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Abstract In order to design and analyse complex systems, modelers need formal models
with two contradictory requirements: a high expressivity and the decidability of behavioural
property checking. Here we present and develop the theory of such a model, the recursive Petri
nets. First, we show that the mechanisms supported by recursive Petri nets enable to model
patterns of discrete event systems related to the dynamic structure of processes. Furthermore,
we prove that these patterns cannot be modelled by ordinary Petri nets. Then we study the
decidability of some problems: reachability, finiteness and bisimulation. At last, we develop
the concept of linear invariants for this kind of nets and we design efficient computations
specifically tailored to take advantage of their structure.

1 Introduction

With the increasing complexity of systems, the use of formal models is a requirement for
their design and analysis. However, the modeler is faced with a dilemma: he looks for a
highly expressive model while keeping decidable the checking of significant properties. For
instance, the inability of automata to represent infinite state systems and the undecidability
of termination of systems equivalent to Turing machine exclude them for being practical
specification models.

A closer look at the standard patterns of dynamic systems highlights two modelling needs:

1. A model must handle the concurrent execution of parallel sequential processes.
2. It must also manage the dynamical creation of objects (e.g., resources or processes).
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We now discuss the advantages and drawbacks of the two most frequently used models:
Petri nets (PNs) and process algebras (PA). Whereas modelling concurrent activities is rather
straightforward with Petri nets, the management of dynamic objects is limited. Indeed, due
to the static structure of the PN, there is no way to keep trace of a synchronisation between
two dynamically created processes. With coloured Petri nets [14], such a synchronisation is
possible; however, in order to preserve decidability of standard problems, the set of colours
(i.e., the number of processes) must be kept finite. From the point of view of verification,
the checking of standard properties of PNs and specific properties expressed by event-based
linear time logic are decidable problems (see [5] for a survey). Like PNs, process algebra
are appropriate for the modelling of concurrency. Furthermore, via recursion and parallel
composition, they allow synchronisation between dynamically created objects. However,
including these two operators leads to a Turing machine equivalent model.

In this paper, we describe a model which we feel is appropriate with respect to both the
expressivity and the analysis capabilities: the recursive Petri nets (RPNs) first introduced
in [6].

Previous results: We have already defined two versions of RPNs. In the full model, threads
which play the token game of a Petri net, can be dynamically created and concurrently
executed. In [8,9], we have studied the expressivity of this model and the checking of some
fundamental properties. In particular, we have shown that the RPN model is strictly more
expressive than the union of Petri nets and context-free grammars w.r.t. the language point of
view. Moreover, we have demonstrated that the reachability problem and some related ones
remain decidable for RPNs.

Beside these positive results, we have also shown a negative one in [7]. Whereas the
event-based linear time model checking is decidable for Petri nets, it becomes undecidable
for RPNs. Thus, in [10], we have introduced a restricted model called sequential RPN (SRPN)
for which this problem remains decidable and whose languages family still strictly includes
the union of the Petri nets and context-free languages. Roughly speaking, in an SRPN the
executions of threads are nested: only the last created one executes until its termination or
the creation of a new thread.

Contributions: The first contribution of this paper is the introduction of an extended version
of RPNs including new mechanisms. An RPN has the same structure as an ordinary Petri
net except that the transitions are partitioned into two categories: elementary and abstract
transitions. The semantics of such a net may be informally explained as follows. In an RPN,
there is a dynamical tree of threads (denoting the fatherhood relation) where each thread
plays its own token game. A step of an RPN is thus a step of one of its threads. If the thread
fires an abstract transition, it consumes the input tokens of the transition and generates a new
child which begins its own token game with some starting marking depending on the current
state of its father. If the thread reaches a marking belonging to a set of final ones, it aborts its
whole descent of threads, produces (in the token game of its father) the output tokens of the
abstract transition which gave birth to it and dies. The produced tokens depend on the final
marking reached by the thread. In the particular case of the root thread, one obtains an empty
tree. If the thread fires an elementary transition, then it updates its current marking using the
Petri net firing rule, i.e., it consumes the tokens required by the input arcs and produces the
ones specified by the output arcs. Additionally, the firing may abort threads initiated by a
previous firing of the current thread.

