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Abstract. Whereas partial order methods have proved their efficiency for the
analysis of discrete-event systems, their application to timed systems remains a
challenging research topic. Here, we design a verification algorithm for networks
of timed automata with invariants. Based on the unfolding technique, our method
produces a branching process as an acyclic Petri net extended withread arcs.
These arcs verify conditions on tokens without consuming them, thus expressing
concurrency between conditions checks. They are useful for avoiding the explo-
sion of the size of the unfolding due to clocks which are compared with constants
but not reset. Furthermore, we attachzonesto events, in addition to markings.
We then compute a complete finite prefix of the unfolding. The presence ofin-
variants goes against the concurrency since it entails a global synchronization on
time. The use of read arcs and the analysis of the clock constraints appearing in
invariants helps increasing the concurrency relation between events. Finally, the
finite prefix can be used to decide reachability properties, and transition enabling.

1 Introduction

Partial-order methods for discrete-event systems.In the last decades, major advances
in the analysis of distributed systems were based on two paradigms: theindependence
and thelocality of actions. Whereaspartial-order methods mainly take advantage of
the independence (see e.g. [20]), theunfoldingmethods rely on both concepts [13, 17].
Furthermore from a semantical point of view, system unfoldings are a theoretical well-
defined alternative to the usual interleaving semantics. Itmust be emphasized that this
semantics is more discriminant than the classical one and may be applied for other
purposes than verification like observation and diagnosis (see e.g. [9]).

Timed systems.Several timed models have been proposed for representing real-time
systems, e.g. various extensions of Petri nets, but the moststudied and well-established
model is the one of timed automata (TA for short). It has been defined in [1] and since
then much investigated, with the development of several tools based on this model.

Partial-order methods for timed systems.If this approach led to efficient tools and algo-
rithms in the untimed case, no counterpart has so far been achieved fortimed systems.
The main reason is that time synchronization of actions in the standard timed models
is essentiallyglobal and thus yields numerous conceptual and technical difficulties for
adapting or extending the previous methods. We discuss in Section 5 existing works.

Our contribution.In this paper, we design an efficient verification algorithm for net-
works of timed automata with invariants(NTA). Our algorithm is based on the unfold-
ing technique, and produces an acyclic Petri net withread arcs. Conditions (i.e. places



of the net) are labeled either by locations or by clocks, and events (i.e. transitions of the
net) represent the transitions of theNTA. Read arcs are convenient for modeling clock
testing with no clock reset (see for instance [7]), and, though they add some complex-
ity to the building of the unfoldings [21, 22], they increasethe independence relation
between events.

More precisely, we define a timed unfolding of anNTA close to the untimed case, by
attachingzones(a classical symbolic representation in the framework of timed systems)
to events, in addition to markings. Roughly the zone attached to an eventt will capture
all relevant timing informations of possible configurations reached after having fired
all events belonging to the minimal causal past oft. It must be emphasized that the
dimension of the zones that we attach to events is small (and constant while theNTA is
unfolded): it is equal to three times the number of clocks plus twice the number ofTA.

The main problem encountered by previous works is that urgency requirements (for
instance due to invariants) entail global synchronizationbetweena priori independent
transitions. When a clock appears in an invariant, we use readarcs to express depen-
dencies of the transitions w.r.t. this invariant. This increases the concurrency relation
between events, even in the presence of invariants and enables a local decision of the
firability of an event (i.e.only by looking at its cut).

Finally, we prove that we can build a complete finite prefix which can be used,
as in the untimed case, for deciding in linear time (w.r.t. the size of the finite prefix)
reachability (as well as transition firing) properties inNTA.

Due to lack of space, proofs are omitted, but can be found in [8]

2 Networks of Timed Automata

Let X be a finite set of variables, calledclocks. We writeC(X) for the set ofconstraints
over X, which consist of conjunctions of atomic formulae of the form x ⊲⊳ c and
x − y ⊲⊳ c for x, y ∈ X, c ∈ Z and⊲⊳∈ {<,≤,=,≥, >}. We write Clocks(γ) for
the set of clocks involved inγ. We define the proper subsetCdf (X) of diagonal-free
constraints overX where constraintsx − y ⊲⊳ h (calleddiagonal constraints) are not
allowed. Similarly, we define the proper subsetCub(X) of upper-boundedconstraints
overX where only constraintsx ≺ h with ≺∈ {<,≤} are allowed.

Let s be a mapping fromX to elementary expressions over some setX ′ (i.e.x, x−y
or x − c). Then the substitution ofs in a diagonal-free constraintγ, denotedγ[{x ←
s(x)}x∈X ] is defined as the expression obtained by replacing inγ every occurrence ofx
by the terms(x), for any clockx. Note that the resulting expression belongs toC(X ′).

We will use as timed domain the setR≥0 of nonnegative real numbers. Avaluation
over the setX of clocks is an element ofRX

≥0. For R ⊆ X, the valuationv[R ← 0]
is the valuationv′ such thatv′(x) = 0 whenx ∈ R andv′(x) = v(x) otherwise. For
d ∈ R≥0, the valuationv + d is defined by(v + d)(x) = v(x) + d for everyx ∈ X.
Constraints ofC(X) are interpreted in a natural way over valuations: we writev |= γ
when the constraintγ is satisfied byv.

We use the classical notion of zones to represent symbolically infinite sets of val-
uations [12]. Azoneover a set of variablesY is defined as a constraint ofC(Y ). We
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assume the reader to be familiar with the following operations on zones (see [6]): con-
junction, extension of the set of variables, elimination ofa set of variables (we write projection becomes

elimination∃V.Z), and emptiness checking. Theextrapolationof zoneZ w.r.t. constantM is the
smallest zone containingZ defined with constants in{−M, . . . , 0, . . . ,M}.

