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Abstract. Timed Petri nets and timed automata are two standard moofetisef
analysis of real-time systems. In this paper, we prove tiay fire incompara-
ble for the timed language equivalence. Thus we propose @msgrn of timed
Petri nets with read-arcfR@-TdPN), whose coverability problem is decidable.
We also show that this model unifies timed Petri nets and tiautdmata. Then,
we establish numerous expressiveness results and prav&ehabehaviours
discriminate between several sub-classeRAfTdPNs. This has surprising con-
sequences on timed automata, e.g. on the power of non-deistimclock resets.

1 Introduction

Timed automatgTA) [3] are a well-accepted model for representing and anadyzi
real-time systems: they extend finite automata with clodlatdes which give timing
constraints on the behaviour of the system. Another promtifeemalism for the design
and analysis of discrete-event systems is the modedof nets(PN) [8]. Thus, in order
to model concurrent systems with constraints on time, sétiened extensions d?Ns
have been proposed as a possible alternatiié&to

Time Petri net§TPN), introduced in the 70’s, associate with each transitioma t
interval [4]. A transition can be fired if its enabling durtilies in its interval and time
can elapse only if it does not disable some transition: fiohgn enabled transition
may depend on other enabled transitions even if they do rasesiny input or output
place, which restricts a lot applicability of partial ordaethods in this model. More-
over, with this “urgency” requirement, all significant pteims become undecidable for
unboundedPNs.

Timed Petri net§TdPN), also calledimed-arc Petri netsassociate with each arc an
interval (or bag of intervals) [12]. INdPNs, each token has an age. This age is initially
set to a value belonging to the interval of the arc which haslpeced it or set to zero if
it belongs to the initial marking. Afterwards, ages of tokevolve synchronously with
time. A transition may be fired if tokens with age belonginghe intervals of its input
arcs may be found in the current configuration. Note that*mlens may diei(e.they
cannot be used anymore for firing a transition but they rerimathe place), and that
conditions for firing transitions are thus local and do nqteted on the global config-
uration of the system, like iRNs. This “lazy” behaviour has important consequences.

* Work partially supported by ACI SI Cortos, a program of therieh Ministry of Research.



Whereas the reachability problem is undecidabldfdiPNs [12], the coverability prob-
lem [2] and some significant other ones are decidable [1}heamore,TdPNs cannot

be transformed into equivalePA (for the language equivalence), since the untimed lan-
guages of the latter model are regular. However the questi@ther (bounded)dPNs

are more expressive thdA w.r.t. language equivalence was not known.

Our contributions. In this paper, we answer negatively this question, and pepn
extension ofTdPNs with read-arcs, yielding the model ofead-arc timed Petri nets
(RA-TdPN). This feature has already been introduced in the untingddwork [10] in
order to define a more refined concurrent semantics for netgetkr, in the untimed
framework, for the interleaving semantics, they do not adg expressive power as
they can be replaced by two arcs which check that a token Iseiplace and replace
it immediately. First, we investigate the decidability bétcoverability problem for the
RA-TdPN model, and we prove that it remains decidable.

We then focus on the expressiveness of read-arcs, and pugeesgrprising results.
Indeed, we show that read-arcs add expressiveness to thed afiddPNs when consid-
ering languages of (possibBeng infinite timed words. On the contrary, we also prove
that when considering languages of finite or ri&emoinfinite timed words, read-arcs
can be simulated and thus don’t add any expressivendstRis.

Furthermore we investigate the relative expressivenessvefral subclasses BA-
TdPNs, depending on the following restrictions: boundednesisehets, integrality of
constants appearing on the arcs, resets labelling post\dke give a complete picture
of their relative expressive power, and distinguish betwtbeee timed language equiv-
alences (equivalence over finite words, or infinite wordsp@m-Zenoinfinite words)
which, as before, lead to different results.

