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Abstract. Timed Petri nets and timed automata are two standard models for the
analysis of real-time systems. In this paper, we prove that they are incompara-
ble for the timed language equivalence. Thus we propose an extension of timed
Petri nets with read-arcs (RA-TdPN), whose coverability problem is decidable.
We also show that this model unifies timed Petri nets and timedautomata. Then,
we establish numerous expressiveness results and prove that Zenobehaviours
discriminate between several sub-classes ofRA-TdPNs. This has surprising con-
sequences on timed automata, e.g. on the power of non-deterministic clock resets.

1 Introduction

Timed automata(TA) [3] are a well-accepted model for representing and analyzing
real-time systems: they extend finite automata with clock variables which give timing
constraints on the behaviour of the system. Another prominent formalism for the design
and analysis of discrete-event systems is the model ofPetri nets(PN) [8]. Thus, in order
to model concurrent systems with constraints on time, several timed extensions ofPNs
have been proposed as a possible alternative toTA.

Time Petri nets(TPN), introduced in the 70’s, associate with each transition a time
interval [4]. A transition can be fired if its enabling duration lies in its interval and time
can elapse only if it does not disable some transition: firingof an enabled transition
may depend on other enabled transitions even if they do not share any input or output
place, which restricts a lot applicability of partial ordermethods in this model. More-
over, with this “urgency” requirement, all significant problems become undecidable for
unboundedTPNs.

Timed Petri nets(TdPN), also calledtimed-arc Petri nets, associate with each arc an
interval (or bag of intervals) [12]. InTdPNs, each token has an age. This age is initially
set to a value belonging to the interval of the arc which has produced it or set to zero if
it belongs to the initial marking. Afterwards, ages of tokens evolve synchronously with
time. A transition may be fired if tokens with age belonging tothe intervals of its input
arcs may be found in the current configuration. Note that “old” tokens may die (i.e. they
cannot be used anymore for firing a transition but they remainin the place), and that
conditions for firing transitions are thus local and do not depend on the global config-
uration of the system, like inPNs. This “lazy” behaviour has important consequences.
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Whereas the reachability problem is undecidable forTdPNs [12], the coverability prob-
lem [2] and some significant other ones are decidable [1]. Furthermore,TdPNs cannot
be transformed into equivalentTA (for the language equivalence), since the untimed lan-
guages of the latter model are regular. However the questionwhether (bounded)TdPNs
are more expressive thanTA w.r.t. language equivalence was not known.

Our contributions. In this paper, we answer negatively this question, and propose an
extension ofTdPNs with read-arcs3, yielding the model ofread-arc timed Petri nets
(RA-TdPN). This feature has already been introduced in the untimed framework [10] in
order to define a more refined concurrent semantics for nets. However, in the untimed
framework, for the interleaving semantics, they do not add any expressive power as
they can be replaced by two arcs which check that a token is in the place and replace
it immediately. First, we investigate the decidability of the coverability problem for the
RA-TdPN model, and we prove that it remains decidable.

We then focus on the expressiveness of read-arcs, and prove quite surprising results.
Indeed, we show that read-arcs add expressiveness to the model of TdPNs when consid-
ering languages of (possiblyZeno) infinite timed words. On the contrary, we also prove
that when considering languages of finite or non-Zenoinfinite timed words, read-arcs
can be simulated and thus don’t add any expressiveness toTdPNs.

Furthermore we investigate the relative expressiveness ofseveral subclasses ofRA-
TdPNs, depending on the following restrictions: boundedness ofthe nets, integrality of
constants appearing on the arcs, resets labelling post-arcs. We give a complete picture
of their relative expressive power, and distinguish between three timed language equiv-
alences (equivalence over finite words, or infinite words, ornon-Zenoinfinite words)
which, as before, lead to different results.

We finally establish that timed automata and boundedRA-TdPNs are language
equivalent. From this result and former ones, we deduce several worthwhile expres-
siveness results, for instance we prove that non-determinism in clock resets adds ex-
pressive power to timed automata with integral constants over (possiblyZeno) infinite
timed words, which contrasts with the finite or non-Zenoinfinite timed words case [5].
If rational constants are allowed, this is no more the case: it should be emphasized that
this latter result implies that the granularity of the automaton has to be refined if we
want to remove non-deterministic updates while preservingexpressiveness.

