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ABSTRACT
Structural model abstraction is a powerful technique for reducing the complexity

of a state based enumeration analysis. We present in this paper new efficient Petri
nets reductions. First, we define “behavioural” reductions (i.e. based on conditions
related to the language of the net) which preserve a fundamental property of a net (i.e.

liveness) and any formula of the (action-based) linear time logic that does not observe
reduced transitions of the net. We show how to replace these conditions by structural or
algebraical ones leading to reductions that can be efficiently checked and applied whereas
enlarging the application spectrum of the previous reductions. At last, we illustrate our
method on a significant and typical example of a synchronisation pattern of parallel
programs.
Keywords: Reduction theory, structural abstraction, concurrent software verification,
Petri nets.

1. Introduction

It is currently admitted that the use of formal methods is essential to obtain
less error-prone parallel programs. Given a parallel program and a property (or
a model of the program and of the property) the verification process proceeds
either by a state enumeration or by applying structural algorithms. In case
of finite state systems, the former ones lead to a complete verification but the
analysis is restricted by the inherent combinatorial explosion factor. Moreover
it does not give insight on how to identify and correct the faulty parts of the
program. Structural methods do not generally ensure the complete correctness
of the modelled system. However they are efficient and they produce results
that allow practitioners to make pertinent modifications.

Thus, an attractive trade-off would be to first perform structural abstrac-
tions in order to obtain a simplified model on which an enumeration based
method can more easily be applied. Usually, the model may be abstracted in
two ways [CGL94]. Data abstraction maps the range of a variable to a smaller
domain and propagates this transformation on the control flow. Operation ab-
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straction merges consecutive instructions into a virtual atomic one whose effect
is the composition of the effects of these instructions. In this paper, we will
focus on the latter abstraction. The main advantage of such a transformation
is the drastic reduction of the combinatorial explosion due to the elimination of
the intermediate states.

The first works in this area were performed by Lipton in [Lip75] which de-
veloped a reduction theory aiming at preserving the deadlock property. These
works have been extended by Doeppner, Schneider, Cohen and Lamport for
different formalisms or different properties [Doe77,LS89,Gri96,CL98]. More re-
cently, Freund, Qadeer and Flanagan [FQ03b,FQ03c,FQ03a] leveraged the Lip-
ton’s theory to detect transactions in multithreaded programs (and consider
these transactions as atomic in the verification process). The main drawbacks
of these different approaches are the difficulty to detect conditions allowing
to apply the reduction and, when directly defined at a programming language
level, an incomplete theoretical justification. Thus, we have chosen to develop
abstractions for a low-level model with a formal semantics: the Petri nets. The
advantages of this approach are twofold:

• Due to the formal semantics, the set of properties to be preserved can be
easily expressed with some temporal logic and the preservation of this set by
an abstraction is fully proved.

• Dealing with a low level model leads to abstractions useful for a wide range of
applications and can be straightforwardly adapted or specialised for a target
high-level model.

Our work on these abstractions is an important generalisation of two re-
ductions proposed by Berthelot in [Ber83,Ber85,Ber86], the pre- and the post-
agglomeration, which merge sequential transitions into an atomic one. Indeed,
original application conditions only rely on local structural patterns. Thus, the
time complexity application is linear w.r.t. the size of the Petri net. Neverthe-
less, since the conditions are purely local, they are quite restrictive and lead to a
limited range of possible applications and are unable to reduce real parallel pro-
gram synchronisation patterns. Esparza and Schröter [ES01] tried to enhance
the application area of one of these reductions by simplifying one point in the
original pre-agglomeration conditions. However, they consider only 1-safe Petri
nets (the marking of each place is bounded by 1), the application conditions
remain purely structural, and as the authors focus only on infinite sequence
preservation, their reductions do not even preserve the deadlock property!

We proceed here in a different way: first, we characterise a set of behavioural
conditions that cover a large class of parallel program patterns and that ensure
the preservation of the considered properties. Secondly, we give structural suffi-
cient conditions for the behavioural ones. In order to obtain the less restrictive
possible conditions while keeping the possibility to check them easily and effi-
ciently, we include algebraic constraints in our structural conditions. These ones
are based on the description of linear programs including the linear invariants
of the net for which efficient computations are known [CS91]. Such constraints
express restrictions on the global behaviour of the net which were not taken into
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account by the previous reductions.
Our new transition agglomerations are presented in Section 2. We state

that they preserve a large class of properties and we prove one of the two main
theorems (complete proofs are provided in the report [HPP04]). In Section 3, we
show how to obtain structural and algebraical conditions and we demonstrate
on a typical example of a parallel program synchronisation pattern that our
results considerably enhance previous ones.

2. Petri nets behavioural agglomerations

A Petri net reduction is characterised by some application conditions, by a
net transformation and by a set of preserved properties (i.e. which properties are
simultaneously true or false in the original net and in the reduced one). Before
developing these three points for our reductions we recall some definitions.

2.1. Petri net definitions

Definition 1 (Petri net model) A marked net (N, m0) is defined by a tuple
(P, T, W−, W+, m0) where: P is the finite set of places, T is the finite set of
transitions disjoint from P , W− (resp. W+) an integer matrix indexed by P ×T
is the backward (resp. forward) incidence matrix, m0 an integer vector indexed
by P is the initial marking. The transitions linked to a place p are defined by
•p = {t|W+(p, t) > 0} and p• = {t|W−(p, t) > 0}.

