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Introduction
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A very brief history
Program verification

● The formalism is the programming language or 
some abstraction.

● The properties to be checked are the partial 
correction and the termination.

● The properties are expressed via a first-order 
logic.

Reactive system verification
● New features: concurrency, non determinism, 

time, randomness, etc.
● New properties: safety properties, liveness 

properties, etc.
● Numerous formalisms and languages
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Formal models for verification
Expressiveness versus decidability and complexity

● Realistic systems require highly expressive models. 
● However, this quickly leads to undecidablity or 

untractability.
● Thus, useful formal models requires abstraction performed 

by the modeller (interesting also from a modelling point of view).
Desirable features of a model

● Modularity and hierarchy
● Parametrization
● Refinements
● Time ...

From conception to verification: formal semantics
● Ensures that the model transformation is valid
● Often obtained via operational rules related to constructors
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Property Specification
Generic properties (never exhaustive) 

● Interpretation valid whatever the model (e.g. deadlocks)
● Specialized efficient algorithms

Specific properties (possible untractability of verification)
● Express properties relative to the model (e.g. a request will 

always be followed by an answer in at most 3 s.)
● Supported by logics-based languages

Model equivalence (importance of the modelling step)
● Follows the modelling process.
● For instance, equivalence between the (abstract) model of 

the service and the (concrete) model of the protocol.
Test of models (partial guaranty)

● Does not require any a priori model.
● Most efficient algorithms.
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Verification Methods
Automatic or semi-automatic methods?

● Automatic methods decrease the cost of verification but 
their application field is more limited.

● Semi-automatic methods has a wider application field but 
require experts and can be time consuming.

Structural methods
● Results give more information.
● Efficient algorithms handling parametrization.
● Either semi-decision algorithms or algorithms for 

subclasses of the considered formalisms.
Behavioural methods

● Easy to understand and applicable to all finite models and 
some infinite ones.

● Must include elaborate algorithms in order to cope with 
the complexity.
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Properties: 
from specification to verification
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Transition systems

Low-level formalism which generally is the semantics of some high-level 
formalism ⇒ implicit description 

A (possibly infinite) graph whose vertices are states and whose edges 
are transitions, when finite much bigger than the high-level specification

In a state, some atomic properties hold and some others do not.

A transition is (possibly) labelled by the event which triggers the 
transition.

A transition system has a set of initial states.

p,q,¬r p,¬q,r
exchange(q,r)
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Interpretation of transition systems

Examples of atomic properties
● The value of variable x is 9. The value of variable x is 

between 13 and 27. 
● The ordinal counter points to the instruction Ins.
● Process p waits for resource r. Process p has locked 

resource r.
● Channel c is empty. There are two occurrences of messages 
m in channel c.

Examples of events
● Process p resets variable x.
● Process p releases resource r.
● Process p sends (receives) message m in (from) channel c. 
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Generic properties of transition systems
The reachability problem: Is some state s' reachable from some 
(initial) one s?

The deadlock problem: Is some state without successor reachable 
from some (initial) one s?

The quasi-liveness problem: Will some event e occur from some 
(initial) state s?

The liveness problem: Will some event e occur from every 
reachable state?

The fairness problem (or its negation): Is some subset of events 
E infinitely avoidable from some  reachable state?
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How to check reachability? (1)

By saturation

s

s' Visited

Front

Search()
Front = Visited = {s};
while s' ∉ Visited and Front≠∅ do

Front = Successor(Front) \ Visited;
Visited = Visited ∪ Front;

return(s' ∈ Visited);
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How to check reachability? (2)

By "limited" memoryless exploration

s

s'

Search()
return(search(s,s',|S|-1);

search(scur,snext,l)
if scur=snext or 

snext ∈ Successor(scur) then
return(true);

else if l≤1 then 
return(false)); 

else  
for sint ∈ S\{scur,snext} do

if search(scur,sint,l/2) and
search(sint,snext,l/2) then
return(true);

return(false);

1 1,1

Compare the algorithms
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In summary

Generic properties verification 

Checking generic properties can be efficiently performed...
 (generally in linear time w.r.t. the size of the transition system)

but algorithms must be tailored for each property.