We finally establish that timed automata and bounB&dTdPNs are language
equivalent. From this result and former ones, we deduceraew®rthwhile expres-
siveness results, for instance we prove that non-detesmim clock resets adds ex-
pressive power to timed automata with integral constangs (possiblyZeng infinite
timed words, which contrasts with the finite or n@genoinfinite timed words case [5].
If rational constants are allowed, this is no more the casttduld be emphasized that
this latter result implies that the granularity of the auatan has to be refined if we
want to remove non-deterministic updates while presergkpgyessiveness.

Due to lack of space, proofs are omitted, but can be found]in [6

2 Read-Arc Timed Petri Nets

Preliminaries. If A is a set,A* denotes the set of all finite words ovdrwhereas
A“ denotes the set of infinite words ovér An intervall of R is aQxo-(resp.N-
)interval if its left endpoint belongs td)>, (resp.N) and its right endpoint belongs
to Q> U {oo} (resp.N U {oo}). We denote byZ (resp.Zy) the set ofQxo-(resp.
N-)intervals ofR>.

Bags.Given a sett, Bag(€) denotes the set of mappingsfrom £ to N s.t. the set
dom(f) = {z € £ | f(x) # 0} is finite. We notesize(f) = > .o f(v). Letz,y €

% A similar extension has been proposed independently byiS{d4].



Bag(&), theny < z iff Ve € £, y(e) < z(e). If y < z, thenz — y € Bag(€) is defined
by:Ve € &, (v —y)(e) = z(e) — y(e). Ford € R>p andx € Bag(R>o) z +d €
Bag(R>o) is defined by < d, (z + d)(7) = 0 andVr > d, (z + d)(1) = z(7 — d).
Letx € Bag(&; x &). The bagsr;(z) € Bag(&;) for i = 1,2 are defined by: for all
e1 € &, mi(z)(e1) = Y-, e, (e, e2), and similarly forms.

Timed words and timed languagé®t 3’ be a finite alphabet s4.¢ X' (¢ is the silent
action), we notel, = X' U {e}. A timed wordw over X, (resp.X) is a finite or infinite
sequencev = (ag,70)(a1,71) ... (an, ) ... S.t. for everyi > 0, a; € Y. (resp.
a; € X), 7, € Ryg andr;11 > 7. The valuer, gives the date at which actiar,
occurs. We writdDuration(w) = sup,, 73 for the duration of the timed word. Sinces

is a silent action, it can be removed in timed words aVerand it naturally gives timed
words overY'. An infinite timed wordw over Y is saidZenowhenevemDuration(w)

is finite. We denote by/ W7, (resp.7 W5, TW5r#) the set of finite (resp. infinite,
non-Zenoinfinite) timed words over”. A timed language over finite (resp. infinite,
non-Zeno infinite) wordis a subset of W7, (resp.7 W5, T W5=).

The Model of RA-TdPNs. The qualitativecomponent of &A-TdPN is a Petri net
extended with read-arcs. A read-arc checks for the presgfrtog&ens in a place with-
out consuming them. Thguantitativepart of aRA-TdPN is described by timing con-
straints on arcs. Roughly speaking, when firing a transitimkens are consumed whose
ages satisfy the timing constraints specified on the inm#, @nd it is checked whether
the constraints specified by the read-arcs are satisfiecdnBostre then produced ac-
cording to the constraints specified on the output arcs.

Definition 1. A timed Petri net with read-ardRA-TdPN for short) A/ is a tuple
(P, mg, T, Pre,Post, Read, A\, Acc) where:

— P is afinite set of places;

mgo € Bag(P) denotes the initial marking of places;

T is a finite set of transitions witi? N T = (;

Pre, the backward incidence mapping, is a mapping ffbito Bag(Z)”;

Post, the forward incidence mapping, is a mapping fréhto Bag(Z)”;

— Read, the read incidence mapping, is a mapping frénto Bag(Z)*’;

— \: P — X_is alabelling function;

— Acc is an accepting condition given as a finite set of formulasegated by the
grammarAcc ::= >, p; > k | AccAAcc, withp; € P,k € Nandxi e {<,>}.

