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Abstract

Well-formed Nets (WNs) have proved an efficient model
for building quotient reachability graphs that can be used
either for qualitative or performance analysis. However,
local asymmetries often break any possibility of grouping
states into classes, thus drastically reducing the interest of
the approach. An efficient solution has been proposed for
qualitative analysis, which relies on a separate representa-
tion of the asymmetries in a so-called control automaton.
The quotient graph is then obtained by synchronising the
transitions of the WN model with the transitions of the con-
trol automaton. In this paper, we improve this approach
to quantitative analysis. We show that it can be used to
build an aggregated graph that is isomorphic to a Markov
chain which verifies exact lumpability. Theoretical consid-
erations and practical experiments show that our method
outperforms previous approaches.

1 Introduction

Continuous Time Markov Chains (CTMC) are a popu-
lar model for evaluating the performance of distributed sys-
tems. However, as the complexity of systems increases, the
fighting of the so-called combinatorial explosion of the state
space becomes more and more critical. A possible approach
to tackle this problem is the construction of alumped CTMC
using behavioural symmetries. Such a CTMC offers a com-
pact representation of the state space because its nodes are
no longer states but classes of states.

Whenever the distributed system is specified by a Well-
formed Net (WN) with their restricted syntax (w.r.t. general
coloured Petri nets), a symmetry-based quotient structure
called Symbolic Reachability Graph (SRG) can be com-
puted automatically. On this reduced graph, one solves the
reachability problem and more generally the truth of tem-
poral logic formulae whenever the atomic propositions of

the formula are symmetrical (e.g.ANDc∈C(p)m(p)(c) =
1). [5] establishes the correctness of this checking in a gen-
eral framework. Moreover, since the SRG verifiesstrong
and exact lumpabilitycriterions, a lumped CTMC is au-
tomatically derived from it and any performance result
obtained by solving the (usually much larger) complete
CTMC, is also computed from the lumped one [4]. The
SRG technique works well on highly symmetrical systems.
However, in the practice of distributed systems, it is of-
ten the case that a system behaves in a symmetric way in
most situations,but not all. Any occurrence of asymmetry,
even exceptional, reduces drastically the benefices of this
approach.

Many approaches were proposed to study suchasymmet-
rical systems. In [6], the authors propose to adapt the sym-
metry rule in accordance with the system specification, to
view some groups of almost symmetrical states as symmet-
ric. To our knowledge, there is no tool to automate this task
thus limiting the practical interest of the approach, more-
over no quantitative extension exists.

An other technique named ESRG was proposed in [8], as
an extension of the SRG technique. It consists in restraining
the symmetries but only on the nodes from which the effects
of asymmetric events must be considered. This leads to a
reduction in the number of nodes, because one node of the
ESRG can represent several classes explicitly represented
in the SRG. The ESRG technique is still automatic from
the well-formed net specification, and some practical stud-
ies show that the constructed CTMC remains compact, in
particular whether the refinement operation over an equiv-
alence class has no side effect [9]. Nevertheless, the com-
putation of the lumped CTMC is not direct [3] : the build-
ing of the ESRG is the starting point from which a refine-
ment process is performed leading to a partial unfolding of
nodes up to verify a strong lumpability criteria. Further-
more, the exact probabilities of states cannot be expressed
since the chosen criteria does not guaranty the equiproba-
bility of states lumped under the same node. An additional



extension was proposed in [2] named E2SRG. Although
there is no current implementation, the first case studies
show than it can be more compact than the ESRG, anyway,
it is used to solve reachability problems and the adaptation
required to obtain a lumped CTMC is still expected.

In this paper, we propose a new symbolic method for
building a lumped CTMC automatically and directly. It
is based on a alternative construction, primitively used to
check the truth of LTL temporal properties for asymmetric
systems [1, 7]. Hence, the system is defined as a synchro-
nized product of models: a symmetric system and anevent-
basedautomaton to model the symmetric behaviour com-
pactly. Symbolic operations are defined in order to split
or group symbolic nodes, on-the-fly, during the computa-
tion of successors. This allows to adapt, dynamically and
locally, the available symmetries for each reachable node.
We propose to reuse such an approach for performance pur-
poses, moreover anexact lumpabilitycriterion is used to
compute the lumped CTMC. Hence, state probabilities can
be computed.

The schedule of this paper is the following: section 2
introduces the principles of our method, introducing the no-
tion of Partially Symmetrical CTMC; section 3 is our appli-
cation to WNs to obtain an automatic performance analysis
tool; section 4 considers a use case extracted from the lit-
erature on which we show the benefit of our construction
over the RG approach; section 5 contains our conclusions
and perspectives.

2 Principles of the Generic Method

2.1 Markov Chains and Lumpability

Lumping of (finite) Markov chains is a useful method
for dealing with large chains [10]. The principle is simple:
substitute to the Markov chain an “equivalent” one, where
each state of the lumped chain is an equivalence class of
states of the original one. There are different versions of
lumpability related to the fact that the lumpability condition
holds for every initial distribution (strong lumpability) or
for at least one (weak lumpability).

