a place p, the sets •p and p• are defined as usual as {t ∈ T |W +(p, t) 6= 0} and
{t ∈ T |W−(p, t) 6= 0}. The same notations for a transition can be given in a straightfor-
ward way. A marking of a CPN associates to each of its places a multi-set over its color
domain. The firing rule defines the dynamic of the net.

Definition 2. Let N = 〈P,T,Σ,C,W−,W +,m0〉 be a CPN. A marking of N is a mapping
which associates each p ∈ P to an element of Bag(C(p)). The set of markings of a net
N is denoted by MN . A colored marked net is a couple 〈N,m0〉 with N a CPN and
m0 ∈ MN the initial marking of the net.

Definition 3. Let N = 〈P,T,Σ,C,W−,W +〉 be a CPN, t ∈ T, ct ∈ C(t), and m ∈ MN .
The instance (t,ct) is firable at m, denoted by m[(t,ct)〉, if and only if ∀p ∈ P,m(p) ≥
W−(p, t)(ct). The firing of (t,ct) at m leads to the marking m′, denoted by m[(t,ct)〉m′,
defined by: ∀p ∈ P,m′(p) = m(p) +W (p, t)(ct). The reachability set of 〈N,m0〉, de-
noted by Reach(N,m0), is the set {m0} ∪ {m ∈ MN |∃m′ ∈ Reach(N,m0), t ∈ T,ct ∈
C(t)|m′[(t,ct)〉m}.

Application conditions of agglomerations rely on the existence on some flows that
induce invariants.

Definition 4. A colored flow F , on the color domain CF , is a vector over P, denoted
by the formal sum F = ∑p∈P λp.F p.p, where ∀p∈ P, λp ∈Z and F p is a mapping from
Bag(C(p)) to Bag(CF) such that: ∀t ∈ T,∑p∈P λp.F p◦W (p, t) = 0 1. The colored flow
F is positive if ∀p ∈ P, λp ≥ 0.

Definition 5. A colored flow F , on the domain CF , induces the invariant:
∀m ∈ Reach(N,m0),∑p∈P λp.F p(m(p)) = ∑p∈P λp.F p(m0(p)). This invariant is a bi-
nary invariant if ∀c ∈ CF ,∑p∈P λp.F p(m0(p))(c) = 1; a synchronization invariant
if ∀c ∈ CF ,∑p∈P λp.F p(m0(p))(c) = 0. When no confusion is possible (i.e. the initial
marking is given), we will not distinguish a colored flow and its induced invariant.

For instance, given the right model of figure 1(b) we can automatically compute the
positive flow (on the domain ε) F = mb+ 〈AllC〉.q2 which induces the binary invariant
∀m ∈ Acc(N,m0), m(mb)+ ∑c∈C m(q2(c)) = 1. This invariant ensures that when place
mb is marked then place q2 is not, and then, that transition d1d2 is not fireable when q2
is marked.

2.2 Color mappings properties and handling

Reductions techniques for Petri nets are characterized by : (1) some application con-
ditions, (2) the characterization of the reduced net, (3) the properties preserved. For
ordinary Petri nets, the application conditions rely on the structure of the net, i.e., the

1 0 denotes here the null mapping from C(t) to Bag(CF)

physical links between the places and transitions of the net, and on algebraic conditions
given by the invariants of the net. When reasoning with colored nets, the color mappings
also have to be considered since the structure of the colored net does not necessarily re-
flect the structure of the underlying ordinary Petri net. There is then two possibilities :
unfold the net, apply reductions on the unfolded net and fold it back; or define condi-
tions on the colored net that ensure correct ordinary agglomerations in the underlying
net. Thus operations on natural numbers, e.g., W−(p, t).W+(q, t) > 0 becomes opera-
tions on color mappings, e.g., W−(p, t)◦ t(W+(q, t)) 6= 0Bag(C(q))→Bag(C(p)).

Firstly, we define a set of properties that are used in agglomerations definition.
These properties can give some precious hints on the structure on the underlying net.
For instance, a quasi-one-to-one mapping that labels an arc between a place p and a
transition t, implies that two different instances of t cannot be linked to the same in-
stance of p.

Definition 6. Let f be a mapping from C to Bag(C′). f is

– unitary when ∀c ∈C, f (c)(c′) ≤ 1
– orthonormal when ∀c ∈C∃c′ ∈C′ such that f (c)(c′) = 1 and ∀c′ ∈C′∃c ∈C such

that f (c)(c′) = 1
– ortho-projection when f = g◦h with h an orthonormal mapping from C to Bag(C)

and g an orthonormal mapping from C to Bag(C′)

– quasi-one-to-one when ∀c1,c2 ∈C,c′ ∈C′, f (c1)(c′) = 0∨ f (c2)(c′) = 0
– quasi-onto when ∀c′ ∈C′,∃c ∈C such that f (c)(c′) > 0

Secondly, a frequent need is to symbolically follow a path in the underlying net.
That can be achieved by using the transposition and composition operators. The trans-
position is used to find the instances of a place linked to a transition instance, e.g.,
tW+(p,h). The composition enables to find, for example, the instances of a transition
linked to another one by an intermediary place instance, e.g., tW+(p,h)◦W−(p, f).

