
Dynamically Adapting Clients to Web Services
Changing

Mehdi Ben Hmida, Céline Boutrous Saab, Serge Haddad, Valérie

Monfort and Ricardo Tomaz Ferraz

Abstract. Web Services are the fitted technical solution which provides the
required loose coupling to achieve Service Oriented Architecture (SOA). How-
ever, there is still much to be done in order to increase flexibility and adapt-
ability to SOA-based applications. In previous researches, we proposed ap-
proaches based on Aspect Oriented Programming (AOP) and Process Alge-
bra (PA) to address flexibility and client generation issues in the Web Service
context. In this paper, we extend these works in order to automatically cre-
ate extended BPEL processes and generate clients which dynamically adapt
themselves to the service changing.

Keywords. Service Oriented Architecture (SOA), Web Services (WS), BPEL4WS,
Aspect Oriented Programming (AOP), Process Algebra (PA)..

1. Introduction

Web Services (WS) are “self contained, self-describing modular applications that
are published, located, and invoked across the Web” [1]. They are based on a
set of XML [2] standards to make them more portable than previous middleware
technologies [3]. WSs need to be composed to fulfill business requirements. The
Business Process Execution Language for Web Services (BPEL4WS or BPEL) has
been proposed for this purpose and becomes a standard [4]. BPEL supports two
types of business processes:

1. Executable processes specify the exact details of business processes and are
executed by a BPEL engine.

2. Abstract business processes specify the public message exchange between the
client and the service (the interaction protocol).



2 Mehdi Ben Hmida and Ricardo Tomaz Ferraz

Web Service technology has to handle the same features as middlewares such
as DCOM [5], J2EE [6] or CORBA [7] already handle. The features, such as secu-
rity, reliability, or transactional mechanisms, can be considered as non-functional
aspects. Obviously, these aspects are crucial for business purposes and we cannot
build any genuine IS without consideration for them.

However, managing these aspects is likely to involve a great loss in interop-
erability and flexibility. This effect has already been experienced with the above
middleware technologies. Mostly, middleware delegates these tasks to the under-
lying platform, hiding these advanced mechanisms from the developer, and then
establishing a solid bond between the application and the platform. Moreover,
WS providers are faced to some important difficulties to change their services be-
haviours because WSs are shared by many clients and a minor change leads to
client execution problems.

In our previous works, we addressed service adaptability and client interac-
tion issues. We proposed an Aspect Oriented Programming (AOP) [8] approach
which aims to change elementary WSs at runtime [10, 9]. We also proposed a Pro-
cess Algebra (PA) approach which solves the interaction problem between BPEL
processes and their clients. In this paper, we extend these works in order to reach
the objectives previously discussed.

This paper is organized as follows: section 2 presents the Aspect Oriented
Programming (AOP) paradigm. Section 3 briefly presents our previous AOP ap-
proach for elementary WSs, then shows its extension to support BPEL processes.
We also present the architecture of our extended BPEL generator tool which in-
tegrates these concepts. Section 4 presents the process algebra formalism which
supports change-prone BPEL processes. This formalism leads us to generate clients
that adapt themselves to the service changes. Section 5 discusses related works.
We conclude and present future works in section 6.

2. Aspect Oriented Programming (AOP)

Many researches [12, 13, 14] consider Aspect Oriented Programming AOP as an
answer to improve WS flexibility. AOP is a paradigm that enables the modular-
ization of crosscutting concerns into single units called aspects, which are modular
units of crosscutting implementation. AOP concepts were formulated by Chris
Maeda and Gregor Kiczales.[8]

Crosscutting concerns are requirements that cannot be localized to an indi-
vidual software component and that impact many components. In aspect-speak,
these requirements cut across several components. Aspect-oriented languages such
as AspectJ [15], JBoss AOP [16], AspectWerkz [17], Spring AOP [18], etc. are
implemented over a set of definitions:

1. Joinpoints : They denote the locations in the program that are affected by a
particular crosscutting concern.

2. Pointcuts : They specify a collection of conditional joinpoints.



Dynamically Adapting Clients to Web Services Changing 3

3. Advices : They are codes that are executed before, after or around a joinpoint.

To better clarify, consider the classical example to implement a logging func-
tionality. Logging code is often scattered horizontally across object hierarchies and
has nothing to do with the core functions of the objects it is scattered across. The
same is true for other types of code, such as security, exception handling, and
transparent persistency. This scattered and unrelated code is known as crosscut-
ting code and is the reason for AOP’s existence.

