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Abstract

Timed Automata (TA) and Time Petri Nets (TPN) are two
well-established formal models for real-time systems. Re-
cently, a linear transformation of TA to TPNs preserving
reachability properties and timed languages has been pro-
posed, which does however not extend to larger classes of
TA which would allow diagonal constraints or more general
resets of clocks. Though these features do not add expres-
siveness, they yield exponentially more concise models.

In this work, we propose two translations: one from ex-
tended TA to TPNs whose size is either linear or quadratic
in the size of the original TA, depending on the features
which are allowed; another one from a parallel composi-
tion of TA to TPNs, which is also linear. As a consequence,
we get that TPNs are exponentially more concise than TA.

Keywords: Time Petri Nets, Timed Automata, Conciseness,
Reachability Analysis.

1 Introduction

Extended timed automata.Timed automata have been de-
fined in the nineties as a powerful model for representing
real-time systems [1, 2]. One of the most important prop-
erties of this model is that checking reachability properties
(or equivalently language emptiness) is decidable. In the
original model, a transition is guarded by a clock constraint
x ⊲⊳ h (wherex is a variable called clock,h is an integer
and⊲⊳ is a comparison operator), and resets to0 a subset of
the clocks.

Several extensions of this original model have been since
considered: more general constraints like diagonal con-
straints [2, 7] or additive constraints [8] have been studied,
and while additive constraints lead to undecidability, diago-
nal constraints preserve the decidability of the model. Also,
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more general operations on clocks (called updates) have
been considered, and models using operations like resetting
a clock to some integral value have been studied [13]: de-
cidability of these extensions heavily depends on the nature
of the updates and of the clock constraints which are used.
All mentioned decidable extensions, do not add expressive
power to the original model, they can thus be seen as syntac-
tic sugar, but even though no expressiveness is added, these
extensions yield exponentially more concise and “easy-to-
design” models [12]. For example, scheduling problems are
modeled more easily using these both extensions, see [16].

Time Petri nets. Adding explicit time to Petri nets was
first done in the seventies [22, 23]. Since then, timed
models based on Petri nets have been extensively studied
and various tools have been developed for their analysis
(like Tina [10] or Romeo [17]). In this paper, we focus on
the model of Time Petri Nets (TPNs) from [22] where a time
interval associated with every transition restricts the date at
which it can be fired. Furthermore, time cannot elapse if it
temporallydisables a transition.

From TA to TPNs. In [18], the authors compare diagonal-
free TAs without strict constraints and Safe-TPNs (i.e.
TPNs where the number of tokens in a place is at most1),
and give a translation from TAs to Safe-TPNs which pre-
serves timed languages. The complexity of the translation
is quadratic. In [6], another translation is designed, which
transforms diagonal-free TAs to equivalent Safe-TPNs, and
whose complexity is linear. However the transformation
which is done in [6] does not extend to more general TA
(using diagonal constraints and resets to integral values).

Our contribution. In this work, we present a translation
from extended TA (which use diagonal constraints and up-
dates to integral values) into Safe-TPNs and prove it pre-
serves timed languages. We study the complexity of this
translation showing that the size of the constructed TPN is
linear w.r.t. the size of the TA, except when the TA includes
both diagonal constraints and arbitrary resets to integralval-
ues. In the latter case, the complexity of the translation be-
comes quadratic. As a side result (applying conciseness re-
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sults of [12]), we get that Safe-TPNs are exponentially more
concise than classical TA. We also provide a direct con-
struction which witnesses this conciseness result. Finally,
we present a second translation from a parallel composition
of TA to TPNs. As future work, we discuss another conse-
quence of these translations: they might provide a unified
method to check for reachability properties in parallel com-
position of extended TA.

Organisation of the paper. In section 2, we present basic
definitions. Our results are developed in section 3. We first
present the construction of TPNs equivalent to extended TA,
and we then prove the correctness of this translation. Fi-
nally, we compute the complexity of our translation, and
present our conciseness results. In section 4, we present
our construction for parallel compositions of TA. At last, in
section 5, we discuss the perspectives of this work.

2 Timed Automata and Time Petri Nets

Let Σ be a finite alphabet,Σ∗ is the set of finite words of
Σ. We also useΣε = Σ ∪ {ε} with ε (the empty word)
not in Σ. The setsN, Q≥0 andR≥0 are respectively the
sets of natural, non-negative rational and non-negative real
numbers.

A timed wordoverΣ is a finite sequencew = (a0, t0)
(a1, t1) . . . (an, tn) s.t. for every0 ≤ i ≤ n, ai ∈ Σ, ti ∈
R≥0 andti+1 ≥ ti. In the following, we will equivalently
write w = (a, t) with a = (ai)0≤i≤n andt = (ti)0≤i≤n.

An interval I of R≥0 is a Q≥0-interval iff its left end-
point belongs toQ≥0 and its right endpoint belongs to
Q≥0 ∪ {∞}. We setI↓ = {x | x ≤ y for somey ∈ I},
thedownward closureof I. We denote byI(Q≥0) the set
of Q≥0-intervals ofR≥0.

A valuationv over a finite setX is a mapping inRX
≥0.

We note0 the valuation which assigns to every clockx ∈ X
the value0.