Definition 7 (Transposition and composition). If f is a mapping from Bag(C′′) to
Bag(C′), and g is a mapping from Bag(C) to Bag(C′′) then f ◦ g is a mapping from
Bag(C) to Bag(C′) defined by ∀c∈C,c′ ∈C′,(f ◦g)(c)(c′) = ∑c′′∈C′′ f (c′′)(c′) ·g(c)(c′′).
If h is a mapping from Bag(C) to Bag(C′), then t h is a mapping from Bag(C′) to Bag(C)
defined by ∀c ∈C,c′ ∈C′, t h(c′)(c) = h(c)(c′).

At last, we are usually not interested in the exact numbers of tokens produced in a
place, but rather in the fact that tokens are actually produced. The f operation can be
used for this purpose.

Definition 8. Let f ∈ S → Bag(S′). f ∈ S → P (S′) is defined by: ∀s ∈ S, f (s) = {s′ ∈
S′ | f (s)(s′) > 0}.

It is also useful to check if the image of a mapping f from P (C) to P (C′) is included in
the image of a mapping g from P (C) to P (C′); we denote this by f v g and it is defined
by f v g iff ∀c ∈C, f (c) ⊆ g(c).

2.3 The Post-agglomeration reduction

We recall now application conditions of the post-agglomeration. The transformation
rule and the definition of the other transitions agglomeration (the pre-agglomeration)
are presented in [EHPP04].

The basic hypothesis of the post-agglomeration is that the set of transitions of the
net is partitioned as : T = T0

U

H
U

F . The underlying idea of this decomposition is that
transitions of H and transitions of F are causally dependent : an occurrence of f ∈ F in
a sequence of firings may always be related to a previous occurrence of some h ∈ H in
this sequence. Thus, in the reduced net, one fires f immediately after the firing of some
h ∈ H.

The definition of the net obtained by the agglomeration of H with F is straightfor-
ward. Thus for space constraint we will not give it in this paper. For the same reasons,
we will not detail the properties preserved by the post-agglomeration. We simply recall
that if all the mentioned conditions are verified by the net, both the reduced and the
original net will be equivalent in terms of Petri net liveness and languages of maximal
and infinite sequences which do not observe transitions of F . Indeed, since the idea of
the post-agglomeration is to advance the firing of any transition f ∈ F, the sequence
remains equivalent with respect to transitions which are not in F . The curious readers
may find these additional informations in [EHPP04].

The post-agglomeration is based on four hypotheses : the potential agglomera-
bility, the F-independence, the F-continuation and the HF-interchangeability.

Firstly we impose that the net is potentially agglomerable. This hypothesis ensures
that a transition f ∈F in a sequence of firings is related to a previous occurrence of some
h ∈ H in this sequence. The first point ensures that the place p models an intermediate
state between the firing of a transition in H and the firing of a transition in F . The
second one ensures that the firing of a transition h produces only one token in place p
(conditions on H) and that two different tokens in place p cannot be consumed by a
same firing of f (conditions on F).

Definition 9. A colored net is potentially agglomerable (p-agglomerable) if ∃p ∈ P
such that

1. •p = H, p• = F and m0(p) = 0;
2. ∀ f ∈ F, C(f) =C(p)×C f , W−(p, f) is an ortho-projection from C(f) to C(p) and

∀h ∈ H, C(h) = C(p), W +(p,h) is orthonormal

The F-independence hypothesis ensures that when the place p is marked, no transi-
tion that can produce tokens useful for the firing of a transition in F can be fired. Given
c ∈C(p), φ(c) is exactly the set of firing instances of t producing tokens useful for the
firing of (f ,c). Similarly, given c ∈ C(p), ψ(c) is exactly the set of firing instances of
t which can not be fired when a token colored by c is present in p. Additionally, the
strong independence ensures that the place p is safe, i.e. there is at most one token per
color present in p.

Definition 10. A p-agglomerable colored net is F-independent if ∀ f ∈ F, ∀q ∈ (• f \
{p}), ∀t ∈ •q \F, ∃pt ∈

•t, ∃F = ∑r∈P F r.r a binary positive flow on a domain D
such that if φ = tW+(q, t)◦W−(q, f)◦ tW−(p, f) and ψ = tW−(pt , t)◦ tF pt ◦F p then
φ v ψ. Furthermore, if there exists a binary positive invariant F ′ on the domain C(p)
such that t F ′

p is a quasi-onto mapping then the net is strongly F-independent.

