Extended Timed Automata and Time Petri Nets*

Patricia Bouyer, Serge Hadd&g Pierre-Alain Reynier
1 LSV, CNRS & ENS de Cachan, France
2 LAMSADE, CNRS & Université Paris-Dauphine, France
e-mail: {bouyer,reynief @Isv.ens-cachan.fhaddad @lamsade.dauphine.fr

Abstract more general operations on clocks (called updates) have
been considered, and models using operations like regettin
Timed Automata (TA) and Time Petri Nets (TPN) are two a clock to some integral value have been studied [13]: de-
well-established formal models for real-time systems. Re-cidability of these extensions heavily depends on the eatur
cently, a linear transformation of TA to TPNs preserving of the updates and of the clock constraints which are used.
reachability properties and timed languages has been pro- All mentioned decidable extensions, do not add expressive
posed, which does however not extend to larger classes opower to the original model, they can thus be seen as syntac-
TA which would allow diagonal constraints or more general tic sugar, but even though no expressiveness is added, these
resets of clocks. Though these features do not add expresextensions yield exponentially more concise and “easy-to-
siveness, they yield exponentially more concise models. design” models [12]. For example, scheduling problems are
In this work, we propose two translations: one from ex- modeled more easily using these both extensions, see [16].
tended TA to TPNs whose size is either linear or quadratic
in the size of the original TA, depending on the features
which are allowed; another one from a parallel composi-
tion of TA to TPNs, which is also linear. As a consequence
we get that TPNs are exponentially more concise than TA.

Time Petri nets. Adding explicit time to Petri nets was
first done in the seventies [22, 23]. Since then, timed
models based on Petri nets have been extensively studied
'and various tools have been developed for their analysis
(like Tina [10] or Romeo [17]). In this paper, we focus on
Keywords: Time Petri Nets, Timed Automata, Conciseness, the model of Time Petri Nets (TPNs) from [22] where a time
Reachability Analysis. interval associated with every transition restricts thie da
which it can be fired. Furthermore, time cannot elapse if it
temporallydisables a transition.

1 Introduction From TA to TPNs. In [18], the authors compare diagonal-
free TAs without strict constraints and Safe-TPN®.(

Extended timed automata.Timed automata have been de- TPNs where the number of tokens in a place is at st
fined in the nineties as a powerful model for representing and give a translation from TAs to Safe-TPNs which pre-
real-time Systems [1, 2] One of the most important prop- serves timed |anguageS. The Complexity of the translation
erties of this model is that checking reachability properti i quadratic. In [6], another translation is designed, Whic
(or equivalently language emptiness) is decidable. In thetransforms diagonal-free TAs to equivalent Safe-TPNs, and
original model, a transition is guarded by a clock constrain Whose complexity is linear. However the transformation
z 1 h (wherez is a variable called clock) is an integer ~ Which is done in [6] does not extend to more general TA
and< is a Comparison Operator), and reset8 sosubset of (Using diagonal constraints and resets to integral Values)

the clocks. Our contribution. In this work, we present a translation
Several extensions of this original model have been sincefrom extended TA (which use diagonal constraints and up-
considered: more general constraints like diagonal con-gates to integral values) into Safe-TPNs and prove it pre-
straints [2, 7] or additive constraints [8] have been stddie serves timed languages. We study the complexity of this
and while additive constraints lead to undecidabilitygdia trans|ation showing that the size of the constructed TPN is
nal constraints preserve the decidability of the modeloAls |inear w.r.t. the size of the TA, except when the TA includes

“Work supported by ACI “Sécurité Informatique” CORTOS (@l both diagonal constraints and arbltra_lry resets to mteglal
and Observation of Real-Time Open Systems), a program offech ues. In the latter case, the complexity of the translation be

ministry of research. comes quadratic. As a side result (applying conciseness re-

sults of [12]), we get that Safe-TPNs are exponentially more
concise than classical TA. We also provide a direct con-
struction which witnesses this conciseness result. Kinall

we present a second translation from a parallel composition

of TA to TPNs. As future work, we discuss another conse-
guence of these translations: they might provide a unified
method to check for reachability properties in parallel eom
position of extended TA.

Organisation of the paper. In section 2, we present basic
definitions. Our results are developed in section 3. We first
present the construction of TPNs equivalentto extended TA,
and we then prove the correctness of this translation. Fi-
nally, we compute the complexity of our translation, and

0-delay: ¢ 9 q;
Additivity: if g 4, q andq’ 4, q" withd, d’ € R>o, then
d+d’
q——¢q

Continuity: if ¢ 4, q', then for everyd’ and d” in R>q

/.
)

such thatd = d’ + d”, there existg” such thaly 4,
q// d_”} q/.
With these properties, mn of S can be defined as a fi-
. _ do , ao di, ;a1
nite sequence of movgs= ¢y — ¢, — ¢1 — q; —
ga... 2 gn+1 Where discrete actions and delays alternate.
To such a run corresponds a timed ward= (a;, t;)o<i<n

overY. wheret; = Z;:O d; is the date at whicly; hap-

present our conciseness results. In section 4, we preserieens. Finally, by projection ab overX, we get the timed

our construction for parallel compositions of TA. At last, i
section 5, we discuss the perspectives of this work.