Definition 1 A CTMCC is defined by a space setS, an in-
finitesimal generatorQ, andπ0, an initial probability distri-
bution overS. We note{Xt}t∈IR+ the associated stochas-
tic process. LetC be a CTMC and{Si}i∈I be a partition
of the state space. LetYt be a random variable defined by
Yt = i ⇔ Xt ∈ Si. Then:

• Q is strongly lumpable w.r.t. {Si}i∈I iff ∀π0,
{Yt}t∈IR+ is a CTMC,

• Q is weakly lumpable w.r.t. {Si}i∈I iff ∃π0 s.t.
{Yt}t∈IR+ is a CTMC.

Whereas the characterisation of strong lumpability w.r.t.
the infinitesimal generator is straightforward, checking for
weak lumpability is much harder. Nevertheless, there is a
particular case of weak lumpability whose characterisation
is easy: theexact lumpability[12].

Proposition 2 LetC be a CTMC and{Si}i∈I be a partition
of the state space. Then:

• Q is strongly lumpable w.r.t.{Si}i∈I iff ∀i 6= j ∈
I,∀s, s′ ∈ Si,

∑
s′′∈Sj

Q(s, s′′) =
∑

s′′∈Sj
Q(s′, s′′)

• Q is exactly lumpable w.r.t.{Si}i∈I iff ∀i 6= j ∈
I,∀s, s′ ∈ Si,

∑
s′′∈Sj

Q(s′′, s) =
∑

s′′∈Sj
Q(s′′, s′).

If Q is exactly lumpable w.r.t. {Si}i∈I , then Q is
weakly lumpable w.r.t.{Si}i∈I .

Furthermore, exact lumpability fulfills important proper-
ties. As for strong lumpability, the infinitesimal generator
of the lumped chain is directly computed from the original
generator. Starting with a distribution equidistributed on the
states of every subset of the partition, the distribution at any
time is still equidistributed. Consequently, if the CTMC is
ergodic, its steady-state distribution is equidistributed. In
other words, with the knowledge of the lumped chain gen-
erator, one may compute its steady-state distribution, and
deduce (by equidistribution) the steady-state distribution of
the original chain. It must be emphasised that this last step
is impossible with strong lumpability. The next proposition
summarises these results.

Proposition 3 Let C be a CTMC that is exactly lumpable
w.r.t. a partition of the state space{Si}i∈I . LetQlp be the
matrix associated to this lumped CTMC, then:

• ∀i, j ∈ I, ∀s ∈ Sj , Q
lp(i, j) = (

∑
s′∈Si

Q(s′, s)) ×
(|Sj |/|Si|)

• If ∀i ∈ I,∀s, s′ ∈ Si, π0(s) = π0(s′) then∀t,∀i ∈
I,∀s, s′ ∈ Si, πt(s) = πt(s′), whereπt is the proba-
bility distribution at timet.

• If Q is ergodic andπ is its steady-state distribution
then∀i ∈ I, ∀s, s′ ∈ Si, π(s) = π(s′)

2.2 A Model of Partially Symmetrical CTMCs

The model of partially symmetrical systems that we de-
velop here is defined as a CTMC obtained by some synchro-
nised product between a (symmetrical) CTMC and a control
automaton. Let us first formalise this product. Synchronis-
ing the behaviour of the two components requires to “label”
the CTMC with events.

Notation Let C be a CTMC, we associate with each pair of
statess 6= s′ a label in some alphabetΣ, denotedΛ(s, s′).
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Figure 1. A labeled CTMC and its control au-
tomaton

Since the automaton is introduced in order to modify the
behaviour of the CTMC, the label of each edge is a predi-
cate that selects the events allowed to occur in the current
location of the automaton.

Definition 4 LetC be a CTMC, thenA = 〈L, l0,→〉 a con-
trol automaton ofC is defined by:

• L, the set of automaton locations,

• l0, the initial location,

• →⊆ L × 2Σ × L the transitions of the automaton. A
transition(l, γ, l′) will be denoted byl

γ−→ l′.

Fig.1 represents a CTMC and its control automaton.
Bold letters are labels, while greek letters represent tran-
sition rates. The numbers associated with states are their
initial probabilities.

In the synchronised product defined below, the CTMC
is the “active” component whereas the automaton inhibits
some behaviours of the product. Consequently, the rates
(resp. the initial distribution) associated with the product
depends only on the rates (resp. the initial distribution) of
the CTMC.

Definition 5 Let C be a CTMC andA some control au-
tomaton ofC. CA = 〈S × L, π′0, Q

′〉 is a CTMC defined
by:

• ∀s, π′0(s, l0) = π0(s) ∧ ∀l 6= l0, π
′
0(s, l) = 0

• ∀s 6= s′ ∈ S, ∀l, l′ ∈ L, if l
γ−→ l′ ∧ Λ(s, s′) ∈ γ then

Q′((s, l), (s′, l′)) = Q(s, s′) else
Q′((s, l), (s′, l′)) = 0

• ∀s ∈ S, ∀l 6= l′ ∈ L, Q′((s, l), (s, l′)) = 0

In the example of Fig.1, the control automaton actually
forbids transitions that are not labelled witha or b. Hence,
CA is obtained fromC by removing the dotted arcs.

Formally, the states ofCA are pairs(si, l) but as there is
only one location in the automaton, we will omit it in the
representation of states throughout the example.

From a theoretical point of view, the specification of the
system symmetries relies on group theory, applied to the
states and the events of the system. The next definition re-
calls the appropriate notions.