Due to lack of space, proofs are omitted, but can be found in [6].

2 Read-Arc Timed Petri Nets

Preliminaries. If A is a set,A∗ denotes the set of all finite words overA whereas
Aω denotes the set of infinite words overA. An intervalI of R≥0 is aQ≥0-(resp.N-
)interval if its left endpoint belongs toQ≥0 (resp.N) and its right endpoint belongs
to Q≥0 ∪ {∞} (resp.N ∪ {∞}). We denote byI (resp.IN) the set ofQ≥0-(resp.
N-)intervals ofR≥0.

Bags.Given a setE , Bag(E) denotes the set of mappingsf from E to N s.t. the set
dom(f) = {x ∈ E | f(x) 6= 0} is finite. We notesize(f) =

∑

x∈E f(x). Let x, y ∈

3 A similar extension has been proposed independently by Srbain [11].



Bag(E), theny ≤ x iff ∀e ∈ E , y(e) ≤ x(e). If y ≤ x, thenx− y ∈ Bag(E) is defined
by: ∀e ∈ E , (x − y)(e) = x(e) − y(e). For d ∈ R≥0 andx ∈ Bag(R≥0) x + d ∈
Bag(R≥0) is defined by∀τ < d, (x + d)(τ) = 0 and∀τ ≥ d, (x + d)(τ) = x(τ − d).
Let x ∈ Bag(E1 × E2). The bagsπi(x) ∈ Bag(Ei) for i = 1, 2 are defined by: for all
e1 ∈ E1, π1(x)(e1) =

∑

e2∈E2
x(e1, e2), and similarly forπ2.

Timed words and timed languages.Let Σ be a finite alphabet s.t.ε 6∈ Σ (ε is the silent
action), we noteΣε = Σ ∪{ε}. A timed wordw overΣε (resp.Σ) is a finite or infinite
sequencew = (a0, τ0)(a1, τ1) . . . (an, τn) . . . s.t. for everyi ≥ 0, ai ∈ Σε (resp.
ai ∈ Σ), τi ∈ R≥0 andτi+1 ≥ τi. The valueτk gives the date at which actionak

occurs. We writeDuration(w) = sup
k
τk for the duration of the timed wordw. Sinceε

is a silent action, it can be removed in timed words overΣε, and it naturally gives timed
words overΣ. An infinite timed wordw overΣ is saidZenowheneverDuration(w)
is finite. We denote byT W∗

Σ
(resp.T Wω

Σ
, T Wωnz

Σ
) the set of finite (resp. infinite,

non-Zenoinfinite) timed words overΣ. A timed language over finite (resp. infinite,
non-Zeno infinite) wordsis a subset ofT W∗

Σ (resp.T Wω

Σ , T Wωnz

Σ
).

The Model ofRA-TdPNs. The qualitativecomponent of aRA-TdPN is a Petri net
extended with read-arcs. A read-arc checks for the presenceof tokens in a place with-
out consuming them. Thequantitativepart of aRA-TdPN is described by timing con-
straints on arcs. Roughly speaking, when firing a transition, tokens are consumed whose
ages satisfy the timing constraints specified on the input arcs, and it is checked whether
the constraints specified by the read-arcs are satisfied. Tokens are then produced ac-
cording to the constraints specified on the output arcs.

Definition 1. A timed Petri net with read-arcs(RA-TdPN for short) N is a tuple
(P, m0, T, Pre, Post, Read, λ, Acc) where:

– P is a finite set of places;
– m0 ∈ Bag(P ) denotes the initial marking of places;
– T is a finite set of transitions withP ∩ T = ∅;
– Pre, the backward incidence mapping, is a mapping fromT to Bag(I)P ;
– Post, the forward incidence mapping, is a mapping fromT to Bag(I)P ;
– Read, the read incidence mapping, is a mapping fromT to Bag(I)P ;
– λ : P → Σε is a labelling function;
– Acc is an accepting condition given as a finite set of formulas generated by the

grammarAcc ::=
∑

n

i=1 pi ./ k | Acc∧Acc, withpi ∈ P , k ∈ N and./∈ {≤,≥}.

SinceBag(I)P is isomorphic toBag(P × I), Pre(t), Post(t) andRead(t) may
be also considered as bags. Given a placep and a transitiont, if the bagPre(t)(p) (resp.
Post(t)(p), Read(t)(p)) is non null then it defines apre-arc(resp.post-arc, read-arc)
of t connected top.