2.1 Timed Transition Systems

Timed transition systems describe systems which com-
bine discrete and continuous evolutions. They are used to
define and compare the semantics of TPNs and TA.

Definition 1 (Timed Transition System (TTS)). A timed
transition systemis a transition systemS = (Q, q0,→),
whereQ is the set of states,q0 ∈ Q is the initial state, and

the transition relation→ consists of delay movesq
d
−→ q′

(with d ∈ R≥0), and discrete movesq
a
−→ q′ (with a ∈ Σε).

Moreover, we require standard properties for the transition
relation→:
Time-determinism: if q

d
−→ q′ andq

d
−→ q′′ with d ∈ R≥0,

thenq′ = q′′;

0-delay: q
0
−→ q;

Additivity: if q
d
−→ q′ andq′

d′

−→ q′′ with d, d′ ∈ R≥0, then

q
d+d′

−−−→ q′′;
Continuity: if q

d
−→ q′, then for everyd′ and d′′ in R≥0

such thatd = d′ + d′′, there existsq′′ such thatq
d′

−→

q′′
d′′

−→ q′.

With these properties, arun of S can be defined as a fi-

nite sequence of movesρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→

q2 . . .
an−−→ qn+1 where discrete actions and delays alternate.

To such a run corresponds a timed wordw = (ai, ti)0≤i≤n

overΣε whereti =
∑i

j=0 dj is the date at whichai hap-
pens. Finally, by projection ofw overΣ, we get the timed
wordTimed(ρ) which is the timed word accepted by runρ.

Given a setF ⊆ Q of final states, we say that a runρ of
S is acceptingif it ends up in a state ofF . The timed word
Timed(ρ) is then said accepted byS.

2.2 Timed Automata

Syntax. First defined in [2], the model of timed automata
associates a set of non-negative real-valued variables called
clockswith a finite automaton. LetX be a finite set of
clocks. We writeC(X) for the set ofconstraintsover X ,
which consist of conjunctions of atomic formulae of the
form x ⊲⊳ c and x − y ⊲⊳ c for x, y ∈ X , c ∈ Z

and⊲⊳∈ {<,≤,≥, >}. We also define the proper subset
Cdf(X) of diagonal-freeconstraints overX where the con-
straints of the formx− y ⊲⊳ h (calleddiagonal constraints)
are not allowed. Finally, the setR(X) of arbitrary resets
to integral values over the clocksX is defined as the set
(N ∪ {⊥})X of mappings fromX to N ∪ {⊥}. The frame-
work of classical resets to zero is obtained by considering
the proper subsetR0(X) = {0,⊥}X . For example, the re-
setx := 2 is encoded as a function mapping clockx to the
value2 and other clocks to⊥. In the following, we write a
general reset as a conjunction(x1 := c1 ∧ . . .∧ xk := ck).

Definition 2 (Timed Automaton (TA)). A timed automaton
A overΣε is a tuple(L, ℓ0, X, Σε, E) whereL is a finite set
of locations, ℓ0 ∈ L is theinitial location, X is a finite set
of clocksandE ⊆ L× C(X)×Σε ×R(X)×L is a finite
set of edges. An edgee = (ℓ, γ, a, R, ℓ′) ∈ E represents
a transition from locationℓ to locationℓ′ labeled bya with
constraintγ and resetR ∈ (N ∪ {⊥})X . We say that the
timed automatonA is diagonal-free(resp.0-reset) if the set
C(X) (resp.R(X)) is replaced by its subsetCdf(X) (resp.
R0(X)).

Semantics. For R ∈ (N ∪ {⊥})X , the valuationR(v) is
the valuationv′ such thatv′(x) = v(x) whenR(x) = ⊥
andv′(x) = R(x) otherwise. For any valued ∈ R≥0, the
valuationv+d is defined by(v+d)(x) = v(x)+d, ∀x ∈ X .



Finally, constraints ofC(X) are interpreted over valuations:
we writev |= γ when the constraintγ is satisfied byv.

Definition 3 (Semantics of TA). The semantics of a TAA =
(L, ℓ0, X, Σε, E) is the TTSSA = (Q, q0,→) whereQ =
L × (R≥0)

X , q0 = (ℓ0,0) and→ is defined by:

- delay moves: (ℓ, v)
d
−→ (ℓ, v + d) if d ∈ R≥0;

- discrete moves: (ℓ, v)
a
−→ (ℓ′, v′) if there exists some

e = (ℓ, γ, a, R, ℓ′) ∈ E s.t. v |= γ andv′ = R(v).

If F is a set of final locations forA, the timed language
accepted byA, denotedL(A) is the set of timed words ac-
cepted bySA for the final set of statesF × R≥0.

