
Web-MASI : Multi-Agent Systems Interoperability
Using a Web Services Based Approach

Tarak Melliti
Serge Haddad

LAMSADE, University of Paris Dauphine
{melliti, haddad}@lamsade.dauphine.fr

Alexandru Suna
Amal El Fallah Seghrouchni
LIP6, University of Paris 6

{Alexandru.Suna,Amal.Elfallah}@lip6.fr

Abstract

In this paper we present a conceptual and architec-
tural framework for the multi-agent systems’ interoperabil-
ity based on Web services. Agents publish their abilities as
Web Services that can be used by other agents, indepen-
dently of conceptual (e.g. architecture) or technical (e.g.
platform, programming language) aspects. The proposed
architecture and concepts have been tested and validated
using the CLAIM language and the SyMPA platform.

1. Introduction

In this paper we present a conceptual and architectural
framework for the interoperability of heterogenous multi-
agent systems (MAS). The main objective of the interoper-
ability is to allow communication and cooperation between
several software systems (similar or heterogenous) in or-
der to reduce the integration cost. We distinguish three lev-
els of interoperability: the technological level, the syntacti-
cal level and the semantical level.

As software systems, MAS are equally confronted with
the interoperability issue, more especially as their vocation
to autonomously interact and cooperate is the essence of
their existence. The cognitive agents often exhibit a goal-
driven behavior. So interoperability cannot be limited to a
simple service invocation but requires the development of:
1) sophisticated mechanisms for research of services able to
satisfy current needs; 2) complex interaction models.

The MAS interoperability has been promoted by various
institutions such as FIPA,1 which deploys enormous efforts
for proposing standards ensuring interoperability at various
levels of the MAS architectures [3]. We can mention FIPA-
ACL at the communication level, DAML+OIL [9] at the se-
mantical level, AAA2 at the architectural level, etc.

1 Foundation for Intelligent Physical Agents: http://www.fipa.org/
2 Abstract Agent Architecture

Nevertheless, instead of ensuring interoperability be-
tween heterogenous MAS, the interoperability is condi-
tioned by the compatibility of the MAS with the FIPA spec-
ifications. Moreover, the level of cognition required by the
FIPA specifications (e.g.FIPA-ACL) makes difficult the in-
teroperability between heterogeneous MAS.

In the software engineering domain, as testified by the
normalization and development efforts concerning the Web
Services [1], they offer today a credible support allowing
applications to expose their functionalities through stan-
dardized and increasingly experimented interfaces.

We witness today a connection between the MAS and
the Web Services, following several directions:

1. Using MAS as a mediating entity in the functional model
of the Web Services [7].
2. Using Web Services as a technological and architectural
framework for building MAS accessible through the Web.
In this type of application, agents offer their capabilities
through Web Services. We distinguish two categories:

- An integrated conception: the Web Services are developed
following an agent model, in order to carry out complex
tasks (e.g.[5]).
- An uncoupled conception: starting from a MAS givena
priori , a Web Services based layer makes agents’ capabili-
ties accessible through the Web for other agents or for tra-
ditional client applications [6].
In this paper we propose an uncoupled conception. Compar-
ing with [6], which is limited to a syntactic translation from
an interface language to another one (SD towards WSDL),
our approach includes the following original aspects:

- Algorithms for the synthesis of the service’s behavior and
of a client supporting the functionalities of the interaction
protocol.
- A method allowing to identify the parts to be rewritten and
to choose the level of integration.

Based on Web Services, the interoperability environment
we propose, named Web-MASI (Web-MAS Interoperabil-
ity) relies on two elements: an architecture which encapsu-



lates the MAS in the functional model of the Web Services
and an interoperability module which constitutes the inter-
face between the MAS and the Web Services environment.
The proposed architecture as well as the introduced con-
cepts were tested and validated using the CLAIM language
and the SyMPA platform [2].

2. Web Services at a glance

2.1. Functional model

The Web Services model relies on a service oriented ar-
chitecture [1] based on three main categories of actors: the
service providers(i.e. entities responsible for the Web Ser-
vice), theclientsacting as intermediaries for the services’
users and thedirectoriesoffering to suppliers the possibil-
ity to publish their services and to customers the means for
locating their requirements in term of services.

The architecture’s dynamics can be decomposed in: pub-
lication of the service’s description, the localization of the
service and the service’s invocation. This dynamics is nor-
malized through several standards:SOAP - an abstract pro-
tocol for describing and structuring messages,UDDI - an
XML specification for directories andWSDL - a format for
the description of the Web Services published in directories.
A WSDL service is composed of a set of elementary oper-
ations, each one described by the message flow exchanged
between the client and the service.