A configurationν of aRA-TdPN is an item ofBag(R≥0)
P (or equivalentlyBag(P×

R≥0)). Intuitively, a configuration is a marking extended with age information for the
tokens. We will write(p, x) for a token which is in placep and whose age isx. A con-
figuration is then a finite sum of such pairs. Then a token(p, x) belongs to configuration
ν whenever(p, x) ≤ ν (in terms of bags). Theinitial configurationν0 ∈ Bag(RP

≥0) is
defined as∀p ∈ P , ν0(p) = m0(p) · 0 (there arem0(p) tokens of age0 in placep).

We now describe the semantics of aRA-TdPN in terms of a transition system.



Definition 2 (Semantics of aRA-TdPN). Let N = (P, m0, T, Pre, Post, Read, λ,

Acc) be anRA-TdPN. Its semantics is the transition system(Q, Σε,→) whereQ =
Bag(R≥0)

P , and→ is defined by:

– For d ∈ R≥0, ν
d
−→ ν + d where the configurationν + d is defined by(ν + d)(p) =

ν(p) + d for everyp ∈ P .
– A transitiont is firable fromν if for all p ∈ P , there existx(p), y(p) ∈ Bag(R≥0×
I) such that







π1(x(p)) + π1(y(p)) ≤ ν(p),
π2(x(p)) = Pre(t)(p) andπ2(y(p)) = Read(t)(p),
∀(τ, I) ∈ dom(x(p)) ∪ dom(y(p)), τ ∈ I.

Letz(p) ∈ Bag(R≥0×I) be such that
{

π2(z(p)) = Post(t)(p),
∀(τ, I) ∈ dom(z(p)), τ ∈ I.

Define for everyp ∈ P , ν′(p) = ν(p) − x(p) + z(p). Thenν
λ(t)
−−→ ν′.

A path in the RA-TdPN N is a sequenceν0
d1−→ ν′

1
t1−→ ν1

d2−→ ν′
2

t2−→ ν2 . . . in
the above transition system. Atimed transition sequenceis a (finite or infinite) timed
word over alphabetT , the set of transitions ofN . A firing sequenceis a timed transition

sequence(t1, τ1)(t2, τ2) . . . such thatν0
τ1−→ ν′

1
t1−→ ν1

τ2−τ1−−−−→ ν′
2

t2−→ ν2 . . . is a path. If
(p, x) ≤ ν is a token of a configurationν, it is adead tokenwhenever for every interval
I labelling a pre- or a read-arc ofp, x is aboveI.

Petri nets can be considered as language acceptors. The timed word which is read

along a pathν0
d1−→ ν′

1
t1−→ ν1

d2−→ ν′
2

t2−→ ν2 . . . is the projection overΣ of the timed
word (λ(t1), d1)(λ(t2), d1 + d2) . . .

If ν is a configuration ofN , ν satisfies the accepting condition
∑

n

i=1 pi ./ k when-
ever

∑
n

i=1 size(ν(pi)) ./ k, and the satisfaction relation for conjunctions of accepting
conditions is defined in a natural way. A finite path inN is accepting if it ends in a
configuration satisfying one of the formulas ofAcc. An infinite path is accepting if ev-
ery formula ofAcc is satisfied infinitely often along the path (Acc is then viewed as a
generalized Büchi condition). We noteL∗(N ) (resp.Lω(N ),Lωnz(N )) the set of finite
(resp. infinite, non-Zenoinfinite) timed words accepted byN .

Two RA-TdPNs N andN ′ are∗-equivalent(resp.ω-equivalent, ωnz-equivalent)
wheneverL∗(N ) = L∗(N ′) (resp.Lω(N ) = Lω(N ′),Lωnz(N ) = Lωnz(N ′)). These
equivalences naturally extend to subclasses ofRA-TdPNs. In the following, we will
use notations like “{∗, ω, ωnz}-equivalence” to mean the three equivalences altogether.
Idemfor “{∗, ωnz}-equivalence” and other combinations.

Notations.Read-arcs are represented by undirected arcs. We use shortcuts to represent
bags: for allI ∈ I, I holds for the bag1 · I, [a] is for the interval[a, a]. We may write
intervals as constraints,eg “≤ a” is for the interval[0, a]. A bagn represents the bag
n · R≥0, and no bag on an arc means that this arc is labelled by the bag1 · R≥0.