With respect to the model presented in [9], the current model includes the following addi-
tional features: the place capacities, the test arcs, the parametrised initiation and termination
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of threads and the interrupt capability. We show that the reachability problem remains decid-
able for this extended version of RPNs. We also prove that the boundedness and the finiteness
problems are still decidable. At last, we show how to define and compute some linear invari-
ants which capture relations between a thread and its descendants.

The second contribution of the paper deals with the expressivity of SRPNs. The modelling
capabilities of SRPNs can be illustrated in different ways. In this paper, we present the
modelling of faults within a system and we demonstrate that an equivalent modelling by an
ordinary Petri net is impossible. SRPNs enable also to easily model multi-level executions
(e.g., interrupts).

The last contribution is related to bisimulation in the framework of SRPNs. While bisim-
ulation of Petri nets is undecidable, one can check the bisimulation between a Petri net and
a finite automaton. We demonstrate that for a subclass of SRPN called restricted SRPN
(RSRPN), this problem is still decidable. We emphasise that this restricted model is strictly
more expressive than the union of Petri nets and context-free grammars.

Related work: We now relate this model to similar ones. Since the introduction of Petri nets,
theoretical works have been developed in order to study the impact of extensions of Petri nets
on the analysis capability. For instance, the reachability problem is undecidable for Petri nets
with two inhibitor arcs while it becomes decidable with one inhibitor arc or a nested structure
of inhibitor arcs (see the unpublished manuscript “Reachability in Petri Nets with Inhibitor
arcs” by K. Reinhardt reachable at http://www-fs.informatik.uni-tuebingen.de/∼reinhard).
The self-modifying nets introduced by R. Valk have (like Petri nets with inhibitor arcs) the
power of Turing machine and thus many properties including reachability are undecidable
[26,27]. Introducing restrictions on self-modifying nets enables to decide some properties
[3] (boundedness, coverability, termination,…) but the reachability remains undecidable.
Moreover, these extensions do not offer a practical way to model the dynamic creation of
objects.

In order to tackle this problem, A. Kiehn has introduced a model called net systems [15].
Net systems are a set of Petri nets with special transitions whose firing starts a new token
game of one of these nets. A call to a Petri net, triggered by such a firing, may return if this net
reaches a final marking. All the nets are required to be safe and the constraints associated with
the final marking ensure that a net may not return if it has pending calls. It is straightforward
to simulate a net system by an RPN. Moreover as the languages of Petri nets are not included
in the languages of net systems, the family of net system languages is strictly included in the
family of RPN languages.

Another attempt for the introduction of dynamic capability in Petri net is the object Petri
nets of R. Valk [28]. In this model, tokens are themselves Petri nets and the creation of a
new process is achieved by the production of a new token net. The hierarchy has a limited
depth (two levels) and the synchronisation mechanism can operate only between the upper
level and one of the subprocess. It has been demonstrated that reachability is an undecid-
able problem [16]. A similar model called nested Petri nets has been introduced in [19]
presenting the following features: the depth of the hierarchy is unbounded and vertical and
horizontal synchronizations can operate. Here again, it has been proved that the reachability
and boundedness are undecidable even if termination and other standard properties remain
decidable.

Process Algebra Nets (PANs), introduced by R. Mayr [21], are a model of process algebra
including the sequential composition operator as well as the parallel one. The left term of any
rule of a PAN may use only the parallel composition of variables whereas the right side is a
general term. This model includes Petri nets and context-free grammars. We have proved [9]
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that RPNs also include PANs. Whereas we do not know whether the inclusion of the PAN
languages by the RPN ones is strict, we emphasise that the main difference between RPNs
and this model is the ability to prune subtrees from the extended marking. For instance, this
mechanism is indispensable for the modelling of plans in multi-agents systems [6]. Moreover,
PANs as well as Process Rewrite Systems [22] (a more expressive model) cannot represent
a transition system with an infinite in-degree.

