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Abstract. In this paper, we compare Timed Automata (TA) with Time
Petri Nets (TPN) with respect to weak timed bisimilarity. It is already
known that the class of bounded TPNs is included in the class of TA.
It is thus natural to try and identify the (strict) subclass T Awtb of TA
that is equivalent to TPN for the weak time bisimulation relation. We
give a characterisation of this subclass and we show that the member-
ship problem and the reachability problem for T Awtb are PSPACE-
complete. Furthermore we show that for a TA in T Awtb with integer
constants, an equivalent TPN can be built with integer bounds but with
a size exponential w.r.t. the original model. Surprisingly, using rational
bounds yields a TPN whose size is linear.

Keywords: Time Petri Nets, Timed Automata, Weak Timed Bisimilar-
ity.

1 Introduction

Expressiveness of timed models. Adding explicit time to classical models
was first done in the seventies for Petri nets [12,14]. Since then, timed models
based on Petri nets and finite automata were extensively studied, and various
tools were developed for their analysis. In this paper, we focus on two well known
models: Timed Automata (TA) from [2] and Time Petri Nets (TPNs) from [12].
In [4], we studied the different semantics for TPNs w.r.t. weak timed bisimilarity.
Here, we are interested in comparing the expressive power of TA and TPN for
this equivalence. Recall that there are unbounded TPNs for which no bisimilar
TA exists. This is a direct consequence of the following observation: the untimed
language of a TA is regular which is not necessarily the case for TPNs. On the
other hand, it was proved in [8] that bounded TPNs form a subclass of the class
of timed automata, in the sense that for each bounded TPN N , there exists a TA
which is weakly timed bisimilar to N . A similar result can be found in [11], where
it is obtained by a completely different approach. In another line of work [10],
Haar, Kaiser, Simonot and Toussaint compare Timed State Machines (TSM)



and Time Petri Nets, giving a translation from TSM to TPN that preserves
timed languages. In [5], we propose an extended translation between TA and
TPNs with better complexity.

Our Contribution. In this work, we consider TPNs and label-free TA, i.e.
where two different edges have different labels (and no label is ε) and we give a
characterisation of the subclass T Awtb of timed automata which admit a weakly
timed bisimilar TPN. This non intuitive condition relates to the topological
properties of the so-called region automaton associated with a TA. To prove that
the condition is necessary, we introduce the notion of uniform bisimilarity, which
is stronger than weak timed bisimilarity. Conversely, when the condition holds for
a TA, we provide two effective constructions of bisimilar TPNs: the first one with
rational constants has a size linear w.r.t. the TA, while the other one, which uses
only integer constants has an exponential size. From this characterisation, we will
deduce that given a TA, the problem of deciding whether there is a TPN bisimilar
to it, is PSPACE-complete. Thus, we obtain that the membership problem
is PSPACE-complete. Finally we also prove that the reachability problem is
PSPACE-complete.

Outline of the paper. Section 2 recalls the semantics of TPNs and TA, and
the notion of timed bisimilarity. Section 3 explains the characterisation while
Section 4 is devoted to a sketch of its proof. We conclude in Section 5.

2 Time Petri Nets and Timed Automata

Notations. Let Σ be a finite alphabet, Σ∗ (resp. Σω) the set of finite (resp.
infinite) words of Σ and Σ∞ = Σ∗ ∪Σω. We also use Σε = Σ ∪ {ε} with ε (the
empty word) not in Σ.

The sets N, Q≥0 and R≥0 are respectively the sets of natural, non-negative
rational and non-negative real numbers. We write 0 for the tuple v ∈ Nn such
that v(k) = 0 for all 1 ≤ k ≤ n. Let g > 0 in N, we write Ng = { i

g
| i ∈ N}. A

tuple v ∈ Qn belongs to the g-grid if v(k) ∈ Ng for all 1 ≤ k ≤ n.
An interval I of R≥0 is a Q≥0-interval iff its left endpoint belongs to Q≥0 and

its right endpoint belongs to Q≥0∪{∞}. We set I↓ = {x | x ≤ y for some y ∈ I},
the downward closure of I and I↑ = {x | x ≥ y for some y ∈ I}, the upward
closure of I. We denote by I(Q≥0) the set of Q≥0-intervals of R≥0.