Parallel composition of TA. Let (Ai)1≤i≤n be a family of
n TA. We assume thatAi = (Li, ℓi,0, Xi, Σε, Ei) for ev-
ery 1 ≤ i ≤ n and thatXi’s are disjoint sets of clocks.
Let f : (Σ ∪ {⊥})n → Σε be ann-ary partial synchro-
nization function. The parallel composition of(Ai)1≤i≤n

w.r.t. f is the TAA = (L, ℓ0, X, Σε, E) such thatL =
L1 × . . . × Ln, ℓ0 = (ℓ1,0, . . . , ℓn,0), X = X1 ∪ . . . ∪ Xn,

(ℓ1, . . . , ℓn)
g,a,R
−−−→ (ℓ′1, . . . , ℓ

′
n) whenever(i) eithera = ε,

there exists1 ≤ i ≤ n such thatℓi
g,ε,R
−−−→ ℓ′i in Ei, and

ℓj = ℓ′j if i 6= j; (ii) or there existsI ⊆ {1, . . . , n}, there

existℓi
gi,ai,Ri
−−−−−→ ℓ′i in Ei (for i ∈ I) such that:

- g =
∧

i∈I gi,

- R(x) =

{

Ri(x) if x ∈ Xi andi ∈ I
⊥ otherwise

- ℓ′i = ℓi if i 6∈ I,
- andf(a1, . . . , an) = a whereai = ⊥ if i 6∈ I.

2.3 Time Petri Nets

Syntax. Introduced in [22], Time Petri nets (TPNs) asso-
ciate a time interval to each transition of a Petri net.

Definition 4 (Labeled TPN). A labeled time Petri netN
overΣε is a tuple(P, T, Σε,

•(.), (.)•, M0, Λ, I) where:
- P is a finite set ofplaces,
- T is a finite set oftransitionswith P ∩ T = ∅,
- •(.) ∈ (NP )T is thebackwardincidence mapping,
- (.)

• ∈ (NP )T is theforwardincidence mapping,
- M0 ∈ NP is theinitial marking,
- Λ : T → Σε is thelabeling function
- I : T 7→ I(N) associates with each transition afiring

interval.

Semantics. A configurationof a TPN is a pair(M, ν),
whereM is a marking in the usual sense,i.e. a mapping
in NP , with M(p) the number of tokens in placep. A tran-
sition t is enabledin a markingM if M ≥ •t. We denote
by En(M) the set of enabled transitions inM . The second
component of the pair(M, ν) is a valuation overEn(M)
which associates to each enabled transition its age,i.e. the

amount of time that has elapsed since this transition is en-
abled. An enabled transitiont can be fired ifν(t) belongs
to the intervalI(t). The result of this firing is as usual the
new markingM ′ = M − •t + t•. Moreover, some valua-
tions are reset and we say that the corresponding transitions
are newly enabled. Different semantics are possible for this
operation. In this paper, we choose the classical seman-
tics [9, 3] (see [5] for alternative semantics). The predicate
specifying whent′ is newly enabled by the firing oft from
markingM is defined by:

↑enabled(t′, M, t) = t′ ∈ En(M − •t + t•)
∧((t′ 6∈ En(M − •t)) ∨ t = t′)

Thus, firing a transition is not considered as an atomic
step and the transition currently fired is always reset.

The setADM(N ) of (admissible) configurationsconsists
of the pairs(M, ν) such thatν(t) ∈ I(t)↓ for every transi-
tion t ∈ En(M). Thus time can progress in a marking only
when it does not leave the firing interval of any enabled tran-
sition.

Definition 5 (Semantics of a TPN). The semantics of a
TPNN = (P, T, Σε,

•(.), (.)
•
, M0, Λ, I) is a TTSSN =

(Q, q0,→) whereQ = ADM(N ), q0 = (M0,0) and→ is
defined by:

- delay moves: (M, ν)
τ
−→ (M, ν + τ) iff ∀t ∈ En(M),

ν(t) + τ ∈ I(t)↓,

- discrete moves: (M, ν)
Λ(t)
−−−→ (M − •t + t•, ν′) iff t ∈

En(M) is s.t.ν(t) ∈ I(t), and∀t′ ∈ En(M − •t+ t•),

- ν′(t′) = 0 if ↑enabled(t′, M, t)

- andν′(t′) = ν(t) otherwise.

If F is a set of final places ofN , we noteL(N ) the timed
language accepted byN , i.e. the set of timed words ac-
cepted bySN for the final set of states(M, ν) s.t. M(f) 6=
0 for somef ∈ F

A Safe-TPNis a TPNN where all configurations reach-
able inSN contain at most one token in every place.

3 From Extended TA to TPNs

In this section, we describe the construction of a TPN
“equivalent” to a TA (w.r.t. their timed languages), that
is accepting the same timed languages. The correctness is
proved in the next section.

We assume we are given a timed automatonA. We will
construct an equivalent TPN in a modular way. Note that
this TPN will be safe by construction. Places with the same
name are shared by several subnets. Omitted labels for tran-
sitions stand forε. A firing interval [0, 0] is depicted by a
blackened transition and is called an immediate transition,
and intervals[0,∞[ are omitted. A double arrow between
a placep and a transitiont indicates thatp is both an input
and an output place fort.



3.1 The Construction

The clock evolution subnet. For each clockx of the TA,
we construct a subnet which records and tracks the value
of x. More precisely, this subnet records both the value
of the clock (though in an implicit way) and the truth of
all the constraintsx ⊲⊳ c appearing in the automaton. The
truth value of such a constraint is recorded explicitly, using
a placeTx⊲⊳c. For all clock resetsy := h and diagonal
constraintsx−y ⊲⊳ c appearing in the automaton, the subnet
has also to take into account the constraintx ⊲⊳ c+h and its
negation (except if it is trivially equivalent totrue or false).
It must also take into account the constraintsx ≤ c and
x ≥ c whenx := c is a reset used in the automaton.