Figure 1. The weaving process

Using Object-Oriented Programming, every time we need to introduce the
logging functionality in an application, the programmer must add the logging code
into the appropriate objects. Using AOP, we can insert the logging code into the
classes that need it with a tool called a weaver. This way, objects can focus on
their core responsibilities. The figure 1 shows the weaving process.

The weaver is in charge for taking the code specified in a traditional (base)
programming language, and the additional code specified in an aspect language,
and merging the two together. The weaver has the task to process aspects and
component code in order to generate the specified behaviour. The weaver inserts
the aspects in the specified joinpoint transversally. The weaving can occur at
compile time (modifying the compiler), load time (modifying the class loader)
or runtime (modifying the interpreter).

3. Adapting BPEL processes

In our previous approach, we developed an AOP-based tool named Aspect Service

Weaver (ASW ) [10, 9]. The ASW intercepts the SOAP messages between a client
and an elementary WS , then verifies during the interaction if there is a new
behaviour introduced (advice service). We use the AOP weaving time to add the
new behaviour (before, around or after an activity execution). The advices services



4 Mehdi Ben Hmida and Ricardo Tomaz Ferraz

are elementary WSs whose references are registered in a file called “aspect services

file descriptor”. The pointcut language is based on XPath [24]. XPath queries are
applied on the service description (WSDL) to select the set of methods on which
the advice services are inserted.

We extend this approach to BPEL processes. We apply The AOP concepts
to BPEL processes in order to automatically generate extended BPEL processes
without touching the base implementation. The new document is deployed on a
standard BPEL engine. It contains the base BPEL process and the advices services.
We apply the AOP concepts on BPEL processes in the following way:

1. A joinpoint is a simple or structured BPEL activity.
2. The poincuts are specified on the BPEL document by using XPath.
3. The advices services are BPEL processes implementing the new behaviour.

Figure 2. The extended executable BPEL process.

We also add to the generated process, a replying activity before each in-
serted advice service (figure 2). This activity sends to the client a message called
execute. This message advertise the client about the execution of a new behaviour.
It encapsulates two kinds of information: the identifier of the advice service and
its corresponding interaction protocol. This message is necessary since the new
behaviour can require new information exchange involving messages not expected
by the client and leading to execution failures. At the client implementation, the
developer has to handle this type of message: it has to extract the interaction pro-
tocol of the advice service and integrate it in its behaviour. This part is detailed
in the next section.

3.1. Extended BPEL generator

These previous concepts are concretisized through the architecture of our tool
named extended BPEL generator. The tool contains the following components
(figure 3):



Dynamically Adapting Clients to Web Services Changing 5

1. The BPEL weaver

2. The aspect services file descriptor

3. The service advice repository (or the pattern repository) which contains the
services advices present in the system

4. The deployment module which deploys the extended BPEL process an a stan-
dard BPEL engine.

Figure 3. The extended BPEL generator.

The BPEL weaver takes as input the base BPEL process and the aspect

services file descriptor. Then, it performs transformations on the base BPEL
process syntactic tree. It inserts the actions of sending execute messages and
the advices services at the selected joinpoints depending on the kind of the ad-

vice service. The figure 4 shows the transformations made on the base process
sequence(receive(ResReq), switch(reply(ResResp), reply(error)) which receives
a ResReq message then replies by a ResResp or error message depending on a
condition (the switch process). In the case of an around service advice (figure 4.d),
the specified joinpoint is replaced by the advice service and the execute message
replying activity, because we consider that the advice service can encapsulate the
joinpoint. In the figure, a triangle represents an advice service and Q its corre-
sponding interaction protocol.

3.2. The extended interaction protocol

The extended executable BPEL process interaction protocol is described by an
extended abstract BPEL process which integrates the sending of execute messages.
The extended interaction protocol is generated from the base BPEL process and
the aspect service file descriptor based on the defined pointcuts and the type of
advices (before, after or around).