 Generic properties expressiveness

Generic properties satisfaction outlines well-designed systems...

but it is irrelevant for specific properties of a system.
(e.g. every request received by a server will be treated or rejected
with an advertisement message)
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Linear Temporal Logics
reason about infinite sequences
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Branching Temporal Logics
reason about the infinite computation tree
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 Temporal operators of LTL (XE)

A property f will be true in the next subsequence (XE) 
XEf 

f 

When f is an atomic property  
fXEf 

An atomic property p is true iff it is true in the first state 
of the sequence 

pp 

e 

and e ∈ E 

X is an abbreviation for XE when E is the set of all events 

e ∈ E
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 Temporal operators of LTL (G)
A property f is always (G) true  

 Gf 

 f 
 f 
 f 

When f is an atomic property  

f f f f f f f f f Gf 



20/11/06 Tunis – ICTAC 2006 18/53

 Temporal operators of LTL (F)
A property f will be eventually (F) true  

 Ff 

 f 

When f is an atomic property  

f Ff 
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 Combining temporal operators (1)
What does FGp mean?  

 FGp 

 Gp 

  
p p p p p p p

FGp means: "at some instant p will hold forever" 
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 Combining temporal operators (2)
What does GFp mean?  

 GFp 

p

p

p

 Fp 

  
GFp means: "at any instant p will be eventually true" or 
equivalently  "p will be true infinitely often".

Note that FGp⇒GFp but the converse is not true.

 Fp 
 Fp 

p p p
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 Temporal operators of LTL (U)
A property f will hold until a property g will be 
eventually (U) true  

 fUg 

 f 

When f and g are atomic properties  

f f g

 f 
 g 

 fUg 
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 CTL*

CTL* consists in formula about sequences and states.

A formula relative to a sequence is:
● A formula about states (and is evaluated on the first state of the 

sequence as for LTL)
●  ¬f,f∨g,f∧g,XEf,Ff,Gf,fUg, where f and g are 

formulas about sequences

A formula relative to a state is:
● An atomic property
● Af,Ef where f and g are formulas about sequences
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 Branching operators of CTL*

Af means that f is true on every sequence starting from 
the state.

Ef means that f is true on at least one sequence starting 
from the state.

f
f
f

Af

fEf
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 CTL
CTL is a restriction of CTL* which limits the way one 
combines the temporal and the branching operators.

It can be expressed only by formula relative to states: 
● An atomic property
● ¬f,f∨g,f∧g
● AXEf,AFf,AGf,AfUg
● EXEf,EFf,EGf,EfUg
● where f and g are formulas

CTL*
LTL

E does not occur
and A occurs only

at the root of the syntactic tree

CTL
in the syntactic tree  branching operators
 and temporal operators occur in edges

 {E,A}---{XE,F,G,U,W}
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Generic properties revisited
The reachability problem: EFp  expressible in CTL and LTL 
(via the negation AG¬p)

The deadlock problem: EFEXstoptrue  expressible in CTL and 
LTL (via the negation AG¬Xstoptrue)

The quasi-liveness problem: EFEXetrue  expressible in CTL 
and LTL (via the negation AG¬Xetrue)

The liveness problem: AGEFEXetrue  expressible in CTL but 
not in LTL (try)

The fairness problem: AGAFXEtrue  expressible in CTL and 
AGFXEtrue in LTL
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CTL and LTL are incomparable
The liveness problem is not expressible in LTL. Intuitively it 
requires to leave the sequence.

Some fairness properties are not expressible in CTL. Intuitively 
they require to nest temporal operators.

Example: AFGp (different from AFAGp)

p¬pp

Evaluate the two formulas on this model
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Model-checking CTL formulas: EU
Model-checking EpUq formulas is performed by backward 
exploration (in linear time w.r.t. the size of the graph)

p
¬q

p
¬q

¬p
¬q

q

¬p
¬q

p
¬q

p
¬q

q

p
¬q

p
¬q

1,5*,20

2,21*

3*,10,16,22

4*,9,23

6*,11,24

7*,19,29
8*,13,26

12,15*,25

14*,17,27

18,28*

How many times is a node visited?
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Model-checking LTL formulas
Observation

● A formula of LTL "accepts" (infinite) sequences
● A finite automaton "accepts" (finite or infinite) words
● Let a subset of propositions be a letter, then there is a close 

correspondence between the two notions of "acceptance" 

Idea
● Transform a formula of LTL into a finite automaton which 

accepts the same set of sequences (i.e. infinite words)

Problem
● Which acceptance condition for the automaton? 
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Büchi automata
Büchi automata are the "simplest" automata which accept infinite 
words. A Büchi automaton has a set of final states F and a sequence 
is accepted if there is a corresponding path which meets infinitely 
often F. 