Timed Transition Systems and Equivalence Relations. Timed transi-
tion systems describe systems which combine discrete and continuous evolutions.
They are used to define and compare the semantics of TPNs and TA.

A Timed Transition System (TTS) is a transition system S = (Q, q0,→),
where Q is the set of configurations, q0 ∈ Q is the initial configuration and the

relation → consists of either delay moves q
d
−→ q′, with d ∈ R≥0, or discrete

moves q
a
−→ q′, with a ∈ Σε. Moreover, we require standard properties for the

relation →:
Time-Determinism: if q

d
−−→ q′ and q

d
−−→ q′′ with d ∈ R≥0, then q′ = q′′
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0-delay: q
0

−−→ q

Additivity: if q
d

−−→ q′ and q′
d′

−−→ q′′ with d, d′ ∈ R≥0, then q
d+d′

−−−−→ q′′

Continuity: if q
d

−−→ q′, then for every d′ and d′′ in R≥0 such that d = d′ + d′′,

there exists q′′ such that q
d′

−−→ q′′
d′′

−−−→ q′.
With these properties, a run of S can be defined as a finite or infinite sequence

of moves ρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→ · · · qn
dn−→ q′n . . . where discrete actions

alternate with durations. We also write this run as q
d0a0...dn...
−−−−−−−→ q′. The word

Untimed(ρ) in Σ∞ is obtained by the concatenation a0a1 . . . of labels in Σε (so

empty labels disappear), and Duration(ρ) =
∑|ρ|

i=0 di.

From a TTS, we define the relation →>⊆ Q × (Σ ∪ R≥0) × Q for a ∈ Σ and
d ∈ R≥0 by:

- q
d
−→> q′ iff ∃ ρ = q

w
−→ q′ with Untimed(ρ) = ε and Duration(ρ) = d,

- q
a
−→> q′ iff ∃ ρ = q

w
−→ q′ with Untimed(ρ) = a and Duration(ρ) = 0.

Definition 1 (Weak Timed Bisimilarity). Let S1 = (Q1, q
1
0 ,→1) and S2 =

(Q2, q
2
0 ,→2) be two TTS and let ≈ be a binary relation over Q1 ×Q2. We write

q ≈ q′ for (q, q′) ∈≈. The relation ≈ is a weak timed bisimulation between S1

and S2 iff q1
0 ≈ q2

0 and for all a ∈ Σ ∪ R≥0

- if q1
a
−→>1 q′1 and q1 ≈ q2 then ∃q2

a
−→>2 q′2 such that q′1 ≈ q′2;

- conversely, if q2
a
−→>2 q′2 and q1 ≈ q2 then ∃q1

a
−→>1 q′1 such that q′1 ≈ q′2.

Two TTS S1 and S2 are weakly timed bisimilar, written S1 ≈W S2, if there
exists a weak timed bisimulation relation between them.

Strong timed bisimilarity would require similar properties for transitions la-
beled by a ∈ Σ ∪R≥0, but with

a
−→ instead of

a
−→>. Thus it forbids the possibility

of a simulating a move by a sequence. On the other hand, weak timed bisimilar-
ity is more precise than language equivalence and it is well-known to be central
among equivalence relations between timed systems. In the rest of the paper, we
abbreviate weak timed bisimilarity by bisimilarity and we explicitly name other
equivalences when needed.

Time Petri Nets. Introduced in [12], and studied more recently in [13], Time
Petri Nets (TPNs) associate a closed time interval with each transition.