The subnet represented in Fig. 1 illustrates our trans-
lation in the casex is compared with three constants
{c1, c2, c3} with c1 < c2 < c3. To ease the reading, we as-
sume that0 does not belong to the set of constants, though
this case can be handled similarly.

Let us explain how this subnet simulates time elapsing,
how it records the value of the clock, and how it records
the truth value of the constraints. First notice that all places
along the vertical axis (placesBeforexc1

, Atxc1
, . . . , Afterxc3

)
are mutually exclusive. The unique token labelling one of
these places together with the age1 of the next transition
encodes the value of the clock. For instance, if a token is
in the placeBeforexc2

, and if the age ofReachxc2
is τ then

the value ofx is c1 + τ . The value ofx will be c2 in the
following cases:

- either the token is in the placeBeforexc2
, and the age of

Reachx
c2

is c2 − c1,
- either the token is in the placeAtxc2

,
- or the token is in the placeBeforexc3

and the age of
Reachxc3

is 0.

Finally, the subnet does not keep track of the exact value
of the clock beyondc3. The truth values of the constraints
are updated consistently, while preserving the two following
properties, which are fundamental for the correctness of our
construction: 1) When the placeTx⊲⊳c is marked, then the
corresponding value ofx (sayvx) is such thatvx ⊲⊳ c (but
the converse is not necessarily true); 2) For each possible
valuevx of x, there is an execution of the subnet of time
lengthvx such that for every constraintx ⊲⊳ c satisfied byv,
the placeTx⊲⊳c is marked. Finally, note that this subnet does
not take care of diagonal constraints because they cannot be
handled similarly (their truth values are unchanged when
time elapses).

It is worth to notice that the size of this subnet is linear
in the number of clock constraints involvingx which need
to be encoded (see the beginning of this paragraph).

1Recall that the age of a transition is the amount of time whichhas
elapsed since the transition has been enabled.

Emptying the clock subnet. Let us assume that a transi-
tion of the TA resets the clockx. The marking of the clock
evolution subnet must be updated accordingly, whatever its
current configuration is.

In order to encode a transition of the TA and to con-
trol the global size of the resulting TPN, we proceed in two
steps: 1) The first step is depicted in Fig. 2 and consists in
consuming all the tokens which are in the clock evolution
subnet; 2) The second step is discussed in the next para-
graphs, and consists in marking the appropriate places of
the clock evolution subnet.

•

•

•

•

•

•

•

Beforexc1

Reachxc1
[c1,c1]

Atxc1

Leavexc1

Beforexc2

Reachxc2
[c2−c1,c2−c1]

Atxc2

Leavexc2

Beforexc3

Reachxc3
[c3−c2,c3−c2]

Atxc3

Leavexc3

Afterxc3

Tx≥c1

Tx≥c2

Tx≥c3

Tx≤c1

Tx≤c2

Tx≤c3

Ix>c1

Ix>c2

Ix>c3

Tx>c1

Tx>c2

Tx>c3

Satx>c1

]0,∞[

Satx>c2

]0,∞[

Satx>c3

]0,∞[

Tx<c1

Tx<c2

Tx<c3

Fx<c1

Fx<c2

Fx<c3

Unsatx<c1

[0,c1[

Unsatx<c2

[0,c2−c1[

Unsatx<c3

[0,c3−c2[

Ix<c2

Ix<c3

Figure 1. The clock evolution subnet (clock x)



In order to unmark all places of the subnet de-
picted in Fig 1, we will empty the places in a top-
down way. The control places of the subnet of Fig. 2
(namely{xbegin, xcont1 , xcont2,1

, xcont2,2
, . . . , xempty}) sched-

ule the unmarking process and memorize some information
in order to avoid a quadratric increase of the number of tran-
sitions.

Let us partly describe the subnet of Fig. 2. First, it re-
moves the token which is either in placeFx<c1 or in place
Tx<c1 (these two places are mutually exclusive, see transi-
tion Unsatx<c1). Then, it removes the token which is either
in placeBeforexc1

, or in placeTx≥c1 (these two places are
also mutually exclusive, see transitionReachxc1

). Thanks
to the control places of the net in Fig. 2 (placexcont2,1

vs placexcont2,2
), we remember whether the token was in

placeBeforexc1
or in placeTx≥c1. If the token was in place

Beforexc1
, there will be no token in placesTx>c1 andIx>c1 .

On the contrary, if the token was in placeTx≥c1 , then there
will be either two tokens in placesAtxc1

andTx≤c1, or one
in placeIc>c1 , or one in placeTx>c1 .

...

xbegin

xempty

xcont1

xcont2,1 xcont2,2

xcont3,1 xcont3,2

xcont4

Fx<c1
Tx<c1

Tx<c2

Fx<c2
Ix<c2

Tx≥c1

Tx≤c1
Ix>c1

Tx>c1

Beforexc1

Atxc1

Beforexc2
Tx≥c2

Figure 2. Emptying the clock evol. subnet

These remarks allow to bound the width of the “empty-
ing net”, and it allows to control the size of the net (on one
level, there are at most4 “concurrent” transitions). Finally
note that the subnet is triggered by a token in placexbegin

and that the clock evolution subnet is empty when a token
arrives in placexempty.

It is worth to notice that the size of this subnet is linear
in the size of the previous subnet.