pppp¬p¬p¬p(¬p)ω is accepted by this automaton
ppp¬ppp¬pp... is rejected by this automaton

B

1 2p ¬p
¬p

3 4
¬p

¬p

¬p
p

p
Give a description 

of the sequences
accepted by this automaton
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Principle of LTL model-checking 

Construction
● Given ϕ  a formula, build a Büchi automaton B for ¬ϕ
● Build the synchronized product of B and model M.
● This synchronized product B⊗M is a Büchi automaton which 

accepts the infinite sequences of the model satisfying ¬ϕ.

Verification
● Check whether B⊗M accepts at least one sequence.
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The synchronized product 

ϕ =FGp ,  ¬ϕ=GF¬p

B

1 2p

M

p
¬p

¬p

p

¬p p

p

a

b c

d

p

¬p p

p

a1

b1 c1

d1pa2

B⊗M
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Checking emptyness of
the synchronized product 

p

¬p p

p

a1

b1 c1

d1pa2

There is no sequence accepted by B⊗M 
iff the reachable terminal states are contained 
in trivial strongly connected components 
(i.e. reduced to a state without loop)

Furthermore, it can be checked without computing 
the strongly connected components by two depth 
first searchs.

Complexity of LTL model-checking 
● P-space complete (with on-the-fly techniques)  
● performed in O(|M|.exp(|f|)) time
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Model-checking CTL* formulas
Model-checking formula f on model M

● Eliminate the operator E by the equivalence:
● Eg⇔¬A¬g 
● Build the syntactic tree of f
● Model-checking maximal LTL subformulas of f bottom-up
● Create intermediate "atomic properties" [Af'] corresponding 

to subformulas Af'
f=A(FAGp∧GAFq)

Check for each state Gp, f becomes A(F[AGp]∧GAFq)
Check for each state Fq, f becomes A(F[AGp]∧G[AFq])

Check the latter formula

Complexity of CTL* model-checking
● P-space complete (with on-the-fly techniques)  
● performed in O(|M|.exp(|f|)) time
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Finite system verification
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Managing the complexity 
of finite state systems

Condensed representation of the states
● Using decomposition in components with indexed tables 

of component states (decrease the size of a state)
● Representing set of states instead of states (BDD)

Independence between concurrent events
● Partial order methods (reachability subgraph)
● Unfoldings (implicit representation of states by 

combination of compatible component states)

Symmetrical systems
● Equivalence relation between states yielding symbolic 

states as equivalence classes
● Symbolic reachability graph
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A Petri net and its reachability graph

p1

p2

p3

q1

q2

q3

r

tp1

tp2

tp3

tq1

tq2

tq3

tr
p1q1 p2q1

p1q2 p2q2

p1q3 p2q3

p3q1

p3q2

p3q3

r

tp1 tp2 tp3

tr

tp1 tp2

tp1 tp2

tq1

tq2

tq3

tq1

tq2

tq1

tq2
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Conflicts between transitions
p1

p2

p3

q1

q2

q3

r

tp1

tp2

tp3

tq1

tq2

tq3

tr

tp1 # tq3
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Reduction by sleep sets (1)
Order the transition set and check the firing rule in ascending 
order. Manage a sleep set S(m), by marking m (empty for the 
initial marking).
Let m→tm', then S(m') defined from S(m) by:

● Delete every transition t' such that t#t',
● Add every transition t' such that t#t', t<t' and m→tm'

Rule: Ignore transitions from the sleep set of m 

Property: A marking reached by an ignored transition has 
already been reached.

Consequence: The modified firing rule preserves reachability 
and deadlocks (requiring that the sleep set must be empty).
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Reduction by sleep sets (2)

p1

p2

p3

q1

q2

q3

r

tp1

tp2

tp3

tq1

tq2

tq3

tr
p1q1 p2q1

p1q2 p2q2

p1q3 p2q3

p3q1

p3q2

p3q3

r

tp1 tp2 tp3

tr

{tp2}

{tp1}

tq1

tq2

tq3

tq1

tq2

tq1

tq2

{tp1}

{tp2}

∅ ∅ ∅

∅

∅

∅
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Reduction by stubborn sets (1)

Let m be a non dead marking, then T' is a stubborn set if
● There is a fireable transition in T',
● When t∈T' and t#t' then t'∈T',
● When t∈T' and t is not fireable then there is a place p, input of 
t, such that every transition input of p belongs to T'

Rule: Fire from m only transitions in T'

Property: A fireable transition not belonging to T' will remain 
fireable until its (possible) firing.