Recursive–Parallel Programming Scheme (RPPS) [17] also offers the notion of hierarchi-
cal state. Like for RPNs, the synchronisation mechanism is restricted to processes linked by
the fatherhood relation. Several interesting problems (e.g., reachability) are decidable for this
model. However, it has been shown that the family of languages of Petri nets is not included
in the one of RPPS.

Organisation of the paper: We have chosen to introduce first the least expressive model. This
progressive presentation will help the reader to get an intuitive view of the model capabilities.
In the next section, we define sequential recursive Petri nets. Then, we illustrate its expressive
power with the modelling of Discrete Event Systems (DES) patterns. Afterwards, we tackle
the bisimulation problem between an SRPN and a finite automaton. Section 3 is dedicated
to the full RPN model: we study its expressivity and we establish the decidability of the
reachability and related problems. We conclude this section by defining linear invariants and
designing algorithms for their computations.

2 Sequential recursive Petri nets

2.1 Definitions

Preliminaries: As our model relies heavily on semilinear sets, we briefly introduce their
definition and properties. A semilinear set is a subset of N

d defined as a finite union of
linear sets (where N = {0, 1, . . .} is the set of natural integers and d ∈ N\{0}). A lin-
ear set L is defined by a vector m0 and a finite set of vectors {m1, . . . , mk} such that
L = {m | ∃(λ1, . . . , λk) ∈ N

k, m = m0 +∑
i=1,...,k λi · mi }. An effective representation is

any representation which can be reduced (by an algorithm) to this standard representation.
For instance, any system of linear (in)equalities on the coordinates of vectors is an effective
representation. Given an effective representation of semilinear sets, the following opera-
tions are computable: union, intersection, projection and complementation. Furthermore, the
membership problem is decidable (see [4] for details).

In our proofs, we implicitly use the effectiveness of the representation, the above operations
and the membership test.

We now introduce a particular kind of semilinear sets. Restricted semilinear sets are
expressed by a boolean combination of inequalities between a positive weighting of the
coordinates of vectors and a natural integer.

Definition 1 A boolean combination φ of inequalities w.r.t. to a finite set of variables
{xi }1≤i≤d is recursively defined by:

– either φ =de f �1≤i≤d ai · xi ≤ k where {ai }1≤i≤d and k belong to N,
– or φ =de f φ1 ∧ φ2 or φ =de f φ1 ∨ φ2 or φ =de f ¬φ1 with φ1, φ2 two boolean combi-

nations of inequalities.

A restricted semilinear set E of N
d is defined by a boolean combination of inequalities

φ by E = {m | φ({xi ← m(i)}1≤i≤d) is true} where φ({xi ← m(i)}1≤i≤d) is the boolean
value obtained by setting every variable xi to the constant m(i).
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Note that a restricted semilinear set is a semilinear set (see [24]) whereas the converse is
not true: x1 − x2 = 0 defines a semilinear set which is not a restricted one.

As an ordinary Petri net, a sequential recursive Petri net has places and transitions. The
transitions are split into two categories: elementary and abstract transitions.

The semantics of such a net may be informally explained as follows. In an ordinary net,
a thread plays the token game by firing a transition and updating the current marking (its
internal state). In an SRPN there is a stack of threads (each one with its current marking)
where the only active thread is on top of the stack. A step of an SRPN is thus a step of this
thread. The enabling rule of the transitions is specified by the backward incidence matrix.

When a thread fires an elementary transition, it consumes the tokens specified by the
backward incidence matrix and produces tokens defined by the forward incidence matrix (as
in ordinary Petri nets).