2 Timed Automata and Time Petri Nets

Let X be a finite alphabet.* is the set of finite words of
Y. We also us&, = X U {e} with e (the empty word)
not in X. The setdN, Q> andRx(are respectively the
sets of natural, non-negative rational and non-negatike re
numbers.

A timed wordover X is a finite sequencer = (ao, to)
(a1,t1) ... (an, ty) S.t. foreveryd <i < mn,a; € 3, t; €
R>o andt;; > t;. In the following, we will equivalently
write w = (a, ﬁ) with a = (ai)ogign andt = (ﬁi)Ogign-

An interval I of R>(is aQxo-interval iff its left end-
point belongs toQ>o and its right endpoint belongs to
Q>0 U {oo}. We setlt = {z | < yforsomey € I},
the downward closuref I. We denote byZ(Q>() the set
of Q>o-intervals ofR>.

A valuationwv over a finite setX is a mapping inR< .
We note0 the valuation which assigns to every clock X
the valueD.

2.1 Timed Transition Systems

Timed transition systems describe systems which com-
bine discrete and continuous evolutions. They are used t
define and compare the semantics of TPNs and TA.

Definition 1 (Timed Transition System (TTS))A timed
transition systenis a transition systent = (Q, g0, —),
where(is the set of stateg, < @ is the initial state, and

the transition relation— consists of delay moveqsi q

(with d € R>), and discrete moveg = ¢’ (witha € X.).

Moreover, we require standard properties for the trangitio

relation —:

Time-determinism: if ¢ 4, q’ andq 4, q" withd € Rxg,
theng’ = ¢”;

word Timed p) which is the timed word accepted by run

Given a sett’ C @ of final states, we say that a ryrof
S is acceptingf it ends up in a state of'. The timed word
Timedp) is then said accepted)

2.2 Timed Automata

Syntax. First defined in [2], the model of timed automata
associates a set of non-negative real-valued variabliegical
clockswith a finite automaton. LefX be a finite set of
clocks. We writeC(X) for the set ofconstraintsover X,
which consist of conjunctions of atomic formulae of the
foomz < candx —y < cforx,y € X, c € Z
ande {<,<,>,>}. We also define the proper subset
Cqr(X) of diagonal-freeconstraints oveX where the con-
straints of the formx — y < h (calleddiagonal constraints
are not allowed. Finally, the s&(X) of arbitrary resets
to integral values over the clock¥ is defined as the set
(NU{L})* of mappings fromX to Nu { L}. The frame-
work of classical resets to zero is obtained by considering
the proper subse®(X) = {0, L}X. For example, the re-
setr := 2 is encoded as a function mapping clocko the
value2 and other clocks td_. In the following, we write a
general reset as a conjunction :=c; A...Axg = cg).

Definition 2 (Timed Automaton (TA)) A timed automaton
AoverX. isatuple(L, {y, X, X¢, E) whereL is afinite set
of locations ¢y € L is theinitial location, X is a finite set

Oof clocksand E C L x C(X) x S x R(X) x L is a finite

set of edges An edgee = (¢,v,a, R,¢') € E represents
a transition from locatior? to location?’ labeled bya with
constrainty and resetR € (NU {L1})X. We say that the
timed automato is diagonal-fredresp.0-resej if the set
C(X) (resp.R(X)) is replaced by its subsét (X) (resp.
Ro(X)).

Semantics. For R € (N U {L1})%, the valuationR(v) is
the valuationv’ such that'(z) = v(z) whenR(z) = L
andv’(z) = R(z) otherwise. For any valué € R>, the
valuationv+d is defined by(v+d) (z) = v(z)+d, Yz € X.

Finally, constraints of (X') are interpreted over valuations:

we writev |= v when the constraint is satisfied by.

Definition 3 (Semantics of TA) The semantics ofa TA =
(L, by, X, %, E) isthe TTSS 4 = (Q, go, —) WhereQ =
L x (Rx0)¥, qo = (fo, 0) and— is defined by:
- delay moves: (£,v) & (6,04 d) if d € Rso;
- discrete moves: (¢,v) % (¢',v) if there exists some
e=({7y,a,R ') € EstvlEvyandv = R(v).

If F'is a set of final locations fad, the timed language
accepted by4, denotedC(.A) is the set of timed words ac-
cepted byS 4 for the final set of state8' x Rx.

Parallel composition of TA. Let (A;)1<i<, be a family of
n TA. We assume thatl; = (L;, 4,0, Xi, 2¢, E;) for ev-
ery1l < i < n and thatX;'s are disjoint sets of clocks.
Let f : (XU {L})™ — 3. be ann-ary partial synchro-
nization function. The parallel composition G#;)1<;<x
w.rt. fisthe TAA = (L, 4y, X, 3., E) such thatL =
L1 X ... X Ln,g() = (617(),...,67%()),)(:Xl UUXn,
(b, ... 0) 225 (e),... 0") whenevel(i) eithera = ¢,
there existsl < i < n such that; 2=, ¢ in E;, and
t; = L5 if i # j; (ii) or there existd C {1,...,n}, there
existe; Lotof ¢/ in E; (for i € I) such that:

- g: /\ie[g’ia()

Ri(x)ifz e X;andi € I

- B(z) = 1 otherwise
=00t g1,
- andf(a1,...,a,) = awherea; = Lifi & 1.

2.3 Time Petri Nets

Syntax. Introduced in [22], Time Petri nets (TPNs) asso-

ciate a time interval to each transition of a Petri net.