The F-continuation hypothesis means that an excess of occurrences of h ∈ H can
always be reduced by subsequent firings of transitions of F , i.e. when the place p is
marked, a transition of F is necessarily fireable.

Definition 11. A p-agglomerable colored net is F-continuable if ∃ f ∈F such that • f =
{p} or ∃ Fs ⊂ F such that :

1. ∀ f ∈ Fs,∃p f 6= p ∈ P, • f = {p, p f },
2. ∀ f ∈ Fs, tW−(p f , f) is an unitary quasi-one-to-one mapping;
3. there exists a flow on C(p), F = ∑ f∈Fs F p f .p f −λ.XC(p).p with

∀ f ∈ Fs, t F p f vW−(p f , f) ◦ tW−(p, f) and such that
(a) either λ = 0 and F induces a binary positive invariant
(b) or λ = 1 and F induces a synchronization invariant

At last, the HF-interchangeability hypothesis mainly restricts either the set H or
F to be a singleton in order to avoid the case where h ∈ H and f ∈ F are live in the
original net whereas the transition h f is not live in the reduced net.

Definition 12. A p-agglomerable colored net is HF-interchangeable if either H = {h}
or F = { f}, C(f) = C(p) (thus W−(p, f) is orthonormal since it is p-agglomerable)

3 Syntactical rules for agglomerations implementation

Computing the transposition of a color mapping, or the composition of two color map-
pings is impossible for general colored Petri nets, i.e., with unstructured color domains
or color mappings. In order to enable to perform such computations in a symbolic way
without unfolding the net, we first define in this section a restricted class of colored
Petri nets with well defined color domains and mappings. In the second and third part
of the section, we will see that this class allows us to check basic mapping properties
such as orthonormality in a straightforward way, and to perform operations on color
mappings in a syntactic manner.

3.1 Quasi Well formed colored nets (QWNs)

Quasi well formed nets are a restriction of the well-known well formed nets class.
QWNs are characterized by a good structuring of color domains and mappings.
At first, to such a net is associated a set of finite color classes (e.g. a set of processes)
that will be denoted Cl = {C1, . . . ,CN}. The sizes of these classes are the parameters of
the net (denoted ni for Ci). Each class can be enumerated starting from any color with
the help of a successor mapping succ, i.e. ∀c ∈Ci, Ci = {c,succ(c), . . . ,succni−1(c)}.
A color domain C is a cartesian product of color classes. For the sake of simplicity,

we assume that these domains are built upon the order of Cl, i.e., each color domain
C can be written as C = C1 ×·· · ×C1 ×·· · ×CN ×·· · ×CN . Since we allow repeated
occurrences of a class, ei denotes the number of occurrences of Ci in C.
Color mappings are built using simpler mappings called elementary mappings. Four
kinds of elementary mappings are allowed: the projection, the successor (or predeces-
sor), the constant mapping, and the broadcast mapping.

Definition 13. Let C be a color domain, and Ci be a color class. The set of elementary
color mappings from C to Bag(Ci) is the set
{X j

i } j∈[1..ei] ∪{X j
i ⊕n} j∈[1..ei],n∈N ∪{Alli}∪{

�
ci}ci∈Ci

It is defined by ∀c = 〈c1
1, . . . ,c

eN
N 〉 ∈C:

- X j
i (c) = {c j

i } (a projection mapping)
- X j

i ⊕n(c) = X j
i 	−n(c) = {succn(c j

i)} (a successor mapping)
- Alli(c) = ∑ci∈Ci

ci (the broadcast mapping)
-

�
ci(c) = {ci} (a constant mapping)

Definition 14. Let C be a color domain and c = 〈c1
1, . . . ,c

eN
N 〉 ∈ C then an elementary

guard G on C, a mapping from C to B = {true, f alse}, is:

– either (X j
i = X j′

i ⊕n) defined by (X j
i = X j′

i ⊕n)(c) = (c j
i = succn(c j′

i)),

– or (X j
i =

�
ci) with ci ∈Ci defined by (X j

i =
�

ci)(c) = (c j
i = ci)

A general guard is a boolean combination of elementary guards.

The general syntax of color mappings is based on elementary mappings and guards
with the help of three constructors: the tuple constructor, the product of a tuple by a
scalar and the sum of tuples.

Definition 15. Let C and C′ be two color domains. The syntax of a QWN color map-
ping f from C to Bag(C′) is:

f = ∑K
k=1 αk.[Gk]〈 f 1

1,k, . . . , f
e′N
N,k〉 with ∀k ∈ [1..K], i ∈ [1..N], j ∈ [1..e′i], αk > 0, Gk a

guard on C and f j
i,k is an elementary color mapping from C to Bag(Ci). It is defined by:

f (c) =
K

∑
k=1

αk ∑
{c∈C |Gk(c)}

〈 f 1
1,k, . . . , f

e′N
N,k〉(c)

3.2 Checking color mappings properties

The good structuring of quasi well formed nets allows us to easily check color mapping
properties. The straightforward proof of these propositions can be found in [Eva04]. In
all the propositions, we consider a quasi well formed color mapping f from Bag(C) to
Bag(C′).