Definition 6 LetG be a group, with neutral elementid and
whose internal operation is denoted (•).

• Let E be a set, anoperationof G on E is a mapping
from G × E to E s.t. the image of(g, e), denoted by
g.e, fulfills: ∀e ∈ E id.e = e
∀g, g′ ∈ G, (g • g′).e = g.(g′.e)

• The isotropy subgroupof a subsetE′ ⊆ E is defined
by: GE′ = {g ∈ G | ∀e ∈ E′, g.e ∈ E′}

• LetH be a subgroup ofG, theorbit of e byH denoted
H.e, is defined by:{g.e | g ∈ H}.
The set of orbits byH defines a partition ofE.

We simultaneously introduce the notions of symmetrical
and partially symmetrical CTMC. Informally, a CTMC is
symmetricalw.r.t. some group if the operation of the group
on the state space preserves its initial distribution and sto-
chastic behaviour. A CTMC ispartially symmetricalif it is
a synchronised product involving a symmetrical CTMC.

Definition 7 A CTMCC is symmetrical w.r.t.G a group
operating onS andΣ iff: ∀g ∈ G, ∀s 6= s′ ∈ S, π0(g.s) =
π0(s) ∧ Q(g.s, g.s′) = Q(s, s′) and Λ(g.s, g.s′) =
g.Λ(s, s′).

Let C be symmetrical w.r.t.G andA be a control au-
tomaton ofC, thenCA is said to be partially symmetrical
w.r.t. G.

We associate with eachγ occurring in a transition ofA
a subgroupHγ ⊆ G defined by:g ∈ Hγ iff ∀a ∈ Σ, a ∈
γ ⇔ g.a ∈ γ.

The size of the subgroupHγ is an indicator of the sym-
metry of the associated edge. WhenHγ = G, the edge is
“fully” symmetrical whilst whenHγ = {id}, the edge is
“fully” asymmetrical.

Back to the example of Fig.1, letG = {id, r, r • r},
wherer is defined by :
r.s0 = s0 r.s1 = s2 r.s2 = s3 r.s3 = s1

r.s4 = s5 r.s5 = s6 r.s6 = s4

r.a = a r.b = c r.c = d r.d = b
It is easy to verify thatG is a group and that the CTMC

is symmetrical w.r.t.G. The subgroups associated with the
labels ofA areHγ1 = G andHγ2 = {id}.



2.3 Partially Symmetrical CTMCs and Lumpa-
bility

Given a partially symmetrical CTMCCA, our method
builds a smaller (but equivalent) CTMC. However, in order
to prove the soundness of this construction, we first intro-
duce a CTMCCG

A , which is actually bigger thanCA.
In CG

A , states ofCA are replicated in instances, and in-
stances are organised in subsets. All the instances that be-
long to the same subset must have the same associated lo-
cation of the automaton. We will thus consider subsetsR
of states of the initial CTMCC, and denote(s, l, R) the in-
stance of(s, l) s.t. s belongs toR.

Intuitively, given two states(s, l, R) and(s′, l, R) of CG
A ,

any path leading to(s, l, R) may be transformed by the op-
eration of some element ofG into a path to(s′, l, R).

Definition 8 LetCA be partially symmetrical w.r.t.G, then
the CTMCCG

A = 〈S′′, π′′0 , Q′′〉 is inductively defined by:

• The set of statesS′′ is a union of subsets of items de-
fined from a setR ⊆ S and a locationl by {(s, l, R) |
s ∈ R},

• ∀s ∈ S, ∀l ∈ L, ∀R ⊆ S,
if (l = l0 ∧R is an orbit byG ∧ s ∈ R) then

π′′0 (s, l, R) = π′0(s, l0) (= π0(s))
elseπ′′0 (s, l, R) = 0,

• The “initial” subsets of states are{(s, l, R)} s.t. R is
the orbit ofs byG ∧ π′′0 (s, l, R) > 0 ,

• If {(s, l, R)} is a subset of states and∃s∗ ∈ R, ∃s′∗ ∈
S, ∃l γ−→ l′ ∧ Λ(s∗, s′∗) ∈ γ then the subset
{(s′, l′, R′)} with R′ = (GR∩Hγ).s′∗ is another sub-
set of states,

• ∀g ∈ GR ∩ Hγ , let s = g.s∗ and s′ = g.s′∗ then
Q′′((s, l, R), (s′, l′, R′)) = Q(s, s′)

Remarks

1. Let s = g.s∗ and s′ = g.s′∗, since Q(s, s′) =
Q(g.s∗, g.s′∗) = Q(s∗, s′∗), the transition rate does
not depend on the chosen pair.

2. Furthermore the above subset construction does not
depend on the choice ofs∗ and s′∗ in the following
sense. Let us pick somes′ ∈ (GR ∩ Hγ).s′∗, thus
s′ = g.s′∗ with g ∈ GR ∩Hγ . Defines = g.s∗, then
s ∈ R(⊇ GR.s∗) andΛ(s, s′) ∈ γ. Now it is routine
to show that(GR ∩Hγ).s′ = (GR ∩Hγ).s′∗.