Example 1.An example ofRA-TdPN is depicted on the next figure. This net models
an information provided by a server and asynchronously consulted by clients (transition
“read”). Since the information may be obsolete with validity duration “val”, the server
periodically refreshes the value, but the frequency of thisrefresh may vary depending
on the workload of the server (transition “refresh”). The admission control ensures that



at least one time unit elapses between two client arrivals (transition “entry”). Note the
interest of the read-arc between “cache” and “read”: when transition “read” is fired the
age of the token of place “cache” is not reinitialized.

• •

input

entry

client

read

cache

server

refresh

≥ 1[0]

[0]

[0] ≤ val

[0]

[0] [min, max]

Subclasses ofRA-TdPNs. We define several natural subclasses ofRA-TdPNs.

Definition 3. LetN = (P, m0, T, Pre, Post, Read, λ, Acc) be anRA-TdPN. It is

– a timed Petri net(TdPN for short)4if for all t ∈ T , size(Read(t)) = 0,
– integralif all intervals appearing in bags ofN are inIN,
– 0-resetif for all t ∈ T , for all p ∈ P , I 6= [0, 0] ⇒ I 6∈ dom(Post(t)(p)),
– k-boundedif all configurationsν appearing along a firing sequence ofN are such

that for every placep ∈ P , size(ν(p)) ≤ k,
– boundedif there existsk ∈ N such thatN is k-bounded,
– safeif it is 1-bounded.

The Coverability Problem.Let N be anRA-TdPN with initial configurationν0. Let
N be a finite set of configurations ofN where all ages of tokens are rational. We note
N↑ the upward closure ofN , i.e. the set{ν | ∃ν′ ∈ N, ν′ ≤ ν}.

The coverability problemfor N and set of configurationsN asks whether there
exists a path inN from ν0 to someν ∈ N↑. We obtain the following result.

Theorem 1. The coverability problem is decidable forRA-TdPNs.

The proof of this theorem is an extension of the proof done in [9] for TdPNs, based on
an extension of classical regions in timed automata [3].

3 Relative Expressiveness of Subclasses ofRA-TdPNs

In this section, we thoroughly study the relative expressiveness of subclasses ofRA-
TdPNs, by distinguishing whether they are bounded, integral,0-reset, or whether they
can be expressed without read-arcs. Surprisingly the results depend on the language
equivalence we consider, and whereas finite timed words and non-Zenoinfinite timed
words do not distinguish between (integral, bounded)0-resetTdPNs and (integral,
bounded)RA-TdPNs, Zenoinfinite timed words lead to a lattice of strict inclusions
that will be summarized in Subsection 3.5.

4 This is the standard model, as defined in [12].



3.1 Two Discriminating Timed Languages

We design two timed languages which distinguish between several subclasses ofRA-
TdPNs. Notice that these two languages areZeno.

The timed languageL1. TheRA-TdPN N1 of Fig. 1(a) (with a single accepting Büchi
conditionp ≥ 1) is a 0-reset, integral and boundedRA-TdPN which recognizes the
timed languageL1 = {(a, τ1) . . . (a, τn) . . . | 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . ≤ 1}. Note
that this timed language is also recognized by theTA A1 of Fig. 1(b).

•p

a
[0, 1]

Acc = (p ≥ 1)

(a) A RA-TdPN N1 recognizingL1

x ≤ 1, a

(b) A TA A1 recognizingL1

Fig. 1.A languageL1 not recognized by anyTdPN

Lemma 1. The timed languageL1 is recognized by noTdPN.

The timed languageL2. TheRA-TdPN N2 of Fig. 2(a) is an integral boundedRA-
TdPN which recognizes the timed languageL2 = {(a, 0)(b, τ1) . . . (b, τn) . . . | ∃τ <

1 s.t. 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . < τ}. Note, and that will be used in Section 4,
that the timed languageL2 is also recognized by theTA of Fig. 2(b) (which uses a
non-deterministic reset of clockx in the intervals]0, 1[).