A simple condition to ensure that f is unitary is to impose that it is composed of a
single tuple of which valuation is 1.

Proposition 1. If f = [G]〈 f 1
1 , . . . , f

e′N
N 〉 then f is unitary.

To ensure orthonormality, we must have C =C′, f composed of a single non guarded
tuple and each variable of the transition must appear in this tuple.

Proposition 2. If C = C′, f = 〈 f 1
1 , . . . , f

e′N
N 〉 and ∀i ∈ [1..N], j ∈ [1..ei],∃ j′ ∈ [1..ei],n ∈

N such that f j
i = X j′

i ⊕n then f is orthonormal.

If f is a single non guarded tuple in which only variables appear and such that the
same variable can not appear at two different positions in the tuple then it is an ortho-
projection.

Proposition 3. If f = 〈 f 1
1 , . . . , f

e′N
N 〉 and ∀i ∈ [1..N], j ∈ [1..e′i], f j

i = X j′

i ⊕n and 6 ∃ j′′ ∈

[1..e′i] such that f j′′

i = X j′

i ⊕m then f is an ortho-projection.

A single tuple in which all the variables of the transition appear is quasi-one-to-one.

Proposition 4. If f = α.[G]〈 f 1
1 , . . . , f

e′N
N 〉 and ∀i ∈ [1..N], j ∈ [1..ei],∃ j′ ∈ [1..e′i],n ∈ N

such that f j′

i = X j
i ⊕n then f is quasi-one-to-one.

At last, f is quasi-onto if there is a non guarded tuple in it which is such that no
constant appear in it and no variable can appear at two different positions in it.

Proposition 5. If f = α.〈 f 1
1 , . . . , f

e′N
N 〉+g such that these two conditions are fulfilled

1. ∀i ∈ [1..N], j ∈ [1..e′i], f j
i = Alli or f j

i = X j′

i ⊕n

2. 6 ∃i ∈ [1..N], j ∈ [1..e′i], j′ ∈ [1..e′i] such that f j
i = X j′′

i ⊕n and f j′

i = X j′′

i ⊕m

then f is quasi-onto.

3.3 Computing structural relations

Syntactic transposition We now focus on the specification of a symbolic transposition.
At first, we notice that the transpose of a linear combination of mappings is the linear
combination of the transposes. Thus we restrict ourselves to a guarded tuple. We now

focus on the guard. We remark that if f = [G]〈 f 1
1 , . . . , f

e′N
N 〉 then f can be viewed as

the following composition: f = 〈 f 1
1 , . . . , f

e′N
N 〉 ◦ [G]〈X1

1 , . . . ,Xe1
1 , . . . ,X1

N , . . . ,XeN
N 〉. Thus

t f = t [G]〈X1
1 , . . . ,Xe1

1 , . . . ,X1
N , . . . ,XeN

N 〉◦ t〈 f 1
1 , . . . , f

e′N
N 〉. By a straightforward evaluation,

one remarks that:

t [G]〈X1
1 , . . . ,Xe1

1 , . . . ,X1
N , . . . ,XeN

N 〉 = [G]〈X1
1 , . . . ,Xe1

1 , . . . ,X1
N , . . . ,XeN

N 〉

Hence supposing that the composition can be handled, we restrict the symbolic trans-
position to non guarded tuples.

We make a new observation. Let g be a mapping from C to C′ and h be a map-
ping from D to D′. Suppose that f is a mapping from C ×D to C′ ×D′ defined by
f (c,d) = 〈g(c),h(d)〉. Then t f (c′,d′) = 〈t g(c′), t h(d′)〉. As it is the case for QWN map-
pings (that can be viewed as tuple of mappings from Cei to Ce′i), we can restrict ourselves
to mappings where a single class occurs (with possible repetitions) in its domain and its
codomain.

Proposition 6 (Symbolic transposition). Let C = Ce
i and C′ = Ce′

i be two color do-
mains. Since we deal with a single class Ci, we omit in the sequel the subscript i.