Fig.2 describes CTMCCG
A for our example. Dotted rec-

tangles represent the subsets of states. The initial subsets
are those with associated orbitsS0 = {s0} and S123 =
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{s1, s2, s3}. A group is associated with each subset: the
group isG for the initial subsets and remainsG for the con-
structed subsets until there is a synchronisation withγ2. At
that moment, the group is reduced to identity by intersec-
tion with Hγ2 and the constructed subset contains a single
state. As a consequence, there are two instances ofs5 in the
resulting CTMC, each with a different associated orbit.

In fact, the stochastic process we want to build is ob-
tained by forgetting the instances and only memorising the
subsets.

Definition 9 LetCA be partially symmetrical w.r.t.G, then
the stochastic process(CG

A)lp is defined by:X lp
t = (R, l)

iff X ′′
t ∈ {(s, l, R)}.

The resulting process for the example is given in Fig.3.
The initial distribution and the transition rates are computed
according to Prop.3.

The next proposition is the theoretical core of our
method. It states that(CG

A)lp is obtained fromCA by the
inverse of a (strong) lumping followed by an exact lump-
ing.

Proposition 10 Let CA be partially symmetrical w.r.t.G,
then:

• Denoting (s0, l0) . . . , (sn, ln) the state space ofCA,
CA is a strong lumping ofCG

A w.r.t. the partition
{(s0, l0, R)}R⊇{s0}, . . . , {(sn, ln, R)}R⊇{sn}



• Denoting {(R0, l0), . . . , (Rk, lk)} the state space of
(CG
A)lp, (CG

A)lp is an exact lumping ofCG
A w.r.t. the

partition {(s, l0, R0)}s∈R0 , . . . , {(s, lk, Rk)}s∈Rk

Proof
Let (s, l) be a state ofCA and let(s, l, R) be a state ofCG

A ,
we show that there is a bijective mapping from the transi-
tions out of(s, l) onto the transitions out of(s, l, R). Due
to the above remark we suppose that(s, l, R) is examined
when looking for successors of{(s′, l, R) | s′ ∈ R} in
Def. 8. Then∃s′, ∃l γ−→ l′ s.t. Λ(s, s′) ∈ γ ⇔ ∃R′, ∃s′ ∈
R′, ∃l γ−→ l′ s.t. Λ(s, s′) ∈ γ with R′ = (GR ∩ Hγ).s′.
Since this mapping preserves the rate of the transitions the
condition of Prop. 2 for strong lumpability is fulfilled.

Let (s1, l, R) and(s2, l, R) be two states ofCG
A , we show

that there is a bijective mapping from the input transitions
of (s1, l, R) onto the input transitions of(s2, l, R). Let
(v1, l

′, R′) be such that∃l′ γ−→ l andΛ(v1, s1) ∈ γ. Due
to the same remark,∃g ∈ GR′ ∩ Hγ s.t. s2 = g.s1. Now
definev2 = g.v1, thenv2 ∈ R′ andΛ(v2, s2) ∈ γ. This
implies the existence of the required mapping. Since this
mapping preserves the rates of transitions, the condition of
Prop. 2 for exact lumpability is fulfilled. ♦

Our generic method can now be described. Assume first
that the CTMCCA associated with the high-level modelM
we want to analyse is partially symmetrical. Assume also
that we are able to compute directly(CG

A)lp fromM. Note

πt the unknown distribution ofCA at time t andπ
(lp)
t the

(computed) distribution of(CG
A)lp at timet. Thenπt(s, l) =∑

s∈R(1/|R|) × π
(lp)
t (R, l). The equality also holds for

the steady-state distributions. The next section will show
that the assumptions above are satisfied in the framework of
SWNs. In fact, we believe that our method is applicable to
any model where symmetry is automatically handled.

Although theoretically difficult, we can give some hints
of how the space complexity decreases using our approach.
In the lumped CTMC, the original states have been sub-
stituted by subsets. Note that these subsets may intersect.
However these subsets are always the orbit of a state by a
subgroup ofG. Thus, the larger these subgroups, the bet-
ter the method. Note that each time a new subset is built,
the group is reduced (by intersection withHγ) and then is
enlarged by implicitly substituting toG ∩ Hγ the isotropy
subgroup of the subset. Interpreting this phenomenon at the
model level, we deduce that the complexity reduction fac-
tor is high whenever the effect of an asymmetrical event is
forgotten in a close future. Experimentations will illustrate
this interpretation.

3 Application to Stochastic Well-formed Nets

3.1 Presentation of the model and the symbolic
reachability graph

WNs are a model of high-level Petri nets whose syntax
has been the starting point of numerous efficient analysis
methods. Below, we describe the main features of WNs.
The reader can refer to [4] for a formal definition:

• In a WN (and more generally in high-level nets) a
colour domain is associated with places and transi-
tions. The colours of a place label the tokens contained
in this place, whereas the colours of a transition define
different ways of firing it. In order to specify these fir-
ings, a colour function is attached to every arc which,
given a colour of the transition connected to the arc,
determines the number of coloured tokens that will be
added to or removed from the corresponding place. Fi-
nally the initial marking is defined by a multi-set of
coloured tokens in each place.

• A colour domain is a cartesian product of colour
classes which may be viewed as primitive domains.
This product is possibly empty (e.g., a place which
contains neutral tokens) and may include repetitions
(e.g., a transition which synchronises two colours in-
side a class). A class can be divided into static sub-
classes. The colours of a class have the same nature
(processes, resources, etc.), whereas the colours in-
side a static subclass have the same potential behaviour
(batch processes, interactive processes, etc.).