Definition 2 (Labeled Time Petri Net). A Labeled Time Petri Net N over
Σε is a tuple (P, T,Σε,

•(.), (.)
•
,M0, Λ, I) where P is a finite set of places, T

is a finite set of transitions with P ∩ T = ∅, •(.) ∈ (NP )T is the backward
incidence mapping, (.)

• ∈ (NP )T is the forward incidence mapping, M0 ∈ NP

is the initial marking, Λ : T → Σε is the labeling function and I : T 7→ I(Q≥0)
associates with each transition a closed firing interval.

A TPN N is a g-TPN if for all t ∈ T , the interval I(t) has its bounds in Ng. We
also use •t (resp. t•) to denote the set of places •t = {p ∈ P | •t(p) > 0} (resp.
t• = {p ∈ P | t•(p) > 0}) as is common is the literature.
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A configuration of a TPN is a pair (M,ν), where M is a marking in the
usual sense, i.e. a mapping in NP , with M(p) the number of tokens in place
p. A transition t is enabled in a marking M iff M ≥ •t. We denote by En(M)
the set of enabled transitions in M . The second component of the pair (M,ν)
describes the values of clocks implicitely associated with transitions enabled in
M : a valuation ν is a mapping in (R≥0)

En(M). For d ∈ R≥0, the valuation ν+d is
defined by (ν + d)(t) = ν(t)+ d for each t ∈ En(M). An enabled transition t can
be fired if ν(t) belongs to the interval I(t). The result of this firing is as usual the
new marking M ′ = M − •t+ t•. Moreover, some valuations are reset and we say
that the corresponding transitions are newly enabled. Different semantics are
possible for this operation. In this paper, we choose persistent atomic semantics,
which is slightly different from the classical semantics [7,3], but equivalent when
the net is bounded [4]. The predicate is defined by:

↑enabled(t′,M, t) = t′ ∈ En(M − •t + t•) ∧ (t′ 6∈ En(M)).
Thus, firing a transition is considered as an atomic step and the transition cur-
rently fired behaves like the other transitions (ν(t) need not be reset when t
is fired). The set ADM(N ) of (admissible) configurations consists of the pairs
(M,ν) such that ν(t) ∈ I(t)↓ for each transition t ∈ En(M). Thus time can
progress in a marking only up to the minimal right endpoint of the intervals for
all enabled transitions.

Definition 3 (Semantics of TPN). The semantics of a TPN N = (P, T,Σε,
•(.), (.)

•
,M0, Λ, I) is a TTS SN = (Q, q0,→) where Q = ADM(N ), q0 = (M0,0)

and → is defined by:

- either a delay move (M,ν)
d

−−→ (M,ν + d) iff ∀t ∈ En(M), ν(t) + d ∈ I(t)↓,

- or a discrete move (M,ν)
Λ(t)
−−−→ (M − •t + t•, ν′) where ∀t′ ∈ En(M − •t + t•),

ν′(t′) = 0 if ↑enabled(t′,M, t) and ν′(t′) = ν(t) otherwise, iff t ∈ En(M) is such
that ν(t) ∈ I(t).

We simply write (M,ν)
w
−→ to emphasise that a sequence of transitions w can

be fired. If Duration(w) = 0, we say that w is an instantaneous firing sequence.
A net is said to be k-bounded if for each reachable configuration (M,ν) and for
each place p, M(p) ≤ k.

Note that taking into account the enabling degree of transitions would require
to add components to ν, which leads to awkward notations, although our result
holds in the bounded case.

Timed Automata. First defined in [2], the model of timed automata (TA)
associates a set of non negative real-valued variables called clocks with a finite
automaton. Let X be a finite set of clocks. We write C(X) for the set of constraints
over X, which consist of conjunctions of atomic formulas of the form x ⊲⊳ h for
x ∈ X, h ∈ Q≥0 and ⊲⊳∈ {<,≤,≥, >}.