2.2. Complex Web Services: operational and se-
mantic aspects

However, the current state of the Web Services model
presents conceptual limits that lead to two main com-
plementary research directions. On the one hand, the
directories taxonomies are not expressive enough to al-
low a fine correspondence between the user’s needs and
the available services. In this direction, the current re-
searches belong to the semantic Web domain (e.g.OWL-S).
On the other hand, the WSDL semantics is not expres-
sive enough to support certain types of services requir-
ing a long interaction, controlled by an explicit model of
process. Several extensions of WSDL were proposed in or-
der to support complex Web Services, such as Xlang,
WSFL, BPEL4WS, etc. [8]. These languages propose a
set of operators which apply in a modular way to the ba-
sic units of the exchange of messages. In this work
we are using Xlang for describing the service’s behav-
ior. Here are the main Xlang constructors. The nota-
tions !o[m] and ?o[m] represent the WSDL operations
for message transmission and reception, whiler[e] repre-
sents the raising of the exceptione.

- P ;Q sequentially executes P followed by Q.

- switch[{Pi}i∈I ] : following an internal choice, the ser-
vice behaves in a non deterministic manner executing one
of thePi processes.
- pick[{(mi, Pi)}i∈I , d,Q] : if the service receives a mes-
sagemi, it executesPi. If none of themi messages is re-
ceived ind units of time, it behaves asQ.
- context[P, E] constructor defines a serviceP guarded by
certain events defined in the set of eventsE.

The observable description of the service makes (by con-
struction) its behavior non deterministic, which makes the
interaction process non trivial. In a previous paper [4], we
tried to solve this problem. First, we defined an operational
semantics for Xlang in order to represent the service’s be-
havior as a timed automata. Then, we defined an interaction
relation that must verify the client and the Web Service. Fi-
nally, we designed an algorithm which, given the service’s
behavior description (Xlang or others), either builds a cor-
rect client or detects the service’s ambiguity. This work also
provided an implementation of a generic client able to in-
teract with complex Web Services.

3. Integrating heterogenous MAS

3.1. Interoperability architecture

The interoperability environment we propose (figure 1),
Web-MASI, relies on two key elements: an architecture
which encapsulates the MAS in the functional model of the
Web Services and an interoperability module which consti-
tutes the interface between the MAS and the Web Services
environment. In our interoperability architecture, agents are
in the same time providers and consumers of services. They
use UDDI directories for publishing their capabilities in or-
der to be discovered and used by other agents, in a modu-
lar and uniform way. The interoperability module (IM) of-
fers, to various MAS, tools for synthesizing, publishing, lo-
cating and invoking Web Services. The service’s invocation
and execution are carried out by our generic client contained
in the IM.

Figure 1. Environment’s architecture



3.2. Requirements

We made efforts for minimizing the functional require-
ments on the MAS in order to minimize the integration cost
and consequently to cover a wide range of MAS models.
Nevertheless, these MAS must present certain characteris-
tics. At the MAS level, every agent must have a unique iden-
tity. This requirement is essential for the correct behavior of
the IM. At the agent level, the requirements relate mainly
to the conditions of the interaction initiative and process.
The elements which play a part in the agent’s execution are
thegoals, thecapabilities(tasks provided with a description
covering the aspects related to its effects, invocation and ex-
ecution (see 3.3.1)) and the initiative for proposing and re-
questing capabilities. The functional requirements are de-
fined at an abstract level.

3.3. The dynamics of the interoperability
environment

The interoperability module (IM) we propose must be
deployed on every computer hosting agents. It is composed
of two submodules which respectively achieve the function
of publication (P) and the functions of research and invoca-
tion (RI) of service. Figure 2 presents the IM dynamics.
a) Publication (P)
1) An agentAi decides to publish one (or several) of his ca-
pabilities (C1 on the figure).
2) Starting from the capability’s description, the module P
generates a Web Service (AiC1) and deploys it on the lo-
cal Web server (see 3.3.1).
3) The service’s description is published using UDDI.
b,c) Research and invocation (RI)
4) An agent (Aj) uses the RI module’s functionalities in or-
der to find services satisfying his needs.
5) The RI module questions the UDDI directories.
6) The RI module receives from the directories a set of Web
Services corresponding to its search criteria.
7) The RI module autonomously starts the invocation of the
discovered services in order to find their various attributes.
8) The RI module sends the located services to the agent.
9) The agent (Aj) selects a service.
10) The RI module concurrently sends confirmation mes-
sages to the chosen services and annulation messages to the
other considered services.
11) The service receiving the activation message, translates
it in a format understandable by the agent.
After the successful execution of the capability, the request-
ing agent is informed of the result using the same IM.

One of the strong features of our architecture is that the
deployed Web Service is not limited to the capability’s in-
vocation, but integrates the negotiation phase and the exe-

cution tracking. This is made possible by the algorithm of
service synthesis.

3.3.1. Informal description of the algorithm for service
synthesis.

The synthesis algorithm takes as input an XML descrip-
tion of the capability and of its attributes. We can distin-
guish three categories of elements composing this descrip-
tion.