Definition 4 (Labeled TPN) A labeled time Petri netV
overy. is atuple(P, T, %.,*(.), (.)*, Mo, A, I) where:

- Pis afinite set ofplaces

- T is afinite set oftransitionswith PN T = 0,

- *(.) € (NP)T is thebackwardncidence mapping,

- ()° € (NP)T is theforwardincidence mapping,

- M, € N¥ is theinitial marking,

- A: T — X, is thelabeling function

- I: T — Z(N) associates with each transitionfiaing

interval

Semantics. A configurationof a TPN is a pair(M, v),
where M is amarkingin the usual sensé.,e. a mapping
in N”, with M (p) the number of tokens in plage A tran-
sition ¢ is enabledin a markingM if M > *t. We denote
by En(M) the set of enabled transitions M. The second
component of the paifM,v) is a valuation oveEn(M)
which associates to each enabled transition its igethe

amount of time that has elapsed since this transition is en-
abled. An enabled transitiancan be fired ifv(¢) belongs
to the intervall (t). The result of this firing is as usual the
new markingM’ = M — *t + ¢*. Moreover, some valua-
tions are reset and we say that the corresponding transition
are newly enabled. Different semantics are possible fer thi
operation. In this paper, we choose the classical seman-
tics [9, 3] (see [5] for alternative semantics). The prettica
specifying whent’ is newly enabled by the firing affrom
markingM is defined by:
Tenabledt’, M,t) = ¢ € En(M — *t +t*)
A €ENM —°*t)Vi=1t)

Thus, firing a transition is not considered as an atomic
step and the transition currently fired is always reset.

The seiADM(N) of (admissible) configurationsonsists
of the pairs(M, v) such that/(t) € I(t)! for every transi-
tiont¢ € En(M). Thus time can progress in a marking only
when it does not leave the firing interval of any enabled tran-
sition.

Definition 5 (Semantics of a TPN)The semantics of a
TPNN = (P,T,%.,°(.),(.)*, Mo, A, I) is a TTSSy =
(@, g0, —) where@Q = ADM(N), qo = (My,0) and— is
defined by:
- delay moves. (M,v) = (M,v + 1) iff Vt € En(M),
v(t)+ 1€ I(t),
- discrete moves: (M, v) (M —*t+t*,v)ifft €
En(M)iss.t.v(t) € I(t), andvt’ € En(M —°*t+t°*),

A(t)
—

- V'(t') = 0if fenabledt’, M, t)
- and//'(t') = v(t) otherwise.

If F'is a set of final places df/, we noteC (/) the timed
language accepted by, i.e. the set of timed words ac-
cepted bySy for the final set of state@\/, v) s.t. M (f) #

0 for somef € F

A Safe-TPNs a TPNN where all configurations reach-

able inSs contain at most one token in every place.

3 From Extended TA to TPNs

In this section, we describe the construction of a TPN
“equivalent” to a TA (w.r.t. their timed languages), that
is accepting the same timed languages. The correctness is
proved in the next section.

We assume we are given a timed automatonNe will
construct an equivalent TPN in a modular way. Note that
this TPN will be safe by construction. Places with the same
name are shared by several subnets. Omitted labels for tran-
sitions stand foe. A firing interval [0, 0] is depicted by a
blackened transition and is called an immediate transition
and intervalq0, oo are omitted. A double arrow between
a placep and a transitiort indicates thap is both an input
and an output place far

3.1 The Construction Emptying the clock subnet. Let us assume that a transi-
tion of the TA resets the clock. The marking of the clock

The clock evolution subnet. For each clock: of the TA, evolution subnet must be updated accordingly, whatever its

we construct a subnet which records and tracks the valuecurrent configuration is.

of z. More precisely, this subnet records both the value In order to encode a transition of the TA and to con-

of the clock (though in an implicit way) and the truth of trol the global size of the resulting TPN, we proceed in two

all the constraints: > ¢ appearing in the automaton. The steps: 1) The first step is depicted in Fig. 2 and consists in

truth value of such a constraint is recorded explicitlyngsi consuming all the tokens which are in the clock evolution

a placeT,... For all clock resetg; := h and diagonal subnet; 2) The second step is discussed in the next para-

constraints:—y < ¢ appearing in the automaton, the subnet graphs, and consists in marking the appropriate places of

has also to take into account the constraint ¢+ h and its the clock evolution subnet.

negation (except if it is trivially equivalent toue or falsé.

It must also take into account the constraints< ¢ and

x > cwhenz := cis areset used in the automaton.