Definition 2 (Firing rule) Let (N, m0) be a marked net then a transition t ∈
T is firable from a marking m (denoted by m[t〉) iff ∀p ∈ P m(p) ≥ W−(p, t).
The firing of t ∈ T firable from m leads to the marking m′(denoted by m[t〉m′)
defined by ∀p ∈ P m′(p) = m(p) + W (p, t) where W the incidence matrix is
defined by W = W+ − W−.

We use the following notations.

• T ∗ is the set of finite sequences of transitions and T ω is the set of infinite
sequences of transitions; λ defines the empty sequence of transitions;

• If s is a finite sequence of transitions, |s| denotes the length of s (that is
recursively defined by |λ| = 0 and |s.t| = |s| + 1);

• ΠT ′(s) denotes the projection of the sequence s on a subset of transitions T ′

and is recursively defined by ΠT ′(λ) = λ, ∀t ∈ T ′ , ΠT ′(s.t) = ΠT ′(s).t and
∀t /∈ T ′ , ΠT ′(s.t) = ΠT ′(s);

• |s|T ′ = |ΠT ′(s)| denotes the number of occurrences of transitions of T ′ in s;
• Pref(s) = {s′ | ∃s′′ s.t. s = s′.s′′} denotes the set of prefixes of s.

Definition 3 (Firing rule extension) Let (N, m0) be a marked net. A finite
sequence s ∈ T ∗ is firable from a marking m and leads to m′ (also denoted by
m[s〉 and m[s〉m′) iff either s = λ and m′ = m or s = s1.t with t ∈ T and
∃m1 m[s1〉m1 and m1[t〉m′ We note Reach(N, m0) = {m|∃s ∈ T ∗ m0[s〉m} the
set of reachable markings. An infinite sequence s ∈ T ω is firable from a marking
m (also denoted m[s〉) iff for every finite prefix s1 of s, m[s1〉.
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Proposition 1 The incidence matrices W , W− and W+ can be extended to
matrices indexed by P × T ∗ by the following recursive definition:

• W (p, λ) = W−(p, λ) = W+(p, λ) = 0
• W (p, s1.t) = W (p, s1) + W (p, t)
• W−(p, s1.t) = Max(W−(p, s1), W

−(p, t) − W (p, s1))
• W+(p, s1.t) = W (p, s1.t) + W−(p, s1.t)

such that this extension is equivalent with the firing rule of a sequence, i.e.
∀s ∈ T ∗, m[s〉m′ ⇐⇒ ∀p ∈ P , m(p) ≥ W−(p, s) and m′(p) = m(p) + W (p, s)

Definition 4 (Basic Petri net properties) A marked Petri net (N, m0) is
live iff ∀m ∈ Reach(N, m0)∀t ∈ T ∃s ∈ T ∗ m[s.t〉. A marking m is a dead
marking if ∀t ∈ T NOT (m[t〉).

Definition 5 (Generated language) Let (N, m0) be a marked net then

• L(N, m0) = {s ∈ T ∗|m0[s〉} is the language of finite sequences,
• LMax(N, m0) = {s ∈ T ∗|m0[s〉m, m a deadmarking} is the language of fi-
nite maximal sequences,

• Lω(N, m0) = {s ∈ T ω|m0[s〉} is the language of infinite sequences.

2.2. Agglomeration scheme

We suppose in the sequel that the set of transitions of the net is partitioned
as : T = T0

⊎
i∈I Hi

⊎
i∈I Fi where I denotes a non empty set of indices, and⊎

the disjoint union. The underlying idea of this decomposition is that a pair
(Hi, Fi) defines transitions sets that are causally dependent : an occurrence of
f ∈ Fi in a firing sequence may always be related to a previous occurrence of
some h ∈ Hi in this sequence. Starting from this property, we develop conditions
on the behaviour of the net which ensure that we can restrict the dynamics of
the net to sequences where each occurrence h ∈ Hi is immediately followed by
an occurrence of some f ∈ Fi without changing its behaviour w.r.t. a set of
properties.

Definition 6 (Reduced net) The reduced Petri net (Nr, m0) is defined by

• Pr = P , Tr = T0 ∪i∈I (Hi ×Fi). We note hf the transition (h, f) ∈ Hi ×Fi

• ∀tr ∈ T0, ∀p ∈ Pr, W−
r (p, t) = W−(p, t) and W+

r (p, t) = W+(p, t)
• ∀i ∈ I, ∀hf ∈ Hi × Fi, ∀p ∈ Pr W−

r (p, hf) = W−(p, h.f) and W+
r (p, hf) =

W+(p, h.f)

From now, we note H = ∪i∈IHi and F = ∪i∈IFi. The firing rule in the reduced
net is noted 〉r (i.e. m[s〉rm′ denotes a firing sequence in the reduced net).

As we want to compare the behaviour of the reduced and the original nets
and as the sets of transitions are not identical we introduce the following one to
one homomorphism which allows such a comparison.