•

p q

a b
[0] ]0, 1[ ]0, 1[

Acc = (q ≥ 1)

(a) A RA-TdPN N2 recognizingL2

x = 0, a

x :∈]0, 1[

x < 1, b

(b) A TA A2 recognizingL2

Fig. 2. A languageL2 not recognized by any0-reset integralRA-TdPN

Lemma 2. The timed languageL2 is recognized by no0-reset integralRA-TdPN.

3.2 Normalization of RA-TdPNs

We present a transformation ofRA-TdPNs which preserves both languages over finite
and (Zenoor non-Zeno) infinite words, as well as boundedness and integrality of the
nets. This construction transforms the net by imposing strong syntactical conditions on
places, which will simplify further studies ofRA-TdPNs.

Proposition 1. For any RA-TdPN N , we can effectively construct aRA-TdPN N ′

which is{∗, ωnz, ω}-equivalent toN , and in which all places are configured as one of
the five patterns depicted in Fig. 3, which reads as: “there isana such that the place is
connected to at most one post-arc, at most one pre-arc and possibly several read-arcs,
with bags as specified on the figure”. Moreover the construction preserves boundedness
and integrality properties.



n · [0]

n′ · [0]

n′′ · [0]
p

t′

t t′′

(a) The patternP1

[0]

n′·]0, a[

n′′·]0, a[
p

t′

t t′′

(b) The patternP2

[0]

n′·]0, a[

[a]
p

t′

t t′′

(c) The patternP3

n·]0, a[

n′·]0, a[

n′′·]0, a[
p

t′

t t′′

(d) The patternP4

n·]0, a[

n′·]0, a[

[a]
p

t′

t t′′

(e) The patternP5

Fig. 3. The five normalized patterns for anRA-TdPN.

3.3 Removing the Read-Arcs

In thus subsection, we study the role of read-arcs inRA-TdPNs. Thanks to Lemma 1
(languageL1), we already know that read-arcs add expressive power toTdPNs for the
ω-equivalence. We then prove that read-arcs do not add expressiveness to the model
of TdPNs when considering finite or infinite non-Zenotimed words. We present two
different constructions: the first one is correct only for finite timed words, whereas the
second one, which extends the first one, is correct for non-Zenoinfinite timed words.
In both correction proofs, we need to assume that places connected to read-arcs do not
occur in the acceptance condition. This can be done without loss of generality.

Case of finite words.We state the following result.

Theorem 2. LetN be anRA-TdPN, then we can effectively build aTdPNN ′, which is
∗-equivalent toN . Note that the construction preserves the boundedness and integrality
properties of the nets.

Proof (Sketch).To prove this result, we first normalize the net. We then distinguish the
five possible patterns of Fig. 3 for a placep, and show that in every case, we can remove
the read-arcs connected to placep. The construction for patternP4 is given on the next
picture.

t′

t

t′′

p2

p1

t1, εn · [0]

n·]0, a[

n′

n′ · [0]

n′′

]0, a[

n′′·]0, a[



The accepting condition is reinforced by the constraintp1 + p2 ≤ 0, thus imposing
to consume (byt′′ or t1) every token produced byt. The idea of this construction is to
check pre-arcs with tokens which are in placep1 and to check read-arcs with tokens
in placep2, but with no timing constraints (there is no sense to check the age of the
tokens inp2 since it is reset each time a read-arc checks the presence of atoken in the
place).A posteriori, before tokens are dead (thus before their age reachesa), they will
be consumed by transitiont′′ or t1, together with one token in placep1. ut

We illustrate the construction on theRA-TdPN N1 of Fig. 1(a). It is correct for
finite timed words only.

•

ε

p2

p1

a

[0]

[0]

[0]
[0, 1]p1 + p2 ≤ 0

Case of infinite non-Zeno words.The previous construction cannot be applied to lan-
guages of infinite words. Indeed, it relies on the following idea. The acceptance condi-
tion requires that one empties the places at the end of the sequence in the simulating net
in order to check whether the tokens has been appropriately checked.

In the case of infinite timed words, a similar Büchi conditionwould “eliminate”
words accepted by a sequence of the original net in which a place always contains
tokens that will be checked in the future. However in the divergent case, we will first
apply a transformation of the net that will not change the language, in such a way that
in the new net, every infinite non-Zenotimed word will be accepted by an appropriate
generalized Büchi condition.

