
On the Computational Power of Timed

Differentiable Petri Nets

Serge Haddad1, Laura Recalde2, Manuel Silva2

1 LAMSADE-CNRS UMR 7024, University Paris-Dauphine, France
E-mail: haddad@lamsade.dauphine.fr

2 GISED, University Zaragossa, Spain
E-mail: {lrecalde | silva}@unizar.es

Abstract. Well-known hierarchies discriminate between the computa-
tional power of discrete time and space dynamical systems. A contrario

the situation is more confused for dynamical systems when time and
space are continuous. A possible way to discriminate between these mod-
els is to state whether they can simulate Turing machine. For instance, it
is known that continuous systems described by an ordinary differential
equation (ODE) have this power. However, since the involved ODE is
defined by overlapping local ODEs inside an infinite number of regions,
this result has no significant application for differentiable models whose
ODE is defined by an explicit representation. In this work, we consid-
erably strengthen this result by showing that Time Differentiable Petri
Nets (TDPN) can simulate Turing machines. Indeed the ODE ruling
this model is expressed by an explicit linear expression enlarged with
the “minimum” operator. More precisely, we present two simulations of
a two counter machine by a TDPN in order to fulfill opposite require-
ments: robustness and boundedness. These simulations are performed by
nets whose dimension of associated ODEs is constant. At last, we prove
that marking coverability, submarking reachability and the existence of
a steady-state are undecidable for TDPNs.

1 Introduction

Hybrid systems. Dynamic systems can be classified depending on the way
time is represented. Generally, trajectories of discrete-time systems are obtained
by iterating a transition function whereas the ones of continuous-time systems
are often solutions of a differential equation. When a system includes both con-
tinuous and discrete transitions it is called an hybrid system. On the one hand,
the expressive power of hybrid systems can be strictly greater than the one of
Turing machines (see for instance [12]). On the other hand, in restricted models
like timed automata [1], several problems including reachability can be checked
in a relatively efficient way (i.e. they are PSPACE-complete). The frontier be-
tween decidability and undecidability in hybrid systems is still an active research
topic [8,10,4,11].

Continuous systems. A special kind of hybrid systems where the trajectories
are continuous (w.r.t. standard topology) and right-differentiable functions of
time have been intensively studied. They are defined by a finite number regions
and associated ordinary differential equations ODEs such that inside a region
r, a trajectory fulfills the equation ẋd = fr(x) where x is the trajectory and ẋd

its right derivative. These additional requirements are not enough to limit their
expressiveness. For instance, the model of [2] has piecewise constant derivatives
inside regions which are polyhedra and it is Turing equivalent if its space dimen-
sion is at least 3 (see also [3,5] for additional expressiveness results).

Differentiable systems. A more stringent requirement consists in describing
the dynamics of the system by a single ODE ẋ = f(x) where f is continu-
ous, thus yielding continuously differentiable trajectories. We call such models,
differentiable systems. In [6], the author shows that differentiable systems in
R

3 can simulate Turing machine. The corresponding ODE is obtained by ex-
trapolation of the transition function of the Turing machine over every possible
configuration. Indeed such a configuration is represented as a point in the first
dimension of the ODE (and also in the second one for technical reasons) and
the third dimension corresponds to the time evolution. The explicit local ODE
around every representation of a configuration is computed from this configu-
ration and its successor by the Turing machine. Thus the explicit equations of
the ODE are piecewise defined inside an infinite number regions which is far
beyond the expressiveness of standard ODE formalisms used for the design and
analysis of dynamical systems. So the question to determine which (minimal) set
of operators in an explicit expression of f is required to obtain Turing machine
equivalence, is still open.

Our contribution. In this work, we (partially) answer this question by showing
that Time Differentiable Petri Nets (a model close to Time Continuous Petri
Nets [7,13]) can simulate Turing machines. Indeed the ODE ruling this model
is particularly simple. First its expression is a linear expression enlarged with
the “minimum” operator. Second, it can be decomposed into a finite number of
linear ODEs ẋ = M · x (with M a matrix) inside polyhedra.

More precisely, we present two simulations of two counter machines in order
to fulfill opposite requirements: robustness (allowing some perturbation of the
simulation) and boundedness of the simulating net system. Our simulation is
performed by a net with a constant number of places, i.e. whose dimension of its
associated ODE is constant (in (R≥0)

6 for robust simulation and in [0,K]14 for
bounded simulation). Afterwards, by modifying the simulation, we prove that
marking coverability, submarking reachability and the existence of a steady-state
are undecidable for (bounded) TDPNs.