Definition 4 (Timed Automaton). A Timed Automaton A over Σε is a
tuple (L, ℓ0, X,Σε, E, Inv) where L is a finite set of locations, ℓ0 ∈ L is the
initial location, X is a finite set of clocks, E ⊆ L × C(X) × Σε × 2X × L is a
finite set of edges and Inv ∈ C(X)L assigns an invariant to each location. An
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edge e = 〈ℓ, γ, a,R, ℓ′〉 ∈ E represents a transition from location ℓ to location ℓ′

with guard γ and reset set R ⊆ X. We restrict the invariants to conjunctions of
terms of the form x ⊲⊳ h for x ∈ X, h ∈ N and ⊲⊳ ∈ {<,≤}.

When we need to consider label-free automata, we simply assume that each edge
has a unique label, different from ε.

A valuation v is a mapping in RX
≥0. For R ⊆ X, the valuation v[R 7→ 0] maps

each variable in R to the value 0 and agrees with v over X \ R. Constraints of
C(X) are interpreted over valuations: we write v |= γ when the constraint γ is
satisfied by v.

Definition 5 (Semantics of TA). The semantics of a TA A = (L, ℓ0,X,Σε,
E, Inv) is a TTS SA = (Q, q0,→) where Q = L × (R≤0)

X , q0 = (ℓ0,0) and →
is defined by:

- either a delay move (ℓ, v)
d

−−→ (ℓ, v + d) iff v + d |= Inv(ℓ),

- or a discrete move (ℓ, v)
e
−→ (ℓ′, v′) iff there exists some e = (ℓ, γ, a,R, ℓ′) ∈ E

s.t. v |= γ, v′ = v[R 7→ 0] and v′ |= Inv(ℓ′).

Elementary zones of a TA. Recall [9,2] that, if m is the maximal constant
appearing in atomic formulas x ⊲⊳ c of A, an equivalence relation with finite
index can be defined on clock valuations, leading to a partition Pm of (R≥0)

X ,
with the following property: two equivalent valuations have the same behaviour
under progress of time and reset operations, with respect to the constraints.
Note that the same property holds for any partition which refines Pm. This is
the case in particular if we replace m by any K ≥ m instead of m, even with
K = +∞ (as depicted in Figure 1 on the left). Of course, a finite constant is
needed for decidability results. Finally, we can also consider a g-grid, where all
constants are of the form i

g
, 0 ≤ i ≤ K·g instead of {0, 1, . . . ,K}.

x

y

x

y

Z1 Z2

Fig. 1. Partitions of (R+)2 with K = +∞ and K = 3

In this paper, the elements of the partition are called elementary zones and we
consider a slight variation for their definition: we take a constant K ≥ m+1 and
with each clock x ∈ X, we associate an interval in the set {{0}, ]0, 1[, {1}, . . . , {K−
1}, ]K − 1,K[, [K,+∞[}, instead of keeping {K} separately. As usual, we also
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specify the ordering on the fractional parts for all clocks x such that x < K. Such
a partition is represented in Figure 1 (on the right) for the set of two clocks X =
{x, y} and K = 3. For this example, elementary zones Z1 and Z2 are described
by the constraints: Z1 : (2 < x < 3) ∧ (1 < y < 2) ∧ (0 < frac(y) < frac(x))
and Z2 : (x ≥ 3) ∧ (1 < y < 2).

If Z and Z ′ are elementary zones, Z ′ is a time successor of Z, written Z ≤ Z ′,
if for each valuation v ∈ Z, there is some d ∈ R≥0 such that v +d ∈ Z ′. For each
elementary zone Z, there is at most one elementary zone such that (i) Z ′ is a
time successor of Z, (ii) Z 6= Z ′ and (iii) there is no time successor Z ′′ different
from Z and Z ′ such that Z ≤ Z ′′ ≤ Z ′. When it exists, this elementary zone is
called the immediate successor of Z and denoted by succ(Z).

Standard topological notions on (R≥0)
X apply to elementary zones. More-

over, due to the particular form of the constraints, the topological closure of any
elementary zone has a minimal element.