6 Mehdi Ben Hmida and Ricardo Tomaz Ferraz

Figure 4. Syntactic transformations on the base executable
BPEL process.

Figure 5. transformations on the syntactic BPEL process tree.

The generation process performs transformations on the base abstract BPEL
process syntactic tree. It inserts the action of sending execute messages in the
selected joinpoints depending on the kind of the advice service (figure 5). The
execute messages contain only the identifier of the advice service id. The interaction
protocol corresponding to that id is sent to the client at runtime.



Dynamically Adapting Clients to Web Services Changing 7

4. Generating dynamic clients

BPEL provides a set of operators describing in a modular way the observable
behaviour of an abstract process. As shown in [20], this kind of process description
is close to the process algebra paradigm illustrated for instance by CCS [21].

However, time is explicitly present in some of the BPEL constructors and
thus the standard process algebra semantics are inappropriate for the description
of such process. Thus, we defined a new process algebra semantics that associates
a timed automaton (TA) [19] with an abstract process [11]. The theorical develop-
ments follow these steps: associating operational rules with each abstract BPEL
construct, defining an interaction relation which formalizes the concept of a correct
interaction between two communicating systems (the client and the WS), and de-
signing an algorithm that generates a client automaton which is in an interaction
relation with the WS.

Figure 6. Generic client interpreter.

The client automaton is interpreted by our generic client interpreter (figure
6). Our client downloads the abstract BPEL process from an UDDI registry and
generates its corresponding TA. Then, based on the TA of the service and the
interaction relation, it generates the client TA if the service is not ambiguous.
Finally, it executes the client TA and displays graphical interfaces allowing to the
human user to enter the messages parameters.

4.1. The dynamic client interpreter

In order to communicate with change-prone BPEL processes, we extend the pre-
vious client interpreter. The new client has to achieve the following tasks:

1. When the client receives an execute(id) message, it has to extract the advice

service interaction protocol (identified by id) and generates its corresponding
server and client TA.



8 Mehdi Ben Hmida and Ricardo Tomaz Ferraz

2. It simultaneously executes the client TAs of the main process and its advices

clients TA.
3. It makes synchronisation between the main client TA and the advices clients

TA on the termination of services advices execution.

Furthermore, the generation module of the dynamic client interpreter also
integrates new operational rules for the sending and receiving processes in order
to handle the execute(id) messages.

4.2. Formalisation steps

In order to formalize BPEL as dense timed process algebra, we have to define the
actions (alphabet) of the process algebra. The possible actions are message receiv-
ing (?m) and sending (!m), internal actions (τ) (not observable from the client
side), raise of exceptions (e ∈ E), expiration of timeout (to) and the termination
of the process (

√
). We distinguish three kinds of actions: the immediate actions

corresponding to a logical transition (τ, e,
√

), the asynchronous actions where an
unknown amount of time elapses before the occurrence of actions (?m, !m) and
the synchronous actions (to) which occur after a fixed delay.

Now, we present some operational rules and precisely the new rules for the
sending and receiving processes. To see all rules and in particular the handling of
clocks in TA, the reader is invited to refer to [11].

For example, the empty process which represents the process that does noth-
ing can only terminate by executing the

√
action (0 is the null process).

empty
√

−→ 0 (4.1)

For the sending and receiving processes, we define the following rules.

∀m 6= execute

∗o[m]
∗m−−→ empty avec ∗ ∈ {?, !} (4.2)

!o[m]
!execute(id)−−−−−−−−→ WaitAdvice(id) (4.3)

WaitAdvice(id)
id.

√

−−−→ empty (4.4)

Rule 4.2 states that the process ?o[m] (resp. !o[m]) which corresponds to the
reception of a message of type m (resp. sending of message of type m) executes
the action ?m (resp. the action !m) which corresponds to the message reception
action (resp. the message sending action) and becomes the empty process. In the
case of sending an execute message, the automaton evolves to an intermediary state
named WaitAdvice(id) (rule 4.3). WaitAdvice(id) waits for the termination of the
advice service identified by id. When advice service id terminates, WaitAdvice(id)
state executes id.

√
and becomes empty process (rule 4.4).