SinceBag(Z)” is isomorphic toBag(P x I), Pre(t), Post(t) andRead(t) may
be also considered as bags. Given a plaard a transition, if the bagPre(t)(p) (resp.
Post(t)(p), Read(t)(p)) is non null then it defines pre-arc (resp.post-arg read-arg
of t connected to.

A configuration of aRA-TdPN is an item oBag(Rx)” (or equivalentlyBag (P x
R>0)). Intuitively, a configuration is a marking extended withedgformation for the
tokens. We will write(p, =) for a token which is in placg and whose age is. A con-
figuration is then a finite sum of such pairs. Then a tol¢gen) belongs to configuration
v whenever(p, z) < v (in terms of bags). Thanitial configurationy, € Bag(RL,,) is
defined as’p € P, vo(p) = mo(p) - 0 (there areny(p) tokens of ag® in placep).

We now describe the semantics dRA-TdPN in terms of a transition system.



Definition 2 (Semantics of aRA-TdPN). Let A/ = (P, mg, T, Pre, Post, Read, ),
Acc) be anRA-TdPN. Its semantics is the transition systém, >., —) whereQ =
Bag(Rxo)”’, and— is defined by:

— Ford € R>q, v <, v+ dwhere the configuration + d is defined by{v + d)(p) =
v(p) + d for everyp € P.
— Atransitiont is firable fromw if for all p € P, there existz(p), y(p) € Bag(R>¢ x

Z) suchthat( m(2(p)) + 1 (y(p)) < v(p),
ma(z(p)) = Pre(t)(p) andm(y(p)) = Read(t)(p),
Y(r,I) € dom(z(p)) Udom(y(p)), 7 € I.
Letz(p) € Bag(R>o xZ) be suchthaf w5(z(p)) = Post(¢)(p),
V(r,I) € dom(z(p)), T € I.
Define for every € P, v/ (p) = v(p) — z(p) + z(p). Thenv 28, 1,
A pathin the RA-TdPN A is a sequence, -2 v, o &, vl 2y in
the above transition system. thned transition sequends a (finite or infinite) tlmed
word over alphabef, the set of transitions of/. A firing sequencés a timed transition

T2—T1

sequenceéty, 71 )(ta, 72) . .. such thavy — v/} b, B2 vh L2, 1y .. .isapath. If
(p, z) < vis atoken of a configuratiom, it is adead tokerwhenever for every interval
I labelling a pre- or a read-arc of x is abovel.

Petri nets can be considered as language acceptors. Thwiord which is read

along a pathy 25 v/ 5 vy %5 0 2, 1, s the projection oveE of the timed

word ()\(tl), dl)()\(tg) dy + dg)

If v is a configuration of\/, v satisfies the accepting conditidn.._, p; > k when-
ever) " size(v(p;)) < k, and the satisfaction relation for conjunctions of acaepti
conditions is defined in a natural way. A finite pathAfis accepting if it ends in a
configuration satisfying one of the formulasAdc. An infinite path is accepting if ev-
ery formula ofAcc is satisfied infinitely often along the patAdc is then viewed as a
generalized Buichi condition). We nofé (N) (resp.L« (N), L= (N)) the set of finite
(resp. infinite, norZenainfinite) timed words accepted by

Two RA-TdPNs N and N’ are x-equivalent(resp.w-equivalentw,, .-equivalent
whenever’*(N) = L*(N7) (resp.LY(N) = LY(N), LY=(N) = L= (N)). These
equivalences naturally extend to subclasseR&TdPNSs. In the following, we will
use notations like{, w, w, }-equivalence” to mean the three equivalences altogether.
Idemfor “{x*, w,. }-equivalence” and other combinations.

