
Modular Veri�cation of Petri Nets Properties:
a Structure-based Approach

Kais Klai1, Serge Haddad2 and Jean-Michel Ilié3

1 LaBRI CNRS UMR 5800, Université de Bordeaux I, Talence, France
kais.klai@labri.fr

2 LAMSADE CNRS UMR 7024 Université de Paris Dauphine, France
haddad@lamsade.dauphine.fr

3 LIP6 CNRS UMR 7606, Université de Paris 6, France
Jean-Michel.ilie@lip6.fr

Abstract. In this paper, we address the modular veri�cation problem
for a Petri net obtained by composition of two subnets. At �rst, we
show how to transform an asynchronous composition into a synchronous
one where the new subnets are augmented from the original ones by
means of linear invariants. Then we introduce a non-constraining rela-
tion between subnets based on their behaviour. Whenever this relation
is satis�ed, standard properties like the liveness and the boundedness
and generic properties speci�ed by a linear time logic may be checked
by examination of the augmented subnets in isolation. Finally, we give
a su�cient condition for this relation which can be detected modularly
using an e�cient algorithm.
Keywords: abstraction, modular veri�cation, (de)composition, Petri nets.

1 Introduction

The validation of complex distributed systems must come up to the well-known
state explosion problem. Thus, numerous validation techniques have been pro-
posed in order to reduce the number of states to be explored.
Among them, the modular veri�cation approaches aim to take bene�t from some
knowledge about the components of the system and the way they communicate.
The synchronous composition between components is very popular in system
veri�cation since, from properties of the components, one can deduce those of
the system. For instance, the �niteness of the system is directly deduced from the
fact that the composed modules are �nite. Asynchronous composition usually
better corresponds to systems where the modules are distributed and weakly cou-
pled. In such a case, modules communicate asynchronously by message sending.
Taking asynchronous communication into account during the validation process
is generally a di�cult task: for instance the system can be in�nite even if the
composed modules are �nite.
In a veri�cation process, the properties which are validated at �rst are the stan-
dard ones with respect to the model used. For instance, the boundedness or the
liveness properties of a Petri net ensure a positive a priori on the correctness

of the design. The �niteness of the system is directly deduced from the fact
that it is bounded, while the liveness property indicates that all the pieces of
codes within a system remain available whatever the evolution of the system.
The validation of the speci�c properties of a system often requires speci�cation
languages like temporal logic, able to express the causality between the state
changes. Our work deals with the linear time logic LTL. Such a logic views the
system like a set of runs. LTL may be checked on the �y, which means that the
state space of the system is constructed step by step as the need of the veri�ca-
tion occurs. Moreover whenever the property to be checked is detected false, a
run highlighting the problem is exhibited for free to the designer.
Without any restriction on the composition, the e�ciency of the modular veri-
�cation rather depends on the system to be analyzed. For instance in [2], it is
possible to minimize the reachable states of each module by hiding the internal
moves, before the synchronization of modules. Reachability analysis has been
proved to be e�ective on the resulting structure in [6] and the method has been
extended to operate the model checking of LTL-X formulae (LTL without the
�next� operator). Anyway, experimental results show that this technique is e�-
cient for some models, but for others the combinatorial explosion is not really
attacked.
Other approaches have proposed to restrict the application domain by laying
some construction rules down, either for the modules or their communication
medium. The general idea consists in replacing the analysis of the global state
space by the analysis of the state spaces of modules. Actually, the veri�cation of
system properties consists in checking separately some properties on each mod-
ule then piecing the results together in order to conclude whether the system
is correct. General properties are addressed as well as some sets of temporal
properties. In general, the brute force approach which consists in partitioning
the system in whatever subnets is bound to fail. Di�erent approaches of com-
position have been proposed depending in particular, on the way each module
can abstract its environment (see [10,9,1]). At �rst, some general properties of a
Petri net were initially considered (boundedness, liveness); henceforth, the model
checking problem of temporal formulae was investigated [5,8]. Anyway, rather
restrictive conditions are forced, thus reducing drastically the application to con-
crete systems.
In this paper, we propose a new structure-based modular approach starting from
a non constraining relation between components. We start from a speci�cation
of the system in Petri nets without restriction and address the veri�cation of
both standard properties and linear time temporal logics (LTL-X). We then de-
compose the Petri net in two components such that their (common) interface
only contains transitions. In order to abstract the environment of a component,
we propose to take bene�t from the existence of linear positive place-invariants.
Such invariants which often exist in well-speci�ed systems, are used to enrich
each subnet by some abstraction of the other subnet. However, to check the sys-
tem properties in isolation on a component, one may need to check whether the
other component does not constrain its behaviour. Thus we develop a modular

test of this constraining relation by analysing in isolation the behaviour of the
component which must be non-constraining. The principal contribution of our
modular approach w.r.t. the existent works is the combination of structural and
behavioural aspects. From the structural point of view, we furnish a general com-
position model where the system invariants are originally exploited in order to
abstract modules. While, from the behavioural point of view, and in opposition
to some existent techniques (see [11,2,6]), the synchronized product between the
system components is avoided.
The paper is organized as follows: in section 2, we introduce our decomposition
scheme showing how to handle asynchronous communication and deducing some
useful properties. In section 3, we de�ne the non-constraining relation between
components, we propose a su�cient condition, show how to check it e�ciently
and bring out our compositionality results. At last, concluding remarks and per-
spectives are given in section 4.