The sequential process P ; Q (P and Q are BPEL processes) corresponds to
the execution of the process P followed by the execution of the process Q. It
becomes the process P ′; Q if the process P executes an action a different from



Dynamically Adapting Clients to Web Services Changing 9

termination action and becomes P ′. If P terminates and Q can execute an action
a and becomes Q′, the process P ; Q executes the action a then becomes the process
Q′.

∀a 6= √ P
a−→ P ′

P ; Q
a−→ P ′; Q

(4.5)

P
√

−→ and Q
a−→ Q′

P ; Q
a−→ Q′

(4.6)

Finally, the switch{Pi}i∈I process evaluates an internal condition represented
by τ then becomes the process Pi.

∀ i ∈ I, switch{Pi}i∈I

τ−→ Pi (4.7)

4.3. Execution Scenario

Considering the abstract BPEL process defined in section 2. If we want to add
dynamically an authentication process before the switch process, the extended
abstract BPEL process have to integrate a sending execute(id) message process
before the switch process.

?o[ResReq]; !execute(id); switch(!o[ResResp], !o[error])

Figure 7. Adaptable service and client automata

At the execution, our dynamic client interpreter downloads the extended ab-
stract BPEL specification. Then, it generates the corresponding service TA based



10 Mehdi Ben Hmida and Ricardo Tomaz Ferraz

on the operational rules previously defined. Then, based on the service TA and
the interaction relation, our client generates the client TA and begins its interpre-
tation. Figure 4.3 shows the generation process.

When our client receives an execute(id) message, it extracts the abstract
BPEL advice service process from the message. In our example, the advice service

is an authentication process which abstract BPEL specification is !o[authDataRequ

est] ; ?o[authDataResp] ; P1. This process sends an authentication data request to
the client asking for authentication data, receives these data then performs some
actions to authenticate the user. Our client generates the corresponding advice
client automaton, associates with the received id and begins its execution (Figure
8.(left), states in grey represents the current execution step).

When the advice client id terminates, our client makes synchronisation with
the main client automaton. it deletes the advice client, performs the id.

√
action

and continues the execution of the main client automaton (figure 8.(right)).

Figure 8. Reception of an execute(id, Q) message (left) and the
terminaison of an advice service (right)

5. Related works

In [12] and [13], the authors define specific AOP languages to add dynamically
new behaviours to BPEL processes. But, neither of these approaches address the
client interaction issue. The client has no mean to handle the interactions that can
be added or modified during the process execution.

The Web Service Management Layer (WSML) [14] is an AOP-based platform
for WSs that allows a more loosely coupling between the client and the server



Dynamically Adapting Clients to Web Services Changing 11

sides. WSML handles the dynamic integration of new WSs in client applications
to solve client execution problems. WSML dynamically discover WSs based on
matching criteria such as: method signature, interaction protocol or quality of
service (QOS) matching. In a complementary way, our work proposes to adapt a
client to a modified WS.

Some proposals have emerged recently to abstractly describe WSs, most of
them are grounded on transition system models (Labelled Transition Systems,
Petri nets, etc.) [26, 27, 28]. These works propose to formally specify composite
WSs and handle the verification and the automatic composition issues. But, neither
of these works propose to formalize the dynamics of SOA architectures and to
handle runtime interaction changes.

6. Conclusion

In this paper, we proposed a solution based on AOP and PA to handle dynamic
changes in the WS context. We extended our previous AOP approach to support
BPEL processes and to handle interaction issues. We also use process algebra
formalism to specify change-prone BPEL processes and generate dynamic clients.

As future works, we want to extend the work to take into account the client
execution context. We also want to formally handle the aspects interactions issue
(aspects applied at the same joinpoint). Finally, we plane to improve the current
ASW prototype as proof-of-concepts.

References

[1] Tidwell, D., Web services - the web’s next revolution. IBM developerWorks (2000).

[2] Extensible Markup Language(XML) 1.0, W3C Recommendation, February (2004).
Available at: http://www.w3.org/XML/.

[3] Web Services Architecture, W3C Working Draft 14 November 2002. Available at:
http://www.w3.org/TR/ws-arch/

[4] Andrews, T. et al., Business process execution language for web services (2003). Avail-
able at http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

[5] DCOM Architecture, Microsoft Corporation, technical report, 1998.

[6] Java Platform Enterprise Edition(J2EE), web site available at http://java.sun.com
/javaee/index.jsp.