Let f = 〈 f 1
, . . . , f e′〉 be a mapping from Bag(C) to Bag(C′) with f k′ being either

All, Xµ(k′) ⊕mk′ or
�

n. The transposition of f is defined by:

t f = [
ê

k=1

Gk

e′
^

k′=1

Hk′]〈g
1
, . . . ,ge〉]

where:

– if µ−1(k) = /0 then gk = All and Gk = true
– else (µ−1(k) = { j1, . . . , jq}) gk = X j1 	m j1 and Gk =

Vq
k′=2(X

jk′ 	n jk′ = X j1 	m j1)

and

– if f k′ =
�

n then Hk′ = (X k′ =
�

n)
– else Hk′ = true

Example 1. Let us compute the transpose of the mapping f from
Bag(C1 ×C1×C2 ×C3×C3) to Bag(C1 ×C1×C2 ×C2×C3) defined by

f = 〈X1
1 	3,X1

1 ⊕1,X1
2 ,All2,

�
3,1〉

– We first consider the mapping f1 from Bag(C1×C1) to Bag(C1 ×C1) defined by
f1 = 〈X1

1 	1,X1
1 ⊕1〉.

Using previous notations, µ1(1) = 1 and µ1(2) = 2. So,
• µ−1

1 (1) = {1,2} and then g1
1 = X1

1 ⊕3 and G1 = (X2
1 	1 = X1

1 ⊕3)
• µ−1

1 (2) = /0 and then g2
1 = All1

• No constant appears in f1 so H1 = true.
– We consider then the mapping from Bag(C2) to Bag(C2 ×C2) f2 = 〈X1

2 ,All2〉.
• µ−1

2 (1) = {1} and then g1
2 = X1

2 and G2 = true
• No constant appears in f2 so H2 = true.

– At last consider the mapping from Bag(C3×C3) to Bag(C3) f3 = 〈
�

3,1〉. We obtain
• µ−1

3 (1) = µ−1(2) = /0 so g1
3 = g2

3 = All3.
• As f 1

3 =
�

3,1 then H3 = (X1
3 =

�
3,1).

So we obtain as result to our calculus:

t f = [(X2
1 	1 = X1

1 ⊕3)∧ (X1
3 =

�
3,1)]〈X

1
1 ⊕3,All1,X

1
2 ,All3,All3〉

Syntactic composition Computing the composition f ◦ g of two mappings can raise
syntactical problems. For instance, if g is a mapping from Bag(ε) to Bag(C1) and f a
mapping from Bag(C1) to Bag(C1 ×C1) defined by f = 〈X1

1 ,X1
1 〉 and g = 〈All1〉, we

clearly have f ◦ g = ∑c∈C1
〈c,c〉 which cannot be expressed in our syntax. In the same

way, 〈Alli〉 ◦ 〈Alli〉 = ni.〈Alli〉 which is also not allowed in our syntax. So we impose
for the computation of f ◦g that

∀i,k,gk
i = Alli ⇒ (∃! j,n such that f j

i = X j
i ⊕n) and(∀ j, f j

i 6= Alli)

With this additional constraint, we can compute the transposition of any two tuples as
follows (the proof can again be found in [EHPP04]): Using linearity of QWN mappings
we restrict our self to the composition of tuples of elementary mappings.

Proposition 7 (Symbolic tuples composition). Let g = 〈g1
1, . . . ,g

e′′N
N 〉 from Bag(C) to

Bag(C′′) and f = 〈 f 1
1 , . . . , f

e′N
N 〉 from Bag(C′′) to Bag(C′) be two QWN mappings.

Then h = f ◦g = 〈h1
1, . . . ,h

e′N
N 〉 is defined by :

∀i, j ∈ [1..e′i],h
j
i =



























if f j
i = X j′

i ⊕n then











if g j′

i = X j′′

i ⊕m then X j′′

i ⊕ (n+m)

if g j′

i = Alli then Alli
if g j′

i =
�

m then
�

n+m

if f j
i = Alli then Alli

if f j
i =

�
n then

�
n

Example 2. Let f = 〈X1
1 ,X1

1 ⊕1,X1
2 〉 from Bag(C1×C2) to Bag(C1×C1 ×C2) and

g = 〈X3
1 ,All2〉 from Bag(C1 ×C1×C1 ×C2) to Bag(C1×C2). The mapping h = f ◦ g

from Bag(C1 ×C1×C1 ×C2) to Bag(C1 ×C1 ×C2) is h = 〈X3
1 ,X3

1 ⊕1,All2〉.

Others complications appear when computing the composition of two guarded tu-

ples [G f] f ◦ [Gg]g when there is a predicate [X j
i ⊕ n = X j′

i ⊕ n′] in G f and when g j
i =

g j′

i = Alli. For instance, if f = [X1
1 = X2

1]〈X1
1 ,All1〉 and g = 〈All1,All1〉 (from Bag(C1)

to Bag(C1×C1)) then (f ◦g) = ∑c∈C1
〈c,c〉 which is not a quasi well formed mapping.

