
Comparison of the Expressiveness of Timed
Automata and Time Petri Nets

B. Bérard1, F. Cassez2,⋆, S. Haddad1, D. Lime3, O.H. Roux2,∗

1 LAMSADE, Paris, France
E-mail: {berard | haddad}@lamsade.dauphine.fr

2 IRCCyN, Nantes, France
{Franck.Cassez | Olivier-h.Roux}@irccyn.ec-nantes.fr

3 CISS, Aalborg, Denmark
didier@cs.aau.dk

Béatrice Bérard, Franck Cassez, Serge Haddad, O. H. Roux, and Didier Lime.

Comparison of the Expressiveness of Timed Automata and Time Petri Nets.
In Proceedings of the 3rd International Conference on Formal Modelling and Analysis of Timed

Systems (FORMATS’05), Lecture Notes in Computer Science, Uppsala, Sweden, September

2005. Springer. Extended version with proofs.

Abstract. In this paper we consider the model of Time Petri Nets
(TPN) where time is associated with transitions. We also consider Timed
Automata (TA) as defined by Alur & Dill, and compare the expressive-
ness of the two models w.r.t. timed language acceptance and (weak)
timed bisimilarity. We first prove that there exists a TA A s.t. there is
no TPN (even unbounded) that is (weakly) timed bisimilar to A. We
then propose a structural translation from TA to (1-safe) TPNs preserv-
ing timed language acceptance. Further on, we prove that the previous
(slightly extended) translation also preserves weak timed bisimilarity for
a syntactical subclass T Asyn(≤,≥) of TA. For the theory of TPNs, the
consequences are: 1) TA, bounded TPNs and 1-safe TPNs are equally
expressive w.r.t. timed language acceptance; 2) TA are strictly more ex-
pressive than bounded TPNs w.r.t. timed bisimilarity; 3) The subclass
T Asyn(≤,≥), bounded and 1-safe TPNs “à la Merlin” are equally ex-
pressive w.r.t. timed bisimilarity.

Keywords: Timed Language, Timed Bisimilarity, Time Petri Nets, Tim-
ed Automata, Expressiveness.

1 Introduction

In the last decade a number of extensions of Petri Nets with time have been
proposed: among them are Stochastic Petri Nets, and different flavors of so-
called Time or Timed Petri nets. Stochastic Petri Nets are now well known and
a lot of literature is devoted to this model whereas the theoretical properties of
the other timed extensions have not been investigated much.

Petri Nets with Time. Recent work [1,11] considers Timed Arc Petri Nets
where each token has a clock representing its “age” but a lazy (non-urgent)
semantics of the net is assumed: this means that the firing of transitions may

⋆ Work supported by the ACI CORTOS, a program of the French government.

be delayed, even if this implies that some transitions are disabled because their
input tokens become too old. Thus the semantics used for this class of Petri nets
is such that they enjoy nice monotonic properties and fall into a class of systems
for which many problems are decidable.

In comparison, the other timed extensions of Petri Nets (apart from Stochas-
tic Petri Nets), i.e. Time Petri Nets (TPNs) [18] and Timed Petri Nets [20], do
not have such nice monotonic features although the number of clocks to be con-
sidered is finite (one per transition). Also those models are very popular in the
Discrete Event Systems and industrial communities as they allow to model real-
time systems in a simple and elegant way and there are tools to check properties
of Time Petri Nets [6,14].

For TPNs a transition can fire within a time interval whereas for Timed Petri
Nets it fires as soon as possible. Among Timed Petri Nets, time can be assigned to
places or transitions [21,19]. The two corresponding subclasses namely P-Timed
Petri Nets and T-Timed Petri Nets are expressively equivalent [21,19]. The same
classes are defined for TPNs i.e. T-TPNs and P-TPNs, and both classes of Timed
Petri Nets are included in both P-TPNs and T-TPNs [19]. P-TPNs and T-TPNs
are proved to be incomparable in [16].

The class T-TPNs is the most commonly-used subclass of TPNs and in this
paper we focus on this subclass that will be henceforth referred to as TPN.

Timed Automata. Timed Automata (TA) were introduced by Alur & Dill [3]
and have since been extensively studied. This model is an extension of finite
automata with (dense time) clocks and enables one to specify real-time systems.
Theoretical properties of various classes of TA have been considered in the last
decade. For instance, classes of determinizable TA such as Event Clock Automata
are investigated in [4] and form a strict subclass of TA.

TA and TPNs. TPNs and TA are very similar and until now it is often assumed
that TA have more features or are more expressive than TPNs because they seem
to be a lower level formalism. Anyway the expressiveness of the two models have
not been compared so far. This is an important direction to investigate as not
much is known on the complexity or decidability of common problems on TPNs
e.g. “is the universal language decidable on TPNs ?”. Moreover it is also crucial
for deciding which specification language one is going to use. If it turns out that
TPNs are strictly less expressive (w.r.t. some criterion) than TA, it is important
to know what the differences are.

Related Work. In a previous work [10] we have proved that TPN forms a
subclass of TA in the sense that every TPN can be simulated by a TA (weak
timed bisimilarity). A similar result can be found in [17] with a completely
different approach. In another line of work in [15], the authors compare Timed
State Machines and Time Petri Nets. They give a translation from one model
to another that preserves timed languages. Nevertheless, they consider only the
constraints with closed intervals and do not deal with general timed languages
(i.e. Büchi timed languages). [9] also considers expressiveness problems but for

2

a subclass of TPNs. Finally it is claimed in [9] that 1-safe TPNs with weak4

constraints are strictly less expressive than TA with arbitrary types of constraints
but a fair comparison should allow the same type of constraints in both models.

Our Contribution. In this article, we compare precisely the expressive power
of TA vs. TPN using the notions of Timed Language Acceptance and Timed
Bisimilarity. This extends the previous results above in the following directions:
i) we consider general types of constraints (strict, weak); ii) we then show that
there is a TA A0 s.t. no TPN is (even weakly) timed bisimilar to A0; iii) this leads
us to consider weaker notions of equivalence and we focus on Timed Language
Acceptance. We prove that TA (with general types of constraints) and TPN
are equally expressive w.r.t. Timed Language Acceptance which is a new and
somewhat surprising result; for instance it implies (using a result from [10]) that
1-safe TPNs and bounded TPNs are equally expressive w.r.t. Timed Language
Acceptance; iv) to conclude we characterize a syntactical subclass of TA that is
equally expressive to TPN without strict constraints w.r.t. Timed Bisimilarity.
The results of the paper are summarized in Table 1: all the results are new except
the one followed by [10]. We use the following notations: B-T PN ε for the set
of bounded TPNs with ε-transitions; 1-B-T PN ε for the subset of B-T PN ε

with at most one token in each place (one safe TPN); B-T PN (≤,≥) for the
subset of B-T PN ε where only closed intervals are used; T Aε for TA with ε-
transitions; T Asyn(≤,≥) for the syntactical subclass of TA that is equivalent
to B-T PN (≤,≥) (to be defined precisely in section 5). In the table �L or �W

with �∈ {<,≤}, respectively means “less expressive” w.r.t. Timed Language
Acceptance and Weak Timed Bisimilarity; =L means “equally expressive as”
w.r.t. language acceptance and ≈W “equally expressive as” w.r.t. weak timed
bisimilarity.

Outline of the paper. Section 2 introduces the semantics of TPNs and TA,
Timed Languages and Timed Bisimilarity. In section 3 we prove our first result:
there is a TA A0 s.t. there is no TPN that is (weakly) timed bisimilar to A0. In
section 4 we focus on Timed Language Acceptance and we propose a structural
translation from TA to 1-B-T PN ε preserving timed language acceptance. We
then prove that TA and bounded TPNs are equally expressive w.r.t. Timed
Language Acceptance. This enables us to obtain new results for TPNs given by
corollaries 3 and 4. Finally, in section 5, we characterize a syntactical subclass of
TA (T Asyn(≤,≥)) that is equivalent, w.r.t. Timed Bisimilarity, to the original
version of TPNs (with closed intervals).This enables us to obtain new results for
TPNs given by corollary 6.