Notations.Read-arcs are represented by undirected arcs. We uselgbddcepresent
bags: for alll € Z, I holds for the bag - I, [a] is for the intervala, a]. We may write
intervals as constrainteg“< «” is for the interval[0, a]. A bagn represents the bag
n - R>o, and no bag on an arc means that this arc is labelled by thé bg,.

Example 1.An example ofRA-TdPN is depicted on the next figure. This net models
an information provided by a server and asynchronouslydtetsby clients (transition
“read”). Since the information may be obsolete with validitration “val”, the server
periodically refreshes the value, but the frequency of thisesh may vary depending
on the workload of the server (transition “refresh”). Thegskion control ensures that



at least one time unit elapses between two client arrivedsigition “entry”). Note the
interest of the read-arc between “cache” and “read”: whandition “read” is fired the
age of the token of place “cache” is not reinitialized.

input server
[0] >1 [0] [min, max]
entry refresh
[0] read [0]
0 | <val

client | cache

Subclasses dRA-TdPNs. We define several natural subclasseRAf TdPNs.
Definition 3. Let N = (P, mo, T, Pre, Post, Read, \, Acc) be anRA-TdPN. Itis

— atimed Petri ne{TdPN for short}if for all ¢ € T', size(Read(t)) = 0,

— integralif all intervals appearing in bags o¥ are in Iy,

— O-resetifforall t € T, forall p € P, I # [0,0] = I ¢ dom(Post(t)(p)),

— k-boundedf all configurations appearing along a firing sequence.bf are such
that for every place € P, size(v(p)) < k,

— boundedf there existst € N such that\/ is k-bounded,

— safeif itis 1-bounded.

The Coverability Problem.Let A" be anRA-TdPN with initial configurationyy. Let
N be a finite set of configurations df where all ages of tokens are rational. We note
N the upward closure oV, i.e.the set{v | ' € N, v/ < v}.

The coverability problemfor A and set of configurationd asks whether there
exists a path io\” from v, to somev € NT. We obtain the following resuilt.

Theorem 1. The coverability problem is decidable fRA-TdPNs.

The proof of this theorem is an extension of the proof don®jridr TAPNs, based on
an extension of classical regions in timed automata [3].

3 Relative Expressiveness of SubclassesRA-TdPNs

In this section, we thoroughly study the relative expremsass of subclasses RA-
TdPNs, by distinguishing whether they are bounded, inte@ra¢set, or whether they
can be expressed without read-arcs. Surprisingly thetsedapend on the language
equivalence we consider, and whereas finite timed words ané&anoinfinite timed
words do not distinguish between (integral, boundedgsetTdPNs and (integral,
bounded)RA-TdPNSs, Zenoinfinite timed words lead to a lattice of strict inclusions
that will be summarized in Subsection 3.5.

4 This is the standard model, as defined in [12].



3.1 Two Discriminating Timed Languages

We design two timed languages which distinguish betweearakgubclasses &A-
TdPNs. Notice that these two languages demna

The timed languagd.;. TheRA-TdPN N of Fig. 1(a) (with a single accepting Buichi
conditionp > 1) is a0-reset, integral and bound@A-TdPN which recognizes the
timed languagd.; = {(a,71)...(a,7)... |0 <7 < ... <7, <...<1}. Note
that this timed language is also recognized byTRe4, of Fig. 1(b).

Acc = (p>1) z<la
a
0,1
) C [0, 1]
(a) ARA-TdPN N recognizingL, (b) A TA A, recognizingL,

Fig. 1. A languagel; not recognized by anydPN

Lemma 1. The timed languagé; is recognized by nddPN.

The timed languagel,. The RA-TdPN AN of Fig. 2(a) is an integral bounde®iA-
TdPN which recognizes the timed languagie = {(a,0)(b,71)...(b,7s)... | IT <
1st0< 7 <...<m7 <...< 7} Note, and that will be used in Section 4,
that the timed languagg- is also recognized by th€A of Fig. 2(b) (which uses a
non-deterministic reset of clockin the intervalg0, 1]).