Definition 7 We note φ the homomorphism from the monoid T ∗
r to the monoid

T ∗ defined by: ∀t ∈ T0, φ(t) = t and ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, φ(hf) = h.f .
This homomorphism is extended to an homomorphism from P(T ∗

r ) to P(T ∗)
and from P(T ω

r ) to P(T ω).
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The next basic proposition (which proof is straightforward from proposi-
tion 1) states in a formal way that the behaviour of the reduced net is a subset
of the original behaviour.

Proposition 2 Let (N, m0) be a marked Petri net. Then:

1 ∀sr ∈ T ∗
r , m[sr〉rm′ ⇐⇒ m[φ(sr)〉m′

2 ∀sr ∈ T ω
r , m[sr〉r ⇐⇒ m[φ(sr)〉

At this point, we have proved that if a maximal or infinite sequence violates
a sequence property in the reduced net then the property is also violated in the
original one. However, some original sequences that highlight problems may
disappear in the reduced net and we have no result regarding the Petri net
liveness property (the reduced net may be live while the original is not and vice
versa). So we need to formalise the dependence of Fi on Hi. As we consider
an abstraction that merges transitions of Hi with transitions of Fi it seems
reasonable to impose that, in all sequences of the original net, a transition of
Fi must always be preceded by a transition of Hi. We introduce this constraint
with the help of a set of counting functions, denoted Γi.

Definition 8 (Potential agglomerability) (N, m0) is potentially agglomer-
able (p-agglomerable for short) iff ∀s ∈ L(N, m0), ∀i ∈ I, |s|Hi

− |s|Fi
≥ 0.

We will denote in the following Γi the mapping from T ∗ to IN defined by
Γi(s) = |s|Hi

− |s|Fi

This behavioural hypothesis can easily be ensured by the following structural
sufficient condition : ∀i ∈ I, ∃pi such that m0(pi) = 0, •pi = Hi, pi

• = Fi, and
∀h ∈ Hi, ∀f ∈ Fi, W+(pi, h) = W−(pi, f) = 1.

In the following, we study p-agglomerable nets. The remainder of the sec-
tion is devoted to the presentation of two sets of conditions that ensure the
equivalence between the behaviours of the original and the reduced net. In-
formally stated, the pre-agglomeration scheme expresses the fact that firing
the transitions of Hi is only useful for firing the transitions of Fi whereas the
post-agglomeration scheme expresses the fact that the firing of transitions of
Fi are mainly conditioned by the firing of the transitions of Hi.

2.3. Behavioural post-agglomeration

In this section, we restrict I to a singleton (i.e. I = {1} and we set Γ = Γ1,
H = H1 and F = F1). The main property that the conditions of the post-
agglomeration implies is the following one : in every firing sequence with an
occurrence of a transition h of H followed later by an occurrence of a transition
f of F , one can immediately fire f after h. From a modelling point of view,
the set F represents local actions while the set H corresponds to global actions
possibly involving synchronisation.

Definition 9 Let (N, m0) be a p-agglomerable marked net. (N, m0) is:

1. HF -interchangeable iff one of these two conditions is fulfilled:

1 ∀m ∈ Reach(N, m0), ∀h, h′ ∈ H, ∀f ∈ F , m[h.f〉 ⇐⇒ m[h′.f〉
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2 ∀m ∈ Reach(N, m0), ∀h ∈ H, ∀f, f ′ ∈ F , m[h.f〉 ⇐⇒ m[h.f ′〉

2. F -independent iff ∀h ∈ H, ∀f ∈ F , ∀s ∈ (T0∪H)∗, ∀m ∈ Reach(N, m0),
m[h.s.f〉 =⇒ m[h.f.s〉
and strongly F -independent iff ∀h ∈ H, ∀f ∈ F , ∀s ∈ T ∗ s.t. ∀s′ ∈
Pref(s), Γ(s′) ≥ 0 ∀m ∈ Reach(N, m0), m[h.s.f〉 =⇒ m[h.f.s〉

3. F -continuable iff ∀h ∈ H, ∀s ∈ T ∗, s.t. ∀s′ ∈ Pref(s), Γ(s′) ≥ 0
∀m ∈ Reach(N, m0) m[h.s〉 =⇒ ∃f ∈ F s.t. m[h.s.f〉

We express the dependence of the set F on the set H with three hypotheses.
We first notice that, in the original net, the transitions h ∈ Hi and f ∈ Fi

may be live whilst the sequence h.f is not live. Thus the HF -interchangeability
condition forbids this behaviour. The F -independence means that any firing of
f ∈ F may be anticipated just after the occurrence of a transition h ∈ H which
enables this firing. The F -continuation means that an excess of occurrences of
h ∈ H can always be reduced by subsequent firings of transitions of F .

The following theorem expresses which properties are preserved by the post-
agglomeration giving in each case the required conditions. The first point is
related with maximal sequences and allows for instance the modeller to look for
deadlocks. The second point is related to infinite sequences which characterise,
for instance, fairness properties. More generally these two points allow to check
any (action-based) linear time logic that does not observe transitions of F . The
third point is related to the Petri net liveness as liveness cannot be specified
with linear time logic. Note that we have proven in [HPP04] that this reduction
is a strict extension of the post-agglomeration of Berthelot [Ber83].