Definition 1 (Timed Automaton (TA) [1]). A timed automatonA over Σ is a tuple
(L, ℓ0,X,Σ,E, Inv) whereL is a finite set oflocations, ℓ0 ∈ L is theinitial location,
X is a finite set ofclocks, Σ is a finite alphabet of actions,E ⊆ L×Cdf (X)×Σ×2X×L
is a finite set ofedgesand Inv⊆ Cub(X)L associates to each location aninvariantgiven

as an upper bound constraint. An edge(ℓ, g, a,R, ℓ′) ∈ E (or ℓ
g,a,R
−−−→ ℓ′) represents

a transition from locationℓ to locationℓ′ labeled bya, with the guardg defined by a
constraint and resetR ∈ 2X .

Definition 2 (Network of TA (NTA)). A partial functionf : (Σ ∪ {⊥})n → Σ is
called ann-ary synchronization function. Anetwork of timed automatais a finite family
(Ai)1≤i≤n ofn TA, whose sets of locations are pairwise disjoint, together with ann-ary
synchronization functionf .

Note that we do not assume that clocks are local to eachTA of an NTA. Before
giving the semantics of anNTA, we first give some notation and definitions which will
be useful in the rest of the paper. We fix anNTA A, and we assume thatA is given by
(Ai)1≤i≤n, andf a synchronization function. We writeAi = (Li, ℓi,0,Xi, Σ,Ei, Invi)
for every 1 ≤ i ≤ n. We then denote byX (resp.L) the set

⋃

1≤i≤n Xi (resp.
⋃

1≤i≤n Li). We extend naturally the functionInv over the setL.
Finally, we consider a synchronization functionf : (Σ∪{⊥})n → Σ. In the sequel,

we denoteΣ⊥ (resp.E) the set(Σ ∪ {⊥})n (resp. the set
∏

i(Ei ∪ {⊥})). We use a
similar notation for their elements: we denotea (resp.e) ann-uple(a1, . . . , an) ∈ Σ⊥

(resp.(e1, . . . , en) ∈ E). We define the functionLab from E to Σ⊥ which maps an

elemente to the elementa defined for every1 ≤ i ≤ n by ai = b if ei = ℓi
g,b,R
−−−→ ℓ′i,

and byai = ⊥ otherwise. We define the subsetSync= Lab−1(f−1(Σ)) of E, which
is the set of possible synchronizations of edges,i.e. the set of transitions of theNTA.

Givene ∈ Sync, assumingei = ℓi
gi,ai,Ri

−−−−−→ ℓ′i, for all i such thatei 6= ⊥, we define
I(e) the set{1 ≤ i ≤ n | ei 6= ⊥}, g(e) the constraint

∧

i∈I(e) gi andR(e) the set
⋃

i∈I(e) Ri. Finally, given ann-tupleℓ, we noteInv(ℓ) =
∧

1≤i≤n Inv(ℓi).

Definition 3 (Semantics of anNTA). LetA = ((Ai)1≤i≤n, f) be anNTA. The seman-
tics ofA is the transition systemSA = (Q, q0,→) whereQ = (Π1≤i≤nLi)×(R≥0)

X ,3

q0 = (ℓ0,0) and→ is defined by:










(ℓ, v)
d
−→ (ℓ, v + d) if d ∈ R≥0 andv + d |= Inv(ℓ) (delay moves);

(ℓ, v)
a
−→ (ℓ

′
, v′) if ∃e ∈ Lab−1(f−1({a})) s.t.v |= g(e), v′ = v[R(e)← 0] and

ℓ′i is given byei if i ∈ I(ē) and byℓi otherwise (discrete moves).

Finally, an elementσ = (ēi, di)i≥0 ∈ (Sync× R≥0)
∗ is a timed sequence ofA if

the sequence of movesq0
d0−→ . . .

di−di−1

−−−−−→
f(Lab(ēi))
−−−−−−→ . . .

f(Lab(ēn))
−−−−−−→ is in SA.

3 We denoteℓ ann-tuple ofΠ1≤i≤nLi, andℓ0 = (ℓi,0)1≤i≤n.
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W.l.o.g. we assume that the constraints and resets associated with edges syntactically
ensure that the invariants associated with the output locations of every edge are satisfied
when a discrete move following that edge is performed.
Important and unusual definitions. We define several other notions, which will be
fundamental for defining our unfolding. LetA be anNTA. Let X be its set of clocks,
thenXinv is the subset of clocks occurring in the invariant of some location ofL. Given

an edgēe = ℓ̄
g,ā,R
−−−→ ℓ̄′, and a clockx ∈ X, we say thatx is redefinedby ē if x is not

reset bȳe, and if the constraintsInv(ℓ) andInv(ℓ′) are not equivalent w.r.t.x. We denotemodif
by Redefined(ē) the set of clocks redefined bȳe. Given a clockx ∈ X, we say thatx
is modifiedby ē if x ∈ R(ē) ∪ Redefined(ē). This means thatx has either been reset
by one of the edges, or an invariant constraint overx has been redefined. Moreover, we
say thatx is testedby e if x ∈ Clocks(g(ē)) ∪ Xinv. This means that the clockx is
either tested in one of the constraints, or used in some invariant of theNTA. It is worth
noticing that we include here the whole setXinv. This latter point will be discussed
later. Finally, we note







Pre(e) = {ℓi | i ∈ I(e)} ∪ {x ∈ X | x is modified bye}
Read(e) = {x ∈ X | x is tested but not modified bye}
Post(e) = {ℓ′i | i ∈ I(e)} ∪ {x ∈ X | x is modified bye}

3 Unfoldings ofNTA

3.1 Untimed Nets

We first define the untimed structures we use. These are classical structures defined
e.g. in [17, 13], extended with read arcs [21, 22]. Even if read arcs do not add expres-
siveness to (untimed) Petri nets (w.r.t. reachability), they improve quite a lot unfolding
techniques, since they increase the concurrency relation between events. However, their
unfolding is more involved.