Updating the marking of the constraints in the clock
evolution subnet. We want to update the marking of the
places coding the truth values of the constraints in the clock
evolution subnet when a clock is reset to some integral value
c. However, we want to control the size of the resulting
TPN, we thus want to build only one subnet per clock which
will update correctly the marking of the evolution subnet,
though the new marking will depend on the value ofc.

The idea of our construction is the following: when the
clock x is reset toc, then the constraintx ≤ c holds,
and consequently, all other larger over-approximations of
x (x ≺ c′, for ≺∈ {<,≤} andc′ > c) also hold. Thus, we
will build a propagation chain for the over-approximations
which will respect the above implications. Of course, we
can reason similarly for the under-approximations.

Underx:=c3

Underx:=c2

Underx:=c1

Underx:=0

Overx:=0

Overx:=c1

Overx:=c2

Overx:=c3

Overxend

Tx≥c1

Tx≥c2

Tx≥c3

Tx≤c1

Tx≤c2

Tx≤c3

Tx>c1

Tx>c2
Tx<c1

Tx<c2

Tx<c3

Fx<c1

Fx<c2

Fx<c3

Figure 3. Marking the constraints places in
the clock evolution subnet



T
x≤h+h′ Tx−y≤h

T
x>h+h′ Fx−y≤h

Diagy:=h′

i
Diagy:=h′

i+1

Figure 4. The subnet for x − y ≤ h and y := h′

The two propagation subnets are represented in Fig. 3,
and take advantage of the above observations. The two
causal chains are represented by two different connected
components. In order to trigger this net when resettingx :=
ci, one puts a token in placeUnderx:=ci

andOverx:=ci
. For

the subnet on the left (resp. on the right), the update of the
marking terminates when a token arrives in placeUnderx:=0

(resp. in placeOverxend).
Note that we have not marked yet the vertical axis of the

clock evolution subnet, which implicitly encodes the value
of the clock. This will be done by the subnet simulating the
transition of the TA (see the last paragraph of this section).

It is worth to notice that the size of this subnet is linear
in the size of the clock evolution subnet.

Diagonal clock constraints.The truth value of a diagonal
constraintx−y ⊲⊳ h (which is invariant by time elapsing) is
represented by two mutually exclusive placesTx−y⊲⊳h and
Fx−y⊲⊳h. We build a subnet for every atomic constraintx−
y ⊲⊳ h and every reset of the clocksx or y.

Fig. 4 represents the subnet corresponding to the diago-
nal constraintx − y ≤ h and to the resety := h′. When
resettingy to h′, the truth value ofx − y ≤ h has to be
updated according to the truth value of the (non-diagonal)
constraintx ≤ h + h′. The places{Diagy:=h′

i }i=1..d(y)+1

schedule the update of the subnets associated with the diag-
onal constraints involving clocky (andd(y) is the number
of such constraints). In Fig. 4,i is the index of the constraint
x − y ≤ h (1 ≤ i ≤ d(y)).

By the way, notice that for each diagonal constraint
x − y ≤ h and for each resety := h′, the size of the corre-
sponding TPN is constant (see Fig. 4). The number of such
subnets is proportional to the number of combinations of
a diagonal constraint with a reset, that is in the worst case
quadratic. If we consider only diagonal constraints and re-
sets to0, this number will be linear.

Encoding transitions of the TA. With each locationℓ of
the automaton, we associate an eponymous placeℓ in the
TPN. The placeℓ is initially marked when the locationℓ
is the initial one. To simulate an edgee = (ℓ, γ, a, R, ℓ′),
we must check that the atomic constraints(γi)1≤i≤m(e) are
satisfied (ifγ = γ1 ∧ . . . ∧ γm(e)). To that aim, we use
the placesTγi

of the corresponding clock evolution subnets.
Then, we successively update the subnets according to the
resetsR (whereR = (x1 := c1 ∧ . . . ∧ xn(e) := cn(e))).

This is done by the subnet in Fig. 5 for a transitione =
(ℓ, x > c3 ∧ y ≤ c2, a, x := c1, ℓ

′). Note that we label the
transitionfiree by the lettera (notation “firee, a”). Note also
that the place corresponding to the clock position (Atxc1

) is
marked at the end of the computation of this subnet.

This subnet has size linear in the size of the original TA.

Our construction is different from the one proposed
in [6]. The way time elapsing and clock evolutions are han-
dled is for example different: instead of having one small
subnet per clock constraints appearing in the TA, we have
only one subnet per clock which encodes its value. This
method requires a more involved construction for updating
the truth value of the constraints without having a blowup
in the size of the TPN, but allows to deal with diagonal con-
straints and with more resets of clocks to integral values.
Moreover, it is worth noticing that it would be easy to deal
with invariants. Indeed, we can add a sink place, and tran-
sitions from all locations with invariant to that sink place,
constrained by the invariant.

3.2 The Correctness Proof

The correctness proof relies on the existence of two sim-
ulations, one implying the inclusion of the language ac-
cepted by the TA into the language accepted by the TPN,
and the other one implying the converse inclusion. LetA
be an extended TA andN be the net obtained applying the
construction described in the previous part.