Thus we have to introduce a second constraint for the computation:

G f = [(X j
i = X j′

i ⊕n)]⇒ (g j
i 6= Alli or g j′

i 6= Alli)

Proposition 8 (Symbolic guarded tuples composition). Let g = 〈g1
1, . . . ,g

e′′N
N 〉 from

Bag(C) to Bag(C′′) and f from Bag(C′′) to Bag(C′) be two QWN mappings. Then h =

[G f] f ◦ [Gg]g = [G∧Gg] f ◦ g′ where g′ is defined by g′ j
i = g j

i except for some indices
where a substitution occurs and where G is defined as follows (note that due to symmetry

of guards we just consider non symmetrical cases for g j
i and g j′

i , and that the negation
of a guard is easily defined from these constructions) :

– G f is (X j
i = X j′

i ⊕n):

if g j
i = X k

i ⊕m then











if g j′

i = X k′
i ⊕m′ then G = (X k

i ⊕m = X k′
i ⊕ (n+m′))

if g j′

i = Alli then G = G f

if g j′

i =
�

m then G = (X k
i =

�
n+m)

if g j
i =

�
n then

{

if g j′

i = Alli then G = true and g′ j′

i =
�

n

if g j′

i =
�

n′ then G = (n = n′)

– G f is (X j
i =

�
n):

if g j
i = X k

i ⊕m then G = (X k
i ⊕m =

�
n)

if g j
i = Alli then G = true and g′ j′

i =
�

n

if g j
i =

�

n′ then G = (n = n′)

Mapping inclusion Our last need is to be able to check that two QWN color mappings
f and g are such that f v g. This is the case if for every tuple tup f of f there is a

tuple tupg of g which is such that the guard of tupg is true and at each position in the
co-domain of f and g, the elementary mapping in tupg is either the broadcast mapping
either the same mapping as in tup f .

Proposition 9. Let f and g be two QWN color mappings from C to C′ such that

– f = ∑
K f
k=1 αk, f .[Gk, f]〈 f 1

1,k, . . . , f
e′N
N,k〉

– g = ∑
Kg
k=1 αk,g.[Gk,g]〈g1

1,k, . . . ,g
e′N
N,k〉

If ∀k ∈ [1..K f],∃k′ ∈ [1..Kg] such that Gk′,g = true, and ∀i ∈ [1..|Cl|], j ∈ [1..e′N], either

g j
i,k′ = Alli, either g j

i,k′ = f j
i,k then f v g.

4 Cases studies

Flanagan and Qadeer proposed in [FQ03a] the following example where a counter
count can be either read, incremented or decremented. Two shared variables, a and
b, keep track of the number of increments or decrements performed on the counter.

int a, b, ma, mb, count = 0;

void incr(){ void decr(){ void read(){
acquire (ma); acquire (mb); acquire (ma); int x = a;
int x = a ; int y = b; acquire (mb); int y = b;
count++; count--; release (mb);
a = x+1; b = y+1; release (ma);
release (ma); } release (mb); } return (tx-ty); }

The corresponding colored Petri net is depicted Fig. 1(a) and, for simplicity, we
have duplicated some places on the figure (ma, mb, a, b and count). Note that the value
of the local variables (x and y) is modeled by the coloration of the token contained in
the places p2, . . . ,p4, q2, . . . ,q4 and u3, . . . ,u5. One aims to reduce this net, to check
that a property that does not observe the five variables declared holds.

We first perform four post-agglomerations (i4 with i5, d4 with d5, r5 with r6 and
r4 with r5r6 (the result of the agglomeration of r5 with r6). These agglomerations are
possible mainly because the transitions corresponding to f in these reductions have a
single input: the place corresponding to p in the agglomeration scheme.

Then we perform three post-agglomerations (i1 with i2, d1 with d2, r1 with r2
and r3 with r4r5r6). Let us detail the post-agglomeration of i1 with i2 :

1. the p-agglomerability is obviously fulfilled;
2. concerning the F-independence, we use the following positive flow (on the domain

ε) F = ma + p2 + 〈AllC〉.p3 + 〈AllC〉.p4 + u2 + 〈AllC〉.u3 + 〈AllC〉.u4 which in-
duces the binary positive invariant ∀m ∈ Acc(N,m0),m(ma) + ∑x∈C(m(p2)(x) +
m(p3)(x)+m(p4)(x))+∑x∈C(m(u3)(x)+m(u4)(x)) = 1. With the help of this in-
variant, we check for instance that (using notations of definition 10) for q = a,
t = i4, pt = p4 then Φ = t(〈X +1〉) ◦ (〈X〉) ◦ t(〈Πε〉) = AllC and Ψ = t(〈X〉) ◦
t(〈AllC〉)◦〈Xε〉 = AllC and then φ v ψ (note again that these computations are per-
formed using only the syntax of the mappings).

mb
q1

<Y><Z−−>

<Z>

<Y>

<Y+1>

decr()