The subnet represented in Fig. 1 illustrates our trans- Py Ta<er
lation in the casex is compared with three constants °
{c1,c2,c3} With ¢; < ¢3 < c3. To ease the reading, we as- -
sume that) does not belong to the set of constants, though g Reactf,
this case can be handled similarly. (O o e
Let us explain how this subnet simulates time elapsing, Tpce A Foce,
how it records the value of the clock, and how it records o . '
the truth value of the constraints. First notice that altpka
along the vertical axis (placegefore , At7 , ..., After’.) Tpse; Sipse; Ipse, . <o Tycen
are mutually exclusive. The unique token labelling one of . I ‘ o1 o
these places together with the age the next transition 10001
encodes the value of the clock. For instance, if a token is Before?,
in the placeBeforeg , and if the age oReaclj, is 7 then . [Unsaty <
the value ofz is ¢; + 7. The value ofr will be ¢, in the [0,e2—eal
following cases: Tw>eo Reaclf Fr<ey
- either the token is in the plad&efor¢ , and the age of . T Jlez—erea—e1] .
Reachg, iscy — ¢y, .
- either the token is in the placd?,, aZez Ao
- or the token is in the pIacBeforéj3 and the age of o .
Reaclj, is 0. S L .
T>co e >co z>co Leavé§2 Tocey r<cg
Finally, the subnet does not keep track of the exact value . I ‘ °
of the clock beyonds. The truth values of the constraints 10,001 oot
are updated consistently, while preserving the two foltayvi °s
properties, which are fundamental for the correctness of ou O s et <es
construction: 1) When the placg,.... is marked, then the — .
corresponding value of (saywv,) is such that, > ¢ (but N T e
the converse is not necessarily true); 2) For each possible (Ot @,
valuew, of z, there is an execution of the subnet of time Tpces A
lengthv, such that for every constraint ¢ satisfied by, o ‘ ’
the placer’,.. is marked. Finally, note that this subnet does
not take care of diagonal constraints because they cannot be Teses Stiscy lo>ey Lo
handled similarly (their truth values are unchanged when . I ‘ o3
time elapses). 10,001
It is worth to notice that the size of this subnet is linear Afercy
in the number of clock constraints involvingwhich need .
to be encoded (see the beginning of this paragraph).
1Recall that the age of a transition is the amount of time wiiiah Figure 1. The clock evolution subnet (clock z)

elapsed since the transition has been enabled.

In order to unmark all places of the subnet de-
picted in Fig 1, we will empty the places in a top-
down way. The control places of the subnet of Fig. 2
(namely{xbegina Zcont » Leont, 1 » Leonty o5 « + amempty}) sched-

These remarks allow to bound the width of the “empty-
ing net”, and it allows to control the size of the net (on one
level, there are at modt“concurrent” transitions). Finally
note that the subnet is triggered by a token in plaggin

ule the unmarking process and memorize some informationand that the clock evolution subnet is empty when a token

in order to avoid a quadratric increase of the number of tran-
sitions.

Let us partly describe the subnet of Fig. 2. First, it re-
moves the token which is either in plagg.., orin place
T.<., (these two places are mutually exclusive, see transi-
tion Unsat,<.,). Then, it removes the token which is either
in placeBefor¢ , or in placeT, ., (these two places are
also mutually exclusive, see transiti®teactj). Thanks
to the control places of the net in Fig. 2 (plaggon, ,
vs placezcon, ,), We remember whether the token was in
placeBeforg orin placeT’,>.,. If the token was in place
Beforg , there will be no token in placés, ..., and/, ., .

On the contrary, if the token was in pla€gs.,, then there
will be either two tokens in placest? andT,<.,, or one
in placel.s,, or onein placé -, .

Fr<eq Tr<eq

Thegin

Before’c"1

Figure 2. Emptying the clock evol. subnet

arrives in placerempy
It is worth to notice that the size of this subnet is linear
in the size of the previous subnet.

Updating the marking of the constraints in the clock
evolution subnet. We want to update the marking of the
places coding the truth values of the constraints in thekcloc
evolution subnetwhen a clock is reset to some integral value
c. However, we want to control the size of the resulting
TPN, we thus want to build only one subnet per clock which
will update correctly the marking of the evolution subnet,
though the new marking will depend on the value:of

The idea of our construction is the following: when the
clock z is reset toc, then the constraint < ¢ holds,
and consequently, all other larger over-approximations of
z (z < ¢, for <€ {<, <} andc’ > ¢) also hold. Thus, we
will build a propagation chain for the over-approximations
which will respect the above implications. Of course, we
can reason similarly for the under-approximations.

underz: =cg Over,.—q

Fr<es

Tw<(:1

Underg: =cq

Fa:<(:2

Ty<eq

Fr<ey

Ta:<(:3

Figure 3. Marking the constraints places in
the clock evolution subnet

Encoding transitions of the TA. With each locatior? of
(A the automaton, we associate an eponymous placethe
TPN. The place is initially marked when the locatioA
Tao<ntn Te—yzh is the initial one. To simulate an edge= (¢,v,a, R, {),
we must check that the atomic constraifitg) < ;<) are
satisfied (ify = 71 A ... A (). To that aim, we use
the placeq’,, of the corresponding clock evolution subnets.
Then, we successively update the subnets according to the
resetsik (WhereR = (z1 :=c1 A ... A Zy(e) 1= Cu(e)))-
This is done by the subnet in Fig. 5 for a transition-

Ty o yen b,z > c3 Ny < ca,a,2 := c1,¢'). Note that we label the
A - transitionfire, by the letter (notation ‘fire,, a”). Note also
that the place corresponding to the clock positiatf () is

marked at the end of the computation of this subnet.
This subnet has size linear in the size of the original TA.