Proof of L(A) ⊆ L(N ). We define a relationR be-
tween configurations of the TA and the TPN as follows:
(ℓ, v)R(M, ν) iff the following conditions are fulfilled. Let
x be a clock andCN (x) = {c1, . . . , cn} the set of constants
related tox, occurring in the net (these values are supposed
to be sorted). Letc(x) = inf{cj | cj ≥ v(x)} with the
convention thatc(x) = ∞ if the set is empty. Then:

- If c(x) = v(x) thenM(Atx
c(x)) = 1;

- Otherwise, if v(x) < c(x) < ∞, then
M(Beforexc(x)) = M(Ix<c(x)) = 1, and
ν(Reachxc(x)) = ν(Unsatx<c(x)) = c(x) − v(x);

- Otherwise,M(Afterxcn
) = 1 (c(x) = ∞).

For every placeTx⊲⊳c such thatv(x) ⊲⊳ c, M(Tx⊲⊳c) = 1.
For every placeFx<c such that¬(v(x) < c), M(Fx<c) =
1. For every placeTx−y⊲⊳c such thatv(x) − v(y) ⊲⊳ c,
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Figure 5. Simulating the transition e = (ℓ, x > c3 ∧ y ≤ c2, a, x := c1, ℓ
′)

M(Tx−y⊲⊳c) = 1. For every placeFx−y⊲⊳c such that
¬(v(x)− v(y) ⊲⊳ c), M(Fx−y⊲⊳c) = 1. Finally,M(ℓ) = 1.
The marking of remaining places is null, and the age of the
remaining enabled transitions may be any admissible value.

We first observe that(ℓ0,0)R(M0, ν0), and assume that
(ℓ, v)R(M, ν).

First case,simulation of a delay move(ℓ, v)
d
−→ (ℓ, v + d).

Let X ′ be the subset of clocksx such thatv(x) ∈ CN (x).
Let X ′′ be the subset of clocksx /∈ X ′ such thatinf{c −
v(x) | c ∈ CN (x) ∧ c > v(x)} is minimal. We noteτ this
value (note thatτ = ∞ if X ′′ = ∅) andc(x) the constant
associated withx ∈ X ′′.

We decompose the delay move such that we only need to
successively examine the following cases.

- X ′ = ∅ andd < τ . Then(M, ν)
d
−→ (M, ν + d) and

(ℓ, v + d)R(M, ν + d)
- X ′ = ∅ andd = τ . First, for everyx ∈ X ′′, we

fire the transitionUnsatx<c(x). Then we let a dura-
tion d elapse and finally for everyx ∈ X ′′, we fire
Reachxc(x). The reached configuration(M ′, ν′) fulfills
(ℓ, v + d)R(M ′, ν′).

- X ′ 6= ∅ andd < τ . First, for everyx ∈ X ′, we fire the
transitionLeavexv(x). Then we let a durationd elapse
and finally for everyx ∈ X ′, we fireSatx>v(x). The
configuration(M ′, ν′) which is reached is such that
(ℓ, v + d)R(M ′, ν′).

Second case,simulation of a discrete move(ℓ, v)
a
−→

(ℓ′, v′). We “execute” the simulation net associated with
the corresponding transitione: we fire transitionfiree and
for each reset of clockx (following the order defined by the
net), we unmark the clock subnet ofx and mark it appro-
priately. Then we update the places related to the diago-
nal constraints wherex occurs. Finally we mark placeℓ′

and, for every reset of clockx, the placesBeforexc1(x) where
c1(x) is the first constant related tox. This configuration
(M ′, ν′) is such that(ℓ′, v′)R(M ′, ν′).

Proof of L(N ) ⊆ L(A). Let (M, ν) be a reachable config-
uration of the net. Note thatΣℓ∈LM(ℓ) ≤ 1. A configura-
tion with Σℓ∈LM(ℓ) = 1 will be called tangibleand oth-
erwisevanishing. Given a vanishing configuration(M, ν),
(M ′, ν′) is called a tangible successor of(M, ν) iff it is the
first tangible configuration encountered in some firing se-
quence starting from(M, ν). Note that the differences be-
tween two tangible successors(M ′, ν′) and(M ′′, ν′′) may
only be of the following kinds: a transitionReachxc , Leavexc ,
Satx>c or Unsatx<c is fireable in one marking and just fired
in the other.

We define a relationR between configurations of the au-
tomaton and the net as follows.(ℓ, v)R(M, ν) iff

- either(M, ν) is tangible and the following conditions
are fulfilled. First,M(ℓ) = 1. If M(Atxc ) = 1 then
v(x) = c. If M(Beforexc ) = 1 then v(x) = c′ +
ν(Reachxc ) wherec′ is the constant precedingc or 0 if
c is the first one. IfM(Afterxc ) = 1 ∧ M(Ix>c) =
1 thenv(x) = c + ν(Satx>c). If M(Afterxc ) = 1 ∧
M(Tx>c) = 1 thenv(x) > c.

- or (M, ν) is vanishing and(ℓ, v)R(M ′, ν′) for some
(M ′, ν′) tangible successor of(M, ν).

The critical observation (obtained by induction) is that
when(M, ν) is tangible,(ℓ, v)R(M, ν) andM(Tcond) = 1
thenv � cond.

First observe that(ℓ0,0)R(M0, ν0), and assume that
(ℓ, v)R(M, ν).