3 A characterisation of TA bisimilar to TPNs

Regions of a timed automaton. Since our results are mainly based on the
region automaton, we recall its definition [2]. For a TA A, a constant K and a
granularity g, the region automaton R(A)g,K is a finite automaton with states of
the form (ℓ, Z), where ℓ is a location of A and Z an elementary zone of (R≥0)

X .
We call region a pair (ℓ, Z). The regions of R(A)g,K are built inductively

from the initial one (ℓ0,0) by the following transitions over the set of labels

{succ} ∪ Σε: (ℓ, Z)
succ
−−−→ (ℓ, succ(Z)) if succ(Z) |= Inv(ℓ) and (ℓ, Z)

a
−→ (ℓ′, Z ′)

if there is a transition (ℓ, γ, a,R, ℓ′) ∈ E such that Z |= γ and Z ′ = Z[R 7→ 0],
with Z ′ |= Inv(ℓ′). Thus, only reachable regions appear in R(A)g,K . A region
r = (ℓ, Z) is said to be maximal in R(A)g,K with respect to ℓ if no succ-transition
is possible from r. In the sequel, the topological properties of r are implicitly
derived from those of Z. We write r for the topological closure of r, and we
denote by minr the minimal vector of r.

We now give a definition which distinguishes time-closed and time-open de-
scriptions for regions. It is equivalent to the original one but more convenient
for our proofs and it fits both cases, whether K is finite or infinite.

Definition 6 (Region description for automaton R(A)g,K).
A time-closed description of a region r is given by:
- ℓr the location of r,
- minr ∈ NX

g with ∀x, minr(x) ≤ K, the minimal vector of the topological
closure of r,
- ActXr = {x ∈ X |minr(x) < K} the subset of relevant clocks,
- the number sizer of different fractional parts for the values of relevant clocks
in the NActXr

g grid, with 1 ≤ sizer ≤ Max(|ActXr|, 1) and the onto mapping
ordr : X 7→ {1, . . . , sizer} giving the ordering of the fractional parts.
By convention, ∀x ∈ X \ ActXr, ordr(x) = 1.

Then r = {(ℓr,minr + δ) | δ ∈ RX
≥0 ∧ ∀x, y ∈ ActXr[ordr(x) = 1 ⇔ δ(x) =

0] ∧ δ(x) < 1/g ∧ [ordr(x) < ordr(y) ⇔ δ(x) < δ(y)]}
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A time-open description of a region r is defined with the same attributes (and
conditions) as the time-closed one with:
r = {(ℓr,minr + δ + d) | d ∈ R>0 ∧ ∀x ∈ ActXr, δ(x) + d < 1/g}.

The set [X]r is the set of equivalence classes of clocks w.r.t. their fractional parts,
i.e. x and y are equivalent iff ordr(x) = ordr(y).

Remark that minr /∈ r except if there is a single class of clocks relative to r (for
instance if the corresponding zone is a singleton). Of course, when K = +∞, the
part about relevant clocks, for which the value is less than K, can be omitted
(since ActXr = X). This hypothesis makes some proofs simpler, because the
extremal case where a clock value is greater than K is avoided, and it can be
lifted afterward. Furthermore when K is finite, some regions admit both time-
open and time-closed descriptions (for instance a region associated with zone
Z2 in fig. 1), whereas when K = +∞, a region admits a single description, so
that time elapsing leads to an alternation of time-open regions (where time can
elapse) and time-closed ones (where no time can elapse).

Reachability. For a reachable region r of R(A)g,K , not all configurations of r are
reachable. Nevertheless, by induction on the reachability relation, the following
property can be shown: For any reachable region r, there is a region reach(r)
w.r.t. the g-grid and constant K = ∞ such that (i) reach(r) ⊂ r, (ii) each
configuration of reach(r) is reachable and (iii) if reach(r) is a time-open region
then r admits a time-open description else r admits a time-closed description.
As a consequence, we have: ∀x ∈ ActXr,minreach(r)(x) = minr(x) and ∀x ∈
X \ ActXr,minreach(r)(x) ≥ K and ordr restricted to ActXr is identical to
ordreach(r).