<Y>

<Y>

count

i1

i3

i4

i5

d1

d3

d4

d5

a: C

ma

<0>

p1

p2

<X>

<X> <Z++>

<Z>

<X>

<X+1>

<X>

<X>

<X>

<X>

<X>

mb

<X>

<Y>

b: C

r3

r4

u3: C

u4: C

u5: CxC

u7

u6: CxC

r2

u2

r1

u1
ma

<X>

<Y>

a: C

incr()

<0>

<0>

<Xg> <Yg>

<0>

<0>

p3: C

p4: C

p5: C

p6 q6

q3: C

q2

q4: C

q5: C

i2 d2

r6

r5

read()

<X>

<X>

<Y>

<Y>

<X,Y>

<X,Y>

<X,Y>

<X,Y>

b: C

(a) The initial model

<Y>

<Z−−>

<Z>

<Y>

q1

<Yg>

<Y+1>

<Y>

decr()q5

mb

b
<X>

<Z++>

<Z>

<X>

p1

<Xg>

<X+1>

<X>

incr() p5

ma

count

a

i1i2

i4i5 d4d5

<0>

<0>

<0>

d1d2

p2: C q2: C

<Y>

u3: C
<X>

<X>

b

mb

<0>

a <0>
<X>

ma

r3r4r5r6

u7

read()

r1r2

(b) After several agglomerations

<Z>

decr()

<Z++>

<Z>

incr() count

i1i2i3i4i5

<X>
a

<X+1> <Z−−>

ty

<Y>

<Y+1>

<0> <0>

p1

p5 q5

q1

read()

<X><0> <Y> <0>

<Z>

u8

count

a

b

d1d2d3d4d5
r1r2r3r4r5r6

(c) Fully reduced

Fig. 1. The Flanagan and Qadeer’s example

3. the F-continuation is verified with the help of the flow 〈AllC〉.a which induces the
binary invariant ∀m ∈ Acc(N,m0),∑x∈C m(a)(x) = 1.

4. the HF-interchangeability is ensured since |H| = {i1}

The reduced net is depicted Fig. 1(b).
In this last model, we perform a pre-agglomeration of d1d2 with d4d5. This reduc-

tion is possible since r3r4r5r6 is a neutral transition and since mb induces a binary
invariant ensuring that d4d5 is not fireable when d1d2 is fireable. Then we suppress the
place mb (now an implicit place see [Had90]) and we apply a parallel pre-agglomeration
of r1r2 with r3r4r5r6, and i1i2 with i4i5. So we suppress ma (now an implicit
place) and we obtain a net reduced to three transitions (Fig.1(c)). Note that contrary
to the results proposed in [FQ03a], our reduction process is fully automatic and, in
addition to serializability, it preserves Petri nets liveness, deadlocks, as well as other
properties expressed with the help of maximal or infinite sequences.

5 Related works

The first theoretical work concerning reduction of sequences into atomic actions for
simplification purpose was performed by Lipton in [Lip75]. Lipton focused only on
deadlock property preservation. Using parallel program notations of Dijkstra he de-
fined “left” and “right” movers. Roughly speaking, a “left” (resp. “right”) mover is
a local process statement that can be moved forward (resp. delayed) w.r.t. statements
of others processes without modifying the halting property. Lipton then demonstrated
that, in principle, the statement P(S), where S is a semaphore, is a “left” mover and
V(s) is a “right” mover. Then Lipton proved that some parallel program are deadlock
free by moving P(S) and V(S) statements and by suppressing atomic statements that
have no effect on variables. However, two difficulties arise: the reduction preserves only
the existence of deadlocks and the application conditions are difficult to be automati-
cally checked. Thus, this work has been extended and adapted to different formalisms
[CL98], [SC03], or to programming languages [SC03], [FQ03b], [FQ03a].

In Petri nets formalism, the first works concerning reductions have been performed
by Berthelot [BRV80,Ber85]. The author focused only the preservation of specific Petri
net properties such as liveness or boundedness. The link between transition agglomer-
ations (the most effective reductions) and general properties, expressed in LTL formal-
ism, is done in [PPP00]. However, these reductions rely on “pure” structural application
conditions, which are, on the one hand, very efficient, but in the other hand, lead to a
quite narrow application area.

Esparza and Schröter [ES01], simplify one point in the original pre-agglomeration
conditions. However, they consider only 1-safe Petri nets (each place is bounded by
1), the application conditions remain purely structural, and as the authors focus only
on infinite sequences preservation, their reductions do not even preserve the existence
deadlock2.

Orthogonally, Schnoebelen and Sidorova [SS00] characterize reductions by means
of bisimulation. The interest in this approach is that one only needs to consider a par-

2 Note moreover that being 1-safe is not a stable characteristic w.r.t. reductions.

ticular subset of the markings and thus, can obtain a very abstract model. On the other
hand, the applicability of these reductions is quite limited.