A

wieh! Y
(Diagg‘_h Dlag;‘.ﬁJh

Figure 4. The subnet forz —y < hand y := // S
Our construction is different from the one proposed

in [6]. The way time elapsing and clock evolutions are han-
The two propagation subnets are represented in Fig. 3,dled is for example different: instead of having one small
and take advantage of the above observations. The twasubnet per clock constraints appearing in the TA, we have
causal chains are represented by two different connectednly one subnet per clock which encodes its value. This
components. In order to trigger this net when resetting method requires a more involved construction for updating
¢i, One puts a token in plad¢énder,.—., andOver,._.,. For the truth value of the constraints without having a blowup
the subnet on the left (resp. on the right), the update of thein the size of the TPN, but allows to deal with diagonal con-
marking terminates when a token arrives in pldceler,._ straints and with more resets of clocks to integral values.
(resp. in plac®©ver,,). Moreover, it is worth noticing that it would be easy to deal
Note that we have not marked yet the vertical axis of the with invariants. Indeed, we can add a sink place, and tran-
clock evolution subnet, which implicitly encodes the value sitions from all locations with invariant to that sink place
of the clock. This will be done by the subnet simulating the constrained by the invariant.
transition of the TA (see the last paragraph of this section)
It is worth to notice that the size of this subnet is linear 3.2 The Correctness Proof
in the size of the clock evolution subnet.
The correctness proof relies on the existence of two sim-
Diagonal clock constraints. The truth value of a diagonal jjations, one implying the inclusion of the language ac-
constraintc —y < h (which is invariant by time elapsing) is cepted by the TA into the language accepted by the TPN,
represented by two mutually exclusive pladés ;.. and and the other one implying the converse inclusion. Met
Fy—ypan. We build & subnet for every atomic constraint be an extended TA ant” be the net obtained applying the

y > h and every reset of the clocksor y. construction described in the previous part.

Fig. 4 represents the subnet corresponding to the diago- i i
nal constraint: — y < h and to the resey :— i’. When Proof of L(A) € L(N). We define a relatiorR be-
resettingy to h/, the truth value of: — y < h has to be tween configurations of the TA and the TPN as follows:

updated according to the truth value of the (non-diagonal) wi;??%& E Zi::féhe(fc))llovzing conditiot?]z az@;ilcqud.t;r?tt

. < , o wi=h' _7 x N_:c_: Cly...,Cn S S S
constraintv < h + h'. The places Diag; . }1—1"5.1(?/)“ . related tar, occurring in the net (these values are supposed
schedule the update of the subnets associated with the dlaq—o be sorted). Let(x) = inf{c; | ¢; > v(z)} with the
onal constraints involving clocl (andd(y) is the number convention th.at(x) i o;ifl':;ecsjet isC]er;p;}yxThen'
of such constraints). In Fig. 4js the index of the constraint It o thenM(Af.) — 1- ' '
r—y<h(l<i<dy) - I c(2) = v(z) thenM(AL,)) = 1;

By the way, notice that for each diagonal constraint Otherwise, if v(z) < “c(z) < oo, then

x —y < hand for each reset := 1/, the size of the corre- MBeforg,)) = M{lcew) = L and
sponding TPN is constant (see Fig. 4). The number of such v(Reacli(,)) = v(Unsat < () = c(z) — v(z);
p 9 9. 4). - Otherwise M (After?) = 1 éc(x) = 00).

subnets is proportional to the number of combinations of

a diagonal constraint with a reset, that is in the worst case For every placd,s. such thav(z) < ¢, M (Typqe) = 1.
quadratic. If we consider only diagonal constraints and re- For every placer, .. such that-(v(x) < ¢), M(Fy<.) =
sets ta), this number will be linear. 1. For every placel, _ s such thatv(z) — v(y) > ¢,

Ty>cg

ey o
P20y (x) +1 c1

Thegin Tempty Undefg:=cq; Undery.—g Overp:=cq Ove'wend Diagf::q

Fig. 2 Fig. 3 Fig. 3 Fig. 4
Emptying the net Updating the truth of constraints afterrésets Updating the thruth of diagonal constraints

Figure 5. Simulating the transition e = (¢, z > cs Ay < co,a,x := ¢1, ')

M(T,—ysec) = 1. For every placeF, .. such that Proofof L(N) C L(A). Let (M, r) be a reachable config-
—(v(z) —v(y) > c), M(Fy—ysae) = 1. Finally, M (¢) = 1. uration of the net. Note thai,c, M (¢) < 1. A configura-
The marking of remaining places is null, and the age of the tion with X,c, M (¢) = 1 will be calledtangibleand oth-
remaining enabled transitions may be any admissible value erwisevanishing Given a vanishing configuratiof/, v),

We first observe thatly, 0)R (Mo, vp), and assume that (M’, ') is called a tangible successor(@f, v) iff it is the
(¢, v)R(M,v). first tangible configuration encountered in some firing se-
quence starting froniM, v). Note that the differences be-
tween two tangible successq@®/’, v') and(M”,v") may
only be of the following kinds: a transitidReaclj, Leavé,
Sat... or Unsat,. .. is fireable in one marking and just fired
in the other.