Consider now the relation R defined by (l, v) R (l, v′) iff ∀x ∈ X, v′(x) =
v(x) ∨ (v(x) ≥ K ∧ v′(x) ≥ K). It is a strong timed bisimulation relation. From
the previous observations, we note that each configuration of a reachable region
is strongly timed bisimilar to a reachable configuration of this region. Thus
speaking about reachability of regions is a slight abuse of notations.

We can now state our main results.

Theorem 1 (Characterisation of TA bisimilar to some TPN). Let A be a
(label-free) timed automaton and R(A)1,K its region automaton with a constant
K strictly greater than any constant occurring in the automaton, then A is weakly
timed bisimilar to a time Petri net iff for each region r of R(A)1,K and for each
edge e from A,

(a) Every region r′ such that r′ ∩ r 6= ∅ is reachable

(b) ∀(ℓr, v) ∈ r, if (ℓr, v)
e
−→ then (ℓr,minr)

e
−→

(c) ∀(ℓr, v) ∈ r, if (ℓr,minr)
e
−→ then (ℓr, v)

e
−→.

Furthermore, if these conditions are satisfied then we can build a 1-bounded 2-
TPN bisimilar to A whose size is linear w.r.t. the size of A and a 1-bounded
1-TPN bisimilar to A whose size is exponential w.r.t. the size of A.
We denote by T Awtb the corresponding subclass of timed automata.
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ℓ0
x ≤ 1

ℓ1
x ≤ 1

l2

x ≤ 1, a, ∅

x = 1, b, {y}

x ≥ 1 ∧ y ≤ 0, c, ∅

A0 :

ℓ0
x ≤ 1

ℓ1
x ≤ 1

l2
x ≤ 1, a, {y} x ≥ 1 ∧ y ≤ 0, c, ∅

A1 :

Fig. 2. Two automata with different behaviours w.r.t bisimulation with a TPN

Theorem 2 (Complexity results). Given a (label-free) timed automaton A,
deciding whether there is a TPN weakly timed bisimilar to A is PSPACE-
complete. The reachability problem for the class T Awtb is PSPACE-complete.

The characterisation of Theorem 1 is closely related to the topological closure
of reachable regions: it states that any region intersecting the topological closure
of a reachable region is also reachable and that a discrete step either from a
region or from the minimal vector of its topological closure is possible in the
whole topological closure. Consider the two TA A0 and A1 in Figure 2. The
automaton A0 admits a bisimilar TPN whereas A1 does not. Indeed, the region
r = {(ℓ1, x = 1 ∧ 0 < y < 1} is reachable. The guard of edge c is true in
minr = (ℓ1, (1, 0)) whereas it is false in r.

The next section is devoted to a sketch of the proof of Theorem 1. The proof
of Theorem 2 is obtained from Theorem 1 and an adaptation of results in [1].
The complete proofs can be found in [6].

4 Proof of Theorem 1

4.1 Necessary condition

From bisimulation to uniform bisimulation. As a first step, we prove that
when a TPN and a TA are bisimilar, this relation can in fact be strengthened
in what we call uniform bisimulation. We first need a lemma which points out
the effect of time granularity on the behaviour of TPN.

Lemma 1. Let (M,ν) and (M,ν + δ) be two admissible configurations of a g-

TPN with ν, δ ∈ R
En(M)
≥0 . Let w be an instantaneous firing sequence, then:

(i) (M,ν)
w
−→ implies (M,ν + δ)

w
−→

(ii) If ν ∈ Ng
En(M) and δ ∈ [0, 1/g[En(M) then (M,ν + δ)

w
−→ implies (M,ν)

w
−→

Lemma 2 is the central point for the proof of necessity. It shows that bisimula-
tion implies uniform bisimulation for the g-grid with K = ∞. Roughly speaking,
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uniform bisimulation means that a unique mechanism is used for every configu-
ration of the topological closure of the region to obtain a bisimilar configuration
of the net.