Definition 4 (Read Arc Petri Net). A read arc Petri netis a tupleN = (P, T, Pre,
Post, Read,M0) whereP is a (finite) set ofplaces, T is a (finite) set oftransitionswith
P ∩T = ∅, Pre, Post andRead are three mappings fromT to 2P called resp.backward,
forwardand readincidence mapping. Finally,M0 ∈ 2P is theinitial marking.

The untimed structure associated with the unfolding of aNTA is a particular kind
of read arc Petri net. Before giving the structure, we first define precedence, strong
precedence and conflict relations between nodes of a net. We first give some notation.
Let t be a transition andp be a place of a netN = (P, T, Pre, Post, Read,M0):

– •t denotes the setPre(t), t• denotes the setPost(t), ◦t denotes the setRead(t),
– •p denotes the set{t′ ∈ T | p ∈ t′

•}, p• denotes the set{t′ ∈ T | p ∈ •t′}.

We extend the notation to set of nodes as usual. We now define relations between nodes:

– Let < (theprecedence relation) be the minimal transitive relation overP ∪ T sat-
isfying for everyt, t′ ∈ T , for everyp ∈ P ,
if p ∈ •t thenp < t, if t ∈ •p thent < p, if p ∈ ◦t andp ∈ t′

• thent′ < t.
We denote≤ the reflexive closure of<.
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– Let≺ (thestong precedence relation) be the minimal transitive relation overP ∪T
satisfying for everyt, t′ ∈ T , for everyp ∈ P , and for every nodesx andy,
if x < y thenx ≺ y, if p ∈ ◦t andp ∈ •t′ thent ≺ t′.
We denote� the reflexive closure of≺.

– Let # (the conflict relation) be defined byx # y iff ∃p ∈ P, ∃t, t′ ∈ p• s.t.
t 6= t′ ∧ t ≤ x ∧ t′ ≤ y.

These definitions are those given in [22] which are a slight variant of those in [21].

Definition 5 (Occurrence Net).Anoccurrence netis a netN = (P, T, Pre, Post, Read,
M0) fulfilling the following conditions.|•p| ≤ 1 for everyp ∈ P . The precedence re-
lation < ofN is a finitary partial order (i.e. every item ofP ∪ T has a finite number
of predecessors). For every itemx ∈ P ∪ T , the strong precedence relation restricted
to the set of predecessors ofx w.r.t. < is a partial order. No element is in conflict with
itself.M0 = Min(P ), where Min(P ) denotes the set{p | •p = ∅}.

In an occurrence net, elements ofP are calledconditionsand elements ofT events.
We define the branching process associated with anNTA as a labeled occurrence net:

Definition 6 (Branching Process of anNTA). Let A be theNTA given as a family
(Ai)1≤i≤n of n TA and ann-ary functionf . A branching process ofA is defined as a
pair of an occurrence netN = (P, T, Pre, Post, Read,M0) and a labeling functionλ
ranging overP ∪ T such that:

– λ(P ) ⊆
⋃

1≤i≤n(Li ∪Xi) (conditions correspond to locations or clocks ofA),
– λ(T ) ⊆ Sync (events correspond to possible transitions ofA),
– λ is a one-to-one mapping fromM0 to

⋃

1≤i≤n ℓi,0 ∪ X (initially, the marking
consists in initial locations plus the clocks),

– for every elementt ∈ T with λ(t) = ē ∈ Sync,λ is a one-to-one mapping from•t
(resp.◦t, t•) to Pre(ē) (resp. toRead(ē), Post(ē)).

– ∀t, t′ ∈ T , λ(t) = λ(t′) ∧ •t = •t′ ∧ ◦t = ◦t′ ⇒ t = t′ (no redundancy)
modif

We use read-arcs in our unfoldings for increasing the concurrency relation between
events: indeed, when firing a transition, there is no need to create a new place for a
clock which is not modified, that’s thus relevant to test its value using a read-arc, and
not a pre-arc.

In [21, 22], a prefix relation is defined between branching processes of anNTA
and it is shown that these processes form a complete lattice w.r.t. this relation which
implies that there is a maximal branching process. The branching processes differ on
“how much they unfold”. Theuntimed unfolding of anNTA is defined as its maximal
branching process.

Example 1.An example of branching process is depicted on Figure 1. Conditions are
represented by circles, and events by boxes, as usual for Petri nets. Labels are written
close to the nodes. A read arc is represented by an arc with no arrow (for instance there
is a read arc from the top-most condition labeledx to the top-most event labeleda1: for
being fired, eventa1 will check that there is a token in conditionx, sincex is involved
in an invariant). The dashed part of the branching process represents an event that will
be considered by our algorithm but whose timing constraintsare unconsistent, and thus
which will not be built (see Subsection 3.2).
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(⊥, a2,⊥) 7→ a2
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(a4, a2,⊥) 7→ a4,2

(a) A NTA A
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ℓ′2 x ℓ′3
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a1
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p6

p11

p4

p9p7

p12

p8 p10

p16p13 p14 p15

t1

t4

t2 t3

t6t5

(b) A branching process ofA

Fig. 1.An example of branching process of anNTA.