When a thread fires an abstract transition, it consumes the tokens specified by the backward
incidence matrix and creates a new thread (called its son) put on top of the stack which
consequently becomes the active one. Such a thread begins its token game with a starting
marking which depends on the fired abstract transition.

A family of effective representations of semilinear sets of final markings is defined in
order to describe the termination of the threads. This family is indexed by a finite set whose
items are called termination indexes. When a thread reaches a final marking, it terminates its
token game (i.e., is popped out of the stack). Then it produces in the token game of its father
(the new top of the stack) and for the abstract transition which gave birth to him, the tokens
specified by the forward incidence matrix. Unlike in the case of ordinary Petri net, this matrix
depends also on the termination index of the semilinear set which the final marking belongs
to. Such a firing is called a cut step. When a cut step occurs in a stack reduced to a single
thread, one obtains an empty stack.

The next definitions formalise the model of SRPN and its associated states called extended
markings.

Definition 2 (Sequential recursive Petri nets) A sequential recursive Petri net is defined by
a tuple N = 〈P, T, I, W−, W+,Ω, Υ 〉 where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– A transition of T can be either elementary or abstract. The sets of elementary and abstract

transitions are, respectively, denoted by Tel and Tab,
– I is a finite set of indexes,
– W− is the pre function defined from P × T to N,
– W+ is the post function defined from P × [Tel ∪ (Tab × I )] to N,
– Ω is a labelling function from Tab to N

P which associates with each abstract transition
an ordinary marking called the starting marking of t ,

– Υ is a family indexed by I of effective representations of semilinear sets of final markings.

In the sequel, we reason about two kinds of markings: extended markings and ordinary
markings. The former ones are states of SRPN while the latter ones, as in Petri nets, are
mappings from P to N (otherwise stated vectors in N

P ). When no confusion is possible, we
simply call them markings. We introduce a useful notation for such markings: let m ∈ N

P

and a set P ′ ⊆ P , the submarking m|P ′ ∈ N
P ′ is the restriction of m to P ′ (i.e., ∀p ∈

P ′, m|P ′(p) = m(p)).

Definition 3 (Extended marking) An extended marking tr of a sequential recursive Petri net
N = 〈P, T, I, W−, W+,Ω, Υ 〉 is defined by:
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– dtr ∈ N the depth of the extended marking and {1, . . . , dtr } the set of levels of tr ,
– mtr

1 , . . . , mtr
dtr

the ordinary markings associated with each level,
– t tr

1 , . . . , t tr
dtr−1 a family of abstract transitions indexed by all levels except the last one.

In order to unify the definitions related to SRPNs and RPNs, we view an extended marking
of an SRPN as a tree reduced to a single path where nodes are indexed by levels and labelled
by ordinary markings and edges are labelled by abstract transitions. The root of this tree
corresponds to the bottom of the stack and the single leaf to its top (for instance, see Fig. 2).

A marked sequential recursive Petri net (N , tr0) is an SRPN N together with an initial
extended marking tr0.

According to the presentation, the size of the stack corresponding to an extended marking tr
is dtr and the ordinary markings associated with the threads of the stack are mtr

1 , . . . , mtr
dtr

.
The empty stack (dtr = 0) corresponds to the extended marking without thread and is denoted
by ⊥. Since the effect of cut steps depends on the abstract transition which gave birth to a
thread, these transitions (t tr

1 , . . . , t tr
dtr−1) are stored in the extended marking.

An elementary step will denote either a transition firing or a cut step. The semantics of
SRPN given by the enabling and the firing of steps is summarised in the following definitions.

Definition 4 A transition t is enabled in an extended marking tr (denoted by tr t−→) iff
∀p ∈ P, mtr

dtr
(p) ≥ W−(p, t) and a cut step τi with i ∈ I is enabled (denoted by tr τi−→) iff

mtr
dtr
∈ Υi .

Definition 5 The firing of an enabled elementary step s of an extended marking tr leads to
the extended marking tr ′ (denoted by tr s−→tr ′) depending on the type of s.