Lemma 2 (From bisimulation to uniform bisimulation). Let A be a timed
automaton bisimilar to some g-TPN N via some relation R and let R(A)g,∞ be
a region automaton of A. Then:

– if a region r belongs to R(A)g,∞ then r also belongs to R(A)g,∞;
– for each reachable region r, there exist a configuration of the net (Mr, νr)

with νr ∈ N
En(Mr)
g and a mapping φr : En(Mr) → [X]r such that:

• If r is time-closed, then for each δ ∈ RX
≥0 such that (ℓr,minr + δ) ∈ r,

(ℓr,minr + δ) R (Mr, νr + projr(δ)),
• If r is time-open, then for each δ ∈ RX

≥0, d ∈ R≥0 such that (ℓr,minr +
δ + d) ∈ r, (ℓr,minr + δ + d) R (Mr, νr + projr(δ) + d),

where projr(δ)(t) = δ(φr(t)).

Proof. First note that the choice of a particular clock x in the class φr(t) is
irrelevant when considering the value δ(x). Thus the definition of projr is sound.
The proof is an induction on the transition relation in the region automaton.
The basis case is straightforward with {(l0,0)} and {(M0,0)}. The induction
part relies on lemma 1, with 4 cases, according to the incoming or target region
and to the nature of the step: 1. a time step from a time-closed region, 2. a time
step from a time-open region, 3. a discrete step into a time-closed region, and 4.
a discrete step into a time-open region. ⊓⊔

Proof of Necessity. The fact that conditions (a), (b) and (c) of Theorem 1
hold for R(A)g,∞ is straightforward:
(a) This assertion is included in the inductive assertions.
(b) Let r be a reachable region, let (ℓr,minr + δ) ∈ r be a configuration with

δ ∈ [0, 1/g[X , then ∃(M,ν) ν ∈ N
En(M)
g bisimilar to (ℓr,minr) and (M,ν + δ′)

with δ′ ∈ [0, 1/g[En(M) bisimilar to (ℓr, v + δ). Suppose that (ℓr,minr + δ)
e
−→,

then (M,ν + δ′)
w
−→ with w an instantaneous firing sequence and label(w) = e.

Now by lemma 1-(ii), (M,ν)
w
−→, thus (ℓr,minr)

e
−→.

(c) Let r be a region, and (ℓr,minr + δ) ∈ r with δ ∈ [0, 1/g]X thus ∃(M,ν)
bisimilar to (ℓr,minr) and (M,ν + δ′) with δ′ ∈ [0, 1/g]En(M) bisimilar to

(ℓr,minr + δ). Suppose that (ℓr,minr)
e
−→, then (M,ν)

w
−→ with w an instanta-

neous firing sequence and label(w) = e. By lemma 1-(i), we have (M,ν +δ′)
w
−→,

thus (ℓr,minr + δ)
e
−→.

In order to complete the proof, we successively show that if the conditions
are satisfied in R(A)g,∞ for some g, they also hold for R(A)1,∞, and finally that
they are satisfied in R(A)1,K , with a finite constant K sufficiently large.

4.2 Sufficient condition

Starting from a TA A satisfying the conditions of Theorem 1, we build a 2-TPN
bisimilar to A. We describe the construction, the proof of correctness as well as
the construction of a 1-TPN can be found in [6].
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For this construction, all edges are weighted by 1. Omitted labels for transi-
tions stand for ε. A firing interval [0, 0] is indicated by a blackened transition and
intervals [0,∞[ are omitted. A double arrow between a place p and a transition
t indicates that p is both an input and an output place for t.