First case,simulation of a delay move(M, ν)
d
−→ (M, ν +

d). Then(ℓ, v)
d
−→ (ℓ, v + d) and(ℓ, v + d)R(M, ν + d)

since(M, ν) is necessarily a tangible configuration.

Second case,simulation of a discrete move(M, ν)
t
−→

(M ′, ν′). If t is not a transitionfiree, then(ℓ, v)R(M ′, ν′).
If t = firee for somee = (ℓ, γ, a, R, ℓ′), then the place
ℓ is marked and for everyTcond, input place oft, one has
v � cond. Thus (ℓ, v)

e
−→ (ℓ′, v′) and (ℓ′, v′)R(M ′, ν′)

since(ℓ′, v′)R(M ′′, ν′′) where the latter configuration of



the net is obtained by simulating the transitione in the net
as already described.

3.3 Complexity Results

Proposition 1 (From extended TA to TPN). Let A be an
extended TA, then there is a Safe-TPNN equivalent toA
w.r.t. their timed language. The size of this TPN, and the
time complexity of this translation, depends on the class to
whichA belongs. This complexity is quadratic in general,
and linear ifA is either diagonal-free or0-reset.

Proof. We consider an extended TAA. The size of the TPN
built previously is the sum of the sizes of all the subnets
we have described. First, we use exactly one place to en-
code each location ofA. Secondly, the subnets encoding
the transitions ofA have a size linear in the size of the tran-
sition they encode (see Fig. 5). Finally, the sum of the sizes
of all the subnets (clock evolution subnet, emptying sub-
net, marking subnet, diagonal constraint subnets) relatedto
a clockx is linear in the numberNatomic(x) of non-diagonal
constraints involvingx we have to encode to simulateA.
Indeed, the clock evolution (Fig. 1), emptying (Fig. 2) and
marking subnets (Fig. 3) have all a size linear inNatomic(x),
and the diagonal constraint subnet is of constant size, but
may appear in number linear inNatomic(x). The total size of
our construction is thus linear in the numberNatomic of non-
diagonal constraints we have to encode. As argued in the
presentation of the construction, this number is either lin-
ear or quadratic in the size ofA, depending on whetherA
simultaneously uses both diagonal constraints and arbitrary
resets to integral values. This concludes the proof.

In [12], it is proved that timed automata using diagonal con-
straints (and also timed automata using resets to integral
values) are exponentially more concise than classical TA.
Applying this conciseness result and using the linear-time
transformation described above, we get the following con-
ciseness result for Safe-TPNs:

Corollary 1 (Conciseness of TPNs: a lower bound). There
is a family of Safe-TPNs{Nk}k∈N such that the size ofNk

isO(k2 log(k)) and such that any diagonal-free and0-reset
TAAk equivalent toNk (w.r.t. their timed languages) has a
size at least2k.

Example.The TPN in Fig. 6 recognizes the timed language
{(a, ti)1≤i≤2k | ti < ti+1}. Using a slight adaptation
of [12], we can prove that this language needs an expo-
nential number of locations in a timed automaton to be ac-
cepted. However it is accepted by the TPNNk depicted on
Fig. 6 whose size is inO(k2 log(k)). This TPN implements
somehow the increment of a binary counter (each line of
the TPN corresponds to one bit: if the token is in the place
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Figure 6. The TPN Nk

on the left, the corresponding bit is0, whereas it is1 if the
token is in the place on the right).

Roughly speaking, the conciseness result is due to the
implicit representation of states in Petri nets. However,
though a similar result holds in the untimed framework, they
do not entail our result in the timed framework.

Finally, this conciseness result is optimal as there is also
an exponential lower bound on the size of TA equivalent to
Safe-TPNs, as proved in [21]:

Proposition 2(Conciseness of TPNs: an upper bound). Let
N be a Safe-TPN then there is a diagonal-free and0-reset
A equivalent toN (w.r.t. their timed languages) whose size
is exponential in the size ofN . Furthermore the time com-
plexity of the translation is exponential in the size ofA.

4 From Parallel Composition of TA to TPNs

In this section, we describe the construction of a Safe-
TPN “equivalent” to a parallel composition of TA w.r.t.
timed languages. The formal proof of correctness is omit-
ted, due to lack of space.

We assume we are given a family(Ai)1≤i≤n of n TA,
and ann-ary synchronization functionf . We assume we
have built for every TAAi a corresponding TPNTPN(Ai),
according to the construction presented in the previous sec-
tion. For each rule of the synchronization function, we add
a subnet in order to ”synchronize” the corresponding transi-
tions of the TPNsTPN(Ai). We explain here the construc-
tion depicted in Fig. 7. First, for every1 ≤ i ≤ n, and
for every letterai appearing in automatonAi, we add two
placesIn(ai), andOut(ai), which we connect to the cor-
responding transitionsfiree (originally labeled byai in Ai)
anddonee of TPN(Ai), for every transitione of Ai labeled
by ai. Then, for every rulef(a1, . . . , ai, . . . , an) = a, we
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Figure 7. Simulating the parallel composition

build a new immediate transition “Fire” labeled bya which
checks every input places corresponding to the labels that
have to synchronize, and returns the tokens to the corre-
sponding output places.

It is easy to check that this construction is linear in the
size of the synchronization functionf , and linear in the size
of the TPNsTPN(Ai).