– s ∈ Tel

– dtr ′ = dtr , ∀0 < i < dtr , mtr ′
i = mtr

i , t tr ′
i = t tr

i

– ∀p ∈ P, mtr ′
dtr

(p) = mtr
dtr

(p)−W−(p, s)+W+(p, s)
– s ∈ Tab

– dtr ′ = dtr + 1, ∀0 < i < dtr , mtr ′
i = mtr

i , t tr ′
i = t tr

i

– ∀p ∈ P, mtr ′
dtr

(p) = mtr
dtr

(p)−W−(s, t)

– t tr ′
dtr
= s, mtr ′

dtr ′ = Ω(s)
– s = τi

– dtr ′ = dtr − 1, ∀0 < j < dtr − 1, mtr ′
j = mtr

j , t tr ′
j = t tr

j

– dtr ′ > 0⇒ ∀p ∈ P, mtr ′
dtr ′ (p) = mtr

dtr ′ (p)+W+
(

p, t tr
dtr−1, i

)

Let {tri }1≤i≤n be extended markings, {si }1≤i<n be elementary steps. Then σ = tr1 · s1 ·
tr2 · s2 . . . sn−1 · trn is a firing sequence (denoted by tr1

σ−→trn) iff ∀1 ≤ i < n, tri
si−→tri+1.

In the sequel and for sake of simplicity, σ will be often denoted by σ = s1 . . . sn−1. When
multiple SRPNs are involved, we denote by tr1

σ−→N trn a firing sequence σ in an SRPN
N . In a marked SRPN (N , tr0), an extended marking tr is reachable iff there exists a firing
sequence tr0

σ−→tr .

Definition 6 (Reachability graph) Let (N , tr0) be a marked sequential recursive Petri net.
Then its reachability graph is defined by 〈S, A, tr0〉 where S, the set of nodes, is the set of
reachable extended markings of (N , tr0), A ⊆ S × (T ∪ {τi }i∈I )× S is the set of edges and
tr0 ∈ S is the initial node. There is an edge (tr, t, tr ′) ∈ A iff tr t−→tr ′.

123



Recursive Petri nets

Remarks When empty, a set of final markings has no effect on the net behaviour, thus
in SRPNs we assume that these sets are non-empty (contrary to the RPN case to follow).
Furthermore, we allow intersection of such sets to be non-empty so that the cut steps may be
non-deterministic. Morevover, ∀i ∈ I, τi does not belong to T .

2.2 Expressivity of SRPNs

This section illustrates both the syntax and the semantics of SRPN with the help of relevant
examples. Furthermore, we simultaneously demonstrate the expressive power of the model
and its suitability with respect to standard discrete event system patterns [1].

Modelling of interrupts and exceptions: The net of Fig. 1 illustrates the characteristic fea-
tures of SRPNs. The specific features of an SRPN are represented graphically as follow:

– an elementary transition by an ordinary transition (i.e., a single border rectangle),
– an abstract transition t by a double border rectangle whose starting marking Ω(t) is

specified in a frame by
∑

p∈P Ω(t)(p) · p, a symbolic sum with null terms omitted and
1 · p abbreviated to p.

When defined and non-null, the items W−(p, t) and W+(p, t) induce arcs with their
corresponding integer labels. These labels are omitted when the valuation is equal to one.
There is an arc from an abstract transition t to a place p if at least one item W+(p, t, i) is
non-null. Such an arc is labelled by the symbolic sum

∑
i∈I W+(p, t, i) · 〈i〉. As usual, when

W+(p, t, i) = 0 the term W+(p, t, i) · 〈i〉 is omitted and when W+(p, t, i) = 1 this term is
abbreviated as 〈i〉. Moreover, when for all i the values W+(p, t, i) are equal, the symbolic
sum is abbreviated to this common value. We complete the figure with the definitions of the
sets {Υi }i∈I . The set I is implicitly given by the enumeration of these sets.