2 Time Petri Nets and Timed Automata

Notations. Let Σ be a set (or alphabet). Σ∗ (resp. Σω) denotes the set of
finite (resp. infinite) sequences of elements (or words) of Σ and Σ∞ = Σ∗ ∪Σω.
By convention if w ∈ Σω then the length of w denoted |w| is ω; otherwise if

4 Constraints using only ≤ and ≥.

3

Timed Language Acceptance Timed Bisimilarity

≤L T Aε [10] ≤W T Aε [10]
B-T PN ε =L 1-B-T PN ε =L T Aε <W T Aε

≈W 1-B-T PN (≤,≥)
B-T PN (≤,≥) =L T Asyn(≤,≥) ≈W T Asyn(≤,≥)

Emptiness Problem Universal Problem

B-T PN ε Decidable [10] Undecidable

Table 1. Summary of the Results

w = a1 · · · an, |w| = n. We also use Σε = Σ ∪ {ε} with ε 6∈ Σ, where ε is the
empty word. BA stands for the set of mappings from A to B. If A is finite and
|A| = n, an element of BA is also a vector in Bn. The usual operators +,−, < and
= are used on vectors of An with A = N,Q,R and are the point-wise extensions
of their counterparts in A. The set B denotes the boolean values {tt,ff}, R≥0

denotes the set of non-negative reals and R>0 = R≥0 \ {0}. A valuation ν over a
set of variables X is an element of RX

≥0. For ν ∈ RX
≥0 and d ∈ R≥0, ν+d denotes

the valuation defined by (ν + d)(x) = ν(x) + d, and for X ′ ⊆ X, ν[X ′ 7→ 0]
denotes the valuation ν′ with ν′(x) = 0 for x ∈ X ′ and ν′(x) = ν(x) otherwise.
0 denotes the valuation s.t. ∀x ∈ X, ν(x) = 0. An atomic constraint is a formula
of the form x ⊲⊳ c for x ∈ X, c ∈ Q≥0 and ⊲⊳∈ {<,≤,≥, >}. We denote C(X) the
set of constraints over a set of variables X which consists of the conjunctions of
atomic constraints. Given a constraint ϕ ∈ C(X) and a valuation ν ∈ RX

≥0, we
denote ϕ(ν) ∈ B the truth value obtained by substituting each occurrence of x
in ϕ by ν(x).

2.1 Timed languages and Timed Transition Systems

Let Σ be a fixed finite alphabet s.t. ε 6∈ Σ. A is a finite set that can contain ε.

Definition 1 (Timed Words). A timed word w over Σ is a finite or infinite
sequence w = (a0, d0)(a1, d1) · · · (an, dn) · · · s.t. for each i ≥ 0, ai ∈ Σ, di ∈ R≥0

and di+1 ≥ di.

A timed word w = (a0, d0)(a1, d1) · · · (an, dn) · · · over Σ can be viewed as a pair
(v, τ) ∈ Σ∞×R∞

≥0 s.t. |v| = |τ |. The value dk gives the absolute time (considering
the initial instant is 0) of the action ak.

We write Untimed(w) = a0a1 · · · an · · · for the untimed part of w, and
Duration(w) = supdk∈τ dk for the duration of the timed word w.

A timed language L over Σ is a set of timed words.

Definition 2 (Timed Transition System). A timed transition system (TTS)
over the set of actions A is a tuple S = (Q,Q0, A,−→, F,R) where Q is a set
of states, Q0 ⊆ Q is the set of initial states, A is a finite set of actions disjoint

4

from R≥0, −→⊆ Q× (A ∪ R≥0) ×Q is a set of edges. If (q, e, q′) ∈−→, we also

write q
e

−−→ q′. F ⊆ Q and R ⊆ Q are respectively the set of final and repeated
states.

In the case of q
d

−−→ q′ with d ∈ R≥0, d denotes a delay and not an absolute

time. We assume that in any TTS there is a transition q
0

−−→ q′ and in this case
q = q′. A run ρ of length n ≥ 0 is a finite (n < ω) or infinite (n = ω) sequence
of alternating time and discrete transitions of the form

ρ = q0
d0−−→ q′0

a0−−−→ q1
d1−−→ q′1

a1−−−→ · · · qn
dn−−−→ q′n · · ·

We write first(ρ) = q0. We assume that a finite run ends with a time transi-

tion dn. If ρ ends with dn, we let last(ρ) = q′n and write q0
d0a0···dn−−−−−−→ q′n. We write

q
∗
−→ q′ if there is run ρ s.t. first(ρ) = q0 and last(ρ) = q′. The trace of an infinite

run ρ is the timed word trace(ρ) = (ai0 , d0 + · · ·+ di0) · · · (aik
, d0 + · · ·+ dik

) · · ·
that consists of the sequence of letters of A \ {ε}. If ρ is a finite run, we define
the trace of ρ by trace(ρ) = (ai0 , d0 + · · ·+ di0) · · · (aik

, d0 + · · ·+ dik
) where the

aik
are in A \ {ε}.
We define Untimed(ρ) = Untimed(trace(ρ)) and Duration(ρ) =

∑

dk∈R≥0
dk.

A run is initial if first(ρ) ∈ Q0. A run ρ is accepting if i) either ρ is a finite
initial run and last(ρ) ∈ F or ii) ρ is infinite and there is a state q ∈ R that
appears infinitely often on ρ.

A timed word w = (ai, di)0≤i≤n is accepted by S if there is an accepting run
of trace w. The timed language L(S) accepted by S is the set of timed words
accepted by S.

Definition 3 (Strong Timed Similarity). Let S1 = (Q1, Q
1
0, A,−→1, F1, R1)

and S2 = (Q2, Q
2
0, A,−→2, F2, R2) be two TTS and � be a binary relation over

Q1 × Q2. We write s � s′ for (s, s′) ∈�. � is a strong (timed) simulation
relation of S1 by S2 if: 1) if s1 ∈ F1 (resp. s1 ∈ R1) and s1 � s2 then s2 ∈ F2

(resp. s2 ∈ R2); 2) if s1 ∈ Q1
0 there is some s2 ∈ Q2

0 s.t. s1 � s2; 3) if s1
d
−→1 s

′
1

with d ∈ R≥0 and s1 � s2 then s2
d
−→2 s′2 for some s′2, and s′1 � s′2; 4) if

s1
a
−→1 s

′
1 with a ∈ A and s1 � s2 then s2

a
−→2 s

′
2 and s′1 � s′2.

A TTS S2 strongly simulates S1 if there is a strong (timed) simulation relation
of S1 by S2. We write S1 �S S2 in this case.

When there is a strong simulation relation � of S1 by S2 and �−1 is also a strong
simulation relation5 of S2 by S1, we say that � is a strong (timed) bisimulation
relation between S1 and S2 and use ≈ instead of �. Two TTS S1 and S2 are
strongly (timed) bisimilar if there exists a strong (timed) bisimulation relation
between S1 and S2. We write S1 ≈S S2 in this case.

Let S = (Q,Q0, Σε,−→, F,R) be a TTS. We define the ε-abstract TTS Sε =
(Q,Qε

0, Σ, −→ε, F,R) (with no ε-transitions) by:

5 s2 �−1 s1 ⇐⇒ s1 � s2.

5

– q
d
−→ε q

′ with d ∈ R≥0 iff there is a run ρ = q
∗
−→ q′ with Untimed(ρ) = ε

and Duration(ρ) = d,

– q
a
−→ε q

′ with a ∈ Σ iff there is a run ρ = q
∗
−→ q′ with Untimed(ρ) = a and

Duration(ρ) = 0,

– Qε
0 = {q | ∃q′ ∈ Q0 | q′

∗
−→ q and Duration(ρ) = 0 ∧ Untimed(ρ) = ε}.

Definition 4 (Weak Time Similarity). Let S1 = (Q1, Q
1
0, Σε,−→1, F1, R1)

and S2 = (Q2, Q
2
0, Σε,−→2, F2, R2) be two TTS and � be a binary relation over

Q1 × Q2. � is a weak (timed) simulation relation of S1 by S2 if it is a strong
timed simulation relation of Sε

1 by Sε
2. A TTS S2 weakly simulates S1 if there

is a weak (timed) simulation relation of S1 by S2. We write S1 �W S2 in this
case.

When there is a weak simulation relation � of S1 by S2 and �−1 is also a weak
simulation relation of S2 by S1, we say that � is a weak (timed) bisimulation
relation between S1 and S2 and use ≈ instead of �. Two TTS S1 and S2 are
weakly (timed) bisimilar if there exists a weak (timed) bisimulation relation
between S1 and S2. We write S1 ≈W S2 in this case. Note that if S1 �S S2 then
S1 �W S2 and if S1 �W S2 then L(S1) ⊆ L(S2).