2 Decomposition scheme

2.1 Preliminaries and notations

In this section we recall the de�nition of a Petri net and some basic notions of
Petri net theory. In order to decompose Petri nets, we also formalize the notion
of subnets.
Vectors and matrices Let v be a vector or a matrix, then vT denotes its trans-
pose. So if v, v′ are two vectors then vT .v′ corresponds to their scalar product.
Let v be a vector of INP then the support of v, dnoted by ||v||, is de�ned by
||v|| = {p ∈ P | v(p) > 0}.
Petri nets Let P and T be disjoint sets of places and transitions respectively,
the elements of P ∪ T are called nodes. A net is a tuple N = 〈P, T, Pre, Post〉
with the backward and forward incidence matrices Pre and Post de�ned by
Pre (resp. Post) : (P × T) −→ IN. We denote by Pre(t) (resp. Post(t)) the
column vector indexed by t of the matrix Pre (resp. Post).
W = Post − Pre is the incidence matrix of N . The preset of a place p (resp.
a transition t) is de�ned as •p = {t ∈ T |Post(p, t) > 0} (resp. •t = {p ∈
P |Pre(p, t) > 0}), and its postset as p• = {t ∈ T |Pre(p, t) > 0} (resp.
t• = {p ∈ P |Post(p, t) > 0}). The preset (resp. postset) of a set X of nodes is
given by the union of the presets (resp. postsets) of all nodes in X. •X• denotes
the union of the preset and the postset of X.
In case of ambiguity the name of the corresponding net is speci�ed: •X(N),
X•(N) and •X•(N).
A marking of a net is a mapping P −→ IN. We call Σ = 〈N, m0〉 a net
system with initial marking m0 of N . A marking m enables the transition t
(m t−→) if m(p) ≥ Pre(p, t) for each p ∈ •t. In this case the transition can
occur, leading to the new marking m′, given by: m′(p) = m(p) + W (p, t) for
every place p ∈ P . We denote this occurrence by m t−→m′. If there exists
a chain (m0

t1−→m1
t2−→m2−→ . . . tn−→mn), denoted by m0

σ−→mn, the sequence

σ = t1 . . . tn is also called a computation. A computation of in�nite length is
called a run. We denote by T ∗ (resp. T∞) the set of �nite (resp. in�nite) se-
quences of T . Tω denotes the set of all sequences of T (Tω = T ∗∪T∞). The �nite
(resp. in�nite) language of (N, m0) is the set L∗(〈N,m0〉) = {σ ∈ T ∗ |m0

σ−→}
(resp. L∞(〈N,m0〉) = {σ ∈ T∞ |m0

σ−→}), also Lω(〈N, m0〉) = L∗(〈N,m0〉) ∪
L∞(〈N, m0〉). Moreover, [N,m0〉 = {m s.t. ∃σ ∈ T ∗, m0

σ−→m} represents the
set of reachable markings of 〈N,m0〉.
Subnets Let N = 〈P, T, Pre, Post〉 be a Petri net. N ′ is a subnet of N induced
by (P ′, T ′), P ′ ⊆ P and T ′ ⊆ T , if N ′ = 〈P ′, T ′, P re′, Post′〉 is a Petri net s.t.
∀(p, t) ∈ P ′ × T ′, Pre′(p, t) = Pre(p, t) and Post′(p, t) = Post(p, t). If m is a
marking of N then we de�ne its restriction to places of N ′ as follows:
∀p ∈ P ′ m′(p) = m(p). The restriction of m to P ′ is denoted by mbP ′ .
Linear invariants Let v be a vector of INP , v is a positive linear invariant i�
v.W = 0. If v is a positive linear invariant and m σ−→m′ is a �ring sequence then
vT .m′ = vT .m.
Sequences Let σ be a sequence of transitions (σ ∈ Tω). λ denotes the empty
sequence. For a transition t in T , we de�ne |σ|t by:
If t occurs in�nitely often in σ then |σ|t = ∞ else |σ|t = k where, k is the number
of occurrences of t in σ. We extend this notation to subsets X of transitions:
|σ|X =

∑
t∈X |σ|t. Moreover, |σ| is the number of transitions in σ. By analogy

to the notations introduced on sets of nodes, we de�ne:
•σ = ∪t,[|σ|t>0]

•t, σ• = ∪t,[|σ|t>0] t• and •σ• = •σ ∪ σ•.
The set of transitions which occur in�nitely often in σ is denoted by inf(σ).
The projection of a sequence σ on a set of transitions X ⊆ T is the sequence ob-
tained by removing from σ all transitions that do not belong to X. It is de�ned
as follows: b: Tω × 2T −→ Tω s.t.:
- λbX = λ,
- ∀σ ∈ Tω and t ∈ T if t ∈ X then (t.σ)bX = t.σbX else (t.σ)bX = σbX .
The projection function is extended to sets of sequences (i.e. languages) as fol-
lows: ∀Γ ⊆ Tω, ΓbX = {σbX | σ ∈ Γ}.