Outline of the paper. In section 2, we recall notions of dynamical systems
and simulations. In section 3, we introduce TDPNs. Then we design a robust
simulation of counter machines in section 4 and a bounded one in section 5.
Afterwards, we establish undecidability results in section 6. At last, we conclude
and give some perspectives to this work.

2 Dynamical systems and simulation

Notations. N (resp. R≥0, R>0) is the set of non negative integers (resp. non
negative, positive reals).

Definition 1. A deterministic dynamical system (X, T , f) is defined by:
− a state space X, a time space T (T is either N or R≥0),
− a transition function f from X × T to X fulfilling:

∀x ∈ X,∀τ1, τ2 ∈ T , f(x, 0) = x ∧ f(x, τ1 + τ2) = f(f(x, τ1), τ2)

In the sequel, we will only deal with deterministic systems. In a discrete (resp.
continous) system X ⊆ N

d for some d (resp. X ⊆ (R≥0)
d) and T = N (resp.

T = R≥0). The simulation of a discrete system by a continuous one involves a
mapping from the set of states of the discrete system to the powerset of states
of the continuous systems and an observation epoch. A simulation ensures that,
starting from some state in the image of an initial state of the discrete system
and observing the state reached after some multiple n of the epoch, one can
recover the state of the discrete system after n steps. If the continuous system
evolves in some bounded subset of (R≥0)

d, the simulation is said bounded.

Definition 2. A continuous dynamical system (Y, R≥0, g) simulates a discrete
dynamical system (X, N, f) if there is a mapping φ from X to 2Y and τ0 ∈ R>0

such that:
− ∀x 6= x′ ∈ X,φ(x) ∩ φ(x′) = ∅
− ∀x ∈ X,∀y ∈ φ(x), g(y, τ0) ∈ φ(f(x, 1))

The simulation is said bounded if Y ⊂ [0,K]d for some K ∈ R≥0.

Roughly speaking, a robust simulation is insensitive to small perturbations
of the simulation mapping and the observation instants. In order to define ro-
bust simulation, we refine the notion of simulation. First, a two-level dynamical
system (Y = Y1 × Y2, R≥0, g) is such that g is defined by g1 from Y1 × R≥0 to
Y1 and by g2 from Y × R≥0 to Y2 as: g((y1, y2), τ) = (g1(y1, τ), g2((y1, y2), τ)).
In words, the behaviour of the first component depends only on its local state.

Definition 3. A two-level continuous dynamical system (Y, R≥0, g) consistently
simulates a discrete dynamical system (X, N, f) if there is y0 ∈ Y1, a mapping φ
from X to 2Y2 and τ0 ∈ R>0 such that:
− ∀x 6= x′ ∈ X,φ(x) ∩ φ(x′) = ∅,
− g1(y0, τ0) = y0,
− ∀x ∈ X,∀y ∈ φ(x), g2((y0, y), τ0) ∈ φ(f(x, 1)).

Note that the first part of component is a “fixed” part of the system since
its whole trajectory does not depend on the input of the simulated system.

Definition 4. A simulation (by a two-level system) is robust iff there exists
δ, ǫ ∈ R>0 such that:
− ∀x 6= x′ ∈ X, dist(φ(x), φ(x′)) > 2ǫ
− ∀x ∈ X,∀y2 ∈ Y2,∀n ∈ N,∀τ ∈ R≥0,

max(dist(y2, φ(x)), dist(τ, nτ0)) ≤ δ ⇒ dist(g2((y0, y2), τ), φ(f(y, n))) ≤ ǫ
where dist(Y, Y ′) = inf(|y − y′|∞ | y ∈ Y, y′ ∈ Y ′)

Thus, if the simulation is robust, starting with an initial state no more per-
tubated than δ and delaying or anticipating the observation of the system by
no more than δ, the state of the simulated system can be recovered. For obvi-
ous reasons, the simulation of an infinite-state system cannot be simultaneously
robust and bounded.

3 Timed Differentiable Petri Nets

Notations. Let f be a partial mapping then f(x) =⊥ means that f(x) is un-
defined. Let M be a matrix whose domain is A × B, with A ∩ B = ∅ and a ∈ A
(resp. b ∈ B) then M(a) (resp. M(b)) denotes the vector corresponding to the
row a (resp. the column b) of M.