2.2 Time Petri Nets

Time Petri Nets (TPN) were introduced in [18] and extend Petri Nets with timing
constraints on the firings of transitions. In such a model, a clock is associated
with each enabled transition, and gives the elapsed time since the more recent
date at which it became enabled. An enabled transition can be fired if the value
of its clock belongs to the interval associated with the transition. Furthermore,
time can progress only if the enabling duration still belongs to the downward
closure of the interval associated with any enabled transition. We consider here
a generalized version6 of TPN with accepting and repeated markings and prove
our results for this general model.

Definition 5 (Labeled Time Petri Net). A Labeled Time Petri Net N is
a tuple (P, T,Σε,

•(.), (.)
•
,M0, Λ, I, F,R) where: P is a finite set of places and

T is a finite set of transitions and P ∩ T = ∅; Σ is a finite set of actions
•(.) ∈ (NP)T is the backward incidence mapping; (.)

• ∈ (NP)T is the forward
incidence mapping; M0 ∈ NP is the initial marking; Λ : T → Σε is the labeling
function; I : T → I(Q≥0) associates with each transition a firing interval; R ⊆
NP is the set of final markings and F ⊆ NP is the set of repeated markings.

Semantics of Time Petri Nets. A marking M of a TPN is a mapping in
NP and M(pi) is the number of tokens in place pi. A transition t is enabled
in a marking M iff M ≥ •t. We denote En(M) the set of enabled transitions

6 This is required to be able to define Büchi timed languages, which is not possible in
the original version of TPN of [18].

6

in M . To decide whether a transition t can be fired we need to know for how
long it has been enabled: if this amount of time lies into the interval I(t), t can
actually be fired, otherwise it cannot. On the other hand, time can progress only
if the enabling duration still belongs to the downward closure of the interval
associated with any enabled transition. Let ν ∈ (R≥0)

En(M) be a valuation such
that each value ν(t) is the time elapsed since transition t was last enabled. A
configuration of the TPN N is a pair (M,ν). An admissible configuration of a
TPN is a configuration (M,ν) s.t. ∀t ∈ En(M), ν(t) ∈ I(t)↓. We let ADM(N)
be the set of admissible configurations.

In this paper, we consider the intermediate semantics for TPNs, based on [8,5],
which is the most common one. The key point in the semantics is to define when a
transition is newly enabled and one has to reset its clock. Let ↑enabled(t′,M, t) ∈
B be true if t′ is newly enabled by the firing of transition t from marking M , and
false otherwise. The firing of t leads to a new marking M ′ = M − •t + t•. The
fact that a transition t′ is newly enabled on the firing of a transition t 6= t′ is
determined w.r.t. the intermediate marking M − •t. When a transition t is fired
it is newly enabled whatever the intermediate marking is. Formally this gives:

↑enabled(t′,M, t) =
(

t′ ∈ En(M − •t+ t•)
)

∧
(

t′ 6∈ En(M − •t) ∨ (t = t′)
)

(1)

Definition 6 (Semantics of TPN). The semantics of a TPN N = (P, T,Σε,
•(.), (.)

•
,M0, Λ, I, F,R) is a timed transition system SN = (Q, {q0}, T,→, F ′, R′)

where: Q = ADM(N), q0 = (M0,0), F ′ = {(M,ν) | M ∈ F} and R =
{(M,ν) | M ∈ R}, and −→∈ Q×(T ∪R≥0)×Q consists of the discrete and con-
tinuous transition relations: i) the discrete transition relation is defined ∀t ∈ T

by:

(M,ν)
Λ(t)
−−−→ (M ′, ν′) iff



















t ∈ En(M) ∧M ′ = M − •t+ t•

ν(t) ∈ I(t),

∀t ∈ R
En(M ′)
≥0 , ν′(t) =

{

0 if ↑enabled(t′,M, t),

ν(t) otherwise.

and ii) the continuous transition relation is defined ∀d ∈ R≥0 by:

(M,ν)
d
−→ (M,ν′) iff

{

ν′ = ν + d

∀t ∈ En(M), ν′(t) ∈ I(t)↓

A run ρ of N is an initial run of SN . The timed language accepted by N is
L(N) = L(SN).

We simply write (M,ν)
w
−→ to emphasize that there is a sequence of transitions

w that can be fired in SN from (M,ν). If Duration(w) = 0 we say that w is
an instantaneous firing sequence. The set of reachable configurations of N is
Reach(N) = {M ∈ NP | ∃(M,ν) | (M0,0)

∗
−→ (M,ν)}.

7

2.3 Timed Automata

Definition 7 (Timed Automaton). A Timed Automaton A is a tuple (L, l0,
X,Σε, E, Inv, F,R) where: L is a finite set of locations; l0 ∈ L is the initial
location; X is a finite set of positive real-valued clocks; Σε = Σ ∪ {ε} is a finite
set of actions and ε is the silent action; E ⊆ L×C(X)×Σε × 2X ×L is a finite
set of edges, e = 〈l, γ, a,R, l′〉 ∈ E represents an edge from the location l to the
location l′ with the guard γ, the label a and the reset set R ⊆ X; Inv ∈ C(X)L

assigns an invariant to any location. We restrict the invariants to conjuncts of
terms of the form x � r for x ∈ X and r ∈ N and �∈ {<,≤}. F ⊆ L is the set
of final locations and R ⊆ L is the set of repeated locations.

Definition 8 (Semantics of a Timed Automaton). The semantics of a
timed automaton A = (L, l0, C,Σε, E,Act, Inv, F,R) is a timed transition sys-
tem SA = (Q, q0, Σε,→, F ′, R′) with Q = L× (R≤0)

X , q0 = (l0,0) is the initial
state, F ′ = {(ℓ, ν) | ℓ ∈ F} and R′ = {(ℓ, ν) | ℓ ∈ R}, and → is defined by:

i) the discrete transitions relation (l, v)
a
−→ (l′, v′) iff ∃ (l, γ, a,R, l′) ∈ E s.t.

γ(v) = tt, v′ = v[R 7→ 0] and Inv(l′)(v′) = tt; ii) the continuous transition

relation (l, v)
t

−→ (l′, v′) iff l = l′, v′ = v+ t and ∀ 0 ≤ t′ ≤ t, Inv(l)(v+ t′) = tt.
A run ρ of A is an initial run of SA. The timed language accepted by A is

L(A) = L(SA).

2.4 Expressiveness and Equivalence Problems

If B,B′ are either TPN or TA, we write B ≈S B
′ (resp. B ≈W B′) for SB ≈S SB′

(resp. SB ≈W SB′). Let C and C′ be two classes of TPNs or TA.

Definition 9 (Expressiveness w.r.t. Timed Language Acceptance). The
class C is more expressive than C′ w.r.t. timed language acceptance if for all
B′ ∈ C′ there is a B ∈ C s.t. L(B) = L(B′). We write C′ ≤L C in this case. If
moreover there is some B ∈ C s.t. there is no B′ ∈ C′ with L(B) = L(B′), then
C′ <L C (read “strictly more expressive”). If both C′ ≤L C and C ≤L C′ then
C and C′ are equally expressive w.r.t. timed language acceptance, and we write
C =L C′.

Definition 10 (Expressiveness w.r.t. Timed Bisimilarity). The class C is
more expressive than C′ w.r.t. strong (resp. weak) timed bisimilarity if for all
B′ ∈ C′ there is a B ∈ C s.t. B ≈S B′ (resp. B ≈W B′). We write C′ ≤S C
(resp. C′ ≤W C) in this case. If moreover there is a B ∈ C s.t. there is no B′ ∈ C′

with B ≈S B
′ (resp. B ≈W B′), then C′ <S C (resp. C′ <W C). If both C′ <S C

and C <S C′ (resp. <W) then C and C′ are equally expressive w.r.t. strong (resp.
weak) timed bisimilarity, and we write C ≈S C′ (resp. C ≈W C′).

In the sequel we will compare various classes of TPNs and TAs. We recall the
following theorem adapted from [10]:

Theorem 1 ([10]). For any N ∈ B-T PN ε there is a TA A s.t. N ≈W A,
hence B-T PN ε ≤W T Aε.