[7] Object Management Group (OMG), Common Object Request Broker Architecture
(CORBA/IIOP), revision 3.0.3, 2004.

[8] G. Kiczales et al. , Aspect-Oriented Programming, in proc. of ECOOP’97. LNCS
1241, Spinger-Verlag, (1997).

[9] R. F. Tomaz, M. Ben Hmida and V. Monfort, Concrete Solutions for Web Services
Adaptability Using Policies and Aspects , The International Journal of Cooperative
Information Systems (IJCIS), to be published, (September 2006).



12 Mehdi Ben Hmida and Ricardo Tomaz Ferraz

[10] M. Ben Hmida, R. Tomaz Feraz and V. Monfort, Applying AOP concepts to increase
Web Service Flexibility, in JDIM journal, ISSN 0972-7272, Vol.4 Iss.1 (2006).

[11] S. Haddad, P. Moreaux and S. Rampacek, Client synthesis for Web Services by way
of a timed semantics, In Proc. of ICEIS’06, Paphos-Cyprus (2006).

[12] Anis Charfi and Mira Mezini. Aspect-oriented web service composition with ao4bpel.
In ECOWS, volume 3250 of LNCS, pages 168-182, Springer, (2004).

[13] Carine Courbis and Anthony Finkelstein. Weaving aspects into web service orches-
trations. In ICWS, pages 219-226, (2005).

[14] B. Verheecke, M.A. Cibran and V. Jonckers, AOP for Dynamic Configuration and
Management of Web Services, ICWS-Europe, LNCS 2853, pages 137-151, (2003).

[15] R. Laddad, ASPECTJ in Action: Practical Aspect-Oriented Programming, Portland
: Book News, Inc, 2004.

[16] JBoss AOP, Web site availble at http://www.jboss.org.

[17] AspectWerkz, Web site available at http://Aspectwerkz.codehaus.org.

[18] Spring AOP platform, Web site available at http://www.springframework.org/docs/
reference/aop.html.

[19] R. ALur and D.L. Dill, ”A theory of Timed Automata”, Theorotical Computer
Science, 126, pp. 193-235, 1994.

[20] Staab, S., van der Aalst, W., Benjamins, V., Sheth, A., Miller, J., Bussler, C., Maed-
che, A., Fensel, D., and Gannon, D. (2003). Web services: Been there, done that? IEEE
Intelligent Systems, 18:72-85.

[21] Milner, R. (1989). Communication and Concurrency. Prentice-Hall, Englewood
Cliffs, NJ, USA.

[22] Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, NJ, USA.

[23] Bergstra, J. and Klop, J. (1984). Process algebra for synchronous communication.
Information and Control, 60(1- 3):109-137.

[24] XML Path Language (XPath) Ver. 1.0, W3C Recommendation 16 November (1999).
Available at: http://www.w3.org/TR/xpath

[25] X. Nicollin and J. Sifakis. The algebra of timed process, atp: Theory and application.
Technical report, Information and Computation (1994).

[26] R. Hamadi and B. Benatallah, A Petri Net-based Model for Web Service Composi-
tion, Proceedings of Australasian Database Conference, Australia (2003).

[27] X. Fu, T. Bultan, and J. Su., Analysis of Interacting BPEL Web Services, In Proc.
of WWW’04, ACM Press, USA (2004).

[28] A. Ferrara, Web Services: A Process Algebra Approach, Proceedings of the 2nd
International Conference on Service Oriented Computing, ACM Press, USA (2004).

Acknowledgment

Many thanks to our TEX-pert for developing this class file.



Dynamically Adapting Clients to Web Services Changing 13

Mehdi Ben Hmida, Céline Boutrous Saab, Serge Haddad, Valérie Monfort
LAMSADE-CNRS, Université Paris-Dauphine,
Place du Maréchal de Lattre Tassigny,
Paris Cedex 16, France
e-mail: {mehdi.benhmida, haddad, celine.boutrous-saab}@lamsade.dauphine.fr

Ricardo Tomaz Ferraz
CRI, Université Paris 1 Sorbonne,
90 rue de Tolbiac,
75013 Paris, France
e-mail: {valerie.monfort, ricardo.ferraz-tomaz}@univ-paris1.fr