Theorem 1 Let (N, m0) be a p-agglomerable Petri net. If furthermore

1 (N, m0) is F -continuable then

ΠT0∪H(Lmax(N, m0)) = ΠT0∪H(φ(Lmax(Nr, m0)))

2 (N, m0) is F -continuable and strongly F -independent then

ΠT0∪H(Lω(N, m0)) = ΠT0∪H(φ(Lω(Nr, m0)))

3 (N, m0) is F -continuable, F -independent and HF -interchangeable then

(N, m0) is live ⇐⇒ (Nr, m0) is live

The remainder of the section is devoted to the proof of this theorem. First
we remark that among sequences of the original net, some of them look like
sequences of the reduced net; we call them simulateable (they can be directly
simulated in the reduced net).

Definition 10 (Simulateable sequence) A sequence s ∈ T ∗ (resp. T ω) is
said to be simulateable if there exists a decomposition of s:
s = φ(s1).s

′
1.φ(s2).s

′
2 . . . φ(sn).s′n (resp. s = φ(s1).s

′
1.φ(s2).s

′
2 . . . φ(sn).s′n . . . )

with ∀m, sm ∈ H × F and s′m ∈ T ∗
0 .
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Remark 1 A sequence s is simulateable iff there exists sr such that s = φ(sr).
Since sr is unique, sr is denoted by φ−1(s).

We now prove that finite and infinite sequences can be re-ordered into simu-
lateable sequences while preserving the projection of these sequences on T0∪H .

Proposition 3 (F ∗-independence) Let (N, m0) be a p-agglomerable net which
is F -independent. Then ∀s ∈ T ∗ such that m0[s0〉m[s〉m′ with ∀s′ prefix of s
Γ(s′) ≥ 0, there exists a permutation of s, ŝ = s1.s�, such that :

1 m[ŝ〉m′ and ΠT0∪H(ŝ) = ΠT0∪H(s)
2 ΠF (s�) = λ and s1 is simulateable.

Furthermore if Γ(s) = 0 then s� = λ. We will denote by ŝ = s1.s� any sequence
fulfilling the above requirements with respect to s.

Proof. We prove by induction on the length of |s|F that there exists at least
one sequence ŝ.

• |s|F = 0: The decomposition of s, ŝ = λ.s, fulfils the conditions.
• |s|F > 0: As by hypothesis ∀sp ∈ Pref(s), Γ(sp) ≥ 0 the sequence s can be

written s = s′.h.s1.f.s2 with s′ ∈ (T0)
∗, h ∈ H , s1 ∈ (T0 ∪ H)∗ and f ∈ F .

Since the net is F -independent, m[s′.h.f.s1.s2〉m′.
By construction s′.h.f is a balanced sequence (i.e. Γ(s′.h.f) = 0). Further-
more a straightforward checking shows that the prefixes of the sequence s1.s2

fulfil the hypothesis of the proposition.
Thus by induction ŝ1.s2 exists and (s′.h.f.(s1.s2)1).(s1.s2)� fulfils the condi-
tions of the proposition w.r.t. s.

When Γ(s) = 0, Γ(s�) = 0 and since |s�|F = 0, one has also |s�|H = 0 which
means that s� ∈ (T0)

∗ and can be concatenated to s1 to obtain a simulateable
sequence.

Proposition 4 (Fω-independence) Let (N, m0) be a p-agglomerable net which
is F -independent. Then for any infinite sequence s ∈ Lω(N, m0) there exists a
permutation of s, ŝ such that

1 ∀s′ ∈ Pref(ŝ), m0[s
′〉 and ΠT0∪H(ŝ) = ΠT0∪H(s)

2 ∃(si
1)i≥0 an infinite sequence of simulateable sequences such that:

ŝ = s1
1
.s1

�
.s2

1
.s2

�
. . . sk

1
.sk

�
. . . with sn

�
∈ H∗

Proof. In order to prove this proposition we need to decompose infinite se-
quences according to their ultimate behaviour w.r.t. the Γ function. So, we
introduce a new notation to characterise this behaviour. The degree of a se-
quence s ∈ T ω (s = t1 . . . tn . . .) of a p-agglomerable net (denoted by d◦(s)) is
defined by:

d◦(s) = lim inf
k→∞

(Γ(t1 . . . tk))
def
= lim

k→∞
min{Γ(t1 . . . tk′) | k′ ≥ k}

Now we distinguish two cases:
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1 d◦(s) = d. Thus there is the following decomposition of s.
s = s1.h1.s2.h2.s3. . . . .hd.sd+1.sd+2.sd+3 . . . with ∀k ≥ 0, Γ(sk) = 0 and
∀s′ prefix of sk, Γ(s′) ≥ 0 and {h1, . . . , hd} ⊂ H . We apply the previous
proposition on every sk obtaining a permutation ŝk = sk

1 (remember that
Γ(sk) = 0). This leads to the following infinite firing sequence:
s = s1

1
.h1.s

2
1
.h2.s

3
1
. . . . .hd.s

d+1
1

.sd+2
1

.sd+3
1

. . . This is the kind of sequence we
search for.

2 d◦(s) = ∞. Thus there is the following decomposition of s.
s = s1.h1.s2.h2.s3. . . . .hk.sk+1. . . . with ∀k ≥ 0, Γ(sk) = 0 and ∀s′ prefix of
sk, Γ(s′) ≥ 0 and {h1, . . . , hk, . . .} ⊂ H . So the proof of this case is similar to
the one developed for the first case.