8

Moreover if T A(≤,≥) is the set of TA with only large constraints, we even have
that B-T PN (≤,≥) ≤W T A(≤,≥).

3 Strict Ordering Results

In this section, we establish some results proving that TPNs are strictly less
expressive w.r.t. weak timed bisimilarity than various classes of TA: T A(<)
only including strict constraints and T A(≤) only including large constraints.

We first give a lemma stating that “Waiting Cannot Disable Transitions” in
TPNs. The proof follows directly from the definitions.

Lemma 1. Let (M,ν) be a marking of a TPN. If (M,ν)
t1t2···tk−−−−−−→ with t1t2 · · · tk

an instantaneous firing sequence and (M,ν)
d
−→ (Md, νd) for some d ≥ 0, then

(Md, νd)
t1t2···tk−−−−−→.

l0 l1
a ; x < 1

Fig. 1. The Timed Automaton A0

Theorem 2. There is no TPN weakly timed bisimilar to A0 ∈ T A(<) (Fig. 1).

Proof. Assume there is a TPN N that is weakly timed bisimilar to A0 and
let ≈ be a weak timed bisimulation between SN and SA0

. Let (M0,0) be the
initial state of SN and (l0,0) the initial state of SA0

. In SA0
there is a run of

duration 1 and thus there is a run (M0,0)
εi0d1εi1d2εi2 ···dnεin

−−−−−−−−−−−−−−→ (M1, ν1) in SN ,
with ik ≥ 1 for 1 ≤ k ≤ n−1, i0 ≥ 0, in ≥ 0 and

∑

1≤k≤n dk = 1. We can further
assume dk > 0 for all k, and equally in = 0 because the configuration reached

after dn is also bisimilar to (l0, ν(x) = 1). Then (M0,0)
εi0d1εi1d2εi2 ···dn−1εin−1

−−−−−−−−−−−−−−−−−→
(M ′, ν′). (M ′, ν′) is bisimilar to a configuration (ℓ0, ν(x) = d′) with d′ < 1. This

entails that (M ′, ν′)
ε∗a
−−→. As (M ′, ν′)

dn−−→ (M1, ν1), it follows that (M1, ν1)
ε∗a
−−−→

contradicting the fact that (M1, ν1) ≈ (ℓ0, ν(x) = 1) from which no a can be
fired. ⊓⊔

A similar theorem holds for a TA A1 with large constraints. Let A1 be the
automaton A0 with the strict constraint x < 1 replaced by x ≤ 1.

Theorem 3. There is no TPN weakly timed bisimilar to A1 ∈ T A(≤).

9

Proof. Let A1 be the automaton A0 with the strict constraint x < 1 replaced

by x ≤ 1. It is clear that (ℓ0,0)
1
−→ (ℓ0, 1) and thus (M0,0)

1
−→ε (M1, ν1)

and (ℓ0, 1) and (M1, ν1) are weakly timed bisimilar. As a can be fired from
(ℓ0, 1) all the configurations (M ′

1, ν
′
1) reachable from (M1, ν1) in null duration

(ε transitions) can fire an instantaneous sequence labelled a. Also there must
be one such configuration (M ′, ν′) s.t. some duration d > 0 can elapse from
(M ′, ν′) reaching (M ′′, ν′′). By lemma 1, some instantaneous sequence labelled
by a can be fired from (M ′′, ν′′). But (M ′′, ν′′) is weakly timed bisimilar to the
configuration (ℓ0, 1 + d) which prevents an a to be fired. Hence a contradiction.

⊓⊔

The previous theorems entail B-T PN ε <W T A(<) and B-T PN ε <W T A(≤)
and as a consequence:

Corollary 1. B-T PN ε <W T Aε.

To be fair, one should notice that actually the class of bounded TPNs is strictly
less expressive than T A(≤) and T A(<) but also that, obviously unbounded
TPNs are more expressive than TA (because they are Turing powerful). Anyway
the interesting question is the comparison between bounded TPNs and TA.
Following these negative results, we compare the expressiveness of TPNs and
TA w.r.t. to Timed Language Acceptance and then characterize a subclass of
TA that admits bisimilar TPNs without strict constraints.

4 Equivalence w.r.t. Timed Language Acceptance

In this section, we prove that TA and labeled TPNs are equally expressive w.r.t.
timed language acceptance, and give an effective syntactical translation from TA
to TPNs. Let A = (L, l0,X,Σε, E,Act, Inv, F,R) be a TA. As we are concerned
in this section with the language accepted by A we assume the invariant function
Inv is uniformly true. Let Cx be the set of atomic constraints on clock x that
are used in A. The Time Petri Net resulting from our translation is built from
“elementary blocks” modeling the truth value of the constraints of Cx. Then we
link them with other blocks for resetting clocks.

Encoding Atomic Constraints. Let ϕ ∈ Cx be an atomic constraint on x.
From ϕ, we define the TPN Nϕ, given by the widgets of Fig. 2 ((a) and (b)) and
Fig. 3. In the figures, a transition is written t(σ, I) where t is the name of the
transition, σ ∈ Σε and I ∈ I(Q≥0).

To avoid drawing too many arcs, we have adopted the following semantics:
the grey box is seen as a macro place; an arc from this grey box means that there
are as many copies of the transition as places in the grey box. For instance the
TPN of Fig. 2.(b) has 2 copies of the target transition r: one with input places
Px and rb and output places re and Px and another fresh copy of r with input
places rb and γtt and output places re and Px. Note that in the widgets of Fig. 3
we put a token in γtt when firing r only on the copy of r with input place Pi

(otherwise the number of tokens in place γtt could be unbounded).

10

Px

γtt

rb

re

tx(ε, [c, c])

t′(ε,]0,∞[)

r(ε, [0, 0])

•

(a) Widget Nx>c

Pxrb

γttre

tx(ε, [c, c])r(ε, [0, 0])

•

(b) Widget Nx≥c (with c > 0)

Fig. 2. Widgets for Nx>c and Nx≥c

Px

γtt

rb

Pu

re

Pi

tx(ε, [0, c[)
(resp. [0, c])

r(ε, [0, 0])
u(ε, [0, 0])

Only from Pi

•

•

Fig. 3. Widget Nx<c (resp. Nx≤c)

11

Also we assume that the automaton A has no constraint x ≥ 0 (as it evaluates
to true they can be safely removed) and thus that the widget of Fig. 2.(b) only
appears with c > 0. Each of these TPNs basically consists of a “constraint”
subpart (in the grey boxes for Fig. 2 and in the dashed box for Fig. 3) that
models the truth value of the atomic constraint, and another “reset” subpart
that will be used to update the truth value of the constraint when the clock x
is reset.
The “constraint” subpart features the place γtt: the intended meaning is that
when a token is available in this place, the corresponding atomic constraint ϕ is
true.
When a clock x is reset, all the grey blocks modeling an x-constraint must be
set to their initial marking which has one token in Px for Fig. 2 and one token
in Px and γtt for Fig. 3. Our strategy to reset a block modeling a constraint is
to put a token in the rb place (rb stands for “reset begin”). Time cannot elapse
from there on (strong semantics for TPNs), as there will be a token in one of
the places of the grey block and thus transition r will be enabled.

Resetting Clocks. In order to reset all the blocks modeling constraints on a
clock x, we chain all of them in some arbitrary order, the re place of the ith block
is linked to the rb place of the i+ 1th block, via a 0 time unit transition ε. This
is illustrated in Fig. 4 for clocks x1 and xn. Assume R ⊆ X is a non empty set of
clocks. Let D(R) be the set of atomic constraints that are in the scope of R (the
clock of the constraint is in R). We write D(R) = {ϕx1

1 , ϕx1

2 , · · · , ϕx1

q1
, · · · , ϕxn

qn
}

where ϕ
xj

i is the ith constraints of the clock xj . To update all the widgets of
D(R), we connect the reset chains as described on Fig. 4. The picture inside the
dashed box denotes the widget NReset(R). We denote by rb(R) the first place of
this widget and re(R) the last one. To update the (truth value of the) widgets
of D(R) it then suffices to put a token in rb(R). In null duration it will go to
re(R) and have the effect of updating each widget of D(R) on its way.