• A colour function is built by standard operations (lin-
ear combination, composition, etc.) on basic functions.
There are three basic functions: a projection which se-
lects an item of a tuple and is denoted by a typed vari-
able (e.g.,p, q); a diffusion, a constant function which
returns the bag composed by all the colours of a class
or a subclass and is denotedSC whereC is the cor-
responding (sub)class; and a successor function which
applies on anorderedclass and returns the colour fol-
lowing a given colour.

• Transitions and colour functions can be guarded by ex-
pressions. An expression is a boolean combination of
atomic predicates. An atomic predicate either identi-
fies two variables[p = q] or restricts the domain of a
variable to a static subclass.

We illustrate these features on the WN model in Fig. 4.
It represents a distributed critical section algorithm. There
is a single classC: the set of processes that interact in the
system. The colour domain of all the places of the net is
C, except for placeTK, which contains neutral tokens. As
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there is a single class, the constant function representing the
set of all processes will be simply denotedS.

Initially, all processes are idle (placeID), meaning that
they do not request the critical section. The firing of transi-
tion rcs represents a process requesting the critical section.
Only up toK processes can apply simultaneously and ad-
ditional candidacies are rejected, which is represented byK
tokens in placeTK. This constantK depends on the para-
meters of the physical access to the system (e.g., network
topology).

As soon as a process reaches the state where others are
aware of its request (placeGS), no process can become can-
didate any longer : permissions for applying are removed
from placePR by the firing of fr (with priority over other
transitions). If there are several candidates, i.e., the num-
ber of tokens in placesRQ andGS is greater than one, all
but one will be discarded through the successive firings of
lcs. When there is more than one token inGS, the firing of
lcs non deterministically chooses two of them and discards
one. When there is only one left (which is guaranteed by the
number of tokens inFDR), it can enter the critical section
(placeCS) by firing wcs. When the process releases the crit-
ical section (firing of transitionecs), all processes become
idle again and a new round can start.

The implicit symmetry of a WN is associated with a
groupGsrg operating on colour classes (and by extension
on markings and firing instances).Gsrg is the intersec-
tion of the isotropy subgroups of static subclasses. In other
words, any permutation inGsrg maps any static subclass
onto itself. Given a markingm and a permutationg of Gsrg,
the behaviour of the net from the markingg.m is the same
as the behaviour fromm up to permutationg. We say that
this two markings are equivalent and we usem̂ as a sym-
bolic representation for the orbitGsrg.m.

The symbolic reachability graph (SRG) construction lies
on symbolic markings, namely a compact representation for

a set of equivalent ordinary markings. A symbolic marking
is a generic representation, where the actual identity of to-
kens is forgotten and only their distributions among places
are stored. Tokens with the same distribution and belong-
ing to the same static subclass are grouped into a so-called
dynamical subclass.

In the rest of the paper, we will use a notation where
only the cardinality of dynamical subclasses is represented.
For instance, in the case whereC = {c1, c2}, the symbolic
markingm̂ = ID(1) + RQ(1) will represent the two ordi-
nary markingsID(c1) + RQ(c2) andID(c2) + RQ(c1).

Then, the SRG can be constructed automatically using a
symbolic firing rule that directly applies on symbolic mark-
ings [4].

Various behaviourial properties may be directly checked
on the SRG. Furthermore, this construction leads to an ef-
ficient performance evaluation of Stochastic WNs (SWNs).
A SWN is obtained from a WN by associating an expo-
nentially distributed delay with every transition. The rate
of this transition may depend on the static subclasses to
which the firing colours belong. The key result is that the
related CTMC may be (strongly and exactly) lumped and
that the lumped CTMC is isomorphic to the SRG. As for
stochastic Petri nets, the definition can be extended with im-
mediate transitions and a similar result holds for the semi-
Markovian process.

However, the SRG approach is not adapted when deal-
ing with asymmetrical systems: in our example, let us now
decide that when several processes request the critical sec-
tion, the selected process is the candidate with the highest
identity. Hence, the set of bindings of transitionlcsmust be
restricted to pairs(p, q) s.t. p > q. In SWNs, this could be
done by adding a guard to transitionlcs. Yet, the only way
to express this guard is to partition colour classC into static
subclasses reduced to singletons{ci}. Then, the guard is∨

i>j(p = ci ∧ q = cj). Consequently, the SRG is isomor-



phic to the ordinary reachability graph (RG) and there is no
more gain in complexity.

3.2 The Dynamic Symbolic Reachability Graph
(DSRG) construction

The drawback of the SRG approach is that asymmetries
are defined statically and taken into account throughout the
construction of the graph. Yet, very often, they have only
local effects. Back to our example, except when a process
is involved in a selection, there is no need to know its ac-
tual identity. Thus, the asymmetry is local to the selection
process.

Hence, the challenge is to adapt the method of Section
2, where asymmetrical behaviours are treated as locally as
possible, to the SWN model.

The approach we develop here reuses and extends the
SWN symbolic framework to automatise the construction
of the lumped CTMC(CG

A)lp. We call DSRG the symbolic
structure that represents this CTMC. It is based on a sym-
bolic representation for{(s, l, R) | s ∈ R} and a firing rule
that directly applies on it.