We establish now the results claimed in theorem 1.

Lemma 1 Let (N, m0) be a p-agglomerable net which is F -independent and
HF -interchangeable. Then (N, m0) live =⇒(Nr, m0) live

Proof. Let m0[sr〉rm and tr ∈ Tr. We have m0[φ(sr)〉m and we distinguish
three cases.

1 Let tr ∈ T0. Since (N, m0) is live, there exists s1 such that m[s1.tr〉m′.
Since Γ(φ(sr)) = 0 and the net is p-agglomerable, for all prefixes s′ of s1,
Γ(s′) ≥ 0 holds. Let us pick some s1 minimising Γ(s1) and suppose that
Γ(s1) > 0. Then ŝ1 = s1

1
.h.s′ with h ∈ H and s′ ∈ (T0 ∪ H)∗. Since the

net is live, there is a (shortest) sequence ended by a transition of F , m′[s′′.f〉
with f ∈ F and s′′ ∈ (T0 ∪ H)∗. Thus s′.tr.s

′′ ∈ (T0 ∪ H)∗. We apply the F -
independence transformation leading to the firing sequence m[s1

1
.h.f.s′.tr.s

′′〉
and Γ(s1) > Γ(s1

1.h.f.s′). So necessarily Γ(s1) = 0.
We now substitute s1 by its permutation s1

1
leading finally in the reduced net

to the firing sequence m[φ−1(s1
1
).tr〉.

2 Let tr = hf with h ∈ H and f ∈ F and suppose that the HF -interchangeability
is fulfilled due to the assertion 1 of this hypothesis. Since (N, m0) is live
there exists a sequence s such that m[s.f〉. Since Γ(φ(sr)) = 0 and the net
is p-agglomerable, Γ(s′) ≥ 0 holds for all prefixes s′ of s. Thus there is a
permutation of s, ŝ = s1.s� with f occurring in s1, i.e. s1 = s1.h

′.f.s2,
h′ ∈ H , s1 and s2 being simulateable. Due to the assertion 1 of the HF -
interchangeability one substitutes h to h′ leading to m[s1.h.f〉. Thus in the
reduced net, m[φ−1(s1).tr〉.

3 Let tr = hf with h ∈ H and f ∈ F and suppose that the HF -interchangeability
is fulfilled due to the assertion 2 of this hypothesis. Since (N, m0) is live, there
exists s1 such that m[s1.h〉m′. Since Γ(φ(sr)) = 0 and the net is agglomerable
one has for all prefixes s′ of s1, Γ(s′) ≥ 0. Let us pick some s1 minimising
Γ(s1). Similarly to the first point of this proof, Γ(s1) = 0. We now substi-
tute s1 by its permutation s1

1 i.e. leading finally in the reduced net to the
firing sequence m[s1

1
.h〉m′. Using again the liveness, there is a (shortest) se-

quence ended by a transition of F , m′[s′′.f ′〉 with f ′ ∈ F and s′′ ∈ (T0 ∪H)∗.
We apply the F -independence transformation leading to the firing sequence
m[s1

1
.h.f ′〉. Due to the assertion 2 of the HF -interchangeability one substi-

tutes f to f ′ leading to m[s1
1
.h.f〉. Thus in the reduced net, m[φ−1(s1

1
).hf〉.
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Lemma 2 Let (N, m0) be a p-agglomerable net which is F -independent and
F -continuable. Then (Nr, m0) live =⇒(N, m0) live

Proof. Let m0[s〉m and let t ∈ T . We prove that t is necessarily fireable from
m by induction on Γ(s).

• Γ(s) = 0: Let us define tr ∈ Tr by tr = t if t ∈ T0, tr = hf if t = h
with some f ∈ F and tr = hf if t = f with some h ∈ H . Since Γ(s) = 0,
there is a permutation of s, s1 s.t. m0[s1〉m. Then m0[φ

−1(s1)〉rm. Since
(Nr, m0) is live, there exists sr such that m[sr.tr〉r. Thus m[φ(sr).φ(tr)〉 and
by construction t occurs in φ(tr).

• Γ(s) > 0: then the permutation of s can written as ŝ = s1.s1.h.s2 with
h ∈ H , and |s2|F = 0. Since the original net is F -continuable, there exists
f ∈ F such that m0[s1.s1.h.s2〉m[f〉m′. Since Γ(s1.s1.h.s2.f) = Γ(s) − 1, t
is necessarily fireable from m′ (and thus from m).

Lemma 3 Let (N, m0) be a p-agglomerable net which is F -continuable. Then

ΠT0∪H(Lmax(N, m0)) = ΠT0∪H(φ(Lmax(Nr, m0)))

Proof.

1 ΠT0∪H(Lmax(N, m0)) ⊆ ΠT0∪H(φ(Lmax(Nr, m0)))
Let s be a sequence such that m0[s〉md with md a dead marking. The contin-
uation hypothesis implies that s is a balanced sequence. So m0[φ

−1(ŝ)〉rmd.
Since any sequence md[sr〉r leads to a sequence md[φ(sr)〉, md is dead in the
reduced net.