Acc=(g>1) r<1,b
a b
O LI N UL e 2 r=0a
5 | \\q/ | z:€]0, 1]
(a) ARA-TdPN N, recognizingLs (b) A TA A, recognizingL»

Fig. 2. AlanguageL- not recognized by ang-reset integraRA-TdPN

Lemma 2. The timed languagé. is recognized by n6-reset integraRA-TdPN.

3.2 Normalization of RA-TdPNs

We present a transformation BA-TdPNs which preserves both languages over finite
and ¢Zenoor nonZeng infinite words, as well as boundedness and integrality ef th
nets. This construction transforms the net by imposinggtgyntactical conditions on
places, which will simplify further studies &tA-TdPNs.

Proposition 1. For any RA-TdPN A/, we can effectively constructRA-TdPN N’
which is{x, w, ., w}-equivalent ta\/, and in which all places are configured as one of
the five patterns depicted in Fig. 3, which reads as: “therans: such that the place is
connected to at most one post-arc, at most one pre-arc argllgpseveral read-arcs,
with bags as specified on the figure”. Moreover the constamireserves boundedness
and integrality properties.



(a) The patterrP;

n-]0, a|

(d) The patterrP, (e) The patterrP;
Fig. 3. The five normalized patterns for &A-TdPN.

3.3 Removing the Read-Arcs

In thus subsection, we study the role of read-ardRATdPNs. Thanks to Lemma 1
(languagd.,), we already know that read-arcs add expressive powBdRNSs for the
w-equivalence. We then prove that read-arcs do not add estpeegss to the model
of TdPNs when considering finite or infinite nafenotimed words. We present two
different constructions: the first one is correct only foitértimed words, whereas the
second one, which extends the first one, is correct for Z@msinfinite timed words.
In both correction proofs, we need to assume that placeseotehto read-arcs do not
occur in the acceptance condition. This can be done witlumstdf generality.

Case of finite words.We state the following result.

Theorem 2. Let A/ be anRA-TdPN, then we can effectively buildlaPN A7, which is
x-equivalenttoV/. Note that the construction preserves the boundednessisagtality
properties of the nets.

Proof (Sketch)To prove this result, we first normalize the net. We then niggtish the
five possible patterns of Fig. 3 for a plageand show that in every case, we can remove
the read-arcs connected to plac& he construction for patterB, is given on the next
picture.

p1

n’"]0, a]




The accepting condition is reinforced by the constraint po < 0, thus imposing
to consume (by” or t1) every token produced by The idea of this construction is to
check pre-arcs with tokens which are in plageand to check read-arcs with tokens
in placeps, but with no timing constraints (there is no sense to cheekatlpe of the
tokens inp, since it is reset each time a read-arc checks the presendekdmin the
place).A posteriori before tokens are dead (thus before their age reaghésey will
be consumed by transitiaff or ¢, together with one token in plage. a

We illustrate the construction on tHRA-TdPN A7 of Fig. 1(a). It is correct for
finite timed words only.

p1+p2 <0

P1

[0,1]

Case of infinite non-Zeno wordsThe previous construction cannot be applied to lan-
guages of infinite words. Indeed, it relies on the followidga. The acceptance condi-
tion requires that one empties the places at the end of theeseq in the simulating net
in order to check whether the tokens has been appropridielked.

In the case of infinite timed words, a similar Blchi conditould “eliminate”
words accepted by a sequence of the original net in which eepdéways contains
tokens that will be checked in the future. However in the djeat case, we will first
apply a transformation of the net that will not change theglayge, in such a way that
in the new net, every infinite nodenotimed word will be accepted by an appropriate
generalized Buchi condition.

Theorem 3. Let A/ be anRA-TdPN, then we can effectively buildedPN A, which
is w,.-equivalent to\/. Note that the construction preserves the boundednesshand t
integrality of the nets.