Nϕ
xn
qn

Nϕ
xn
1

Nϕ
x1
q1

Nϕ
x1

2

Nϕ
x1

1

r1b r1e r2b r2e r
q1
b rq1

e r1b r1e r1b rqn
e

rb(R) r1(R) rn(R) re(R)

• • •

• • •

r ε r
. . .

r r
. . .

r

(ε, [0, 0]) (ε, [0, 0]) (ε, [0, 0]) (ε, [0, 0])

[0, 0]

Fig. 4. Widget NReset(R) to reset the widgets of the constraints of clocks xi,
1 ≤ i ≤ n

The Complete Construction. First we create fresh places Pℓ for each ℓ ∈ L.
Then we build the widgets Nϕ, for each atomic constraint ϕ that appears in A.
Finally for each R ⊆ X s.t. there is an edge e = (ℓ, γ, a,R, ℓ′) ∈ E we build a

12

reset widget NReset(R). Then for each edge (ℓ, γ, a,R, ℓ′) ∈ E with γ = ∧i=1,nϕi

and n ≥ 0 we proceed as follows:

1. assume γ = ∧i=1,nϕi and n ≥ 0,
2. create a transition f(a, [0,∞[) and if n ≥ 1 another one r(ε, [0, 0]),
3. connect them to the places of the widgets Nϕi

and NReset(R) as described on
Fig. 5. In case γ = tt (or n = 0) there is only one input place to f(a, [0,∞[)
which is Pℓ. In case R = ∅ there is no transition r(ε, [0, 0]) and the output
place of f(a, [0,∞[) is Pℓ′ .

To complete the construction we just need to put a token in the place Pℓ0 if ℓ0
is the initial location of the automaton, and set each widget Nϕ to its initial
marking, for each atomic constraint ϕ that appears in A, and this defines the
initial marking M0. The set of final markings is defined by the set of markings M
s.t. M(Pℓ) = 1 for ℓ ∈ F and the set of repeated markings by the set of markings
M s.t. M(Pℓ) = 1 for ℓ ∈ R. We denote ∆(A) the TPN obtained as described
previously. Notice that by construction 1) ∆(A) is 1-safe and moreover 2) in
each reachable marking M of ∆(A)

(
∑

ℓ∈LM(Pℓ)
)

≤ 1. A widget related to an
atomic constraint has a linear size w.r.t. its size, a clock resetting widget has
a linear size w.r.t. the number of atomic constraints of the clock and a widget
associated with an edge has a linear size w.r.t. its description size. Thus the size
of ∆(A) is linear w.r.t. the size of A improving the quadratic complexity of the
(restricted) translation in [15]. Finally, to prove L(∆(A)) = L(A) we build two
simulation relations �1 and �2 s.t. ∆(A) �1 A and A �2 ∆(A). The complete
proof is given in appendix A.

NReset(R)

Nϕn

Nϕ2

Nϕ1

γ1
tt

γ2
tt

γn
tt

. . .

Pℓ

r1b (R) rn
b (R) Pℓ′

f(a, [0,∞[)
r(ǫ, [0, 0])

Fig. 5. Widget Ne of an edge e = (ℓ, γ, a,R, ℓ′)

New Results for TPNs.

Corollary 2. The classes B-T PN ε and T Aε are equally expressive w.r.t. timed
language acceptance, i.e. B-T PN ε =L T Aε.

13

Proof. From Theorem 1, we know that B-T PN ε ≤L T Aε. Proposition 1 proves
that T Aε ≤L B-T PN ε and hence B-T PN ε =L T A. ⊓⊔

Corollary 3. 1-B-T PN ε =L B-T PN ε.

Proof. Let T ∈ B-T PN ε. We use Theorem 1 and thus there is a TA AT s.t.
L(T) = L(AT) which can effectively be built. From AT we use Proposition 1
and obtain ∆(AT) (again effective) which is a 1-safe TPN. ⊓⊔

From the well-known result of Alur & Dill [3] and as our construction is effective,
it follows that:

Corollary 4. The universal language problem is undecidable for B-T PN ε (and
already for 1-B-T PN ε).

5 Equivalence w.r.t. Timed Bisimilarity

In this section, we consider the class B-T PN (≤,≥) of TPNs without strict
constraints, i.e. the original version of Merlin [18]. First recall that starting with
a TPN N ∈ B-T PN (≤,≥), the translation from TPN to TA proposed in [10]
gives a TA A with the following features:

– guards are of the form x ≥ c and invariants have the form x ≤ c ;
– between two resets of a clock x, the atomic constraints of the invariants over
x are increasing i.e. the sequence of invariants encountered from any location
is of the form x ≤ c1 and later on x ≤ c2 with c2 ≥ c1 etc.

Let us now consider the syntactical subclass T Asyn(≤,≥) of TA defined by:

Definition 11. The subclass T Asyn(≤,≥) of TA is defined by the set of TA of
the form (L, l0,X,Σε, E, Inv, F,R) where :

– guards are conjunctions of atomic constraints of the form x ≥ c and invari-
ants are conjunction of atomic constraints x ≤ c.

– the invariants satisfy the following property; ∀e = (ℓ, γ, a,R, ℓ′) ∈ E, if x 6∈ R

and x ≤ c is an atomic constraint in Inv(ℓ), then if x ≤ c′ is Inv(ℓ′) for
some c′ then c′ ≥ c.

We now adapt the construction of section 4 to define a translation from
T Asyn(≤,≥) to B-T PN (≤,≥) preserving timed bisimulation. The widget Nx≤c

is modified as depicted in figure Fig. 6.(a). The widgets Nx≥c and Nreset(R) are
those of section 4 respectively in figures Fig. 2.(b) and Fig. 4.

The construction. As in section 4, we create a place Pℓ for each location
ℓ ∈ L. Then we build the blocks Nϕ for each atomic constraints ϕ = x ≥ c

(Fig. 2.(b)) that appears in guards of A and we build the blocks NI for each
atomic constraints I = x ≤ c (Fig.6.(a)) that appears in an invariant of A.
Finally for each R ⊆ X s.t. there is an edge e = (ℓ, γ, a,R, ℓ′) ∈ E we build
a reset widget NReset(R) (Fig. 4). Then for each edge (ℓ, γ, a,R, ℓ′) ∈ E with
γ = ∧i=1,nϕi and n ≥ 0, we proceed exactly as in section 4 (Fig. 5). For each
location ℓ ∈ L with Inv(ℓ) = ∧k=1,nIk, we proceed as follows:

14

Pxrb

urgre

r(ε, [0, 0]) tx(ε, [c, c])

•

(a) Widget Nx≤c

NIn=(xn≤in) NI1=(x1≤i2)

urgn urg1

. . .

Pℓ

In(ε, [0, 0])
I1(ε, [0, 0])

(b) Widgets for Inv(ℓ)

Fig. 6. Widget Ne of an edge e = (ℓ, γ, a,R, ℓ′)

1. if n ≥ 1, create a transition Ik(ε, [0, 0]) for 1 ≤ k ≤ n;

2. for 1 ≤ k ≤ n connect Ik(ε, [0, 0]) to Pℓ and to the place urg of block NIk
,

as depicted in figure Fig. 6.(b).

Let A = (L, ℓ0,X,Σε, E, Inv, F,R) and assume that the set of atomic constraints
of A is CA = CA(≥)∪CA(≤) where CA(⊲⊳) is the set of atomic constraints x ⊲⊳ c,
⊲⊳∈ {≤,≥}, of A and X = {x1, · · · , xk}.

We denote ∆+(A) = (P, T,Σε,
•(.), (.)

•
, M0, Λ, I, F∆, R∆) the TPN built

as described previously. The place Px and the transition tx of a widget Nϕ

for ϕ ∈ CA are respectively written Pϕ
x and tϕx in the sequel. Moreover, for a

constraint ϕ = x ≥ c, the place γtt of a widget Nϕ is written γ
ϕ
tt and the place

urg of a widget Nϕ is written urgϕ. We can now build a bisimulation relation
≈ between A and ∆+(A): the proof is given in appendix B.

New Results for TPNs. From the previous result of appendix B we can state
the following corollaries:

Corollary 5. The classes B-T PN (≤,≥) and T Asyn(≤,≥) are equally expres-
sive w.r.t. weak timed bisimulation, i.e. B-T PN (≤,≥) ≈W T Asyn(≤,≥).