2 ΠT0∪H(Lmax(N, m0)) ⊇ ΠT0∪H(φ(Lmax(Nr, m0)))
Let sr be a sequence such that m0[sr〉rmd and md a dead marking (of the
reduced net). We know that m0[φ(sr)〉md. It remains to prove that md is a
dead marking of the original net. Let us suppose that t is a fireable transition
from md (md[t〉). As φ(sr) is a balanced sequence, t 6∈ F . Furthermore, t 6∈ T0;
otherwise md[t〉r which contradicts the fact that md is a dead marking in the
reduced net. So t = h ∈ H . The continuation hypothesis implies that ∃f ∈ F
such that md[h.f〉. Hence md[φ

−1(h.f)〉r with the same contradiction.

Lemma 4 Let (N, m0) be a p-agglomerable net which is strongly F -independent
and F -continuable. Then

ΠT0∪H(Lω(N, m0)) = ΠT0∪H(φ(Lω(Nr, m0)))

Proof. We prove that ΠT0∪H(Lω(N, m0)) ⊆ ΠT0∪H(φ(Lω(Nr, m0))) (the
other inclusion is a direct consequence of proposition 2).

Let s ∈ Lω(N, m0). We only consider here the case where d(s) = n
is finite (a same reasoning can be performed in the infinite case). Due to
proposition 4, there exists a sequence ŝ such that ∀s′ ∈ Pref(ŝ), m0[s

′〉,
ΠT0∪H(ŝ) = ΠT0∪H(s), ∃(σi

1
)i≥0 an infinite sequence of simulateable sequences

such that: ŝ = σ1
1.σ1

�.σ2
1.σ2

� . . . σk
1.σk

� . . . with σn
� ∈ H∗. So, by (possible) inser-

tions of empty sequences, ŝ may be rewritten as: ŝ = s1
1
.h1.s

2
1
.h2 . . . sn

1
.hn.sn+1

1

with ∀i, hi ∈ H and si
1

a simulateable sequence.
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We build then by induction a simulateable infinite sequence s′ satisfying
ΠT0∪H(s′) = ΠT0∪H(s). The induction hypothesis is the following one: there
exists an infinite fireable sequence sk for k ≤ n obtained from ŝ by inserting
immediately after each of the hi, (i = 1..k) a transition of F . The basic case is
handled by considering s0 = ŝ.

Now let us look at hk+1 : sk=s′k.hk+1.s
′′
k with s′k a balanced sequence and s′′k

an infinite suffix of ŝ. Thus there exists a transition fsp
such that s′k.hk+1.sp.fsp

is a firing sequence (due to the F -continuation hypothesis). Let us pick a
transition f which occurs infinitely often in {fsp

}. Then (due to the strong
F -independence hypothesis) s′k.hk+1.f.s′′k is an infinite firing sequence and the
induction step is verified. So sn is the balanced sequence we look for.

2.4. Behavioural pre-agglomeration

We state now four conditions which “roughly speaking” ensure that delaying
the firing of a transition h ∈ Hi until some f ∈ Fi fires does not modify the
behaviour of the net w.r.t. the set of properties we want to preserve.

Definition 11 Let (N, m0) be a p-agglomerable net. (N, m0) is

1 H-independent iff ∀i ∈ I, ∀h ∈ Hi, ∀m ∈ Reach(N, m0), ∀s such that
∀s′ ∈ Pref(s), Γi(s

′) ≥ 0, m[h.s〉=⇒m[s.h〉

2 divergent-free iff ∀s ∈ Lω(N, m0), |s|T0∪F = ∞

3 quasi-persistent iff ∀i ∈ I, ∀m ∈ Reach(N, m0), ∀h ∈ Hi,
∀s ∈ (T0 ∪ F )∗, such that m[h〉 and m[s〉
∃s′ ∈ (T0 ∪ F )∗ fulfilling: m[h.s′〉, ΠF (s′) = ΠF (s) and W (s′) ≥ W (s).
Furthermore, if s 6= λ=⇒s′ 6= λ then the net is strongly quasi-persistent.

4 H-similar iff ∀i, j ∈ I, ∀m ∈ Reach(N, m0), ∀s ∈ T ∗
0 ,

∀hi ∈ Hi, ∀hj ∈ Hj , ∀fj ∈ Fj

m[hi〉 and m[s.hj.fj〉 =⇒ ∃s′ ∈ (T0)
∗, ∃fi ∈ Fi such that m[s′.hi.fi〉 and such

that s = λ=⇒s′ = λ.

The H-independence means that once a transition h ∈ Hi is fireable it can
be delayed as long as one does not need it to occur in order to fire a transition
of Fi. When a net is divergent-free it does not generate infinite sequences with
some suffix included in H . In the pre-agglomeration scheme, we transform
original sequences by permutation and deletion of transitions into simulateable
sequences. Such an infinite sequence cannot be transformed by this way into an
infinite simulateable sequence. Therefore this condition is introduced in order
to avoid this situation. The quasi-persistence ensures that in the original net a
“quick” firing of a transition of H does not lead to some deadlock which could
have been avoided by delaying this firing. At last, the H-similarity forbids
situations where the firing of transitions of F is prevented due to a “bad” choice
of a subset Hi.