The symmetrical features of the system are captured by
the SWN and the asymmetries are represented by a control
automaton. The definition of the latter requires only that we
precise alphabetΣ. Since the CTMC is isomorphic to the
RG, the labels associated with it are the firing instances of
the transitions. Formally,Σ = {(t, c) | t ∈ T ∧ c ∈ C(t)}
whereT is the set of transitions of the SWN andC(t) is the
colour domain oft. Labels of the automaton are subsets of
Σ. In our example, there are two labels:¬lcs = {(t, c) |
t 6= lcs ∧ c ∈ C(t)} and lcs[p > q] = {(lcs, (p, q)) |
(p, q) ∈ C2 ∧ p > q}.

Symbolic representation of states in DSRG
In SWNs, a states is a markingm, and we want a sym-

bolic representation for the set{(m, l, R) | m ∈ R}, s.t.
R = G′.m∗, G′ a subgroup ofG andm∗ any marking of
R. We choose a notation similar to that of the SRG, namely
〈D, m̂, l〉, whereD is the set of orbits byG′ of the colour
classes and̂m is the symbolic representation ofG′.m. We
call this representationsymbolic state.

The symbolic state defined byD = {{c1, c2}, {c3}},
m̂ = ID({c1, c2}0) + RQ({c1, c2}1 + {c3})
and an associated locationl represents the set
{(m1, l, S12), (m2, l, S12)} s.t. m1 = ID(c1) + RQ(c2 +
c3) andm2 = ID(c2) + RQ(c1 + c3).

Symbolic firing rule in DSRG
Let l

γ−→ l′ be a transition of the control automaton and
Hγ be the subgroup of permutations associated toγ. We
want to compute the successors of node〈D, m̂, l〉 w.r.t. γ,
by use of the symbolic firing rule of SWNs.

The key observation is that the restriction imposed by
γ can be expressed by a SWN guard that is injected dy-
namically to the treated net. Thus,Hγ must be represented
as a colour class partition in static subclasses, namelyDγ .
These static subclasses are used to express the above guard.
In our example, the labellcs[p > q] splitsC in singletons
in order to expressp > q as a SWN guard attached tolcs.

To be able to perform a classical symbolic firing, we
have to compute a new partitionD′ = D ∩ Dγ and refine
〈D, m̂, l〉 in a family F = {〈D′, m̂1, l〉, 〈D′, m̂2, l〉, . . .}.
In the second line of Fig. 5, six among the thirty symbolic
markings of the partition are shown. In this case, due to
the partition in singletons, each symbolic representation in-
cludes only one ordinary state.

Now, the classical SRG symbolic firing rule can be ap-
plied on each element ofF with the additional control in-
duced by the label. This control is performed at the sym-
bolic level due to the previous splitting.

Back to the generic method, we have built the subset
{(s, l′, R′)} with R′ = (GR ∩ Hγ).s′∗. The substitution
of GR ∩Hγ by the isotropy subgroupGR′ is explicitly per-
formed in SWNs as follows. Two static subclasses reduced
to a single dynamic subclass and with the same distribution
in places are merged. Observe that the subset of states is
unchanged whereas the static partition is rougher. For in-
stance in any marking of the third line of Fig. 5, the three
static subclasses (here reduced to a colour) in placeID, can
be merged in a single one.

Computation of the transition rates of the lumped
CTMC

Using the method described in section 2, the graph we
obtain is isomorphic to a lumped Markov chain, whose rates
can be computed directly from information obtained during
the construction of the DSRG. From the first equation of
proposition 3, we know that the transition rate between two
classes depends on the cardinalities of the source and desti-
nation classes, namelySi andSj , and the input rate of any
states of the destination class, i.e.,

∑
s′∈Si

Q(s′, s). Let us
consider the contribution to

∑
s′∈Si

Q(s′, s) of an arc rep-
resenting the firing of a transitiont. After the splitting step,
a symbolic instantiation oft is possible for all or none of
the markings that still belong to the same symbolic repre-
sentation. Assume that such a firing oft is possible in a
split representation and let us denoteS′i the ordinary states
contained in this representation and|S′i| the number of such
states. The global rate out ofSi caused by the firing we
consider is|S′i|.e.µ(t), wheree is the number of ordinary
firings represented by the symbolic firing oft andµ(t) is the
rate of transitiont. Note that if different bindings oft have
different rates, this can be taken into account in the con-
trol automaton, thus we consider here only the case where
equivalent bindings have equivalent rates.