2.2 Synchronous decomposition

In this section, we de�ne the decomposition of a Petri net N into two subnets
N1 and N2 through a set of interface transitions TI .

De�nition 1 (Decomposable Petri net). Let N = 〈P, T, Pre, Post〉 be a
Petri net and TI a non empty subset of T . N is said to be decomposable into N1 =
〈P1, T1 = T11 ∪ TI , P re1, Post1〉 and N2 = 〈P2, T2 = T21 ∪ TI , P re2, Post2〉 through
the interface TI if:

� P = P1 ∪ P2 and T = T1 ∪ T2,
� P1 ∩ P2 = ∅, T11 ∩ T21 = ∅,
� ∀i ∈ {1, 2}, ∀(p, t) ∈ Pi × Ti, Prei(p, t) = Pre(p, t) and Posti(p, t) =

Post(p, t),
� ∀i, j ∈ {1, 2}, i 6= j, ∀(p, t) ∈ Pi × (Tj \ TI), Pre(p, t) = Post(p, t) = 0

Notation: From now on, tuple Nd = 〈N1, TI , N2〉 denotes the decomposition of
the net N into N1 and N2 through TI .
Note that the composition of subnets by fusion of transitions occurs in large
class of Petri net models. Even if this kind of interface is especially used to
model synchronous composition, we will see that our modular technique allows
one to handle asynchronous composition as well, thanks to the exploitation of
the positive linear invariants of the system. Figure 1 illustrates an example of a
decomposable Petri net model. It models a simpli�ed client-server system. The
server switches between states Passive and Active on reception of On and O�
signals respectively. On the other side, the client is initially Idle. When it wants
to send a message, it waits for the server to be Active (place Wserv). Then, it
sends its message and waits for a positive or negative acknowledgement (place
Wack). In the case of a positive acknowledgement, it becomes again Idle. Other-
wise, it tries to retransmit the message (place Fail). On reception of a message,
the server analyzes it and sends a positive or negative acknowledgement (place
Analyze).
The considered set of transitions TI is {Send, Cons, Ncons} (the full transi-

Fig. 1. A decomposable Petri net

tions of Figure 1). Here the subnet of the server (generated by he bold places
of Figure 1) is unbounded due to the place Mess and any other choice of inter-
face between the client and the server will lead to similar problems. A correct
modular approach should analyze a component of the system completed by an
abstraction of its environment. In the next subsection, we show how to exploit
system invariants in order to automatically construct such an abstraction.

2.3 Exploiting the linear invariants
A linear invariant of a Petri net corresponds to a safety property of the modelled
system. Due to the equation de�ning such invariants, their computation is re-
duced to �nd a generaive family of positive solutions of a linear equation system.
Although the worst case time complexity of this computation is not polynomial,
in practice the algorithm behaves e�ciently and its usual time complexity is neg-
ligible w.r.t. the reachability graph construction. Thus, this approach is widely
used for analysis of Petri nets and integrated in numerous softwares.
Here, we propose to use the linear invariant as a witness of the synchronization
between two subnets. Consequently, we look for linear invariants whose support
intersects the places of the two subnets. Let Vdec be the subset of positive place-
invariants which ful�ll the above condition, picked from a generative family of
a decomposable Petri net N . With each item v ∈ Vdec, we associate two places
a
(v)
1 , a

(v)
2 where a

(v)
i is added to the subnet Nj in such a way that its current

marking summarizes the information given by the positive place-invariant v. The
obtained net is called component subnet and denoted from now on by N̂j . Vdec

will be called the set of global invariants. Given a place p, the vector 1p in the
following de�nition denotes the vector of INP where each element is zero except
the indexed by the place p (whose value is 1).
De�nition 2 (Component subnet). Let Nd = 〈N1, TI , N2〉 be a decomposi-
tion of a Petri net N . The component subnet related to Ni = 〈Pi, Ti, P rei, Posti〉
({i, j} = {1, 2}) is a Petri net N̂i = 〈P̂i, T̂i, P̂ rei, P̂ osti〉 such that:
• T̂i = Ti,
• P̂i=Pi ∪Aj, with Aj = {a(v)

j |v ∈ Vdec} the set of abstraction places.
Let Φ be a mapping from P ∪A1 ∪A2 to INP∪A1∪A2 de�ned by:
∀p ∈ P,Φ(p) = 1p and ∀a(v)

i ∈ Ai, Φ(a(v)
i) = Σp∈Piv(p).1p

• ∀p ∈ P̂i,∀t ∈ T̂i, P̂ rei(p, t) = Pre(t)T .Φ(p) and P̂ osti(p, t) = Post(t)T .Φ(p)

We illustrate the concept of component subnets on the client-server model of
Figure 1. This model has the following generative family of invariants:
1. Idle+Fail+Wserv+Wack
2. Active+Passive+Analyse
3. Idle+Fail+Wserv+Mess+Analyze+Pos+Neg
The �rst two invariants are local to one subnet. Thus, only the third one,
which covers both subnets, is used for the component subnets construction,
leading to the components described in Figure 2. These subnets have been
enlarged with two abstraction places, called here Abs1 and Abs2. Let us ex-
plain for instance the underlying meaning of the abstraction place Abs1. Since
Φ(Abs1) = 1Idle+1Fail+1Wserv +1Mess, this place contains the sum of tokens of
the four previous places. As Wserv is an input place of the transition Send and
the three other ones aren't, Pre(Abs1, Send) = 1. The other arcs are similarly
deduced.
According to this interpretation, the following de�nition de�nes the mapping
from a global marking (a marking of the original net) to markings of the com-
ponent subnets.