Definition 5 (Timed Differentiable Petri Nets). A Timed Differentiable
Petri Net D = 〈P, T,C,W〉 is defined by:
− P , a finite set of places,
− T , a finite set of transitions with P ∩ T = ∅,
− C, the incidence matrix from P × T to Z, we denote by •t (resp. t•)

the set of input places (resp. output places) of t, {p | C(p, t) < 0}
(resp. {p | C(p, t) > 0}). C(t) is called the incidence of t.

− W, the speed control matrix a partial mapping from P ×T to R>0 such that:
· ∀t ∈ T,∃p ∈ P,W(p, t) 6=⊥
· ∀t ∈ T,∀p ∈ P,C(p, t) < 0 ⇒ W(p, t) 6=⊥

A time differentiable Petri net is a Petri net enlarged with a speed control
matrix. In a Petri net, a state m, called a marking, is a positive integer vector
over the set of places (i.e. an item of N

P) where an unit is called a token. The
state change is triggered by transition firings. In m, the firing of a transition t
with multiplicity k ∈ N yielding marking m′ = m + kC(t) is only possible if m′

is positive. Note that in Petri nets, both the choice of the transition firing and
the number of simultaneous firings are non deterministic.

In a TDPN, a marking m, is a positive real vector over the set of places (i.e. an
item of (R≥0)

P). The non determinism of Petri nets is solved by computing at any
instant the instantaneous firing rate of every transition and then applying the in-
cidence matrix in order to deduce the infinitesimal variation of the marking. The
instantaneous firing rate of transitions f(m)(t) depends on the current marking
via the speed control matrix W: f(m)(t) = min(W(p, t) · m(p) | W(p, t) 6=⊥).

The first requirement about W ensures that the firing rate of any transition
may be determined whereas the second one ensures that the marking remains
non negative since any input place p of a transition t controls its firing rate.

Definition 6 (Trajectory). Let D be a TDPN, then a trajectory is a contin-

uously differentiable mapping m from time (i.e. R≥0) to the set of markings
(i.e. (R≥0)

P) which satisfies the following differential equation system:

ṁ = C · f(m) (1)

If m(0) is non negative, the requirement of non negativity is a consequence
of the definition of TDPNs and one can also prove (by a reduction to the linear
equation case) that given an initial marking there is always a single trajectory.
Equation 1 is particularly simple since it is expressed as a linear equation en-
larged with the min operator. We introduce the concept of configurations: a
configuration assigns to a transition, the place that controls its firing rate.

Definition 7 (Configuration). Let D be a TDPN, then a configuration cf of
D is a mapping from T to P such that ∀t ∈ T,W(cf(t), t) 6=⊥. Let cf be a
configuration, then [cf] denotes the following polyhedron:

[cf] = {m ∈ (R≥0)
P | ∀t ∈ T, ∀p ∈ P, W(p, t) 6=⊥⇒ W(p, t) · m(p) ≥ W(cf(t), t) · m(cf(t))}

By definition, there are
∏

t∈T |{p | W(p, t) 6=⊥}| ≤ |P ||T | configurations.
In the sequel, we use indifferently the word configuration to denote both the
mapping cf and the polyhedron [cf]. Inside the polyhedron [cf], the differential
equation ruling D becomes linear:

∀p ∈ P, ṁ(p) =
∑

t∈T C(p, t) · W(cf(t), t) · m(cf(t))

Graphical notations. We extend the graphical notations of Petri nets in order
to take into account matrix W. A Petri net is a bipartite graph where places are
represented by circles (sometimes with their initial marking inside) and transi-
tions by rectangles. An arc denotes a relation between a place and a transition.
Note that arcs corresponding to matrix C are oriented whereas arcs correspond-
ing to matrix W are not oriented. There are four possible patterns illustrated
in figure 1. When W(p, t) =⊥ ∧C(p, t) > 0, place p receives tokens from t and
does not control its firing rate. There is an oriented arc from t to p labelled by
C(p, t). When W(p, t) 6=⊥ ∧C(p, t) < 0, place p provides tokens to t. So it must
control its firing rate. The non oriented arc between p and t is redundant, so we
will not draw it and represent only an oriented arc from p to t both labelled by
−C(p, t) and W(p, t). In order to distinguish between these two labels, W(p, t)
will always be drawn inside a box. When W(p, t) 6=⊥ ∧C(p, t) > 0, place p
receives tokens from t and controls its firing rate. There is both an oriented arc
from t to p and a non oriented arc between p and t with their corresponding
labels. When W(p, t) 6=⊥ ∧C(p, t) = 0, place p controls the firing rate of t and
t does not modify the marking of p, so there is a non oriented arc between p and
t. We omit labels C(p, t), −C(p, t) and W(p, t) when they are equal to 1.