ID(2) + RQ(1) + GS(2)

ID(c4c5) + 
RQ(c1) + GS(c2c3)

ID(c4c5) + 
RQ(c2) + GS(c1c3)

ID(c2c5) + 
RQ(c4) + GS(c1c3)

ID(c2c4) + 
RQ(c5) + GS(c1c3)

ID(c1c5) + 
RQ(c4) + GS(c2c3)

ID(c1c4) + 
RQ(c5) + GS(c2c3)

ID(c1c4c5) + 
RQ(c2) + GS(c3)

ID(c2c4c5) + 
RQ(c1) + GS(c3)

ID(c1c2c4) + 
RQ(c5) + GS(c3)

ID({c1,c2}0c4c5) + 
RQ({c1,c2}1) + GS(c3)

ID(c1c2{c4,c5}0) + 
RQ({c4,c5}1) + GS(c3)

| {c1,c2}0 | = | {c1,c2}1 | = 1 | {c4,c5}0 | = | {c4,c5}1 | = 1

ar({c1,c2}1) ar({c4,c5}1)

ID({c1,c2}0c4c5) + 
GS(c3, {c1,c2}1)

| {c1,c2}0 | = | {c1,c2}1 | = 1

ID(c1c2{c4,c5}0) + 
GS(c3, {c4,c5}1)

| {c1,c2}0 | = | {c1,c2}1 | = 1

lcs(c3, c2) lcs(c3, c1) lcs(c3, c2) lcs(c3, c1) lcs(c3, c1)lcs(c3, c2)

ID(c1c2c5) + 
RQ(c4) + GS(c3)

••• •••

Figure 5. Firing and grouping

As all the states inSj have the same input rate, this rate is

given by |S′i|.e.µ(t)/|Sj |. HenceQlp(i, j) =
|S′i|.e.µ(t)
|Si| .

The computations of the number of ordinary markings con-
tained in a symbolic marking and the number of ordinary
firings represented by a symbolic firing for the SRG are de-
tailed in [4].

3.3 Optimisations for WNs

In this paragraph, we show that the SWN formalism
leads to further optimisations of the generic method. The
first one consists in grouping the symbolic representations
obtained after a symbolic firing provided that the condition
for exact lumpability still holds. This optimisation is feasi-
ble since the transition rates of the lumped CTMC can be
computed on-the-fly. It appears that after this optimisation,
the overall strategy for choosing the next symbolic firing af-
fects the size of the lumped CTMC (which was not the case
previously). Hence our second optimisation heuristically
tries to minimize this size.

Grouping of symbolic markings
In fact, this optimisation was already proposed in [1].

However, the conditions of this merging were weaker as
they require to preserve the existence of particular paths
in the graph. When dealing with performance evaluation,
states can no longer be grouped on qualitative criteria only.
Input rates must be taken into account, which often restricts
the possibilities of grouping. For the sake of simplicity, we
will consider here a uniform rate of 1.0 for any binding of
transitionlcsand use this example to illustrate the problems
that may arise. LetP = 5 be the number of processes and

ID(2) + GS(3) ID(3) + GS(2)

ID(3) + GS(1) 

+ RQ(1)
ID(2) + GS(2) 

+ RQ(1)

lcs

ar

lcs

Figure 6. Firings to be considered

K = 3 the maximum number of simultaneous candidacies.
Fig. 6 represents the distributions of tokens in significant
places and the firings of transitions we are going to detail
throughout this section.

We consider the firing sequence starting from the sym-
metrical representation where two processes are idle, one
has sent a request and two are ready to perform a selection.
The synchronisation of the SWN and the control automaton
for the firing of transitionlcs ends up in a complete refine-
ment of the source marking, as the only symmetry that is
compatible with the labellcs[p > q] is the identity. For
each of these refined markings, there is exactly one pos-
sible binding of transitionlcs, becauselcs[p > q] fixes
the order betweenp andq. A significant subset of the re-
fined markings and the corresponding firings is represented
in the shaded part of Fig. 5. At this point, we try to group
the markings that are obtained from the firing. Obviously,
whichever pair we consider, there exists a permutation be-
tween the markings. But even if all the source markings be-
long to the same class, not any pair satisfies the exact lumpa-
bility condition. Looking only at the represented markings,
as we have considered a uniform rate of 1.0 for transition



lcs, the only possibility we have is to group the two right
markings, and also the two left ones. The shaded part is
then removed, and only the white portion is actually stored
in the graph. The notation{ci, cj}k defines a partition of
the set{ci, cj}: in the left class for instance,RQ({c1, c2}1)
with |{c1, c2}1| = 1 means that eitherc1 or c2 is in RQ, the
other one belongs to{c1, c2}0, hence it is in placeID. We
have already detailed how transition rates associated with
arcs are computed. Once this is done, we can compute the
transition rates between classes using the formula in Section
2.

From the classes we have built, we can fire transitionar.
There is no restriction associated with this transition in the
control automaton, hence we use the classical firing rule of
SWNs from which we can directly build the class of reached
markings : whatever the identity of the token inRQ, it is
moved to placeGS.

Overall strategies for construction
We show now that the previous optimisation requires an

efficient strategy for choosing the next transition to fire, in
order to minimize the size of the lumped CTMC. For in-
stance, what may happen is that a set of markings that is
represented by a single class is reached through another fir-
ing that prevents them from staying in the same group. We
show an example in Fig. 7: the class with two processes
in place ID and three in placeGS enables transitionlcs.
Its different bindings will lead to any combination of two
processes in placeGS, except (c1c2), and the three other
processes in placeID. We already encountered such a con-
figuration in the previous firing sequence. However, we
did not have to separate the markings whereGScontained
(c3c4) or (c3c5) because they were obtained from a sym-
metrical firing, which guaranteed that they had the same in-
put rate. We can see that this is no longer true when we
take this firing into account. If we have not built any firing
from the subclass representing the two markings yet, we re-
move the subclass and dispatch its input rate on the individ-
ual markings. If we have already built the firings, we keep
both representations because removing the subclass could
have a domino effect on the downward part of the graph.
To avoid as much as possible the construction of redundant
subclasses, we try to favour the construction of individual
markings first by firing asymmetrical prior to symmetrical
transitions.