Consequence: The modified firing rule preserves deadlocks.
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Reduction by stubborn sets (2)

p1

p2

p3

q1

q2

q3

r

tp1

tp2

tp3

tq1

tq2

tq3

tr
p1q1 p2q1

p1q2

p1q3 p2q3

p3q1

p3q2

p3q3

r

tp1 tp2 tp3

tr

tp1 tp2

tq1

tq2

tq3

tq1

tp1∈T'⇒ tq3∈T' ⇒ tq2∈T' ⇒ tq1∈T' 

tq2
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Infinite system verification
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When infinite-state systems?

Asynchronous systems
● unbounded channels

Dynamical systems
● creation of processes
● evolution of topology

Parametrized systems
● by the number of processes or resources, 
● open systems where the environment is the parameter

Timed systems
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Timed systems
Why time in models?

● In telecommunication protocols, time-out are necessary 
to face faulty environments.

● In critical systems, time is necessary to schedule, 
suspend or abort tasks.

● In information systems, time is necessay to evaluate the 
accuracy of a data.

Why time in property languages?
● Bounded time response which expresses temporal 

relation between events.
● Termination in bounded time which corresponds to 

absolute time of the execution.
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Timed automata: syntax
A timed automaton (TA) is:

● a finite automaton 
● enlarged with a set of clocks (X) which evolve 

synchronously and continuously.

States (locations) of an automaton include invariants which restrict 
the way time may elapse in a location and whose syntax is:

● ∧
x ∈ X'

 x∼c where ∼ ∈ {<,≤} and c is some constant

Transitions of an automaton include clock resets and guards which 
restrict the temporal occurrence of a transition and whose syntax 
is:

● ∧
x ∈ X'

 x∼c where ∼ ∈ {>,<,≤,≥} and c is some constant
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Timed automata: an example

l0 l1 l2

x≤3∧y≤2

x≥1;a;x:=0 y>1;b;∅

y≤2 x≤1

true;c;x:=0
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Timed automata: semantics
A configuration of timed automaton is given by:

● a location (l), 
● a value v(x) per clock satisfying the location invariant 

(v|=Inv(l)).

A configuration may evolve by a delay d such that the invariant is 
still satisfied: (v+d|=Inv(l)) with  (v+d)(x)=v(x)+d
A configuration may change by a transition (l,g,a,R,l') to a 
configuration (l',v') iff:

● v|=g
● if x ∈ R then v'(x)=0 else v'(x)=v(x)
● v'|=Inv(l')
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Example continued

l0 l1 l2

x≤3∧y≤2

x≥1;a;x:=0 y>1;b;∅

y≤2 x≤1

true;c;x:=0

l0x
y

l0 l1 l2 l2 l01.4
1.4 1.4 1.4 1.7

0.3
1.7
0.00.0

0.0
0.0 0.0

1.4 a b 0.3 c

What happens next?
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Reachability analysis: the key idea
The number of (reachable) configurations is infinite (and even 
uncountable). So one wants to partition configurations into regions 
such that: 

1. Two configurations in a region allow the same transitions and 
the new configurations belong to the same region.

2. If a configuration in a region letting time elapse reaches a new 
region every other configuration may reach the same region by 
time elapsing. 

3. There is a finite representation of a region such that the discrete 
and time successors of the region are computable.

4. The number of regions is finite. 
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A first partition 
(two clocks and two locations)

Guards and invariants check integer values

x

y

l0

...

.

.

.

  .
 .
.

x

y

l1

...

.

.

.

  .
 .
.

Why this partition is not appropriate?
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A second partition 
(two clocks and two locations)

The exact value of a clock is irrelevant when it is beyond 
the maximal constant of the TA (here 2)

x

y

l0

Why this partition is not appropriate?

x

y

l1
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A third partition 
(two clocks and two locations)

x

y

l0

x

y

l1

Check that this partition is appropriate
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The region graph: illustration 

Build the region graph of the above TA

x

y
a

b

c

x≤1;a;∅ x≥1∧y≤0;c;∅

x=1;b;y:=0

x≤1 x≤1

a

a

x≤1;a;y:=0 x≥1∧y≤0;c;∅
x≤1 x≤1