Fig. 1. Graphical notations

The net of Figure 2 illustrates TDPNs. In order to simplify the notations,
when writing the differential equations, we use p as a notation for m(p) (the

trajectory projected on p). The ODE corresponding to this net is (note that
place pk holds a constant number of tokens):

ẋ1 = f(t2) − f(t4) = min{ω · x2, 2aω · y1} − min{aω · x1, aω}
ẋ2 = f(t1) − f(t3) = min{aω · y2, aω} − min{2aω · x2, ω · x1}
ẏ1 = f(t4) − f(t2) = min{aω · x1, aω} − min{ω · x2, 2aω · y1}
ẏ2 = f(t3) − f(t1) = min{2aω · x2, ω · x1} − min{aω · y2, aω}

Fig. 2. A periodic TDPN

However, it can be observed that y1 + x1 and y2 + x2 are constant. Hence
the system (with the initial condition described by the marking in the figure) is
equivalent to:

ẋ1 = min{ω · x2, 2aω · y1} − min{aω · x1, ω · a}, y1 = 2a − x1

ẋ2 = min{aω · y2, ω · a} − min{2aω · x2, ω · x1}, y2 = 2a − x2

This corresponds to a set of sixteen configurations. Let us solve the differential
system with 1 ≤ a ≤ b ≤ 2a − 1. The linear system that applies initially is:

ẋ1 = ω · x2 − ω · a, y1 = 2a − x1, ẋ2 = ω · a − ω · x1, y2 = 2a − x2

In figure 2, we have represented the “inactive” items of matrix W in a shad-
owed box. In the sequel, we use this convention when it will be relevant. The
solution of this system is:

x1(τ) = a + (b − a) sin(ω · τ), x2(τ) = a + (b − a) cos(ω · τ)
y1(τ) = a − (b − a) sin(ω · τ), y2(τ) = a − (b − a) cos(ω · τ)

This trajectory stays infinitely in the initial configuration and consequently it
is the behaviour of the net. Note that the dimension of the ODE may be strictly
smaller than the number of places. Indeed, the existence of a linear invariant
such like

∑
p∈P m(p) = cst decreases by one unit the number of dimensions.

Otherwise stated, the dimension of the ODE is not |P | but rank(C). Here,
|P | = 5 and rank(C) = 2.

4 A robust simulation

4.1 Two counter machines

We will simulate two (non negative integer) counter machines (equivalent to
Turing machines [9]). Their behaviour is described by a set of instructions. An
instruction I may be one of the following kind with an obvious meaning (cptu

is a counter with u ∈ {1, 2}):
− I : goto I′;
− I : increment(cptu); goto I

′;
− I : decrement(cptu); goto I

′;
− I : if cptu = 0 then goto I′ else goto I”;
− I : STOP;

W.l.o.g. a decrementation must be preceded by a test on the counter and the
(possible) successor(s) of an instruction is (are) always different from it.

4.2 Basic principles of the simulation

Transition pairs. In a TDPN, when a transition begins to fire, it will never
stop. Thus we use transition pairs in order to temporarily either move tokens
from one place to another one, or produce/consume tokens in a place.

Fig. 3. A transition pair

Let us examine transitions thigh and tlow of figure 3. Their incidence is oppo-
site. So if their firing rate is equal no marking change will occur. Let us examine
W, all the items of W(thigh) and W(tlow) are equal except W(pk, tlow) = k
and W(pk, thigh) =⊥. Thus, if any other place controls the firing rate of tlow it
will be equal to the one of thigh. Place pk is a constant place meaning that its
marking will always be k. Summarizing:
− if winm(in) > k ∧ woutm(out) > k ∧ w1m(test1) > k ∧ w2m(test2) > k

then this pair transfers some amount of tokens from in to out,
− otherwise, there will be no marking change.

The clock subnet. The net that we build consists in two subnets: an instance of
the subnet of figure 2, called in the sequel the clock subnet, and another subnet
depending on the counter machine called the operating subnet. The clock subnet
has k as average value, 1 as amplitude and π as period (i.e. ω = 2). We recall the
behavioural equations of the place markings that will be used by the operating
subnet: m(x1)(τ) = k + sin(2τ),m(y1)(τ) = k − sin(2τ).