As the construction of subclasses and individual mark-
ings may happen anyway, the same state can be represented
several times in the graph. In this case, for any class it ap-
pears in, we compute the probability of a state of the class,
which is obtained by dividing the probability of the class by
its cardinality. The actual probability of the state will then
be computed by summing the values obtained for any class
it appears in.

ID(2) + GS(3)

lcs

ID(c1c2c4) + GS(c3c5)••• •••ID(c1c2c5) + GS(c3c4)

lcs

Figure 7. Construction of included markings

3.4 Extension to immediate transitions

When the model includes immediate transitions, the un-
derlying stochastic process becomes semi-Markovian.We
use the embedded Markov Chain approach to compute
steady-state probabilities. We thus handle a discrete-time
process, but the exact lumpability criterion still holds on this
process and the steady-state probabilities can be computed
in the same way as in the continuous-time case.

Special care must be taken however if some class enables
both timed and immediate transitions. This happens for in-
stance if all the colours in a class have had a symmetrical
behaviour so far, and an asymmetrical immediate transition
is enabled for some of them in the current class of mark-
ings, while a timed transition is enabled for others. In this
case, the class must be split into a vanishing subclass and a
tangible one. But as we consider only input rates for test-
ing the lumping condition, this splitting has no effect on the
upward part of the graph.

4 Numerical Results

To test the efficiency of our method, we have imple-
mented theDSRG on the same kernel as the standard
(S)RG. For that, we have modified the GreatSPN package
(www.di.unito.it/∼greatspn) on which the(S)RGis imple-
mented. Hence, one can specify a SWN to obtain the results
of both constructions. The machine used for our tests is a
PC/Linux of 3.2 GHz and 3 Gb of RAM.

In this section, we will consider the net of Fig. 4 once
again. An examination of its structure would show that the
complexity of the model is strongly related to the settings of
parametersP andK, respectively the number of processes
in the system and the number of processes that are able to
concurrently apply for the critical section (K ≤ P ). For
instance, by focusing on the two placesRQ and GS, one
notes that increasingK acts on the number of tokens in these
two places, while increasingP widens the possibilities of
choosing the identities of the tokens that they contain.

Let us now compare the effects of increasing the values
of P andK on the (S)RG and DSRG methods.

Table 1 summarizes our experiments. The columns
noted (S)RG (respectivelyDSRG), shows the number of
constructed nodes in the(S)RG(respectivelyDSRG) struc-
ture for a givenK andP .



Table 1. Size of the (S)RG and DSRG w.r.t. P and K

HHHHHP
K

3 5 7

(S)RG DSRG Ratio (S)RG DSRG Ratio (S)RG DSRG Ratio
3 45 23 1.66 – – – – – –
5 441 49 9.00 573 186 3.08 – – –
7 3704 83 44.63 6231 772 8.07 6849 2150 3.18
9 28159 125 225.27 59281 1805 32.82 73549 11150 6.60
14 860371 199 4323.47 7210715 6148 1172.85 17176671 68476 250.84

For a fixed value ofK and w.r.t. the increasing ofP,
we observe empirically that theRG grows exponentially
whereas theDSRGprogressesalmost linearly. This is eas-
ily explained by the fact that the complexity induced by the
different possibilities to selectK concurrent processes are
explicitly represented in the(S)RG, whereas they are sym-
bolically represented in theDSRG. More precisely, in the
DSRG, no asymmetry among processes is taken into ac-
count until asymmetrical transitionlcs is enabled. More-
over, the symbolic grouping optimisations make it possible
to regain part of the symmetries that are lost due an asym-
metrical firing.

For a fixed value ofP, one should observe that the sizes
of both structures increase exponentially. However, there is
a limitation as the numberK is closed to its maximum,P .
Such a limitation is clearly seen for the(S)RG, where the
rate of augmentation of the size decreases for any givenP .
Unfortunately, we cannot compare theDSRGto the(S)RG
since the effect of our symbolic grouping operations is con-
textual (thus not controllable).

Nevertheless, we are able to compare the relative gain
of our method (see columns notedRatioof Table 1). Thus,
the ratio between the two structures progresses exponen-
tially w.r.t. P and this proves the efficiency of our approach.
W.r.t. K, a regression can be noted, it is caused by the ex-
ponential observed above.

Last, we notice that theDSRG construction time is
relatively high. As an example for valuesP = 9 and
K = 5, the building requires275 seconds, while it
requires126 seconds for the RG. In fact,47% of the total
construction time is spent in comparisons of sets of colours
and this percentage remains constant for all constructions.
Therefore, we are working to integrate cache techniques in
our software to solve this problem.

5 Conclusion and perspectives

We have proposed a new automatised and symbolic
method to build a lumped CTMC which verifies exact
lumpability. Our method is generic and should be applica-

ble to a large category of performance models. Moreover,
in practical cases, the additional specification of the control
automaton remains straightforward. Applied to a (common)
use case, the DSRG construction appears to be very rele-
vant in terms of used memory. We need now to improve our
tool in order to gain efficiency in time. Our next research
perspective will be to extend the proposed method to prob-
abilistic model checking.
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