Proof. Let A ∈ T Asyn(≤,≥). From the previous construction and proposition 2,
page 21, we obtain ∆+

1 (A) ∈ B-T PN (≤,≥) with A ≈W ∆+
1 (A). Let N ∈

B-T PN (≤,≥), from Theorem 1 (in [10]), we obtain ∆+
2 (N) ∈ T Asyn(≤,≥)

with N ≈W ∆+
2 (N).

Corollary 6. The classes 1-B-T PN (≤,≥) and B-T PN (≤,≥) are equally ex-
pressive w.r.t. timed bisimulation i.e. 1-B-T PN (≤,≥) ≈W B-T PN (≤,≥).

Proof. Let N ∈ B-T PN (≤,≥). From Theorem 1, there exists a TA AN ∈
T Asyn(≤,≥) s.t. N ≈W AN . From the previous construction and proposition 2,
we obtain ∆+(AN) ∈ 1-B-T PN ε s.t. AN ≈W ∆+(AN) then N ≈W ∆+(AN).

15

6 Conclusion

In this paper, we have investigated different questions relative to the expres-
siveness of TPNs. First, we have shown that TA and bounded TPNs (strict
constraints are permitted) are equivalent w.r.t. timed language equivalence. We
have also provided an effective construction of a TPN equivalent to a TA. This
enables us to prove that the universal language problem is undecidable for TPNs.
Then we have addressed the expressiveness problem for weak time bisimilarity.
We have proved that TA are strictly more expressive than bounded TPNs and
given a subclass of TA expressively equivalent to TPN “à la Merlin”.

Further work will consist in characterizing exactly the subclass of TA equiv-
alent to TPN w.r.t. timed bisimilarity.

References

1. P.A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In ICATPN’01, volume
2075 of LNCS, pages 53–72. Springer-Verlag, june 2001.

2. L. Aceto and F. Laroussinie. Is Your Model Checker on Time? On the Complex-
ity of Model Checking for Timed Modal Logics. Journal of Logic and Algebraic
Programming, volume 52-53, pages 7-51. Elsevier Science Publishers, august 2002.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
B, 126:183–235, 1994.

4. R. Alur and L. Fix and T.A. Henzinger. Event-Clock Automata: A Determinizable
Class of Timed Automata. Theoretical Computer Science, 211:253–273, 1999.

5. T. Aura and J. Lilius. A causal semantics for time Petri nets. Theoretical Computer
Science, 243(1–2):409–447, 2000.

6. B. Berthomieu, P.-O. Ribet and F. Vernadat. The tool TINA – Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets. International Journal
of Production Research, 4(12), July 2004.

7. B. Bérard, F. Cassez, S. Haddad, D. Lime and O.H. Roux. Comparison of the Ex-
pressiveness of Timed Automata and Time Petri Nets. Research Report IRCCyN
R2005-2 available at http://www.lamsade.dauphine.fr/~haddad/publis.html

2005.
8. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems

using time Petri nets. IEEE Transactions on Software Engineering, 17(3):259–273,
March 1991.

9. M. Boyer and M. Diaz. Non equivalence between time Petri nets and time stream
Petri nets. In Proceedings of 8th International Workshop on Petri Nets and Per-
formance Modeling (PNPM’99), Zaragoza, Spain, pages 198–207.

10. F. Cassez and O.H. Roux. Structural Translation of Time Petri Nets into Timed
Automata. In Michael Huth, editor, Workshop on Automated Verification of Crit-
ical Systems (AVoCS’04), Electronic Notes in Computer Science. Elsevier, August
2004.

11. D. de Frutos Escrig, V. Valero Ruiz, and O. Marroqúın Alonso. Decidability of
properties of timed-arc Petri nets. In ICATPN’00, Aarhus, Denmark, volume 1825
of LNCS, pages 187–206, June 2000.

12. M. Diaz and P. Senac. Time stream Petri nets: a model for timed multimedia
information. In ATPN’94, volume 815 of LNCS, pages 219–238, 1994.

16

13. D.L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proc. Workshop on Automatic Verification Methods for Finite State Systems,
Grenoble, volume 407 of LNCS, 1989.

14. G. Gardey, D. Lime, M. Magin and O.H. Roux. Roméo: A Tool for Analyzing time
Petri nets In CAV ’05, Edinburgh, Scotland, UK, volume 3576 of LNCS, 2005,
pages 418–423.

15. S. Haar, F. Simonot-Lion, L. Kaiser, and J. Toussaint. Equivalence of Timed State
Machines and safe Time Petri Nets. In Proceedings of WODES 2002, Zaragoza,
Spain, pages 119–126.

16. W. Khansa, J.P. Denat, and S. Collart-Dutilleul. P-Time Petri Nets for manufac-
turing systems. In WODES’96, Scotland, pages 94–102, 1996.

17. D. Lime and O.H. Roux. State class timed automaton of a time Petri net. In
PNPM’03. IEEE Computer Society, September 2003.

18. P.M. Merlin. A study of the recoverability of computing systems. PhD thesis,
University of California, Irvine, CA, 1974.

19. M. Pezzé and M. Young. Time Petri Nets: A Primer Introduction. Tutorial pre-
sented at the Multi-Workshop on Formal Methods in Performance Evaluation and
Applications, Zaragoza, Spain, September 1999.

20. C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1974.

21. J. Sifakis. Performance Evaluation of Systems using Nets. In Net Theory and
Applications, Advanced Course on General Net Theory of Processes and Systems,
Hamburg, volume 84 of LNCS, pages 307–319, 1980.

A Proof of L(∆(A)) = L(A)

Proposition 1. If ∆(A) is defined as in section 4, then L(A) = L(∆(A)).

Proof. The proof works as follows: we first show that ∆(A) weakly simulates A
which implies L(A) ⊆ L(∆(A)). Then we show that we can define a TA A′ s.t.
L(A) = L(A′) and A′ weakly simulates ∆(A) which entails L(∆(A)) ⊆ L(A′) =
L(A). It is sufficient to give the proof for the case A has no ε transitions. In
case A has ε transitions we rename them with a fresh letter µ 6∈ Σε and obtain
an automaton Aµ with no ε transitions. We apply our construction to Aµ and
obtain a TPN in which we replace every label µ by ε.

Let A = (L, l0, C,A,E,Act, Inv, F,R) and∆(A) = (P, T,Aε,
•(.), (.)

•
,M0, Λ,

Γ, F∆, R∆). Assume C = {x1, · · · , xk}, P = {p1, · · · , pm} and T = {t1, · · · , tn}.
We assume that the set of atomic constraints of A is CA. Each place γtt of a
widget Nx⊲⊳c (for x ⊲⊳ c an atomic constraint of A) is denoted γx⊲⊳c

tt .

Proof that ∆(A) simulates A. We define the relation � ⊆ (L ×Rn
≥0)×(Np×Rm

≥0)
by:

(ℓ, v) � (M,ν) ⇐⇒











(1)M(Pℓ) = 1

(2) for each ϕ = x ⊲⊳ c, ⊲⊳∈ {<,≤}, M(Pu) = 0

(3) for each ϕ ∈ CA, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1

(I)

Now we can prove that � is a weak simulation relation of A by ∆(A):

17

1. final and repeated states: by definition of ∆(A) and the definition of �;
2. initial states: it is clear that (l0,0) � (M0,0);

3. continuous transitions: let (ℓ, v)
d
−→ (ℓ, v + d). Take (M,ν) s.t. (ℓ, v) �

(M,ν). As the widgets Nϕi
are non-blocking, time d can elapse from (M,ν),

and there is a run (M,ν)
ρ
−→ (M ′, ν′) with Duration(trace(ρ)) = d and

Untimed(trace(ρ)) = ε. We can choose ρ without any transitions f(a, [0,∞[)
so that a token remains in Pℓ and M ′(Pℓ) = 1. Thus to prove (ℓ, v + t) �
(M ′, ν′) it remains to prove items (2) and (3) of equation (I).
Let ϕ = x ⊲⊳ c with ⊲⊳∈ {<,≤}.
– if ϕ(v) = tt and ϕ(v + d) = ff, then there is some d′ ≤ d s.t. transition
tx of widget Nϕ is enabled and it must be fired before ϕ becomes false.
Thus tx is fired at d′ (which is possible as there is no token in Pu and
thus the token is in Px) and subsequently u in the same widget, thus
transferring the tokens from Px, γ

ϕ
tt to Pi.

– if ϕ(v) = tt and ϕ(v + d) = tt, it is possible to do nothing in widget Nϕ

and let the token in Px and γϕ
tt.