Under the previous conditions (or a subset of), fundamental properties of a
net are preserved by the pre-agglomeration reduction. This result is stated in the
following theorem whose demonstration is similar to the one of previous theorem.
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Its demonstration and the proof that this reduction is a strict extension of the
pre-agglomeration of Berthelot [Ber83] are provided in [HPP04].

Theorem 2 Let (N, m0) be a p-agglomerable Petri net which is H-independent.
If furthermore

1 (N, m0) is divergent-free, strongly quasi-persistent and H-similar then

ΠT0∪F (Lmax(N, m0)) = ΠT0∪F (φ(Lmax(Nr, m0r)))

2 (N, m0) is divergent-free then

ΠT0∪F (φ(Lω(Nr, m0))) = ΠT0∪F (Lω(N, m0))

3 (N, m0) is HF -interchangeable, quasi-persistent and H-similar then

(N, m0) is live ⇐⇒ (Nr, m0) is live

3. Illustration

3.1. How to define structural conditions

Behavioural hypotheses defined in the previous section cannot be used di-
rectly in practice since they refer to the behaviour of the model. In the worst
case, verifying these hypotheses leads to building the reachability graph before
applying the reductions!

We have designed a set of structural and algebraical conditions that are
sufficient to ensure the behavioural hypotheses. These conditions can be au-
tomatically and efficiently checked [HPP04]. Unlike the older works about
ordinary Petri net reductions [Ber85,Ber86,PPP00,ES01], we intensively define
algebraical conditions based on flows and linear invariants of the net. A flow
is a vector ~v over the set of places, such that ~v · W = 0. A flow ~v induces the
following linear invariant: ∀m ∈ Reach(N, m0), ~v ·m = ~v ·m0. These (flows and)
invariants can be obtained by two means: the first one is to apply algorithms
like the Gaussian elimination or the Farkas algorithm [CS91] when positive con-
straints on coefficients are required. The second way is to derive already known
information when nets are produced by an automatic generation from a high
level specification.

We only show the methodology we used to define structural and algebraical
conditions corresponding to the behavioural hypothesis defined in previous def-
initions. We illustrate these principles on the Petri net depicted in Fig 1 for
which a simple computation leads to the following invariants:

• ∀m ∈ Reach(N, m0), m(p)+m(q)+m(u) = 1 meaning that the sum of tokens
contained in places p, q and u is always equal to 1.

• ∀m ∈ Reach(N, m0), m(r1)+m(r2) = 1 meaning that there is always exactly
one token in either r1 or r2.

Let us suppose that we want to establish the following properties:
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q

r1

r2
f2f1

h

p
v

g

u

Figure 1: A simple Petri net

1 when the process is in the state p (i.e. p is marked) it is never suspended
(either f1 or f2 is fireable). This illustrates the F -continuation.

2 when the process is in the state p some activity is forbidden (e.g. g is not
fireable). This illustrates the H-independence.

For the first property we build a linear programming problem (LP problem)
in which we associate with each place p a variable xp that denotes the number
of tokens contained in this place. Thus an assignment of the variables is equiv-
alent to a potential marking since we introduce the linear invariants of the net
to characterise a superset of the reachable markings. The constraints of this
LP problem are defined by the invariants of the net, by the hypothesis that p
is marked and by the negation of the conclusion (i.e. neither f1 nor f2 are
fireable). We conclude that the property is satisfied if the LP is not satisfiable
(but the converse is not true).





∀i ∈ P, xi ≥ 0 the markings are positive
xq + xp + xu = 1
xr1 + xr2 = 1

}
the constraints defined by the invariants are satisfied

xp ≥ 1 the place p is marked
xr1 = 0
xr2 = 0

}
neither the transition f1 nor the transition f2 is fireable

The second property is expressed similarly. Let us observe that here the
negation of the conclusion leads to lower bounds for markings of places.





∀i ∈ P, xi ≥ 0 the markings are positive
xq + xp + xu = 1
xr1 + xr2 = 1

}
the constraints defined by the invariants are satisfied

xp ≥ 1 the place p is marked
xv ≥ 1
xu ≥ 1

}
the transition g is fireable

Since we want to prove the non existence of a marking satisfying the lin-
ear problem, we should solve an integer linear problem (ILP). It is well-known
that solving an ILP may be highly time consuming. Thus a less accurate suf-
ficient condition is to interpret this problem as a rational linear problem. This
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satisfiability checking is now processed in polynomial time. Moreover, practi-
cal experiments have shown that, for the kind of problems we solve, it seldom
happens that the ILP is unsatisfiable when the LP is satisfiable.

This shows that the structural conditions are quite accurate w.r.t. the be-
havioural ones.

3.2. A typical example

Consider the following fragment of a Petri net (modelled in the left-hand
side of the figure 2) modelling the access by two threads to data protected by
locks (modelled by places Lock1 and Lock2). These locks could be the ones
associated with each Java object when Java is used in a multithreaded context.
Let us note that the two processes take these locks in a different order but
that these actions are performed under the protection of a mutual exclusion
mechanism. Note that this construction follows some well-known guidelines
used to prevent deadlocks [Hab69].

a6

a5

a4

a3

a2

a1

b2

b1

b3

b4

b5

b6

p2

p3

p4

p5

p6

p7

Lock1 Lock2

Mutex
p1 q1

q2

q7

q6

q5

q4

q3

a3.a4.a5.a6

p7

p3

p2

p1

Lock1 Lock2 q2

q1

q7

q3

Mutex

b1

b2a2

a1

b3.b4.b5.b6

Figure 2: Taking two locks under the protection of a mutex

There exist in this net different binary places invariants (i.e. the corre-
sponding vectors ~v ∈ {0, 1}P ) ensuring that when place p2 is marked then all
transitions that have the place Lock1 as a pre-condition cannot be fired and
symmetrically that, when place q2 is marked then all transitions that have the
place Lock2 as a pre-condition cannot be fired.