Agent’s description containing the identity of the agent
providing the capability, as well as optional additional in-
formation.
Capability’s description containing a semantic description
composed of four XML elements, such as its name, its pre
and post conditions and the messages necessary for the in-
teraction process. The postcondition is the key element for
the research in the UDDI directories.
Interaction’s description is optional but improves the con-
ditions of the interaction. It is composed of static and dy-
namic attributes. The static attributes define the aspects of
the capability execution knowna priori, such as temporal
constraint, the possibility of annulation, etc. The values of
the dynamic attributes (e.g.agent’s availability, QoS, etc.)
are established at the interaction time.

The invocation of the corresponding capability has
two phases: a negotiation phase and capability’s execu-
tion phase.

1. The negotiation phasestarts when the service re-
ceives a message requesting an interaction. The aim
of this phase is to obtain the dynamic attributes’ val-
ues. Here is a generic example concerning this phase :
negotiation :?o[request interaction];

switch(!o[attributes]; execution, !o[reject])

2. The execution phase.The Xlang service depends
on the capability’s description. The interaction neces-
sary for the execution of the capability is encapsulated in
a context block controlled by events generated from at-
tributes such as cancelling messages, timeouts, etc. The
body of thecontext block consists in the flow of mes-
sages of the capability’s execution,e.g.:
execution : context[?o[invocation];

switch(!o[result]; !o[problem]),
[pick[(cancel, !o[abort]), (delay max, !o[timeout])]

For every capability description the synthesis algorithm
generates the two phases Web service and the correspond-
ing WSDL-Xlang files (published in UDDI).

4. Experiments using CLAIM and SyMPA

In this section we present the integration process per-
formed in order to validate our approach. CLAIM [2] is an
agent oriented programming language allowing to design



Figure 2. Interoperability Module’s dynamics

and implement intelligent and mobile agents distributed on
several connected computers. CLAIM agents meet the re-
quirements defined in section 3.2. They are guided by goals,
that can be achieved by executing capabilities. The language
is supported by a distributed platform, called SyMPA [2].
The integration process consisted in developing an addi-
tional layer to SyMPA, an interface toward the interoper-
ability module (IM).

Concerning thepublication phase, we developed a
method generating a Web-MASI description of a CLAIM
capability.

For researchingservices, without the IM, CLAIM offers
to agents mechanisms for presenting their capabilities or for
searching and requesting capabilities from other CLAIM
agents. Adding the IM, an agent can publish his capabili-
ties and can requests services from other agents, belonging
to other platforms or MAS, deployed as Web services.

When an agent choose a Web Service, he uses the IM’s
functionalities toinvokethe service.

Theexecutionof a published capability is directed influ-
enced by the elements created during the publication phase.
When a deployed Web Service receives an invocation SOAP
message, it has to forward the invocation in a CLAIM for-
mat to the concerned agent.

In conclusion, adapting the IM for CLAIM and SyMPA
proved to be easy. This integration required the develop-
ment of small conversion modules between the Web-MASI
format and the CLAIM format and the integration in the
agents’ code of the invocations of the provided APIs.

5. Conclusion and future work

This paper presented a conceptual and architectural
framework based on Web Services for the interoperabil-
ity of heterogenous MAS. The proposed interoperabil-
ity environment, Web-MASI, is composed of two el-
ements: an encapsulation of MAS in the functional

model of the Web Services and an interoperability mod-
ule which constitutes the interface between the MAS
and the Web Services environment. Concerning the fu-
ture work, as a short time objective, we intend to inte-
grate OWL-S ontologies in the semantic description of the
agents’ goals.

References

[1] F. Curbera, W. A. Nagy, and S. Weerawarana. Web services:
Why and how?OOPSLA 2001 Workshop on Object-Oriented
Web Services, 2001.

[2] A. El Fallah Seghrouchni and A. Suna. Claim: A computa-
tional language for autonomous, intelligent and mobile agents.
LNAI, 3067:90–110, 2004.

[3] B. R. A. Flores-Mendez. Standardization of multi-agent sys-
tem frameworks.ACM Crossroads, 5(4), 1999.

[4] S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. Mod-
elling web services interoperability. InProceedings of the
Sixth International Conference on Entreprise Information Sys-
tems, pages 287–295, Porto, Portugal, 2004.

[5] T. Jin and S. Goschnick. Utilizing web services in an agent
based transaction model (ABT). InWorkshop on Web services
And Agent-based ingineering, Melbourne, Australia, 2003.

[6] M. Lyell, L. Rosen, M. Casagni-Simkins, and D. Norris. On
software agents and web services: Usage and design concepts
and issues. InWorkshop on Web services And Agent-based in-
gineering, Melbourne, Australia, 2003.

[7] D. Richards, S. van Splunter, F. M. Brazier, and M. Sabou.
Composing web services using an agent factory. InWorkshop
on Web services And Agent-based ingineering, Melbourne
Australia, 2003.

[8] S. Staab, W. van der Aalst, V. R. Benjamins, A. Sheth, J. A.
Miller, C. Bussler, A. Maedche, D. Fensel, and D. Gannon.
Web services: Been there, done that?IEEE Intelligent Sys-
tems: volume 18, pages 72–85, 2003.

[9] The OWL Services Coalition. OWL-S, Mars 2003.
http://www.daml.org/services.