– if ϕ(v) = ff then ϕ(v + d) = ff, then there must be a token in Pi and we
let time elapse without firing any transition.

Let ϕ = x ⊲⊳ c with ⊲⊳∈ {>,≥}.
– if ϕ(v) = tt then ϕ(v + d) = tt and M(γϕ

tt) = 1. We just let time elapse
in Nϕ.

– if ϕ(v) = ff and ϕ(v + d) = tt, there is d′ ≤ d s.t. transitions tx must be
fired (and t′ can be fired at d′ + ξ with ξ > 0 for Nx>c). We fire those
transitions at d′ and let d− d′ elapse.

– if ϕ(v) = ff and ϕ(v + d) = ff we also let time elapse and leave a token
in Px.

This way for each constraint ϕ = x ⊲⊳ c, there is a run ρϕ = (M,ν)
d
−→ε

(Mϕ, νϕ) s.t. (Mϕ, νϕ) satisfies requirements (2) and (3) of equation (I).
Taken separately we have for each constraint (ℓ, v) � (Mϕ, νϕ). It is not
difficult7 to build a run ρ with an interleaving of the previous runs ρϕ s.t.

ρ = (M,ν)
t
−→ε (M ′, ν′) and (M ′, ν′) satisfies requirements (2) and (3) of

equation (I) for each constraint ϕ, and thus (ℓ, v) � (M ′, ν′).

4. discrete transitions: Let (ℓ, v)
a
−→ (ℓ′, v′) and (ℓ, v) � (M,ν). Then there is

an edge e = (ℓ, γ, a,R, ℓ′) ∈ E s.t. γ = ∧i=1,nϕi, n ≥ 0 and ϕi is an atomic
constraint. By definition 8, v ∈[[ϕi]] for 1 ≤ i ≤ n. This implies M(γϕi

tt) = 1
(definition of �). Thus the transition f(a, [0,∞[) is fireable in the widget Ne

leading to (M ′, ν′). From there on we do not change the marking of widgets
Nϕi

for the constraints ϕi that do not need to be reset (the clock of ϕi is
not in R). We also use the widget NReset(R) to reset the constraints ϕi with
a clock in R and finally put a token in Pℓ′ . The new state (M ′′, ν′′) obtained
this way satisfies (ℓ′, v′) � (M ′′, ν′′).

This completes the proof that ∆(A) simulates A and thus L(A) ⊆ L(∆(A)).

7 Just find an ordering for all the date d′ at which a transition must be fired and fire
those transitions in this order with time elapsing between them.

18

Proof of L(∆(A)) ⊆ L(A). To prove this, we cannot easily exhibit a simulation
of ∆(A) by A. Indeed, ∆(A), because of the widgets Nx⊲⊳c with ⊲⊳∈ {<,≤}, has
to make a decision at some point to fire transition tx and immediately after u,
i.e. it is as if it decides that x ⊲⊳ c is now false and the transitions with this guard
cannot be fired anymore (until they are reset). To use the simulation framework,
we build first a TA A′ that accepts the same language as A but has the capability
to sometimes (non deterministically) decide it will not use a transition with a
guard x ⊲⊳ c until it is reset. It is then possible to build a simulation relation of
∆(A) by A′.

ℓ ℓ′

γ ∧ ψ, a,R

(a) Edge (ℓ, γ ∧ ψ, a,R, ℓ′) in A

ℓ ℓ′

(
V

(x≦c)∈K≦
bx≦c) ∧ (γ ∧ ψ), a, R,Ω(R)

W

(x≦c)∈K≦

„

bx�c = tt, ε

bx≦c := ff

« ...

(b) Extended edge in A′.

Fig. 7. From A to A′.

We denote ≦ for either {<,≤} and ≧ for {>,≥}. Let K≦ be the set of

constraints x ≦ c in A. For each x ≦ c ∈ K≦ we introduce a boolean variable
bx≦c. Each bx≦c is initially true.

We start with A′ = A. The construction of the new features of A′ is depicted
on Fig. 7. Let (ℓ, γ ∧ ψ, a,R, ℓ′) be an edge of A′ with γ = ∧x≦c∈K≦

x ≦ c and

ψ = ∧x≧c∈K≧
x ≧ c. For such an edge we strengthen8 the guard γ∧ψ to obtain γ′

as follows: γ′ = γ ∧ψ ∧
∧

x≦c∈K≦
bx≦c. This way the transition (ℓ, γ ∧ψ, a,R, ℓ′)

can be fired in A′ only if the corresponding guard in A and the conjunction of
the bx≦c is true as well. We also reset to true all the variables bx≦c s.t. x ∈ R on

a transition (ℓ, γ ∧ ψ, a,R, ℓ′) and Ω(R) corresponds to the reset of all bx≦c s.t.

x ∈ R, Ω(R) = ∧x∈Rbx≦c := tt.

Now let ℓ be location of A′. For each variable bx≦c we add a loop edge

(ℓ, bx≦c = tt, ε, bx≦c := ff, ℓ) in A′, i.e. the automaton A′ can decide non deter-

ministically9 to set bx≦c to false if it is true (see Fig. 7). There are as many loops
on each location as the number of variables bx≦c. The new non deterministic TA

A′ accepts exactly the same language as A i.e. L(A′) = L(A).

8 We need an extended type of TA with boolean variables; this does not add any
expressive power to the model.

9 This means we add ε transitions to A′; nevertheless the restriction we made at the
beginning that A has no ε transitions is useful when proving that ∆(A) simulates
A and not required to prove that A′ weakly simulates ∆(A).

19

We can now build a simulation relation of ∆(A) by A′. We denote (ℓ, v, b)
a configuration of A′ with b the vector of bϕ variables. We define the relation
� ⊆ (Np × Rm

≥0) × (L × Rn
≥0 × Bk) by:

(M,ν) � (ℓ, v, b) ⇐⇒































(1)M(Pℓ) = 1

(2)∀ϕ = x > c ∈ K>, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1

(3)∀ϕ = x ≥ c ∈ K≥, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1∨

(M(Pϕ
x) = 1 ∧ ν(tϕx) = c)

(4)∀ϕ ∈ K�,M(Pϕ
i) = 1 ⇐⇒ (bϕ = ff ∨ v 6∈[[ϕ]])

(II)
Now we prove that � is a weak simulation relation of ∆(A) by A.

– property on final and repeated states is satisfied by definition of A′,
– for the initial configuration, it is clear that (M0,0) � (l0,0, b0) (in b0 all the

variables b are true),

– continuous time transitions: let (M,ν)
d
−→ (M ′, ν′) with d ≥ 0. Let (M,ν) �

(ℓ, v, b). As there are no invariant in A′ time d can elapse from (ℓ, v, b). If no
ε transition fires in the TPN, then all the truth values of the constraints stay

unchanged. Thus (ℓ, v, b)
d
−→ (ℓ, v + d, b) in A′ s.t. (M ′, ν′) � (ℓ, v + d, b).

– discrete transitions: let (M,ν)
a
−→ (M ′, ν′). We distinguish the cases a = ε

and a ∈ Σ.
If a = ε then we are updating some widgets Nϕ (ε transition is not a reset
transition because reset can occur only when M(Pℓ) = 0)). We split the
cases according to the different types of widgets:

• update of a widget Nx>c: either tx or t′ is fired. If tx is fired then the
time elapsed since the x was last reset is equal to c. Thus M(γtt) = 0
and v(x) ≤ c and v 6∈[[x > c]]. This implies (M ′, ν′) � (ℓ, v).
If t′ is fired on the contrary, v′(x) > c but again (M ′, ν′) � (ℓ, v, b).

• update of a widget Nx≥c: the same reasoning as before can be used and
leads to (M ′, ν′) � (ℓ, v, b).

• update of a widget Nx<c: In this case either tx or u is fired. Assume
tx is fired. Thus M ′(Pi) = 0. The time elapsed since x was last reset is
strictly less than c and v ∈[[ϕ]]. bϕ is true in (ℓ, v, b) as M(Pi) = 0. Thus
(M ′, ν′) � (ℓ, v, b). Now assume u is fired. Again M(Pi) = 0 and thus
v(x) < c and bϕ is true. This time M ′(Pi) = 1. In the automaton A′ we
fire the transition setting bϕ to false and we end up in a state (ℓ, v, b′)
s.t. (M ′, ν′) � (ℓ, v, b′). The same reasoning applies for Nx≥c.