First case,simulation of a delay mové, v) 4, (¢, v+d).
Let X’ be the subset of clocks such that(z) € Ca(z).
Let X" be the subset of clocks ¢ X’ such thatnf{c —
v(z) | ¢ € Car(z) A c > v(x)} is minimal. We noter this

— 1 [/ —
value (note that = oo if X* = @) andc(x) the constant We define a relatiof® between configurations of the au-

. . "
as?/(\)/m:ted witks € fﬁ .d | hthat | dt tomaton and the net as follow, v)R (M, v) iff
€ decompose the gelay move such thatwe only needto either (M, v) is tangible and the following conditions

successively examine the following cz;ses. are fulfilled. First,M(¢) = 1. If M(A®) = 1 then
- X' =0 andd < 7. Then(M,v) = (M,v + d) and v(zr) = c. If M(Beforé) = 1 thenv(z) = ¢ +
(E,lv T dA)R(M,v+d) , v(Reactf) wherec’ is the constant precedingor 0 if
- X' = 0 andd = 7. First, for everyz € X", we c is the first one. IfM(After’) = 1 A M(I,s.) =
fire the transitionUnsat,..,). Then we let a dura- 1 thenv(z) = ¢ + v(Sats.). If M(After’) = 1 A
tion d elapse and finally for every € X", we fire M(T,s.) = 1thenv(z) > c.
Reacff,). The/ re;ached configuratiqa/’, ') fulfills - or (M, v) is vanishing and/, v)R(M’, ') for some
(l,v+ d)R(M' V). (M’ ') tangible successor ¢i\/, v).

- X' # @ andd < 7. First, for everyr € X', we fire the
transitionLeav€ . Then we let a duratiori elapse ~ The critical observation (obtained by induction) is that
and finally for everyr € X', we fireSat,,(,). The when(,v) is tangible (¢, v)R(M,v) andM (Tcond) = 1
configuration(M’,v’) which is reached is such that thenv = cond.

v+ d)R(M' V). First observe thatly, 0)R(My, o), and assume that
(L, v)R(M,v).
Second casesimulation of a discrete mové/,v) = First case,simulation of a delay moveM, v) % (M, v +

(¢',v"). We “execute” the simulation net associated with
the corresponding transition we fire transitionfire, and
for each reset of clock (following the order defined by the
net), we unmark the clock subnet efand mark it appro- Second casesimulation of a discrete movéM, v) iR
priately. Then we update the places related to the diago-(M’,v'). If ¢ is not a transitioriire_, then(¢, v)R(M’,v').
nal constraints where occurs. Finally we mark placé If ¢ = fire, for somee = (¢,7,a, R,), then the place
and, for every reset of clock the placeﬁeforeﬁl(x) where ¢ is marked and for ever§,ong input place oft, one has
c1(x) is the first constant related ta This configuration v E cond. Thus(¢,v) = (¢',v") and (¢, v")R(M', V")
(M’,v')is such that?’, v YR(M',v"). since (¢, v"YR(M",v") where the latter configuration of

d). Then(f,v) % (¢,v + d) and (¢, v + d)R(M, v + d)
since(M, v) is necessarily a tangible configuration.

the net is obtained by simulating the transitiom the net
as already described.

3.3 Complexity Results

Proposition 1 (From extended TA to TPN)Let A be an
extended TA, then there is a Safe-TRNequivalent taA
w.r.t. their timed language. The size of this TPN, and the
time complexity of this translation, depends on the class te
which A belongs. This complexity is quadratic in general,
and linear if A is either diagonal-free ob-reset.

Proof. We consider an extended TA. The size of the TPN
built previously is the sum of the sizes of all the subnets*

we have described. First, we use exactly one place to en- 10,40l
code each location off. Secondly, the subnets encoding .
the transitions of4 have a size linear in the size of the tran- Figure 6. The TPN NV},

sition they encode (see Fig. 5). Finally, the sum of the sizes

of all the subnets (clock evolution subnet, emptying sub- 4 he left, the corresponding bit(s whereas it idl if the
net, marking subnet, diagonal constraint subnets) retated ,yanis in the place on the right).

a clockz is linear in the numbeNatomic(+) of non-diagonal Roughly speaking, the conciseness result is due to the
constraints involving: we have to encode to simulaié. implicit representation of states in Petri nets. However,

Indeed, the clock evolution (Fig. 1), emptying (Fig. 2) and ,4,gh a similar result holds in the untimed framework, they
marking subnets (Fig. 3) have all a size lineaNiRomid), do not entail our result in the timed framework.

and the diagonal constraint subnet is of constant size, but gjnay, this conciseness result is optimal as there is also
may appear in number linear Maomic(x). The total size of 4 exponential lower bound on the size of TA equivalent to
our construction is thus linear in the numB€éfiomic of non- Safe-TPNs, as proved in [21]:

diagonal constraints we have to encode. As argued in the

presentation of the construction, this number is either lin Proposition 2(Conciseness of TPNs: an upper bourldjt

ear or quadratic in the size of, depending on whethet N be a Safe-TPN then there is a diagonal-free aneset
simultaneously uses both diagonal constraints and arpitra A equivalent to\ (w.r.t. their timed languages) whose size
resets to integral values. This concludes the proof. [is exponential in the size of. Furthermore the time com-

. _ o plexity of the translation is exponential in the size/bf
In[12], itis proved that timed automata using diagonal con-

straints (and also timed automata using resets to integral4
values) are exponentially more concise than classical TA.
Applying this conciseness result and using the linear-time

transformation described above, we get the following con- __!N 'f‘his s_ection“, we describe the construction of a Safe-
ciseness result for Safe-TPNs: TPN “equivalent” to a parallel composition of TA w.r.t.

timed languages. The formal proof of correctness is omit-
Corollary 1 (Conciseness of TPNs: a lower boundhere ted, due to lack of space.
is a family of Safe-TPNEN, } ren such that the size 0¥ We assume we are given a family;)1<i<, of n TA,
is O(k? log(k)) and such that any diagonal-free afdeset ~ and ann-ary synchronization functiof. We assume we