Figure 4 represents the evolution of markings for x1, y1 and x2 (the marking
of place y2 is symmetrical to x2 w.r.t. the axis m = k). Note that the mottled
area is equal to 1.

k-1

k

k+1

m(x)2

m(x)1

m(y)1

p time

=1

Fig. 4. The behaviour of the clock subnet

The marking changes of the operating subnet will be ruled by the places x1

and y1. An execution cycle of the net will last π. The first part of the cycle (i.e.
[hπ, hπ + π/2] for some h ∈ N) corresponds to m(x1) ≥ k and the second part
of the cycle (i.e. [hπ + π/2, (h + 1)π]) corresponds to m(y1) ≥ k. So, the period
of observation τ0 is equal to π.

Specialisation of the transition pairs pattern.

Fig. 5. A specialised transition pair

Using place x1 (or y1), we specialise transition pairs as illustrated in figure 5
(pk is the constant place of the clock subnet). In this subnet, one of the test
place is x1 and the control weights of the two test places (x1 and test) are 1.
First due to the periodical behaviour of m(x1), no tokens transfer will occur
during the second part of the cycle. Let us examine the different cases during a
time interval [hπ, hπ +π/2]. We assume that within this interval m(test),m(in)
and m(out) are not modified by the other transitions.
− If m(test)(hπ) ≤ k then there will be no transfer of tokens.
− If m(test)(hπ) ≥ k+1∧win(m(in)(hπ)−n) ≥ k+1∧woutm(out)(hπ) ≥ k+1

then thigh will be controlled by x1 and tlow will be controlled by pk. Hence
(see the integral of figure 4) exactly n tokens will be transfered from in to
out.

− Otherwise, some amount of tokens in [0, n] will be transfered from in to out.

From a simulation point of view, one wants to avoid the last case. For the
same reason, when possible, we choose win and wout enough large so that it
ensures that in and out will never control thigh and tlow.

4.3 The operating subnet

Places of the operating subnet and the simulation mapping. Let us sup-
pose that the counter machine has l instructions {I1, . . . , Il} and two counters
{cpt1, cpt2}. The operating subnet has the following places: pc, qc, pn, qn, c1, c2.
The forth first places simulate the program counter whereas the last ones simu-
late the counters. Furthermore by construction, the following invariants will hold
for every reachable marking m: m(pc)+m(qc) = l+1 and m(pn)+m(qn) = l+1.
We now define the simulation mapping φ. Assume that, in a state s of the counter
machine, Ii is the next instruction and the value of the counter cptu is vu. Then
a marking m ∈ φ(s) iff:
− The submarking corresponding to the clock subnet is its initial marking.
− m(pn) = i, m(qn) = l + 1 − i,

if 1 < i < l then
m(pc) ∈ [i − l/k, i + l/k] and m(qc) ∈ [l + 1 − i − l/k, l + 1 − i + l/k]

else if i = 1
m(pc) ∈ [1, 1 + l/k] and m(qc) ∈ [l − l/k, l]

else if i = l
m(pc) ∈ [l − l/k, l] and m(qc) ∈ [1, 1 + l/k]

− m(c1) = k − 1 + 3v1,m(c2) = k − 1 + 3v2.
Moreover, we choose k ≥ 6l2 for technical reasons.

Principle of the instruction simulation. The simulation of an instruction
Ii takes exactly the time of the cycle of the clock subnet and is decomposed in
two parts (m(x1) ≥ k followed by m(y1) ≥ k).

The first stage is triggered by ((k + 3l)/i)m(pc) ≥ k + 1 ∧ ((k + 3l)/(l + 1 −
i)m(qc) ≥ k + 1 and performs the following tasks:
− updating m(pn) by producing (resp. consuming) j − i tokens if j > i

(resp. j < i) where Ij is the next instruction; simultaneously updating m(qn)
accordingly. If Ii is a conditional jump, this involves to find the appropriate
j. The marking of pn will vary from i to j and the one of qn from l + 1 − i
to l + 1 − j,

− updating the counters depending on the instruction.
The second stage is triggered by ((k + 3l)/j)m(pn) ≥ k + 1 ∧ ((k + 3l)/(l +

1−j)m(qn) ≥ k+1 and performs the following task: updating m(pc) and m(qc)
by a variable value in such a way that their marking still belong to the intervals
associated with the simulation mapping.