W.l.o.g. we assume that an invariant never forbids to enter a state (by adding
constraints to the input transitions). We then remark that x < c occurring in
an invariant of A may be safely omitted. If it would forbid the progress of time
in some configuration, then the associated region would be a maximal time-
open region r. Due to condition (a), r is reachable but since r is time-open,
r ∩ succ(r) 6= ∅, so that succ(r) is reachable which contradicts the maximality
of r.
Clock constraints. The atomic constraints associated with a clock x are arbi-
trarily numbered from 1 to n(x) where n(x) is the number of such conditions.
When x ≤ h occurs in at least one transition and in at least one invariant, we
consider it as two different conditions. Then we add places (Rtodox

i )i≤n(x)+1 for
the reset operations. We build a subnet for each atomic constraint x ⊲⊳ h occur-
ring in a transition of the TA, and one for each condition x ≤ h occurring in
an invariant. Figure 3 below shows the subnets corresponding to x < h (with
h > 0) on the left and x ≤ h on the right. Since constant 1

2 appears in interval
bounds, the resulting TPN is a 2-TPN.

•

Tx<h Fx<h

changex<h

[h − 1
2
, h − 1

2
]

Rtodox
i

Rtodox
i+1

reset1x<h reset2x<h

•

Tx≤h Fx≤h

changex≤h

[h + 1
2
, h + 1

2
]

Rtodox
i

Rtodox
i+1

reset1x≤h reset2x≤h

Fig. 3. The subnets for x < h (with h > 0) and x ≤ h

Locations and edges. With each location ℓ of the automaton, we associate
an eponymous place ℓ. The place ℓ is initially marked iff the location ℓ is the
initial one. The invariant Inv(ℓ) is tested with the subnets corresponding to its
atomic constraints. To simulate an edge (ℓ, γ, a,R, ℓ′), we must test the atomic
constraints from γ = γ1∧. . .∧γm(e), using the places corresponding to true in the
associated subnets, and reset successively all the clocks in R = {x1, . . . , xn(e)}
by instantaneous transitions. This is done by the subnet in Figure 4, which must
be connected to some subsets like those of Figure 3.

This construction is illustrated in Figure 4.2 for the timed automaton A0 from
Figure 2 with some simplifications related to this particular TA. Note that the
subnet associated to the constraint y ≤ 0 switches the condition to false (marking
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Tγ1

Tγ2

Tγm

...

. . .

. . .

. . .

ℓ

W 1
e W 2

e W
n(e)
e

Rtodox1
1

Rtodox1
n(x1)+1 Rtodox2

n(x2)+1

Rtodox2
1 Rtodo

x
n(e)

1

Rtodo
x

n(e)

n(x
n(e))+1

ℓ′

firee, a

next1e next
n(e)
e

Fig. 4. The subnet for edge e = (ℓ, γ = γ1 ∧ . . . ∧ γm(e), a, R = {x1, . . . , xn(e)}, ℓ
′)

•

•

•

[1/2, 1/2]

c, [0, +∞[ l2ℓ1

Fy≤0

ℓ0

a, [0, +∞[

b, [0, +∞[

Tx≥1[1, 1]

inv0

Fig. 5. A 2-TPN bisimilar to A0

Fy≤0) when the implicit value of y maintained in the net reaches 1/2. This
translation thus seems less constrained than the original condition. However,
conditions (b) and (c) ensure that the configurations where both constraints do
not simultaneously hold are not reachable.

5 Conclusion

In this paper, we considered the (semantic) subclass T Awtb of labeled-free TA
such that a timed automaton A is in T Awtb if and only if there is a TPN N
weakly timed bisimilar to A. We obtained a characterisation of this class, based
on the region automaton associated with A. To prove that our condition is nec-
essary, we introduced the notion of uniform bisimulation between TA and TPNs.
For the sufficiency, we proposed two constructions. From this characterisation,
we have proved that for the class T Awtb, the membership problem and the
reachability problem are PSPACE-complete. The techniques introduced here
also lead to a similar characterisation for TA with diagonal constraints and to a

11



simpler one for TA without strict or diagonal constraints (see [6]). These tech-
niques also give some insight for use of the region automaton in order to obtain
expressivity results. Further work would consist in finding a characterization for
a larger class of intervals.
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