Theorem 3. LetN be anRA-TdPN, then we can effectively build aTdPN N ′, which
is ωnz-equivalent toN . Note that the construction preserves the boundedness and the
integrality of the nets.

3.4 Removing General Resets

In this subsection, we study the role of general resets inRA-TdPNs. Thanks to Lemma 2
(languageL2), we know that the class of integralRA-TdPNs is strictly more expressive
than the class of0-reset integralRA-TdPNs for theω-equivalence. We then prove two
results, which show that this is the combination of the presence of read-arcs together
with the integrality property which explains the expressiveness gap between0-reset nets
and nets with general resets. Indeed, we design a first construction which holds if there
is no read-arc, and which preserves integrality of the net. Then we design a second
construction, which holds even for nets with read-arcs, butwhich does not preserve the
integrality of the nets.

Theorem 4. For everyTdPN N , we can effectively build a0-resetTdPN N ′ which
is {∗, ω, ωnz}-equivalent toN . Moreover, this construction preserves the boundedness
and integrality properties of the net.



This result is not difficult and consists in shifting intervals of pre-arcs connected to
a place, depending on the intervals which label post-arcs connected to this place.

The second result is much more involved, and requires to refine the granularity of
the net we build. However, it is correct for the whole class ofRA-TdPNs.

Theorem 5. For everyRA-TdPN N , we can build a0-resetRA-TdPN N ′ which is
{∗, ωnz, ω}-equivalent toN . The construction preserves the boundedness of the net,
butnot its integrality.

Proof (Sketch).First, it it worth noticing that in the case of finite words, and non-Zeno
infinite words, this result is a corollary of previous results (Theorems 2, 3 and 4). This
proof, though correct for all finite and infinite timed words,is thus only necessary to
deal withZenoinfinite timed words.

LetN be aRA-TdPN which we assume satisfies Proposition 1. The only places of
N which are connected to non0-reset post-arcs are those which satisfy patternP4 or
patternP5 (Fig. 3(d) and 3(e)). Here, we only present the constructionfor patternP4, it
is depicted below.

n · [0] [0, a

2 [ [0] (n′′ − n′′
1) · [0, a

2 [

n′′
1 · [0, a

2 [

n′
1 · [0, a

2 [ (n′ − n′
1) · [0, a

2 [

p1 p2

t′(n′
1)

t t′′(n′′
1)

t1, ε

(∀n′′
1 ≤ n′′)

(∀n′
1 ≤ n′)

A token which enters placep in the original net (and which will not die) will either be
consumed by transitiont′′ beforea

2 units of time has elapsed, or after a delay which is
greater thana

2 but strictly less than1. In the first case, the token can stay in placep1

(place in which it can be used by a read-arc) and leave when it is consumed by transition
t′′. In the second case, the token will stay in placep1 for some amount of time, and then
go to placep2 where it can also be consumed by transitiont′′. The read-arc can read
tokens in placep1 or in placep2 with the constraint that ages of the token are in the
interval[0, a

2 [. ut

3.5 Summary of Our Expressiveness Results

Case of finite and infinite non-Zeno words.Applying the results of the two previous
subsections, we get equality of all subclasses ofRA-TdPNs mentioned on the following
picture, for the{∗, ωnz}-equivalence. Note that this picture is correct for the general
classes, for the restriction to integral nets, and also for the restriction to bounded nets.

RA-TdPN = TdPN = 0-resetTdPN
︸ ︷︷ ︸

Theo. 4
︸ ︷︷ ︸

Theo. 2,3

Case of infinite words.The picture in the case of infinite words is much different.
Indeed the hierarchy in the previous case collapses, whereas we get here the lattice



below. Plain arcs represent strict inclusion, and dashed arcs indicate that the classes are
incomparable. Finally note that this picture holds for bothbounded and general nets.

RA-TdPN = 0-resetRA-TdPN

integralRA-TdPN

0-reset integralRA-TdPN

TdPN = 0-resetTdPN

integralTdPN = 0-reset integralTdPN
︸ ︷︷ ︸

Theo. 4

︷ ︸︸ ︷

Theo. 5

︸ ︷︷ ︸

Theo. 4

(

integral

( lang.L2

)

lang.L1

)

lang.L1 (

integral

4 Application to Timed Automata

First defined in [3], the model of timed automata (TA) associates with a finite automaton
a finite set of non negative real-valued variables calledclocks. We assume the reader
is familiar with TA, and refer to [5] for a formal definition (we allow, in addition to
classical resets to0 of clocks, general resets of the formx :∈ I if I ∈ I which sets a
clock to a value non-deterministically chosen inI). Two examples ofTA are given on
Fig. 1(b) and 2(b). The following theorem, close to a result by Srba [11], relatesTA and
boundedRA-TdPNs.