First stage: simulation of an unconditional jump. This part of the sim-
ulation applies to both an unconditional jump, an incrementation and a decre-
mentation. The simulation of the counter updates is straightforward once this
pattern is presented. For this kind of instructions, the next instruction say Ij is
a priori known.

Fig. 6. First stage: simulation of an unconditional jump

The subnet we build depends on the relative values of i (the index of the
current instruction) and j (the index of the next instruction). Here, we assume
that i < j, the other case is similar. The transition pair of figure 6 is both
triggered by pc and qc.
− Assume that the current instruction is Ii′ with i′ 6= i. If i′ < i then pc

disables the transition pair whereas if i′ > i then qc disables the transition
pair. We explain the first case. m(pc) ≤ i′ + l/k ≤ i − 1 + l/k; thus
((k + 3l)/i)m(pc) ≤ ((k + 3l)/i)(i − 1 + l/k) ≤ k − 1
(due to our hypothesis on k).

− Assume that the current instruction is Ii. Then both
((k + 3l)/i)m(pc) ≥ ((k + 3l)/i)(i − l/k) ≥ k + 2 and
((k + 3l)/(l + 1− i))m(qc) ≥ ((k + 3l)/(l + 1− i))((l + 1− i)− l/k) ≥ k + 2.
Thus in the second case, the pair is activated and transfers j − i tokens from

qn to pn during the first part of the cycle as required.
Note that W(pn, tci,1) = W(pn, tci,2) = W(qn, tci,1) = W(qn, tci,2) = 2k

ensures that places pn and qn do not control these transitions (since 2k ≥ k + 2
for k enough large).

First stage: simulation of a conditional jump. The first stage for simulat-
ing the instruction Ii : if cptu = 0 then goto Ij else goto Ij′ ; is illustrated in
figure 7 in case i < j < j′ (the other cases are similar).

It consists in two transition pairs. Pair tci,1, tci,2 mimics the first stage of an
unconditional jump from Ii to Ij. It will transfer during the first part of the
cycle j − i tokens from qn to pn. Pair tci,3, tci,4 is triggered if cu ≥ k + 1 (i.e.
the counter cptu is non null). If it is the case it will transfer j′ − j tokens from
qn to pn. Thus:
− If m(cu) = k− 1 then only the first pair is triggered and j − i tokens will be

transfered from qn to pn.
− otherwise m(cu) ≥ k + 2, the two pairs are simultaneously triggered and

j − i tokens will be transfered from qn to pn and j′ − j from qn to pn.
Summing, j′ − i tokens will be transfered from qn to pn as required.

Fig. 7. The first stage of a conditional jump (places are duplicated for readability)

The second stage. This stage is the difficult part of this simulation. Due to
the fact that the ODE ruling a TDPN is a linear equation inside a configuration,
we cannot obtain a precise updating of m(pc) and m(qc). Roughly speaking it
would require to reach a steady state in finite time which is impossible with
linear ODEs. Thus the second stage consists in trying to make the marking of
pc as close as possible to j and the one of qc as close as possible to l + 1 − j.

It consists in two transition pairs depending whether the index i of the current
instruction is greater or smaller than j. The first case is illustrated in figure 8
(the other case is similar).

Fig. 8. The second stage

The transition pair tnj,1, tnj,2 is activated if both m(pn) = j, m(qn) =
l + 1− j and m(pc) > j. If the rate of transition tnj,1 was controlled during the
whole stage by y1, pc would loose l tokens. But this means that at the beginning
of the stage m(pc) > j and at the end m(pc) ≤ j which is impossible since m(pc)
must be greater than j in order to trigger the transition pair and thus cannot
reach the value j (see our previous remark on linear differential equations). Thus
during the second stage pn must control the rate of this transition. Since m(y1) ≤
k+1, this means that, at the end of the stage, (k/j)m(pc) ≤ k+1 which implies
j ≤ m(pc) ≤ j+j/k ≤ j+l/k and consequently l+1−j−l/k ≤ m(qc) ≤ l+1−j
as required by the simulation. The case i < j leads, at the end of the second
stage, to j− l/k ≤ m(pc) ≤ j and consequently l+1−j ≤ m(qc) ≤ l+1−j− l/k.