TA A;, equivalent toV;, (w.r.t. their imed languages) has a have built for every TAA; a corresponding TPNIPN(A;),
size at leaspF. according to the construction presented in the previous sec

tion. For each rule of the synchronization function, we add
Example.The TPN in Fig. 6 recognizes the timed language a subnetin order to "synchronize” the corresponding transi
{(a,ti)1<i<or | ti < tiy1}. Using a slight adaptation tions of the TPNSTPN(A;). We explain here the construc-
of [12], we can prove that this language needs an expo-tion depicted in Fig. 7. First, for every < i < n, and
nential number of locations in a timed automaton to be ac- for every lettera; appearing in automatad;, we add two
cepted. However it is accepted by the TR depicted on placesin(a;), andOut(a;), which we connect to the cor-
Fig. 6 whose size is i) (k? log(k)). This TPN implements responding transitionfire, (originally labeled by, in A;)
somehow the increment of a binary counter (each line of anddone of TPN(A4;), for every transitiore of A; labeled
the TPN corresponds to one bit: if the token is in the place by a,. Then, for every rulef(as, ..., a;,...,a,) = a, we

From Parallel Composition of TA to TPNs

Analysis in TA: the forward algorithm. In practice, the
verification of reachability properties in timed automata
is done using symbolic on-the-fly algorithms manipulat-
ing zone$ [19, 15, 11]. In particular, the forward anal-
ysis computation (which consists in computing iteratively
the successors of the initial configurations) is very impor-
tant and is for example implemented in the much used tool
Uppaal [20]. This algorithm may be presented as the con-
struction of the “zone graph”. Each vertex of this graph is
a pair composed by a locatidrand a zoneZ in which we
store the possible values of the clocks. In order to build
the successors of a vertex, we proceed as follows for every

transitiont = ¢ 245, ¢,

- We compute the successor of the zafieby letting
time elapse, taking the intersection with the constraints
of the guard, and finally updating the values of clocks
that are reset. If the resulting zone is consistent, we
canonize it, and update the value of the location by
this of the target locatioff of the transition.

Since the values of clocks are in general not bounded,
and in order to ensure termination of the algorithm, we
have to replace the zor by an abstractio®’ of it.

Then the resulting verte§’, Z’) is the successor (in
the computation) by the firing df

In(an)

o — = — =

Out(ay) Out(an,)

Figure 7. Simulating the parallel composition

build a new immediate transitiorHre” labeled bya which

checks every input places corresponding to the labels that
have to synchronize, and returns the tokens to the corre- -
sponding output places.

It is easy to check that this construction is linear in the
size of the synchronization functigh and linear in the size -
of the TPNSTPN(A,).

Finally note that this construction may induce new dead-
locks in the TPN (as a labe}; may be able to synchronize Unfortunately, the abstraction operator used in step

the timed language which is accepted. the choice of a good operator is rather simple, buteor

tended timed automaf@e. timed automata using diagonal
constraints and more general resets of clocks), it is quite
intricate to find a correct abstraction operator and even to
gropose a correct forward analysis algorithm [11, 4, 14].

5 Conclusion and Future Work

In this paper, we have studied the relative expressivenes
and conciseness of time Petri nets and different extensiondAnalysis of TPNs: the class graph. The class graph is
of timed automata w.r.t. timed language equivalence. More an abstraction of the transition system corresponding+o an
precisely, we have designed a polynomial translation from other semantics of TPNs. In this semantics, the timed values
a TA with diagonal constraints and resets to integral valueswe store refer to the future of the execution: each vertex of
to a TPN. This translation becomes linear whenever TA arethis graph is a pair composed by a markihgand a zone
either diagonal-free ob-reset. As a consequence of this Z where a variable, represents the firing delay associated
translation, we get that TPNs are exponentially more con-with an enabled transitiohand an extra variable, whose
cise than classical TA (thus diagonal-free dnckset), and value is alway$). In order to build the successors of a ver-
we have provided a concrete family of TPNs which wit- tex, we proceed as follows for every enabled transition
nesses this conciseness property. - We add toZ the constraints; < x forall ¢’ # t €

We are currently investigating extensions of this work. En(m), and we check whether the resulting set of con-

For example, we believe that an appropriate adaptation of
the translation would also handle several other extensions
of TA[13].

An obvious perspective for these constructions is to use
algorithms developed for analyzing TPNs as an alternative
for the analysis of parallel composition of extended TA. We
explain below the main differences between two fundamen-
tal approaches used to verify TA and TPNs, and we explain
what we may expect from the translation we have proposed

straints is consistent. We canonize the new set of con-
straints and we compute the new markihg.

- We remove the variables corresponding to a transition
which has been disabled, we modify the constraints
corresponding to transitiorts which remain enabled,
to express that is now the remaining delay after
firing ¢. At that point, some constraints are not con-
straints of a zone: we remove variahlge applying a
Fourier-Motzkin elimination and obtain a new zone.

in this paper.

2A zoneis a set of valuations defined by a clock constraint.

- We introduce the variables; corresponding to the
newly enabled transitions’ with the constraints ex-
pressing that,. € I(t").

- We finally canonize this zone and we get a new zone

Z's.t.(M', 2') is the successor zone when firing

The key point for termination of this algorithm (when

(6]

B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux.
Comparison of the expressiveness of timed automata and
time Petri nets. IiProc. FORMATS’05vol. 3829 ofLNCS

p. 211-225. Springer, 2005.