If a ∈ Σ then the transition is f(a, [0,∞[) of some widget Ne for e =
(ℓ, γ, a,R, ℓ′). The firing of f have left the input places γtt unchanged. By
equation II and the definition of A′ we can fire a matching transition in A′

leading to a state (ℓ′, v′, b′). We have M ′(Pℓ) = M ′(Pℓ′) = 0 and this state

is not in the simulation relation. We then fire in the TPN a run (M ′, ν′)
0
−→ε

(M ′′, ν′′) of duration 0 carrying out the reset of the clocks x ∈ R and leading
to (M ′′, ν′′) s.t. M ′′(Pℓ′) = 1. Two cases can occur:

20

• This run is only made up of epsilon transitions corresponding to the
reset of widgets over x ∈ R which then return in their initial state. For
widgets Nx≤c and Nx<c, we obtain token in Px and γtt. As corresponding
variables b′ϕ are true in state (ℓ′, v′, b′), we have (M ′′, ν′′) � (ℓ′, v′, b′).

• the previous run is also composed of update transitions of widgets Nϕ

i.e. firing of tϕx of Nϕ. In this case :
∗ if x ∈ R then tϕx is fired before the reset of Nϕ. Then after the reset

of Nϕ, we have M ′′(Pϕ
x) = 1 and (M ′′, ν′′) � (ℓ′, v′, b′),

∗ if x 6∈ R then ν′′(tϕx) = v′(x) = c. In in Nϕ we have M ′′(γϕ
tt) = 1 and

it satisfies requirements (3) of equation II. For the update of blocks
Nx≤c and Nx<c, we then fire in A′, the loop transitions setting to
false the corresponding variables bϕ leading to (ℓ′, v′, b′′) such that
(M ′′, ν′′) � (ℓ′, v′, b′′).

This completes the proof that A′ simulates ∆(A) and thus L(∆(A)) ⊆ L(A′)
and L(∆(A)) ⊆ L(A).

We can thus conclude that L(∆(A)) = L(A), which ends the proof of Propo-
sition 1. ⊓⊔

B Proof of B-T PN ε(≤, ≥) ≈W T Asyn(≤, ≥)

Let (ℓ, v) be a configuration of A and (M,ν) be a configuration of ∆+(A). We
define the relation ≈ ⊆ (Np × Rm

≥0) × (L × Rn
≥0) by :

(M,ν) ≈ (ℓ, v) ⇐⇒















































(1)M(Pℓ) = 1

(2)∀ϕ ∈ CA, ν(t
ϕ
x) = v(x)

(3)∀ϕ = (x ≥ c) ∈ CA(≥), v ∈[[ϕ]] ⇐⇒

M(γϕ
tt) = 1 ∨ (M(Pϕ

x) = 1 ∧ ν(tϕx) = c)

(4)∀ϕ = (x ≤ c) ∈ Inv(ℓ), v ∈[[ϕ]] ⇐⇒

M(Pϕ
x) = 1∨

(M(urgϕ) = 1 ∧ ν(tϕx) = c)

(III)

Let us notice that item 2 of this equation is true even when the transition tϕx is
not enabled.

Proposition 2. The relation ≈ of equation (III) is a weak timed bisimulation
relation.

Proof. We prove that ≈ is a weak timed bisimulation between A and ∆(A):

1. final and repeated states: by definition of ∆+(A) and the definition of ≈;
2. initial states: it is clear that (M0,0) ≈ (l0,0),

3. continuous transitions: let (ℓ, v)
d
−→ (ℓ, v + d). Take (M,ν)such that (ℓ, v) ≈

(M,ν). For ϕ = (x ≤ c) ∈ Inv(ℓ), we have ϕ(v) = tt, ϕ(v+d) = tt. According
to ν(tx) = v(x), we have ν(tx) + d = v(x) + d ≤ c then M(urgϕ) = 0 and

21

time d can elapse in Nϕ. In ∆+(A), from (M,ν), there is a run : (M,ν)
d
−→ε

(M ′, ν′) with M(Pℓ) = M ′(Pℓ) = 1 and the following evolutions of widgets :
For ϕ = (x ≤ c) ∈ Inv(ℓ),
– If v(x) + d = ν(tϕx) + d < c then M ′(urgϕ) = 0.
– If v(x) + d = ν(tϕx) + d = c then we obtain either M(urgϕ) = 1 or
M(urgϕ) = 0 and v′(x) = ν′(tϕx) = c. The transition Iϕ is enabled or
will be enabled after the immediate firing of tx, thus blocking time as
long as M(Pℓ) = 1.

For ϕ = x ≥ c,
– ϕ(v) = tt and ϕ(v + d) = tt. If M(γϕ

tt) = 1 time d can elapse in Nϕ. If
M(γϕ

tt) = 0 then M(Pϕ
x) = 1 and (as d > 0) tϕx is fired before the total

elapsing of d.
– ϕ(v) = ff and ϕ(v + d) = tt, iff there is d′ ≤ d s.t. transition tx must be

fired at d′. Transition tx is fired and let d− d′ elapse.
– ϕ(v) = ff and ϕ(v + d) = ff iff time d elapse and leave a token in Px.

For ϕ = (x ≤ c) 6∈ Inv(ℓ), according to the subclass of TA we consider, ϕ is
a constraint which will not be used any more before the next reset of x.
– ϕ(v+d) = ff. If M(urgϕ) = 1 then a time d can elapsed. If M(urgϕ) = 0

then there is d′ ≤ d s.t. transition tx must be fired at d′. Transition tx
is fired and let d− d′ elapse.

– ϕ(v) = tt and ϕ(v + d) = tt. This case is similar to ϕ ∈ Inv(ℓ) but no
transition Iϕ is enabled as (Pℓ) is not an input place.

This way for each constraint, there is a run ρϕ = (M,ν)
d
−→ε (Mϕ, νϕ)

s.t. (Mϕ, νϕ) satisfies requirements (2) and (3) of equation (III). For all

interleaving of previous runs ρϕ we obtain a run ρ = (M,ν)
d
−→ε (M ′, ν′) s.t.

(ℓ, v) ≈ (M ′, ν′).
4. discrete transitions : Let (ℓ, v)

a
−→ (ℓ′, v′) and (ℓ, v) ≈ (M,ν). There is an

edge e = (ℓ, γ, a,R, ℓ′) ∈ E s.t. γ = ∧i=1,nϕi, n ≥ 0 where ϕi is an atomic
constraint. According to the subclass of TA we consider, invariants of ℓ′

can be ignored for allowing the fire of a as (by definition) they are true if
invariants of ℓ are true. From semantics of timed automata (definition 8),
v ∈[[ϕi]] for 1 ≤ i ≤ n. From definition of bisimulation relation ≈ we have
then, either M(γϕi

tt) = 1, or M(γϕi

tt) = 0 and transition tϕi
x is immediately

fireable leading to M(γϕi

tt) = 1. Thus, transition f(a, [0,∞[) is fired in widget
Ne leading to (M ′, ν′). We have then M ′(Pℓ) = M ′(P ′

ℓ) = 0 and ∆+(A)

must fire epsilon transition in null duration : (M ′, ν′)
0
−→ε (M ′′, ν′′) where

M ′′(Pℓ) = 1. The widget NReset(R) reset widgets of constraints ϕ whose
clock x ∈ R then M ′′(Pϕ

x) = 1 and ν′′(tϕx) = v′(x) = 0. During the reset
phase, if a transition tϕx is fired :
– if x ∈ R then tϕx has been fired before the reset of the widget Nϕ. After

the reset phase, we have M ′′(Pϕ
x) = 1,

– if x 6∈ R then ν′′(tϕx) = v′(x) = c. We obtain widget Nϕ M ′′(γϕ
tt) = 1

that satisfy requirement (3) of equation (III),
The new state (M ′′, ν′′) satisfy (ℓ′, v′) ≈ (M ′′, ν′′). From (M ′′, ν′′), a firing

of an epsilon transition (M ′′, ν′′)
0
−→ε (M ′′′, ν′′) is a transition tϕx which

corresponds to the last previous case : ”x 6∈ R” and then (ℓ′, v′) ≈ (M ′′, ν′′)

22

This completes the proof that ∆+(A) ≈ A.

23