3.4 Removing General Resets

In this subsection, we study the role of general reseRAArdPNs. Thanks to Lemma 2
(languagd.,), we know that the class of integfaA-TdPNs is strictly more expressive
than the class df-reset integraRA-TdPNs for thew-equivalence. We then prove two
results, which show that this is the combination of the pneseof read-arcs together
with the integrality property which explains the expressigss gap betwe@mreset nets
and nets with general resets. Indeed, we design a first catisin which holds if there
is no read-arc, and which preserves integrality of the nbeenTwe design a second
construction, which holds even for nets with read-arcsyhith does not preserve the
integrality of the nets.

Theorem 4. For everyTdPN A/, we can effectively build 8-resetTdPN A/ which
is {*,w,wn }-equivalent to\/. Moreover, this construction preserves the boundedness
and integrality properties of the net.



This result is not difficult and consists in shifting intelvaf pre-arcs connected to
a place, depending on the intervals which label post-aree@tted to this place.

The second result is much more involved, and requires toerdffi@ granularity of
the net we build. However, it is correct for the whole clasRé8f TdPNs.

Theorem 5. For everyRA-TdPN A/, we can build a)-resetRA-TdPN N’ which is
{*,wnz,w}-equivalent taV. The construction preserves the boundedness of the net,
butnot its integrality.

Proof (Sketch)First, it it worth noticing that in the case of finite wordsdamonZeno
infinite words, this result is a corollary of previous resytheorems 2, 3 and 4). This
proof, though correct for all finite and infinite timed words thus only necessary to
deal withZenoinfinite timed words.

Let A be aRA-TdPN which we assume satisfies Proposition 1. The only places of
N which are connected to ndnreset post-arcs are those which satisfy patfeyror
patternPs (Fig. 3(d) and 3(e)). Here, we only present the construdbopatternp,, it
is depicted below.

(0
(anll <)

t'(n}) (¥nj <n')
A token which enters placein the original net (and which will not die) will either be
consumed by transitioti” beforeg units of time has elapsed, or after a delay which is
greater thar but strictly less thar. In the first case, the token can stay in plage
(place in which it can be used by a read-arc) and leave whegdrisumed by transition
t”. In the second case, the token will stay in plagéor some amount of time, and then
go to placep, where it can also be consumed by transititinThe read-arc can read
tokens in place; or in placeps with the constraint that ages of the token are in the
interval [0, . O

3.5 Summary of Our Expressiveness Results

Case of finite and infinite non-Zeno wordApplying the results of the two previous

subsections, we get equality of all subclassé3ATdPNs mentioned on the following

picture, for the{*, w,, }-equivalence. Note that this picture is correct for the gahe

classes, for the restriction to integral nets, and alsofferéstriction to bounded nets.
RA-TdPN = TdPN = O0-resefTdPN

N—— N——
Theo. 2,3 Theo. 4

Case of infinite words.The picture in the case of infinite words is much different.
Indeed the hierarchy in the previous case collapses, whaveaget here the lattice



below. Plain arcs represent strict inclusion, and dashesliadicate that the classes are
incomparable. Finally note that this picture holds for bottunded and general nets.

Theo. 5
—
RA-TdPN = 0-resetRA-TdPN
G
integral N

lang.L
integralRA-TdPN g-4

Ut lang. Lo N = 0-resetTdPN
N——
O-resetintegraRA-TdPN _ _ _ — - -~ Theo. 4
lang. L,
)
integralTdAPN = 0-reset integraldPN

N——"
Theo. 4

4  Application to Timed Automata

First defined in [3], the model of timed automal&j associates with a finite automaton
a finite set of non negative real-valued variables catlietks We assume the reader
is familiar with TA, and refer to [5] for a formal definition (we allow, in additido
classical resets t0 of clocks, general resets of the form:c I if I € Z which sets a
clock to a value non-deterministically chosen/in Two examples offA are given on
Fig. 1(b) and 2(b). The following theorem, close to a resulSbba [11], relate$A and
boundedRA-TdPNSs.