We introduce more or less classical notions concerning branching processes. Note that
these definitions take into account read arcs.

Definition 7 (Non-branching Process, Configuration, Cut, Causal Past).Let β =
(N , λ) be a branching process of anNTA A. We writeT (resp.P ) for the set of events
(resp. of conditions) ofN . We consider the occurrence net(P ′, T ′) ⊆ (P, T ) obtained
as a restrictionN ′ ofN , and the labeling functionλ′ defined as the restriction ofλ to
N ′. Thenβ′ = (N ′, λ′) is called anon-branching processof β if it satisfies the five
following conditions:

– ∀t ∈ T, ∀p ∈ •t ∪ ◦t ∪ t•, t ∈ T ′ ⇒ p ∈ P ′ (events are consistent withβ),
– ∀p ∈ P, ∀t ∈ •p, p ∈ P ′ ⇒ t ∈ T ′ (conditions are consistent withβ),
– Relation≺ restricted toP ′ ∪ T ′ is a partial order,
– ∀x, y ∈ P ′ ∪ T ′, ¬(x # y) (N ′ is conflict-free),
– Min(P ′) = Min(P ).

We fix a non-branching processβ′. TheconfigurationC of β′ is the set of events ofβ′.
A set of conditions is aco-setif it is an antichain w.r.t.≺ in β′ (i.e. where items are
pairwise incomparable). Acut is a maximal co-set. IfC is the configuration ofβ′, we
associate withC the cut Cut(C) defined by Cut(C) = (Min(P ) ∪ C•) \ •C. We also
define the cut of a non-branching process as the cut of its configuration.

Given a non-branching processβ′ of β, and an eventt belonging toβ′, we denote
[t]β′ thecausal pastof t relative toβ′ defined as the set of events{t′ ∈ T ′ | t′ � t}.
The minimal causal past4 of t, denoted[t], is

⋂

β′ [t]β′ whereβ′ ranges over the set of
non-branching processes ofβ containingt. [t] is a configuration and we denote byβt

its associated non branching process.
Finally, we say that a non-branching processβ+ extends a non-branching process

β, denoted byβ ⊑ β+ if the events ofβ are events ofβ+ and if given any eventt of β
and any eventt+ of β+ \ β, we do not havet+ ≺ t in β+.

4 Note that[t] may be inductively defined by[t] = {t} ∪
⋃

t′∈
•(•t ∪ ◦t)[t

′]. Due to the lattice

structure of branching processes of a read arc Petri net,[t] does not depend onβ.
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Example 1 continued.Let β be the branching process of Figure 1. Then the subgraph
underlied by nodes{pi}i=1..9 ∪ {t1, t2} is a non branching process (sayβ′); its asso-
ciated configuration is{t1, t2} = [t2]β′ 6= [t2] = {t2}. Let β1 (resp.β2) be the non
branching process corresponding to{t1, t2, t3} (resp.{t1, t2, t6}). Thenβ′ ⊆ βi for
i = 1, 2 andβ′ ⊑ β2 butβ′ 6⊑ β1 due to the arc betweenp4 andt3 (implying t3 ≺ t2).

Important remark. It is worth noticing that ifC is a configuration of anNTA, the set
Cut(C) ∩ λ−1(X) is in bijection (byλ) with the setX of clocks of theNTA and thatλ
maps the setCut(C) ∩ λ−1(L) to a set consisting of one location perTA of theNTA.
Indeed, each time a clock place is consumed, it is produced back and each time a place
whose label is a location of aTA is consumed another place whose label is a location of
the sameTA is produced.

We use the notation of [21] to present the (semi-)algorithm (Algorithm 1) for the
construction of the untimed unfolding of anNTA. In the algorithm, a condition of the
unfolding is encoded as a pair(p, t) wherep is the label of this condition, andt is the
unique input event of this condition (t equals to∅ if the condition has an empty preset).
An event is represented with three fields(ē, Yin, Yr) whereē is the label of this event (a
synchronized edge),Yin andYr are two lists of pointers to conditions (respectively the
input and read conditions).

Definition 8 (Possible Extensions (PE)).Let β = (N , λ) be a branching process of
an NTA A. Thepossible extensionsof β are the triplest = (ē, Yin, Yr) whereē is an
element of Sync such that there exists a non branching process β′ with Yin ∪ Yr being
a co-set ofβ′, such thatλ is a one-to-one mapping fromYin (resp.Yr) to Pre(ē) (resp.
Read(ē)), and such that(ē, Yin, Yr) does not already belong toβ.

In this case, we define the extension ofβ byt, obtained by the operation Extend(β, t)
as the branching processβ′ obtained fromβ by adding an event labeled byē, connected
to conditions inYin with pre-arcs and to conditions inYr with read arcs, and with new
conditions, according toPost(ē).