] B. Bérard, V. Diekert, P. Gastin, and A. Petit. Charaiz@®

the net is bounded) is that constants appearing in the zones (8]

are bounded by the maximal finite bound of the firing inter-

vals. Thus contrary to the zone graph of a TA, no abstraction [9]

mechanism is required in order to ensure termination.

Discussion.The constructions we have proposed in this pa- [10]

per suggests a unified simple method for verifying paral-
lel compositions of extended TA: first transform the system
into a TPN, and then apply the class graph algorithm (using
for example the toorlina already mentioned). The advan-

tages of this method are the following: 1) it avoas-hoc

[11]

techniques for enforcing termination of forward analysis; [12]

2) it may help tackling the state explosion problem due to

parallel composition as techniques well-suited for analyz

TPNs might be efficient to handle this parallel composition.
However, we have to be aware of the increase in analysis

[13]

complexity induced by the increase in the size of the con- [14]

structed models.

Let us point out a main difference between these two

methods: whereas the zone graph somehow computes conpy 5]
straints on the dates of past events, the class graph com-

putes constraints on the dates at which will happen events

in the future by storing constraints on the firing dates of [16]

transitions. We thus think it is relevant to compare these
two points of view, and we are currently implementing the
constructions we have proposed in this paper to compare
the two methods. If the results of our experiments are en-
couraging, we plan to propose an algorithm which would

[17]

compute a sort of class graph directly on TA (without first [18]

transforming it to an equivalent TPN).

References

[1] R. Alur and D. Dill. Automata for modeling real-time sys-

tems. InProc. ICALP’9Q vol. 443 of LNCS p. 322-335.
Springer, 1990.

[2] R. AlurandD. Dill. Atheory of timed automat&heoretical
Computer Sciencel26(2):183—-235, 1994.

[3] T.Auraand J. Lilius. A causal semantics for time Pettisne
Theoretical Computer Scienc243(1-2):409-447, 2000.

[4] J. Bengtsson and W. Yi. Timed automata: Semantics, algo-

rithms and tools. IProc. ACPN’03 vol. 3098 ofLNCS p.
87-124. Springer, 2004.

[5] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux.
Comparison of different semantics for time Petri nets. In

Proc. ATVA'05 vol. 3707 ofLNCS p. 293-307. Springer,
2005.

[19]

[20]

[21]

[22]

[23]

tion of the expressive power of silent transitions in timead a
tomata.Fundamenta Informatica®6(2—3):145-182, 1998.
B. Bérard and C. Dufourd. Timed automata and additive
clock constraints. Information Processing Letters’5(1—
2):1-7, 2000.

B. Berthomieu and M. Diaz. Modeling and verification of
time dependent systems using time Petri n€EEE Trans-
actions in Software Engineering7(3):259—-273, 1991.

B. Berthomieu, P.-O. Ribet, and F. Vernadat. Constounct
of abstract state spaces for Petri nets and time Petri nets.
International Journal of Production Researet?(14):2741—
2756, 2004.

P. Bouyer. Forward analysis of updatable timed autamat
Formal Methods in System Desidt4(3):281-320, 2004.

P. Bouyer and F. Chevalier. On conciseness of exteasion
of timed automata.Journal of Automata, Languages and
Combinatorics2005. To appear.

P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updat-
able timed automata heoretical Computer Sciencg21(2—
3):291-345, 2004.

P. Bouyer, F. Laroussinie, and P.-A. Reynier. Diagarai-
straints in timed automata: Forward analysis of timed sys-
tems. InProc. FORMATS’05vol. 3829 ofLNCS p. 112—-
126. Springer, 2005.

C. Daws and S. Tripakis. Model-checking of real-
time reachability properties using abstractions. Plroc.
TACAS'98vol. 1384 ofLNCS p. 313-329. Springer, 1998.
E. Fersman, P. Petterson, and W. Yi. Timed automata with
asynchrounous processes: schedulability and decidabilit
In Proc. TACAS'02vol. 2280 ofLNCS p. 67-82. Springer,
2002.

G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo:
A tool for analyzing time Petri nets. IRroc. CAV’05 vol.
3576 ofLNCS p. 418-423. Springer, 2005.

S. Haar, F. Simonot-Lion, L. Kaiser, and J. Toussaiiofulii-
alence of timed state machines and safe time Petri nets. In
Proc. WoDES’02p. 119-126, 2002.

K. G. Larsen, P. Pettersson, and W. Yi. Model-checkiog f
real-time systems. IfProc. FCT'95 vol. 965 of LNCS p.
62—-88. Springer, 1995.

K. G. Larsen, P. Pettersson, and W. Yilppaal in a nut-
shell. Journal of Software Tools for Technology Transfer
1(1-2):134-152, 1997.

D. Lime and O. H. Roux. State class timed automaton of a
time Petri net. IlProc. PNPM’'03 p. 124-133. IEEE Com-
puter Society Press, 2003.

P. M. Merlin. A Study of the Recoverability of Computing
Systems PhD thesis, University of California, Irvine, CA,
USA, 1974.

C. RamchandaniAnalysis of Asynchronous Concurrent Sys-
tems by Timed Petri NetBhD thesis, MIT, Cambridge, MA,
USA, 1974.