Theorem 1 is a consequence of our different constructions. The dimension of
the associated of ODE is obtained by recalling that the ODE of the clock subnet
is 2 and that the following invariants hold in the operating subnet: m(pn) +
m(qn) = m(pc) + m(qc) = l + 1. The proof of robustness is omitted.

Theorem 1. Given a two counter machine M, one can build a TDPN D, with
a constant number of places, whose size is linear w.r.t. the machine, whose as-
sociated ODE has dimension 6 and such that D robustly simulates M.

5 A bounded simulation

In this paragraph, we modify our simulation in order to obtain a bounded net.
The previous net is unbounded due to the way we model the counters. So we
change their management. First we will build a new lazy machine M′ from the
original one M. We multiply by 4 the number of intructions, i.e. we create three
instructions Ai : goto Bi;, Bi : goto Ci; and Ai : goto Ii; per instruction Ii.
Then we modify every label in the original instructions by substituting Ai to Ii.
M and M′ are equivalent from a simulation point of view since they perform
the same computation except that four instructions of M′ do what does a single
of instruction of M. We then duplicate the operating subnet (D′(1) and D′(2))
to simulate M via M′. The only difference between the subnets is that D′(1)

simulates Ii of M by simulating Ii of M′ whereas N ′(2) simulates Ii of M by
simulating Bi of M′. This yields a scheduling where one simulation preceedes
the other one by two instructions. Superscripts (1) and (2) distinguish between
places of the two subnets.

In each subnet, we add three places pinc
(s)
u , pdec

(s)
u , d

(s)
u (s = 1, 2) in addition

to c
(s)
u , to manage the counter cptu. The marking of pinc

(s)
u (resp. pdec

(s)
u) is

equal to k + 2 when the current instruction is an incrementation (resp. decre-
mentation) of cptu and k − 1 otherwise. The transition pairs managing the
marking of these places are straightforward to design. Then we change our
counter updates in such a way that when a counter cptu is equal to v then

m(c
(s)
u) = (k + 2)− 2(1/2)v and m(d

(s)
u) = (k − 1) + 2(1/2)v. Hence if cptu = 0

then m(c
(s)
u) = k and if cptu ≥ 1 then m(c

(s)
u) ≥ k + 1 as required for the

correctness of the simulation of the conditional jump.

It remains to describe the handling of incrementations and decrementations.
Note that the main difficulty is that the decrement (or increment) depends on
the current value of the simulated counter. If cptu = v and we increment the

counter, then we must produce (resp. consume) (1/2)v tokens in c
(s)
u (resp. in

d
(s)
u). If cptu = v and we decrement the counter, then we must consume (resp.

produce) (1/2)v+1 tokens in c
(s)
u (resp. in d

(s)
u). Let us observe the evolution of

marking pinc
(s)
u in the simulation (see figure 9) when one simulates the execution

of instruction Ii, an incrementation of cptu. In the first part of the cycle related
to Ci it raises from k − 1 to k + 2, then holds this value during the second part
and decreases in the first part of the next cycle to k − 1. The increasing and
the decreasing are not linear but they are symmetrical. Thus the mottled area
of figure 9 is proportional to the difference between cu and k + 2 (equal to the
difference between du and k − 1). We emphasize the fact that neither the upper
part of this area nor its lower part are proportional to the difference.

Fig. 9. A way to obtain a “proportional” increment

The subnet of figure 10 exploits this feature to simulate an incrementation
of the counter. Let us detail the behaviour of this subnet. This subnet has
two transition pairs incu,1, incu,2 and incu,3, incu,4. The firing rate of incu,1

is (1/(4π))min(m(c
(2)
u),m(pinc

(1)
u)) (note again that due to their speed control

equal to 1, places c
(1)
u and c

(1)
u do not determine this rate). The rate of incu,2

is (1/(4π))m(pinc
(1)
u). Thus they have different speed as long as m(pinc

(1)
u) >

m(c
(2)
u). So their effect corresponds to the upper part of the mottled area of fig-

ure 9. The rate of incu,3 is (1/(4π))min(m(d
(2)
u),m(pinc

(1)
u)). The rate of incu,4

is (k− 1)/(4π). So their effect corresponds to the lower part of the mottled area

of figure 9. The scaling factor 1/4π ensures that 1/2(m(d
(2)
u)−(k−1)) have been

transfered from m(d
(1)
u) to m(c

(1)
u). The subnet managing m(d

(2)
u) and m(c

(2)
u)

behaves similarly except that since m(c
(1)
u) and m(d

(1)
u) have their new value

the scaling factor must be doubled in order to transfer the same amount of to-

kens from m(d
(2)
u) to m(c

(2)
u). The decrementation simulation follows a similar

pattern.