Algorithm 1 Building the (eventually infinite) untimed unfolding (semi-algorithm)
Require: An NTA A.
Ensure: The unfoldingUnf of A.
1: Unf := {(ℓ1,0, ∅), . . . , (ℓn,0, ∅)} ∪ {(x, ∅) | x ∈ X}; (Initialization)
2: pe := PE(Unf); (Possible Extensions)
3: while pe 6= ∅ do
4: Choose an eventt = (ē, Yin, Yr) in pe. (ē is the label oft)
5: Extend(Unf, t);
6: pe := PE(Unf);
7: end while

3.2 Adding Timing Constraints to the Untimed Unfolding

Our objective is to add timing information in the untimed structure described before
for getting a new symbolic representation of the set of timedsequences of anNTA.
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This will also reduce the size of the untimed structure, by removing extensions with
unfeasible timed part (see the dashed part of Example 1).modif
Timed executions.In order to define and compute the timed unfolding of anNTA, we
first add time to a non-branching process. We associate an absolute date, writtend,
with every event corresponding to its occurrence and two or three dates with every
condition. The first one corresponds to its production (or birth), writtendb. The second
date corresponds to the consumption (or end) of the condition (it may be+∞), written
de. A third date is associated with a condition corresponding to a clock, and represents
the date at which the clock has been reset the last time (writtendr).

Definition 9 (Timed Valuation of a Non-branching Process).Let β be a branching
process, andβ′ a non-branching process ofβ. A timed valuationof β′ is a mappingd
fromT ′ to R≥0, a mappingdb fromP ′ to R≥0, a mappingde fromP ′ to R≥0∪{+∞}
and a mappingdr fromP ′ ∩ λ−1(X) to R≥0.

We want to characterize the timed valuations of a non-branching process corre-
sponding to a real timed execution of theNTA. In order to obtain such a characterization,
we introduce some additional notation. Lett be an event,C+(t) (resp.C−(t)) is the cut
corresponding to configuration[t] (resp.[t]\{t}). We denote byL(t) = C−(t)∩λ−1(L).
Given a clockx, there is a unique placep+

x (resp.p−x ) in cutC+(t) (resp.C−(t)) whose
label isx. Given a timed valuation of a non-branching process including t, we note
v(t)x = d(t)− dr(p

−
x ) andv′(t)x = d(t)− dr(p

+
x ).

Definition 10 (Feasibility of a Timed Valuation). Letβ be a branching process of an
NTA, andβ′ a non-branching process ofβ. A timed valuation(d,db,de,dr) of β′ is
feasibleiff it satisfies the following (in)equations: for everyt ∈ T ′,

Causal (in)equations:

– ∀p ∈ t•, db(p) = d(t)
– ∀p ∈ •t, de(p) = d(t)
– ∀p ∈ ◦t, db(p) ≤ d(t) ≤ de(p)
– ∀p ∈ P ′, db(p) ≤ de(p)
– ∀p ∈ Min(P ′), db(p) = dr(p) = 0

Timed (in)equations:

– g(λ(t))[{x← v(t)x}x∈X ]
–

∧

ℓ∈L(t) Inv(ℓ)[{x← v(t)x}x∈X ]

–
∧

x∈R(λ(t)) v′(t)x = 0

–
∧

x∈Redefined(λ(t)) v′(t)x = v(t)x

Definition 11. LetA be anNTA andσ a timed sequence ofA. Its timed non-branching
process(β,d,db,de,dr) is inductively defined as follows:

– If σ is the empty sequence thenβ is Min(P ), ∀p ∈ Min(P ), db(p) = 0, de(p) =
∞, and for everyp ∈ Min(P ) ∩ λ−1(X), dr(p) = 0.

– If σ = σ′(ē, d) (d represents the date of the occurrence ofē) and(β′,d′,db
′,de

′,dr
′)

is the timed non-branching process ofσ′ then, denotingC the cut associated with
β′, there is a unique possible extension ofβ′ fromC by an eventt labeled bȳe. β is
this extension.
• The timed valuation on places and transitions ofβ′ is preserved except for the

placesp ∈ •t, for which we setde(p) = d.
• We setd(t) = d, and for every placep ∈ t•, we setdb(p) = d andde(p) =∞.
• If p ∈ t• is s.t.λ(p) = x ∈ X, if x is reset bye, we setdr(p) = d; otherwise

let p′ be the unique place ofC whose label isx, thendr(p) = dr(p
′).
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The next proposition shows the close relation between timedsequences and feasible
timed non-branching processes,i.e.admitting a feasible timed valuation.

Proposition 1 (Feasibility is Equivalent to Execution).LetA be anNTA. Then:

1. If σ is a timed sequence ofA then its timed non-branching process is feasible.
2. If β is a non-branching process ofA and(d,db,de,dr) a feasible time valuation

of β, then there is a timed sequenceσ ofA whose timed non-branching process is
(β,d,db,de,dr).

We obtain as a corollary that the set of configurations obtained after firing a shuffle
of concurrent transitions is a zone, a result also proved in [3] by other means.

The proof of this proposition (see [8]) heavily relies on theway invariants are han-
dled: since transitions are connected by read arcs or pre arcs to a single condition per
clock involved in some invariant, two concurrent transitionsmust share these conditions
and be connected to them by a read arc. Thus, given an eventt of the non-branching
processβ of σ, the satisfaction of the invariant constraint byt in σ is equivalent to the
satisfaction of the invariant equation in[t]. If an eventt is not firable in[t] (its non-
branching processβ is not feasible) then it is firable in no extension ofβ. We illustrate
this point in Example 1. Every event is connected to one placelabeled byx by a read
arc. Since the firing ofa2 redefines the invariant on clockx, there are two places labeled
by x. This leads to two different occurrences ofa1 anda3, depending on their ordering
with a2, which are necessary since they yield different behaviors.Firing a3 beforea2

is unfeasible (see the dashed event), whereasa3 is firable aftera2 with the constraint
x = y ∧ x ≥ 3. Fora1, we get similarly different timing constraints over clocksx and
y.