Theorem 6. BoundedRA-TdPNs andTA are{∗, ωnz, ω}-equivalent.

Proof (Sketch).For transforming a boundedRA-TdPNs into an equivalentTA, we first
build a safeRA-TdPN, and then aTA, in which a clock is associated with a place and
records the age of the token in the place. We illustrate the transformation of aTA into a
boundedRA-TdPN on an example.

•

• •
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Expressiveness Results forTA. Combining this result with the results of the previous
section on Petri nets, we get interesting side results on timed automata, and in particular
quite surprising results for languages of infinite timed words.

Corollary 1. For the{∗, ωnz}-equivalence,

1. boundedTdPNs andTA are equally expressive;
2. (integral)TA and0-reset (integral)TA are equally expressive.

Corollary 2. For theω-equivalence,

3. TdPNs andTA are incomparable;
4. TA are strictly more expressive than boundedTdPNs;
5. integralTA are strictly more expressive than integral0-resetTA;
6. TA and0-resetTA are equally expressive.

As a “folk” result, it was thought thatTA and boundedTdPNs are equally expres-
sive. We have proved that this is indeed the case for finite andinfinite non-Zenotimed
words (item1.), but that it is wrong when considering alsoZenobehaviours (item4.).
Indeed, the result is even stronger: even thoughTdPNs can be somehow seen as timed
systems with infinitely many clocks, we have proved thatTA andTdPNs are in general
incomparable (item3.).

The three other results complete the picture of known results about general resets
in TA [5]. Item 2. was already partially proved in the above-mentioned paper,and we
provide here a new proof of this result. Items5. and6. are quite surprising, since they
show that refining the granularity of the guards is necessaryfor removing general resets
in TA (and for preserving the languages of infinite timed words). It is one of the first
such results in the framework of timed systems (up to our knowledge). Finally, the
construction provided in the proof of Theorem 5 applied toTA provides an extension
to infinite words of the construction presented in [5] for removing general resets in
TA (which is indeed only correct for finite and infinite non-Zenotimed words). We
illustrate this construction by giving a0-resetTA ω-equivalent to the timed automaton
of Fig. 2(b).

x = 0, a

x := 0

x < 1
2 , b

x < 1
2 , ε

x < 1
2 , b

5 Conclusion

In this paper, we have thoroughly studied the relative expressiveness ofTdPNs and
TA, and we have proved in particular that they are incomparablein general. This has
motivated the introduction of read-arcs inTdPNs, yielding the model ofRA-TdPNs.
This model unifiesTA andTdPNs, has a decidable coverability problem, and enjoys
pretty surprising expressiveness results.

We have studied the expressive power of read-arcs inRA-TdPNs, and we have
proved that, when restricting to finite or infinite non-Zenobehaviours, read-arcs do



not add expressiveness. On the other hand, we show thatZenobehaviours discrimi-
nate between several subclasses ofRA-TdPNs. For instance,RA-TdPNs are strictly
more expressive thanTdPNs. Since we also prove that boundedRA-TdPNs andTA are
equally expressive, we get the surprising result thatTA are strictly more expressive than
boundedTdPNs, which is quite counter-intuitive.

Classically,TdPNs use quite general resets, whereasTA use only resets to0. We
have thus studied the expressive power of these general resets, compared with resets
to 0. We have shown that they don’t add any expressiveness to the above-mentioned
models, but that the granularity has to be refined for removing general resets inRA-
TdPN when consideringZenobehaviours. Up to our knowledge, this is one of the first
expressiveness results (at least in the domain of timed systems), which requires to refine
the granularity of the model. As side results, we complete the work in [5], and get that it
is necessary to refine the granularity of guards inTA for removing general resets, when
considering languages of infinite possiblyZenotimed words.

Our main further work will be to develop partial-order techniques forRA-TdPNs,
taking advantage of the locality of the firing rules (see [7]). Another research direction
is to study arcs which do not reset age of tokens.
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