Finally note that this construction may induce new dead-
locks in the TPN (as a labelai may be able to synchronize
with other labels in different ways), but this has no effect on
the timed language which is accepted.

5 Conclusion and Future Work

In this paper, we have studied the relative expressiveness
and conciseness of time Petri nets and different extensions
of timed automata w.r.t. timed language equivalence. More
precisely, we have designed a polynomial translation from
a TA with diagonal constraints and resets to integral values
to a TPN. This translation becomes linear whenever TA are
either diagonal-free or0-reset. As a consequence of this
translation, we get that TPNs are exponentially more con-
cise than classical TA (thus diagonal-free and0-reset), and
we have provided a concrete family of TPNs which wit-
nesses this conciseness property.

We are currently investigating extensions of this work.
For example, we believe that an appropriate adaptation of
the translation would also handle several other extensions
of TA [13].

An obvious perspective for these constructions is to use
algorithms developed for analyzing TPNs as an alternative
for the analysis of parallel composition of extended TA. We
explain below the main differences between two fundamen-
tal approaches used to verify TA and TPNs, and we explain
what we may expect from the translation we have proposed
in this paper.

Analysis in TA: the forward algorithm. In practice, the
verification of reachability properties in timed automata
is done using symbolic on-the-fly algorithms manipulat-
ing zones2 [19, 15, 11]. In particular, the forward anal-
ysis computation (which consists in computing iteratively
the successors of the initial configurations) is very impor-
tant and is for example implemented in the much used tool
Uppaal [20]. This algorithm may be presented as the con-
struction of the “zone graph”. Each vertex of this graph is
a pair composed by a locationℓ and a zoneZ in which we
store the possible values of the clocks. In order to build
the successors of a vertex, we proceed as follows for every

transitiont = ℓ
g,a,R
−−−→ ℓ′.

- We compute the successor of the zoneZ, by letting
time elapse, taking the intersection with the constraints
of the guard, and finally updating the values of clocks
that are reset. If the resulting zone is consistent, we
canonize it, and update the value of the location by
this of the target locationℓ′ of the transition.

- Since the values of clocks are in general not bounded,
and in order to ensure termination of the algorithm, we
have to replace the zoneZ by an abstractionZ ′ of it.

- Then the resulting vertex(ℓ′,Z ′) is the successor (in
the computation) by the firing oft.

Unfortunately, the abstraction operator used in step2
must be carefully chosen [11]. For classical timed automata,
the choice of a good operator is rather simple, but forex-
tended timed automata(i.e. timed automata using diagonal
constraints and more general resets of clocks), it is quite
intricate to find a correct abstraction operator and even to
propose a correct forward analysis algorithm [11, 4, 14].

Analysis of TPNs: the class graph. The class graph is
an abstraction of the transition system corresponding to an-
other semantics of TPNs. In this semantics, the timed values
we store refer to the future of the execution: each vertex of
this graph is a pair composed by a markingM and a zone
Z where a variablext represents the firing delay associated
with an enabled transitiont and an extra variablex0 whose
value is always0. In order to build the successors of a ver-
tex, we proceed as follows for every enabled transitiont.

- We add toZ the constraintsxt ≤ xt′ for all t′ 6= t ∈
En(m), and we check whether the resulting set of con-
straints is consistent. We canonize the new set of con-
straints and we compute the new markingM ′.

- We remove the variables corresponding to a transition
which has been disabled, we modify the constraints
corresponding to transitionst′ which remain enabled,
to express thatxt′ is now the remaining delay after
firing t. At that point, some constraints are not con-
straints of a zone: we remove variablext applying a
Fourier-Motzkin elimination and obtain a new zone.

2A zoneis a set of valuations defined by a clock constraint.



- We introduce the variablesxt′′ corresponding to the
newly enabled transitionst′′ with the constraints ex-
pressing thatxt′′ ∈ I(t′′).

- We finally canonize this zone and we get a new zone
Z ′ s.t. (M ′,Z ′) is the successor zone when firingt.

The key point for termination of this algorithm (when
the net is bounded) is that constants appearing in the zones
are bounded by the maximal finite bound of the firing inter-
vals. Thus contrary to the zone graph of a TA, no abstraction
mechanism is required in order to ensure termination.

Discussion.The constructions we have proposed in this pa-
per suggests a unified simple method for verifying paral-
lel compositions of extended TA: first transform the system
into a TPN, and then apply the class graph algorithm (using
for example the toolTina already mentioned). The advan-
tages of this method are the following: 1) it avoidsad-hoc
techniques for enforcing termination of forward analysis;
2) it may help tackling the state explosion problem due to
parallel composition as techniques well-suited for analyzing
TPNs might be efficient to handle this parallel composition.
However, we have to be aware of the increase in analysis
complexity induced by the increase in the size of the con-
structed models.

Let us point out a main difference between these two
methods: whereas the zone graph somehow computes con-
straints on the dates of past events, the class graph com-
putes constraints on the dates at which will happen events
in the future by storing constraints on the firing dates of
transitions. We thus think it is relevant to compare these
two points of view, and we are currently implementing the
constructions we have proposed in this paper to compare
the two methods. If the results of our experiments are en-
couraging, we plan to propose an algorithm which would
compute a sort of class graph directly on TA (without first
transforming it to an equivalent TPN).
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