Fig. 2. The two component subnets

De�nition 3. Let Nd = 〈N1, TI , N2〉 be the decomposition of a Petri net N and
let N̂i (i = 1, 2) be the induced component subnets. For each marking m of N ,
Φi the projection mapping on N̂i is de�ned by: ∀p ∈ Pi, Φi(m)(p) = mT .Φ(p)

The following proposition and corollary summarize what can be directly de-
duced from this decomposition about the relative behaviours of the net and its
component subnets.

Proposition 1. Let Nd = 〈N1, TI , N2〉 be a decomposition of a marked Petri
net 〈N, m〉 and let N̂i (i = 1, 2) be the induced component subnets. Then, the
following assertion holds:
∀σ ∈ T ∗, if m σ−→m′ then Φi(m)

σbcTi−→Φi(m′)

Proof. We prove the proposition for σ = t being a single transition. The propo-
sition follows by a straightforward induction. We consider the following cases.
case 1: t ∈ T̂i

m σ−→m′ ⇒ m ≥ Pre(t) ⇒ ∀p ∈ P̂i,m
T .Φ(p) ≥ Pre(t)T .Φ(p) (by positivity of

Φ(p)) ⇔ ∀p ∈ P̂i, Φi(m)(p) ≥ P̂ rei(p, t). Thus Φi(m) t−→.
m′ = m + W (t) ⇒ ∀p ∈ P̂i,m

′T .Φ(p) = mT .Φ(p) + W (t)T .Φ(p) ⇔ ∀p ∈
P̂i, Φi(m′)(p) = Φi(m)(p) + Ŵi(p, t).
Thus Φi(m) t−→Φi(m′).
case 2: t 6∈ T̂i

∀p ∈ Pi, p 6∈ •t•. Thus Φi(m′)(p) = m′(p) = m(p) = Φi(m)(p)
Let v ∈ Vdec, since v is a �ow: m′T .(Φ(a(v)

i) + Φ(a(v)
j)) = mT .(Φ(a(v)

i) + Φ(a(v)
j))

Thus, Φi(m′)(a(v)
j)− Φi(m)(a(v)

j) = m′T .Φ(a(v)
j)−mT .Φ(a(v)

j)

= m′T .Φ(a(v)
i)−mT .Φ(a(v)

i) = Σp∈Piv(p).(m′(p)−m(p)) = 0
(since any such p 6∈ •t•)
Thus Φi(m′) = Φi(m).

The assertions given in the following corollary are immediate consequences of
the above proposition.
Corollary 1. Let Nd = 〈N1, TI , N2〉 be a decomposition of a marked Petri net
〈N, m〉 and let N̂i (i = 1, 2) be the induced component subnets. Then, the fol-
lowing assertions hold:

� Lω(N,m)b bTi
⊂ Lω(N̂i, Φi(m))

� {σb bTi
|σ ∈ L∞(N,m) and Inf(σ) ∩ T̂i 6= ∅} ⊂ L∞(N̂i, Φi(m))

� (N, m) is unbounded ⇒ ∃i (N̂i, Φi(m)) is unbounded

3 Preservation of properties

3.1 The non constraining relation
In this section, we de�ne the non-constraining relation: an asymmetric prop-
erty to be checked between two given marked component sub-nets obtained from
a decomposition of a net: (N̂2, m̂2) does not constrain (N̂1, m̂1) if for any �r-
ing sequence enabled from (N̂1, m̂1), there exists a �ring sequence enabled from
(N̂2, m̂2), which both have the same projection on the interface transitions. Un-
der such a relation, we prove that the �ring sequences enabled in the non con-
strained component exactly represent the �ring sequences of the global net, up
to the projection on the transitions of the interface.
De�nition 4 (Non-constraining relation). Let 〈N̂1, m̂1〉 and 〈N̂2, m̂2〉 be
the two component subnets induced by a decomposition of a Petri net 〈N,m〉:
〈N̂2, m̂2〉 does not constrain 〈N̂1, m̂1〉 i� Lω

bTI
(〈N̂1, m̂1〉) ⊆ Lω

bTI
(〈N̂2, m̂2〉).

When each component does not constrain the other one we say that they are
mutually non-constraining.
Proposition 2. Let 〈N̂1, m̂1〉 and 〈N̂2, m̂2〉 be the two marked component sub-
nets induced by a decomposition of a marked Petri net 〈N, m〉. If 〈N̂2, m̂2〉 does
not constrain 〈N̂1, m̂1〉 then the following assertion holds:
∀σ1 ∈ T̂1

∗
: m̂1

σ1−→m̂
′
1 ⇒ ∃σ ∈ T ∗ and ∃m′ ∈ INP s.t.:

σbT1 = σ1, m σ−→m
′ (and Φ1(m

′
) = m̂

′
1 by proposition 1).