Remark. It is worth noticing that we could increase slightly the locality of events by
restricting connections to invariants clocks. Indeed, given a global edgēe, we could
perform an offline untimed analysis of the system to restrictthe possible set of undeter-
mined locations, thus restricting the set of invariants to consider. That way to proceed
would be similar to the method ofactiveclocks [11].

Symbolic representation of timed executions.If we interpret the dates of a non-branching
processβ as variables and the (in)equations of Definition 10 as a system of linear in-
equations, we obtain a zone, denotedEq(β). As stated by Proposition 1, this zone char-
acterizes the set of timed sequences ofβ andβ admits a timed sequence iffEq(β) is
satisfiable. The set of variables ofEq(β) is {d(t) | t ∈ T} ∪ {db(p),de(p) | p ∈
P} ∪ {dr(p) | p ∈ P ∩ λ−1(X)}, whose size is larger than that ofβ. Since the com-
plexity of operations on zones heavily depends on the numberof variables, we will
reduce the number of variables as much as possible. We thus keep only variables which
are necessary to decide whether one can extend the non-branching process. To this aim,
we state the following proposition, which is a key ingredient to compute incrementally
timed feasibility of non-branching processes, and whose proof follows by examining
the inequations of Definition 10. modif

Proposition 2. Letβ, β+ be non-branching processes of someNTA such thatβ ⊑ β+,
let C be the cut associated withβ. We partition the variables of Eq(β+) into three
sets:VC the variables associated with places ofC, V − the variables of Eq(β) different
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from VC and V + the remaining variables. Then Eq(β+) can be decomposed as the
conjunction Eq(β) ∧ Eq′(β+ \ β), where the set of variables of Eq(β+) (resp. Eq(β)
and Eq′(β+ \ β)) is the disjoint unionV − ∪ VC ∪ V + (resp.V − ∪ VC andVC ∪ V +).

Given a non-branching processβ, we now define the zoneZβ as the zone∃V −.Eq(β),
with the notation of Proposition 2. Ift is an event,Zt denotesZβt

. By previous propo-
sition, the set of variables ofZt is equal toVC . We haveVC = {db(p),de(p) | p ∈
C} ∪ {dr(p) | p ∈ C ∩ λ−1(X)}, whereC denotes the cutCut([t]) (note that variable
d(t) has been eliminated). It is worth noticing that the size5 of VC is equal to2n + 3|X|.

Timed unfolding.We can now propose a (semi-)algorithm, namely Algorithm 2, which
builds the (possibly infinite) timed unfolding of anNTA such that an event occurs in the
unfolding iff there is at least one timed sequence whose branching process includes this
event. This algorithm is an extension of Algorithm 1, in which we associate with each
eventt of the unfolding the zoneZt defined above. By previous study, we thus add the
eventt if and only if Zt admits a solution (line6). If Z is a zone, we write〈Z〉 for the
set of valuations satisfyingZ. We also need to record the possible extensions already
considered but leading to empty zones (line7). The remaining point is the computation
of the zoneZt (line 5).

Algorithm 2 Building the (eventually infinite) timed unfolding (semi-algorithm)
Require: An NTA A.
Ensure: The timed unfoldingT-Unf(A) of A.
1: T-Unf := {(ℓ1,0, ∅), . . . , (ℓn,0, ∅)} ∪ {(x, ∅) | x ∈ X};
2: pe := PE(T-Unf);
3: while pe 6= ∅ do
4: Choose an eventt = (ē, X, Y ) in pe.
5: Compute the zoneZt associated with the firing oft
6: if 〈Zt〉 6= ∅ then Extend(T-Unf, t); pe := PE(T-Unf);
7: elseMark t as useless event.end if (In order to not considert again)
8: end while

Since we do not keep the entire equation system of the non-branching process yield-
ing an eventt but only a projection of it, the computation of a new zoneZt is a difficult
task. To solve this problem, we compute additional zones associated with intermedi-
ate non branching processes. A first remark is that given the zoneZβ corresponding to
some non-branching processβ, and an extensionβ+ of β consisting of a set of con-
current events, it is easy to compute the zoneZβ+ , simply by applying Definition 10
(see [8]).

Let T be the set of maximal events of configurationC = [t] \ {t} andβT be the
non branching process associated withC. Using previous remark, it is easy, given the
zoneZT corresponding toβT , to compute the zoneZt. Our goal is thus to compute
ZT . Let t0 ∈ C. A topological sort ofC \ [t0] w.r.t.≺ gives sets of concurrent events,
which we call “slices”. If we can apply the previous remark fromβt0 to these successive

5 We obtain the bound claimed in the introduction.
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slices, then we can compute iteratively, for each of these slices, the zone resulting from
the firing of a slice, and thus get the desired zone. To apply the remark, the different
intermediate non-branching processes have to extend each other. Because of read arcs,
given a non-branching processβ and an eventt′ ∈ β, this may be the case thatβ does
not extendβt′ . This happens exactly when[t′]β \ [t′] 6= ∅. In this case, a transitiont′′ of
this difference set reads a place belonging toβ′ \ Cut(β′). Using this characterization,
we can compute correctly the initial eventt0. The previous discussion is formalized
in [8], providing an algorithm for the computation of the zoneZt.

As a direct consequence of the previous developments, we obtain the following
theorem, which states properties of our (infinite) timed unfolding.