Theorem 6. BoundedRA-TdPNs andTA are {x,w,.,w }-equivalent.

Proof (Sketch)For transforming a bounddé®lA-TdPNs into an equivalentA, we first
build a safeRA-TdPN, and then &@A, in which a clock is associated with a place and
records the age of the token in the place. We illustrate #irestormation of A into a
boundedRA-TdPN on an example.
T 1] Y
4 2

<2Ay >3, 2 >3
: - ;L‘:;gl - O - ) a -

b ls 0




Expressiveness Results fdA. Combining this result with the results of the previous
section on Petri nets, we get interesting side results oediautomata, and in particular
quite surprising results for languages of infinite timed agr

Corollary 1. For the {x,w,.}-equivalence,

1. bounded’dPNs andTA are equally expressive;
2. (integral) TA and0-reset (integral)TA are equally expressive.

Corollary 2. For thew-equivalence,

3. TdPNs andTA are incomparable;

4. TA are strictly more expressive than boundetPNs;

5. integralTA are strictly more expressive than integtatesetTA,
6. TA and0-resetTA are equally expressive.

As a “folk” result, it was thought thatA and bounded dPNs are equally expres-
sive. We have proved that this is indeed the case for finiterdimdte nonZenotimed
words (iteml.), but that it is wrong when considering alZenobehaviours (itend.).
Indeed, the result is even stronger: even tholidRNs can be somehow seen as timed
systems with infinitely many clocks, we have proved thratandTdPNs are in general
incomparable (iten3.).

The three other results complete the picture of known resdbut general resets
in TA [5]. Item 2. was already partially proved in the above-mentioned pagpet,we
provide here a new proof of this result. Ite®sand6. are quite surprising, since they
show that refining the granularity of the guards is necedsangmoving general resets
in TA (and for preserving the languages of infinite timed wordsis bne of the first
such results in the framework of timed systems (up to our kedge). Finally, the
construction provided in the proof of Theorem 5 applied4oprovides an extension
to infinite words of the construction presented in [5] for mimg general resets in
TA (which is indeed only correct for finite and infinite n@@notimed words). We
illustrate this construction by giving @resetTA w-equivalent to the timed automaton
of Fig. 2(b).

x<%,b x<%,b
1‘:07@ Q x<%,€
: z:=0 N\ O

5 Conclusion

In this paper, we have thoroughly studied the relative esgiveness ofdPNs and
TA, and we have proved in particular that they are incomparabdeneral. This has
motivated the introduction of read-arcsTidPNSs, yielding the model oRA-TdPNs.
This model unifiesTA and TdPNs, has a decidable coverability problem, and enjoys
pretty surprising expressiveness results.

We have studied the expressive power of read-ardRARTdPNs, and we have
proved that, when restricting to finite or infinite ndenobehaviours, read-arcs do



not add expressiveness. On the other hand, we showZdraibehaviours discrimi-
nate between several subclassefR8f TdPNs. For instanceRA-TdPNs are strictly
more expressive thaldPNs. Since we also prove that bounded-TdPNs andTA are
equally expressive, we get the surprising result T@are strictly more expressive than
boundedrdPNs, which is quite counter-intuitive.

Classically, TdPNs use quite general resets, wher@asuse only resets t6. We
have thus studied the expressive power of these gener#s resenpared with resets
to 0. We have shown that they don’t add any expressiveness tobthheeanentioned
models, but that the granularity has to be refined for rengpgeneral resets iRA-
TdPN when consideringenobehaviours. Up to our knowledge, this is one of the first
expressiveness results (at least in the domain of timedsygt which requires to refine
the granularity of the model. As side results, we completentork in [5], and get that it
is necessary to refine the granularity of guard§Arfor removing general resets, when
considering languages of infinite possi@gnotimed words.

Our main further work will be to develop partial-order tedures forRA-TdPNSs,
taking advantage of the locality of the firing rules (see.[Ahother research direction
is to study arcs which do not reset age of tokens.
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