Proof. Let σ1 = σ0
1 .t1. · · · .tk.σk

1 with ∀m, σm
1 ∈ T11 and tm ∈ TI .

By hypothesis, there exists a �ring sequence σ2 in (N̂2, m̂2):
σ2 = σ0

2 .t1. · · · .tk.σk
2 with ∀m,σm

2 ∈ T21.
We claim that σ = σ0

1 .σ0
2 .t1. · · · .tk.σk

1 .σk
2 is the required sequence. We prove it

by induction on the pre�xes of σ.
Let σ′.t be a pre�x of σ such that σ′ is a �ring sequence, i.e. m σ′−→m′′.
By proposition 1, ∀i ∈ {1, 2}, m̂i = Φi(m)

σ′bcTi−→Φi(m′′)

By construction ∀i ∈ {1, 2}, (σ′.t)b bTi
is a pre�x of σi. Thus Φi(m′′)

tbcTi−→

Case 1: t ∈ TI

Let p ∈ •t, p ∈ Pi for some i ∈ {1, 2},
since Φi(m′′) t−→, m′′(p) = Φi(m′′)(p) ≥ Pre(p, t), we conclude that m′′ t−→.
Case 2: t ∈ Ti1 for some i ∈ {1, 2}
Let p ∈ •t since t ∈ Ti1 then p ∈ Pi,
since Φi(m′′) t−→, m′′(p) = Φi(m′′)(p) ≥ Pre(p, t), we conclude that m′′ t−→.

The non-constraining relation can be regarded as an inclusion relation between
the languages of the components subnets, once projected on the shared tran-
sition interface. Checking such a property represents the main di�culty of our
approach. A naive test of this relation would result in building the synchronized
product of the component subnets reachability graphs, which could drastically
limit the interests of our method.

Here, we propose a new approach based on an abstraction of the system,
namely, the interface component subnet, which allows one to represent the lan-
guage of the global net compactly, up to a projection on the transition interface.
It is obtained by connecting the interface transitions to the abstraction places
of both component subnets. Figure 3 represents the interface component subnet
of the net depicted in Figure 1.
De�nition 5 (Interface component subnet). Let Nd = 〈N1, TI , N2〉 be the
decomposition of a Petri net N and let N̂i (i = 1, 2) be the induced component
subnets. The interface component subnet related to Nd is a Petri net N̂int =
〈P̂int, T̂int, ̂Preint, ̂Postint〉 such that, for i, j ∈ {1, 2} and i 6= j:
• T̂int = TI ,
• P̂int = A1 ∪A2, with Ai = {a(v)

i |v ∈ Vdec} the set of abstraction places of N̂i,
• ∀a ∈ Ai, ∀t ∈ T̂int, ̂Preint(a, t) = P̂ rej(a, t) and ̂Postint(a, t) = P̂ ostj(a, t).

Fig. 3. The Client-Server interface component subnet

Using Proposition 1, one can immediately state the following: ∀i ∈ {1, 2},
Lω
bTI

(N̂i, m̂i) ⊆ Lω(N̂int, m̂int).
Proposition 3. Let Nd = 〈N1, TI , N2〉 be a decomposition of a marked Petri
net 〈N, m〉 and let N̂i (i = 1, 2) and N̂int be the induced component subnets.

Then, the following assertion holds:
〈N̂i, m̂i〉 is non-constraining for 〈N̂int, m̂int〉 ⇒ 〈N̂i, m̂i〉 is non-constraining for
〈N̂j , m̂j〉 (j ∈ {1, 2} and j 6= i)

The proof is obvious since from Proposition 1, one can immediately state that
Lω
bTI

(N̂i, m̂i) ⊆ Lω(N̂int, m̂int) (for i ∈ {1, 2}). This proposition will be exploited
in the next subsection, in order to restrain the test of the non-constraining rela-
tion between two component subnets, to a lighter relation between a component
subnet and the interface component subnet. The non-constraining relation can
thus be checked modularly, since one component subnet is considered at a time.
It is worth noting that the component subnet is computed only once even if a
mutual non-constraining relation is checked.

3.2 The non-constraining test algorithm

Now we explain how to check whether a given component subnet 〈N̂i, m̂i〉 is
non-constraining for 〈N̂int, m̂int〉. The proposed algorithm 3.2 works on the �y
and focusses on the behaviour of 〈N̂i, m̂i〉 around the interface. Its local moves
induced by the local transitions are hence abstracted (unobserved) since they are
not directly involved in the inclusion test. This allows us to reuse the concept of
observation graph proposed in [4] to represent a reachability graph compactly.
Here, the observed transitions are those of the interface. The observation graph
of (N̂i, m̂i) is a graph where each node is a set of markings linked by local (un-
observed) transitions and each arc is labelled with an interface transition. Nodes
of the observation graph are called meta-states and may be represented and
managed e�ciently by using decision diagram techniques (BDD for instance).
In practice, the e�ciency of this approach is obtained whenever the number of
observed transitions is small with respect to the total number of transitions ([4],
[7]). In order to check the non-constraining relation, the observation graph of
(N̂i, m̂i) is synchronized against the reachability graph of the interface compo-
nent 〈N̂int, m̂int〉. However, the required synchronized product is widely reduced
comparing to the general one. In fact, each reachable meta-state of 〈N̂i, m̂i〉 leads,
by construction, to a unique reachable state of 〈N̂int, m̂int〉. In other words, a
meta-state is never synchronized with two di�erent states of the interface compo-
nent subnet. Obviously, the reciprocal doesn't hold: a state of 〈N̂int, m̂int〉 could
be synchronized with many meta-states of 〈N̂i, m̂i〉. Thus, in the worst case,
the complexity of the non-constraining test is given by the number of reachable
meta-states of 〈N̂i, m̂i〉 instead of (classically) the size product.
The data structures used by Algorithm 3.2 are the followings ones:

� a set Hint represents a heap to store the states of 〈N̂int, m̂int〉 that are
visited,

� a table Synch is used to associate a subset of meta-states (set of states) with
each state of Hint. For any state s in Hint, we ensure that the meta-states
of Synch[s] are incomparable.

� a stack st, the items of which are tuples 〈S, s, f〉 composed of a meta-state
of 〈N̂i, m̂i〉, a state of 〈N̂int, m̂int〉 and a set of interface transitions enabled
from both nodes.

Algorithm 3.1 Non-constraining of (〈N̂i, m̂i〉 w.r.t. 〈N̂int, m̂int〉)
1: state sint = dmint, s′int;
2: Events f i, f int, Obs = TI , Unobs = bTi \Obs;
3: Set Si, S′i, Hint; Set of Set Synch;
4: stack st(〈Set, state, Events〉);
5: Si = Saturate({cmi}, Unobs);
6: f int = firable({sint}, Obs); f i = firable(Si, Obs);
7: if (¬(f i ⊇ f int)) then
8: return false
9: end if
10: Hint = {sint}; Synch[sint] = {S};
11: st.Push(〈Si, sint, f

int〉);
12: repeat
13: st.Pop(〈Si, sint, f

int〉);
14: for t ∈ f int do
15: S′i = Img(Si, t); S′i = Saturate(S′i, Unobs);
16: s′int = Img({sint}, t)
17: if s′int 6∈ Hint then
18: Hint = Hint ∪ {s′int}; Synch[s′int] = ∅
19: end if
20: if ∃/ S ∈ Sync[s′int] s.t. S ⊆ S′i then
21: for each S ∈ Synch[s′int] s.t. S′i ⊆ S do
22: Sync[s′int] = Sync[s′int] \ {S};
23: end for
24: Sync[s′int] = Sync[s′int] ∪ {S′i};
25: f i = firable(S′i, Obs)); f int = firable(s′int, Obs)
26: if (¬(f i ⊇ f int)) then
27: return false
28: end if
29: st.Push(〈S′i, s′int, f

int〉);
30: end if
31: end for
32: until st == ∅;
33: return true

Three builder functions are used (all can be implemented symbolically using
BDD notations) : img(S, t) returns the immediate successors of the set of states
S, through the �rings of the transition t. firable(S, o) is de�ned from a set of
states S and a set of transitions o. It returns the subset of transitions in o that
are enabled from a state of S (not necessarily the same). saturate(S, u) returns
a meta-state from a subset of states S and a set of (unobserved) transitions u.

Starting from each state of S, it infers all possible �rings of the u transitions
until a �x point is reached. The resulting meta-state consists of the states of S
and all the reached states w.r.t. u.
The �rst stage of Algorithm 3.2 allows one to compute the �rst elements of the
data structures, in particular the �rst items of Hint, Synch and st. For that, the
initial meta-state Si of 〈N̂i, m̂i〉 is computed. The transitions f int enabled from
the initial state sint of 〈N̂int, m̂int〉 are evaluated. If the enabled set of observable
transitions from Si doesn't contain the enabled set f int the non-constraining test
is stopped with a negative answer. Otherwise, the tuple 〈Si, sint, f

int〉 is pushed
on the stack. Then, the algorithm iterates to synchronize successors items from
an element of the stack, e.g. 〈Si, sint, f

int〉. According to each transition t in
f int, it computes and processes the successor s′int from sint in 〈N̂int, m̂int〉 and
the successor S′i from Si in 〈N̂i, m̂i〉.
In order to be e�cient, we propose to decrease the number of (successors) tuples
to be pushed on the stack. This is why we maintain the set Sync[s′int] of meta-
states of 〈N̂i, m̂i〉 for each visited state s′int of 〈N̂int, m̂int〉. Actually, a newly
computed meta-state S′i synchronized with s′int can be discarded if a larger meta-
state already exists in Sync[s′int]. Otherwise, the meta-states in Sync[s′int], the
set of states of which properly contains S′i, are removed.
The algorithm will return false as soon as the set of enabled interface transi-
tions from both sides don't match with each other, meaning that the component
subnet is constraining for the interface component subnet. Conversely, the algo-
rithm will return true once the synchronized product is entirely built (the stack
is empty), meaning that the component subnet does not constrain the interface
component subnet.

3.3 Compositionality results

With respect to the decomposition, we study two kinds of systems proper-
ties: generic properties like liveness and boundedness, and speci�c properties
expressed by action-based temporal logics (logics using actions as atomic propo-
sitions) based on in�nite observed sequences (sequences where some observed
transitions occur in�nitely often).