Theorem 1. Algorithm 2 is correct: ifA is an NTA, an eventt occurs in the timed
unfolding T-Unf(A) iff there is at least one timed sequence whose non-branchingpro-
cess isβt, andZt is the set of possible values for the variables associated with Cut([t])
obtained by timed sequences whose non-branching process isβt.

4 Algorithm for the Construction of a Finite Prefix

The construction of a complete finite prefix for read arcs Petri nets is much more in-
volved that in classical Petri nets. It has been first studiedin [21] where the problem is
solved for a subclass of read arcs Petri nets, and a solution for the general class has then
been proposed in [22]. All the algorithms rely on the detection ofcut-off events: the cut
obtained from every non-branching process including a cut-off event can be obtained
by a non-branching process built from another already computed event.

In the timed framework, we must take into account the zones associated with the cut-
off event and the previously computed event for checking whether the current cut-off
event is redundant also w.r.t. timing constraints. In the context ofTA, it is well-known
that there are infinitely many incomparable zones. Thus, anextrapolationoperator has
been designed, which bounds the number of zones which can be computed. This extrap-
olation is an over-approximation, but is correct for checking reachability properties [6].

However, to compare the configurations reached by two non-branching processes
[t] and[t′], we cannot use directly the zonesZt andZt′ computed in the previous sec-
tion: indeed, the (unbounded) dates of occurrence oft andt′ are irrelevant w.r.t. to the
corresponding configurations reached in theNTA. Thus, we compute from zoneZt a
new zone corresponding to the possible valuations of the clocks reached in theNTA
after firing all possible timed sequences corresponding to the non-branching process of
[t]. To enforce termination, we then apply the classical extrapolation operator on this
last zone and get the so-calledclock zone Testt. Unfortunately, two events whose clock
zones and cuts are identical can lead to different processes: indeed, it must be noticed
that a configuration[t] may be extended by an eventt′ whose timed occurrence pre-
cedes the one oft! This may occur if the new event addedt′ is concurrent witht. Then,
the date oft′ may be smaller than that oft, which implies that classical extrapolation
may induce mistakes, and thus that we can no more “forget the past” by comparing only
clock zones and cuts. We will thus use a subclass ofsynchronized events, which have
the desired property of “forgettable past”. Indeed, when aneventt synchronizes all the
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TA of anNTA A, the timing occurrences of all events extending configuration [t] will
follow the one oft. This is the key ingredient which enables us to obtain a finiteprefix,
see Lemma 2. Note that this observation is quite similar to the one of [16] (operator$).
Note also that our algorithm avoids using the sophisticatedalgorithm of [22]. We now
define anunavoidablesubset of edges of anNTA.

Definition 12. LetA = ((Ai)1≤i≤n, f) be anNTA andE′ be a subset of global edges
of A (i.e. a subset of Sync), thenE′ is unavoidableiff for everyi, every circuit of the
underlying graph ofAi intersectsE′: there is someei belonging to the circuit such that
if ei occurs inē ∈ Sync then̄e ∈ E′.

Obviously, anyNTA has at least oneunavoidablesubset of edges. However the
efficiency of the method will depend on two characteristics of the selected subset: its
size and thesynchronization factorof its edges (i.e. |I(ē)|). Now we transform theNTA
in such a way that when one fires an edge ofE′, one synchronizes the wholeNTA.

Definition 13. LetA = ((Ai)1≤i≤n, f) andE′ be an unavoidable set of edges, then

– if ē ∈ E′, its synchronized version is Sync(ē) = {ē′ | ∀i ∈ I(ē), e′i = ei and∀i /∈

I(ē), ∃ℓi ∈ Li s.t.e′i = idle(ℓi)} with idle(ℓi) = ℓi
true,ε,∅
−−−−→ ℓi.

– A(E′) is theNTA whereE′ has been replaced by
⋃

ē∈E′ Sync(ē).

Note thatA(E′) is not definedvia a synchronization function but directly with its
set of edges. However all previous results equally apply on such NTA. Note also that
A andA(E′) have the same set of (finite or infinite) timed sequences with the same
intermediate configurations and so any property expressible in terms of these extended
timed sequences is equivalent forA andA(E′). This is in particular the case for reach-
ability, and event occurrence which are the usual properties checked by the unfolding
method. Note that if for all̄e ∈ E′, I(ē) = {1, . . . , n} thenA(E′) = A.

Let us now explain how we build the finite prefix of the timed unfolding ofA(E′)
(Algorithm 3, page 13). When we fire a synchronized eventt, we build the clock zone
Testt as follows. We project the last zone (corresponding toZt of the previous section
before elimination of variabled(t)) over the variablesd(t) and{dr(p) | p ∈ Cut([t])∩
λ−1(X)}. Then we relativise the result w.r.t. variabled(t), i.e. we replace variables
dr(p) by d(t)− dr(p), and we eliminate variabled(t). We noteWt this new zone.

Lemma 1. The zoneWt corresponds to the set of valuationsv such that there exists
a timed sequence whose non-branching processβt, and such that inA(E′), the clock
valuation after having fired the above timed sequence isv.

We close zoneWt by time elapsing and intersect it with the invariant specified by
Cut([t]), i.e. the conjunction of invariants of locations appearing inCut([t]). At last we
extrapolate the result, yielding the zoneTestt. We then check whether there exists a
synchronized eventt′ ⊳ t 6 with λ(Cut([t′])) = λ(Cut([t])) and〈Testt〉 ⊆ 〈Testt′〉. If
this is the case, we markt as useless and we do not produce its output places.