Recently we proposed in [HPP04] new Petri nets reductions that cover a large range
of patterns by introducing algebraic conditions whereas the previously defined ones rely
solely on structural conditions. We adapt them to colored nets in [EHPP04] and we show
here how to automatize their applications with a well chosen syntax for colored Petri
nets. Note that the expressiveness of colored Petri nets is sufficient to model concurrent
software. Thus, these colored Petri nets reductions are a very efficient supplementary
material for simplifying software model checking.

6 Conclusion

We have presented in this paper how new colored Petri nets reductions can be automat-
ically performed using a precise syntax of colored net. In particular, we showed that a
precise syntax of colored nets allows us to transform functional calculus into syntactical
operations.

We have illustrate on a recent and significant example that the use of these reduc-
tions leads to a very effective way to simplify model (and thus concurrent programs)
while preserving general properties of the model (expressed for instance with an action-
based linear time temporal logic).

The next step in our researches in this area will be to define directly in high-level
languages (such as Ada or Java) equivalent conditions allowing to automatically infer
transactions for simplifying software model checking.

References

[Ber85] G. Berthelot. Checking properties of nets using transformations. In G. Rozenberg,
editor, Advances in Petri nets, volume No. 222 of LNCS. Springer-Verlag, 1985.

[BRV80] G. Berthelot, G. Roucairol, and R. Valk. Reduction of nets and parallel programs. In
Brauer, W., editor, LNCS: Net Theory and Applications, volume 84, pages 277–290,
Berlin, Heidelberg, New York, 1980. Springer-Verlag.

[CL98] Ernie Cohen and Leslie Lamport. Reduction in TLA. In International Conference
on Concurrency Theory, pages 317–331, 1998.

[EHPP04] S. Evangelista, S. Haddad, and J.F. Pradat-Peyre. Colored Petri nets reductions for
concurrent software validation. Technical report, CEDRIC, CNAM, Paris, 2004.

[EKPPR03] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. Quasar: a new tool
for analysing concurrent programs. In Reliable Software Technologies - Ada-Europe
2003, volume 2655 of LNCS. Springer-Verlag, 2003.

[ES01] J. Esparza and C. Schröter. Net Reductions for LTL Model-Checking. In T. Mar-
garia and T. Melham, editors, Correct Hardware Design and Verification Methods
(CHARME’01), volume 2144 of Lecture Notes in Computer Science, pages 310–324.
Springer-Verlag, 2001.

[Eva04] S. Evangelista. Syntactical rules for colored Petri nets manipulation. Technical Re-
port 641, CEDRIC, CNAM, Paris, 2004.

[FQ03a] Cormac Flanagan and Shaz Qadeer. Transactions for software model checking. In
Byron Cook, Scott Stoller, and Willem Visser, editors, Electronic Notes in Theoreti-
cal Computer Science, volume 89. Elsevier, 2003.

[FQ03b] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Pro-
ceedings of the ACM SIGPLAN 2003 conference on Programming language design
and implementation, pages 338–349. ACM Press, 2003.

[GW93] Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient verifica-
tion of deadlock freedom and safety properties. Form. Methods Syst., 2(2):149–164,
1993.

[Had90] S. Haddad. A reduction theory for colored nets. In Jensen and Rozenberg, editors,
High-level Petri Nets, Theory and Application, volume 424 of LNCS, pages 399–425.
Springer-Verlag, 1990.

[HPP04] S. Haddad and J.F. Pradat-Peyre. Efficient reductions for LTL formulae verification.
Technical report, CEDRIC, CNAM, Paris, 2004.

[Lip75] Richard J. Lipton. Reduction: a method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, 1975.

[PPP00] D. Poitrenaud and J.F. Pradat-Peyre. Pre and post-agglomerations for LTL model
checking. In M. Nielsen and D Simpson, editors, High-level Petri Nets, Theory and
Application, number 1825 in LNCS, pages 387–408. Springer-Verlag, 2000.

[SC03] Scott D. Stoller and Ernie Cohen. Optimistic synchronization-based state-space re-
duction. In H. Garavel and J. Hatcliff, editors, TACAS’03, volume 2619 of Lecture
Notes in Computer Science, pages 489–504. Springer-Verlag, April 2003.

[SS00] P. Schnoebelen and N. Sidorova. Bisimulation and the reduction of petri nets. In
M. Nielsen and D Simpson, editors, High-level Petri Nets, Theory and Application,
number 1825 in LNCS, pages 409–423. Springer-Verlag, 2000.

[Val93] Antti Valmari. On-the-fly verification with stubborn sets. In Proceedings of the 5th
International Conference on Computer Aided Verification, pages 397–408. Springer-
Verlag, 1993.

[VM97] François Vernadat and François Michel. Covering step graph preserving failure se-
mantics. In Proceedings of the 18th International Conference on Application and
Theory of Petri Nets, pages 253–270. Springer-Verlag, 1997.