Preservation of generic properties In this part, we prove that given a de-
composable Petri net N , and under a mutual non-constraining between the cor-
responding component sub-nets N̂1 and N̂2, liveness (resp. boundedness) of N is
completely characterized by the liveness (resp. boundedness) of N̂1 and N̂2.

Proposition 4. If 〈N̂1, m̂1〉 and 〈N̂2, m̂2〉 are mutually non-constraining, then
the following assertion holds:
〈N, m〉 is live ⇔ 〈N̂1, m̂1〉 and 〈N̂2, m̂2〉 are live.

Proof. (⇒) Assume that 〈N,m〉 is live. Let m̂1
′ be a reachable marking in

〈N̂1, m̂1〉 and t a transition of T̂1. Let us prove that there exists a sequence

ending by t which is enabled by the marking m̂1
′. Since 〈N̂2, m̂2〉 is non con-

straining for 〈N̂1, m̂1〉 and according to the proposition 2, there exists a sequence
σ and a marking m′ such that m σ−→m′ and Φ1(m′) = m̂1

′. On the other hand,
since the marked net 〈N, m〉 is live, there exists a sequence σ′ having t as the
last transition and which is enabled by the marking m′. Let m′′ be the marking
reached by this sequence.
Let us now consider the sequence σσ′, enabled by 〈N, m〉, according to the propo-
sition 1, the projected sequence σσ′bcT1

is enabled by 〈N̂1, m̂1〉 and the marking
reached is equal to Φ1(m′′). We conclude that σ′bcT1

(having t as a last transition)
is enabled by m̂1

′.
By symmetry, we prove that 〈N̂2, m̂2〉 is live.
(⇐) Assume that 〈N̂1, m̂1〉 and 〈N̂2, m̂2〉 are mutually non-constraining and live.
Let m′ be a reachable marking in 〈N, m〉 and t a transition of T , let us proove
that there exists a sequence, having t as the last transition, which is enabled by
marking m′.
Due to the symmetry of the problem, we assume that the transition t belongs
to T̂1. According to proposition 1, there exists a sequence σ1 which is enabled
by 〈N̂1, m̂1〉 and leading to the marking m̂′

1 = m′
bcT1

. On the other hand, there
exists a sequence σ′1 having t as the last transition and which is enabled by
m′

1 (because 〈N̂1, m̂1〉 is live). Moreover, since 〈N̂2, m̂2〉 is non-constraining for
〈N̂1, m̂1〉, we deduce the existence of a sequence σ′, which is enabled by 〈N,m′〉,
such that σ′bcT1

= σ′1. The sequence satisfying the former condition has t as the
last transition. Thus, we deduce that 〈N, m〉 is live.

Proposition 5. Let 〈N,m〉 be a Petri net and let Nd = 〈N1, TI , N2〉 be a de-
composition of N leading to the component subnets 〈N̂1, m̂1〉 and 〈N̂2, m̂2〉. If
〈N̂1, m̂1〉 and 〈N̂2, m̂2〉 are mutually non-constraining, then:
〈N, m〉 is bounded ⇔ 〈N̂1, m̂1〉 and 〈N̂2, m̂2〉 are bounded.

Proof. ⇐ (Corollary 1)
⇒ Assume that 〈N, m〉 is bounded. We suppose that 〈N̂i, m̂i〉 is unbounded,
for i ∈ {1, 2}. This means that there exist a run (an in�nite computation) ξi =

m̂i
0 ti

1−→m̂i
1 ti

2−→ . . . and a place p ∈ P̂i such that ∀ m̂i
k ∈ ξi, ∃ m̂i

l ∈ ξi with
l > k s.t. m̂i

k(p) < m̂i
l(p). Since 〈N̂j , m̂j〉 (j ∈ {1, 2}, j 6= i) doesn't constrain

〈N̂i, m̂i〉, there exists a run ξ = m0
σ1−→m1

σ2−→ . . . in 〈N,m〉 s.t. ξb bTi
= ξi and

∀k = 1, 2, . . . m̂i
k = Φi(mk).

Case 1: p 6∈ Aj

In this case, p ∈ P and ∀ mk ∈ ξ, ∃ ml ∈ ξ with l > k s.t. mk(p) < ml(p) which
means that 〈N,m〉 is unbounded and then contradicts the hypothesis.
Case 2: p ∈ Aj , let v be the corresponding positive invariant.
In this case, ∀ mk ∈ ξ, ∃ ml ∈ ξ with l > k s.t. vT .mk < vT .ml. This means that
there exists, at least, one place in ||v|| for which the marking can be in�nitely

increased through ξ (v is a positive invariant). This contradicts the hypothesis
that 〈N, m〉 is bounded.

Preservation of action-based temporal properties Let us consider a Petri
net N and an action-based temporal logic formula f relative to the in�nite
observed sequences of N . Assuming that the transitions occurring in f belong
to one component subnet, we show how to exploit our approach in order to
modularly check f . First, the following proposition states that, checking if a
particular transition t ∈ T̂1 (for instance) appears in�nitely often in a �ring
sequence of a decomposable Petri net 〈N, m〉 is reduced to the analysis of �ring
sequences of (N̂1, m̂1) if it is not constrained by (N̂2, m̂2).