We now describe the reduction process. First of all, we post-agglomerate
transitions a3 with a4. Then this new transition a3.a4 can be post-agglomerated
with a5 and then with a6. We also apply a similar sequence of post-agglomerations
on transitions b3 to b6 and we obtain then the model on the right-hand side of
figure Fig.2. Note that these reductions can be applied without using the alge-
braical part of the conditions we have proposed in this paper (original Berth-
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elot’s conditions are sufficient for performing these reductions). However, after
these first reductions, Berthelot’s reductions are useless : their conditions forbid
further reductions.

The conditions we defined in this paper allow us to perform a (structural)
pre-agglomeration. Indeed, if we consider H = {a2} and F = {a3.a4.a5.a6}
we immediately remark that the net is p-agglomerable around place p3. Let us
prove that the five hypotheses of the pre-agglomerations are fulfilled:

• HF -interchangeability : since |H | = |F | = 1 this point is obviously satisfied.
• H-independence : since a2• \ {p3} = ∅ the set of transitions that the firing

of a2 may enable is a3.a4.a5.a6. Thus, a sequence s, fireable after the fir-
ing of a2 from a marking m (m[a2.s〉) and such that its prefixes s′ verify
Γ(s′) > 0, is also fireable before the firing of a2 (m[s〉). Let q 6= p3 ∈ •a2.
As a2• = {p3}, W+(q, a2) = 0. By hypothesis, m(q) ≥ W−(q, a2.s) =
Max(W−(q, a2), W−(q, s) − W (q, a2)). So, m(q) ≥ W−(q, a2) + W−(q, s)
and m(q) ≥ W−(q, a2) + W−(q, s) − W+(q, s). It comes m(q) + W (q, s) ≥
W−(q, a2). As, m[s〉, m[s.a2〉.

• Divergence freeness : as the place Lock1 belongs to •a2 \ a2•, a2 cannot be
infinitely fired and this point is also fulfilled.

• Quasi-persistence : Let S = Lock1• \ {a2}. By construction, this net satisfies
the invariant ∀m ∈ Reach(N, m0), m(Mutex) + m(p2) + m(p3) + m(q2) +
m(q3) = 1. So, when p2 is marked, transition b3.b4.b5.b6 ∈ S is not fireable.
So this point is also fulfilled.

• H-similarity : As here H is a singleton this point is obviously fulfilled.

We obtain the net depicted in the left-hand side of figure 3. Now, symmetri-
cally, we perform a pre-agglomeration around place q3. This leads to the model
at the top right of figure 3.

p2

p1

p7

Lock1 Lock2

Mutex q1

q7

q3

q2 p7

p2

p1 Mutex

a1

Lock1 Lock2

b1

q1

q2

q7

q1

q7
Lock2

Mutex

a1.a2.a3.a4.a5.a6

p7

p1

Lock1

b1.b2.b3.b4.b5.b6

b2.b3.b4.b5.b6a2.a3.a4.a5.a6

a2.a3.a4.a5.a6

a1

b2

b1

b3.b4.b5.b6

Figure 3: The model at different stages of the reduction process

At last, we can apply on this model a “parallel” pre-agglomeration of a1 with
a2.a3.a4.a5.a6 and of b1 with b2.b3.b4.b5.b6 (H1 = {a1} and F1 = {a2.a3.a4.a5.a6},



New Efficient Petri Nets Reductions for Parallel Programs Verification

H2 = {b1} and F2 = {b2.b3.b4.b5.b6}). Note that it is also possible to first sup-
press places Lock1 and Lock2 (that are now implicite places) and then apply
two post-agglomerations. In the final model, the two threads operate atomically
on the locks.

4. Conclusion

We have presented a method which automatically reduces a Petri net model
whereas preserving its behaviour w.r.t. the liveness property and the linear time
formulae. Our method is based on a set of rules which merge transitions which
are causality dependent whenever some structural conditions are satisfied.

We have significantly enlarged the application field of the reductions pre-
viously defined since we have weakened strong local structural conditions and
introduced global behavioural conditions specified by (un)satisfiability of lin-
ear programming problems. For instance, the structural reductions defined
in [Ber85] may be viewed as specialisations of our reductions (as shown in [HPP04]).
With such an approach we cover frequently used synchronisation patterns like
the monitors, the access control to shared variables and the management of
locks.

These algorithms have been implemented in the Quasar tool for analysing
concurrent Ada programs [EKPPR03]. With the help of these reductions, large
programs have been successfully certified. These experiments show that re-
ductions defined for a low level model (as a semantic for an high level model)
cover more patterns in more contexts than reductions directly defined for the
high-level model.
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