6 ⊳ denotes anadequate order, as required by [13, 17] for proving completeness of the finite
prefix construction. A possible such order isCard([t′]) < Card([t]).
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It is worth noticing that diagonal constraints appearing inzonesZt do not induce
wrong extrapolation results as in timed automata using diagonal constraints [6]. Indeed,
the zonesTestt are related to theNTAA(E′), which does not have diagonal constraints,
the extrapolation operator can thus safely be used.

Algorithm 3 Building a finite and complete prefix of the timed unfolding
Require: An NTA A.
Ensure: A finite and complete prefixFin of T-Unf(A).
1: Fin := {(ℓ1,0, ∅), . . . , (ℓn,0, ∅)} ∪ {(x, ∅) | x ∈ X}; pe := PE(Fin);
2: while pe 6= ∅ do
3: Choose an eventt = (ē, Yin, Yr) in pe.
4: if t is not a synchronized eventthen
5: Compute the zoneZt associated with the firing oft
6: if 〈Zt〉 6= ∅ then Extend(Fin, t); pe := PE(Fin);
7: elseMark t as useless event;end if (In order to not considert again)
8: else (t is a synchronized event)
9: Compute the extrapolated zoneTestt of clock values.

10: if ∃ a synchronized eventt′ ⊳ t | λ(Cut([t′])) = λ(Cut([t])) ∧ 〈Testt〉 ⊆ 〈Testt′〉 then
11: Markt as useless event. (In order to not considert again)
12: else if〈Zt〉 6= ∅ then Extend(Fin, t); pe := PE(Fin);
13: elseMark t as useless event;end if (In order to not considert again)
14: end if
15: end while

Synchronized events enjoy the following nice property, proved in [8].

Lemma 2 (Forgettable Past of Synchronized Events).Let t be a synchronized event
of a branching process of anNTA. It is equivalent to extendβt and to build a non-
branching process from Cut([t]) with constraints on variables{dr(p) | p ∈ Cut([t]) ∩
λ−1(X)} given by Testt.

Finally the following theorem states the termination and soundness of Algorithm 3.

Theorem 2. Algorithm 3 terminates and the computed finite prefix Fin is such that:
(1) a transitiont can become firable inA(E′) iff an event labeled byt occurs in Fin;
(2) a configuration is reachable inA(E′) iff an equivalent configuration (w.r.t. strong
time bisimulation) is reachable by a timed sequence whose non-branching process is
included in Fin.

We have thus constructed for anyNTAA a finite prefix which is complete for check-
ing reachability properties, and transition enabling.

5 Related Work

Partial order method for TA with ample sets.During the state exploration, partial-
order methods select a subset of transitions rather than developping all the state suc-
cessors. This subset, called anampleset, fulfills some properties relying on an inde-
pendence relation between transitions (see [19] for more details). Thus the efficiency of
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these methods is closely related to the size of the independence relation. So introduc-
ing time (and its implicit synchronizations) will necessarily restrict the corresponding
relation for the associated untimed model. In [4, 18], the authors define an alternative
semantics forNTA based on local time elapsing. Despite the fact that this semantics al-
lows more behaviours than the standard semantics, the reachability relation associated
with the usual semantics can be checked on the system corresponding to the new one.
Moreover, the independence relation is enlarged when considering local time elaps-
ing. Clearly, the efficiency of this method depends on two opposite factors: local time
semantics generate more states but the independence relation restricts the exploration.

Partial order method for TA with Mazurkiewicz trace. In [16], the independence
between transitions of aTA are exploited in a different way: the occurrences of two
independent transitions do no need to be ordered (and consequently nor the occurrences
of the clock resets). Thus a symbolic state in this frameworkis defined by a location
and constraints between variables related to both the clockresets and the transition
occurrences. When two sequencesab andba are developped from a state witha and
b independent, they will lead to the same symbolic state whereas with the ordinary
construction they would generally yield two different states. However this method does
not exploit the independence relation for limiting the exploration.

Partial order method for time Petri nets with ample (or stubborn) sets. In Petri
nets, ample sets are denoted as stubborn sets [20]. Stubbornsets are similar to ample
sets but their definition takes advantage of the “locality” of the firing rule. In [23],
the authors generalise this concept to time Petri nets (TPN)calling it a ready setand
applying it to the class graph construction of [5] where a class is similar to a symbolic
state of aTA. Given a symbolic state, a ready set is a stubborn set with an additional
constraint relative to the timing occurrences of enabled transitions. Thus the efficiency
of the method depends on the weakness of the timing coupling between transitions.

Partial order method for TPNs with unfoldings. Depending on the Petri net to be
analysed, the unfolding and stubborn set methods behave very differently. For instance,
the former one outperforms the latter one when the net presents “confusion”, (i.e.when
the firing of a transition may influence the conflict set of another unrelated transition of
the net). The generalisation of the unfoldings for TPNs has been developed by differ-
ent searchers. First, in [2] the authors have studied the realisability of a non-branching
process in a TPN showing that the temporal mechanism of thesenets requires a global
analysis of the process in order to check the firing of a transition in such a process. Start-
ing from this analysis, [10] has recently designed a finite complete prefix for TPNs. In
another direction, [15] proposes a method controlling the class graph construction with
an unfolding of the untimed net. However this unfolding may be infinite whereas the
TPN is bounded. In [14] the authors propose a discrete-time semantics for TPNs equiv-
alent to the dense-time one w.r.t. reachability. The net include a special transition of the
net modelling time elapsing but the occurrence of this transition in the unfolding re-
quires a complete cut drastically decreasing the locality of the unfolding. Furthermore,
this method suffers the combinatorial explosion related tothe discrete time approach.
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