Proposition 6. Let Nd = 〈N1, TI , N2〉 be a decomposition of a Petri net 〈N,m〉
leading to the component subnets 〈N̂1, m̂1〉 and 〈N̂2, m̂2〉. Let t be a transition
in T̂1. If 〈N̂2, m̂2〉 is non-constraining for 〈N̂1, m̂1〉, then:
∃σ ∈ Lω(N, m) s.t. t ∈ inf(σ) ⇐⇒ ∃σ1 ∈ Lω(N̂1, m̂1) s.t. t ∈ inf(σ1)

Proof. (=⇒) Let σ ∈ Lω(N, m) a �ring sequence in 〈N,m〉 such that t ∈ inf(σ)
and σ1 = σbcT1

. Following the proposition 1, we deduce that m̂1
σ1−→. Because

t ∈ T̂1, one concludes that t ∈ inf(σ1).
(⇐=) Let σ1 ∈ Lω(N̂1, m̂1) such that m̂1

σ1−→m̂1
′ and t ∈ inf(σ1). According

to the proposition 2, there exists a �ring sequence σ ∈ Lω(N, m) such that
σ1 = σbcT1

. Since t ∈ inf(σ1), one deduces that t ∈ inf(σ).

Proposition 6 leads to a modular mode checking approach dealing with in�nite
observed sequences. Given a decomposable Petri net N and a formula f such that
the set Occ(f) (set of transitions occurring in f) is a subset of T̂i (i ∈ {1, 2}),
checking f on N can be reduced to check f on N̂i in the two following cases:

� f holds on N̂i,
� f doesn't hold on N̂i and N̂i is not constrained by N̂j .

4 Conclusion

In this paper, we have presented a decomposition approach which allows the
modular veri�cation of Petri nets properties. The liveness and boundedness of
the system components can be used to check such properties for the system.
This is also the case for any linear time property whenever its checking relates
to the in�nite observed executions of some component of the system. In contrast
to previous techniques, we do not force any speci�c (restrictive) structure at the
interface of the modules, but we exploit the linear invariants (that are usually
common in well-speci�ed system models) of the system. Our main contribution
is the de�nition of a su�cient condition to test the non-constraining relation
w.r.t. a component subnet. In order to be general, it is tested behaviourally but
modularly with respect to a component subnet.

The limit of the presented work occurs when the non-constraining relation is
required for a component subnet but does not hold. Concerning LTL properties,
our �rst solution is an iterative technique presented in [3]. Starting from the
smallest component subnet to check the truth of an LTL property, it automati-
cally enlarges the component subnet whenever the property is detected false and
the environment is constraining.
From a practical point of view, we have shown how the observation-based ap-
proach presented in [4] can be adapted to reduce the representation of the reacha-
bility graph of a component subnet (using symbolic decision diagram techniques)
leading to an e�cient modular test of the non-constraining relation. We are cur-
rently developping a tool in order to test our method on real case studies.

References
1. Mohamed-Lyes Benalycherif and Claude Girault. Behavioural and structural com-

position rules preserving liveness by synchronisation for colored FIFO nets. In
Lecture Notes in Computer Science; Proc. 17th International Conference in Appli-
cation and Theory of Petri Nets (ICATPN'96), Osaka, Japan, volume 1091, pages
73�92. Springer-Verlag, June 1996.

2. S. Christensen and L. Petrucci. Modular analysis of petri nets. Computer Journal,
43(3):224�242, 2000.

3. S. Haddad, J-M. Ilié, and K. Klai. An incremental veri�cation technique using
decomposition of petri net. In in proc. of the IEEE SMC'02 - Systems, Man and
Cybernetics, Hammamet, Tunisia, 2002.

4. S. Haddad, J-M. Ilié, and K. Klai. Design and evaluation of a symbolic and
abstraction-based model checker. In Automated Technology for Veri�cation and
Analysis: Second International Conference, ATVA 2004, Taipei, Taiwan, ROC,
October 31-November 3, 2004. Proceedings, 2004.

5. J-M. Ilié, K. Klai, and B. Zouari. A modular veri�cation methodology for d-
nri petri nets. In in proc. of the International Conference ACS/IEEE 2003 on
Computer Systems and Applications (AICCSA-03), Tunis, Tunisia, pages 14�18,
2003.

6. T. Latvala and M. Makela. Ltl model checking for modular petri nets. In in proc.
of ICATPN'04, pages 298�311, 2004.

7. V. Noord. Treatment of epsilon moves in subset construction. In Computational
Linguistics, MIT Press for the Association for Computational Linguistics, vol-
ume 26. 2000.

8. A. Santone. Compositionality for Improving Model Checking. In In proc. of
FORTE'00, in proc. of Formal Methods for Distributed System Development, Oc-
tober 2000.

9. C. Sibertin-Blanc. A client-server protocol for composition of Petri nets. In in
proc. of ICATPN'93, LNCS, June 1993.

10. Y. Souissi and G. Memmi. Compositions of nets via a communication medium.
LNCS, 483:457�470, 1991.

11. A. Valmari. Compositional state space generation. In in proc. of ICATPN'90,
LNCS, May 1990.