Fig. 10. Incrementing a counter (first stage)

Due to the scheduling, the places of D′(2) modelling the counter cptu are
not modified during the simulation of an instruction in D′(1) and vice versa.
Indeed the instruction simulations are translated and surrounded by “no-op”
instructions which do not modify the counters. The correctness of this simulation
yields the following theorem. The dimension of the ODE is obtained by observing

that m(c
(s)
u) + m(d

(s)
u) = cst.

Theorem 2. Given a two counter machine M, one can build a bounded TDPN
D with a constant number of places, whose size is linear w.r.t. the machine and
whose associated ODE has dimension 14 such that D simulates M.

6 Undecidability results

In this section, we apply the simulation results in order to obtain undecidability
results. Proofs are omitted. Note that we cannot state the undecidability of the
marking reachability problem since in the simulation, places pc and qc are not
required to take precise values. However the steady-state analysis, a kind of
ultimate reachability, is undecidable.

Proposition 1 (Coverability and reachability). Let D be a (resp. bounded)
TDPN whose associated ODE has dimension at least 6 (resp. 14), m0,m1 be
markings, p be a place and k ∈ N then:
− the problem whether there is a τ such that the trajectory starting at m0 fulfills

m(τ)(p) = k is undecidable.
− The problem whether there is a τ such that the trajectory starting at m0

fulfills m(τ)(p) ≥ k is undecidable.
− The problem whether there is a τ such that the trajectory starting at m0

fulfills m(τ) ≥ m1 is undecidable.

Proposition 2 (Steady-state analysis). Let D be a (resp. bounded) TDPN
whose associated ODE has dimension at least 8 (resp. 16), m0 be a mark-
ing. Then the problem whether the trajectory m starting at m0 is such that
limτ→∞ m(τ) exists, is undecidable.

7 Conclusion

In this work, we have introduced TDPNs, and we have designed two simulations
of counter machines in order to fulfill robustness and boundedness requirements.
These simulations are performed by a net with a constant number of places,
i.e. whose dimension of associated ODE is constant. We have also proved that
marking coverability, submarking reachability and the existence of a steady-state
are undecidable. We conjecture that the marking reachability is undecidable and
we will try to prove it. In order to obtain decidability results, we also plane to
introduce subclasses of TDPNs where the restrictions will be related to both the
structure of the net and the associated ODE.

References

1. Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, 1994.
2. E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems

having piecewise-constant derivatives. Theoretical Computer Science, 138-1:35–65,
1995.

3. Eugene Asarin and Oded Maler. Achilles and the tortoise climbing up the arith-
metical hierarchy. Journal of Computer and System Sciences, 57(3):389–398, 1998.

4. F. Balduzzi, A. Di Febbraro, A. Giua, and C. Seatzu. Decidability results in first-
order hybrid petri nets. Discrete Event Dynamic Systems, 11(1 and 2):41–58, 2001.

5. Olivier Bournez. Some bounds on the computational power of piecewise constant
derivative systems. Theory of Computing Systems, 32(1):35–67, 1999.

6. Michael S. Branicky. Universal computation and other capabilities of hybrid and
continuous dynamical systems. Theoretical Computer Science, 138(1):67–100, 1995.

7. R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets. Springer-
Verlag, 2004.

8. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? Journal of Computer and System Sciences,
57(1):94–124, 1998.

9. J.E. Hopcroft and J.D. Ullman. Formal languages and their relation to automata.
Addison-Wesley, 1969.

10. Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic reachability
computation for families of linear vector fields. Journal of Symbolic Computation,
32(3):231–253, 2001.

11. Venkatesh Mysore and Amir Pnueli. Refining the undecidability frontier of hybrid
automata. In FSTTCS 2005: Foundations of Software Technology and Theoretical

Computer Science 25th International Conference, volume 3821 of LNCS, pages
261–272, Hyderabad, India, 2005. Springer.

12. Hava T. Siegelmann and Eduardo D. Sontag. Analog computation via neural
networks. Theoretical Computer Science, 131(2):331–360, 1994.

13. M. Silva and L. Recalde. Petri nets and integrality relaxations: A view of continuous
Petri nets. IEEE Trans. on Systems, Man, and Cybernetics, 32(4):314–327, 2002.