Figure 1 provides a complete description of an SRPN. Note that contrary to ordinary nets,
SRPNs are often disconnected since each connected component may be activated by the
firing of different abstract transitions. As the initial extended marking is reduced to a single

Fig. 1 An exception and interrupt mechanism
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Fig. 2 An extract of the reachability graph of the SRPN of Fig. 1

node, we have directly described the ordinary marking associated with this node by putting
token in places. We will follow the same convention in the sequel. The left upper part of the
figure models the application level of a processor in an abstract way. The cycle prun, tcorrect ,
prun represents the correct execution of the current instruction and the abstract transition tex

models a faulty execution of the instruction yielding a second level with pex marked. In this
level, the system either recovers from the fault (trecover) or detects a fatal error (tfatal). The
sets Υ0 and Υ1 model these two cases. Depending on the fault type, when returning to the first
level, the process resumes its activity (place prun marked) or stops it (place pstop marked).

The interrupt modelling outlines the capabilities of the SRPN. When the abstract transition
tint is fired, the current execution is interrupted and a second execution level, modelled by a
token in pup and pint , is activated. The same construction applies again on this component
net making possible a recursive interrupt process. Some variants are conceivable: the number
of execution levels could be bounded with additional places, the interrupt could occur during
the exception treatment, etc.

Modularity is a natural feature of SRPNs. Indeed, if the system does not include the
interrupt mechanism, the modeler simply deletes the right hand side of the figure.

Figure 2 represents an extract of the reachability graph of the SRPN of Fig. 1. We graph-
ically represent an extended marking as a path whose nodes correspond to levels and are
labelled by the associated ordinary markings and whose edges connect level i to i+1 and are
labelled by t tr

i for i ∈ {1, . . . , dtr − 1}. Extended markings are depicted from top to bottom
according to their depth. The dashed arcs denote steps between extended markings.

The left part of Fig. 2 is related to the exception mechanism whereas the right part is
devoted to the interrupt occurrences and handling. We just describe a step sequence of the
figure. From the initial state, the firing of tex leads to a two level extended marking. Then the
firing of tfatal only changes the ordinary marking of the active node which now belongs to Υ1.
Hence, a cut step τ1 occurs yielding a single level extended marking where only interrupts
may happen.
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Fig. 3 A basic fault tolerant system

The example of Fig. 1 shows the capability of SRPNs to implicitly keep the context of
suspended processes whereas the modelling by Petri nets requires an explicit representation
of each context. By use of this capability, we have shown in [9] that SRPNs include the family
of algebraic languages. On the other hand, it has been proved that the language of palindromes
(a particular algebraic language) cannot be recognised by a labelled Petri net [11]. Thus the
language family of SRPNs strictly includes the one of ordinary Petri nets.

Modelling of faults: In order to analyse fault-tolerant systems, the engineer starts from a
nominal system and then introduces the faulting behaviour as well as the repairing mech-
anisms. We limit ourselves to an abstract view of such a system as this pattern may be
straightforwardly generalised. The nominal system infinitely executes instructions (elemen-
tary transition tcount ). The marking of place pcount represents the number of instruction
executions. The complete SRPN is obtained by adding the left part of the Fig. 3. Its behav-
iour can be described as follows. There are only two reachable extended markings reduced
to a single node: the initial state (trstart) where a token in pstart indicates that the system is
ready to start and the repairing state (trrepair) where a token in the place prepair indicates
that one is repairing the system. Starting from the initial state, the abstract transition tstart is
fired and the execution of instructions is “played” by the new thread. If this thread dies by a
cut step, meaning that a crash occurs, the repairing state is reached. Place p f ault represents
the possibility of a crash. As p f ault is always marked in the correct system and from the
very definition of Υ0, the occurrence of a fault is always possible. We assume that no crash
occurs during the repairing stage. With additional places and by modifying Υ0, we could
model more complex fault occurrences (e.g., conditioned by software execution).

The reachable extended markings either consist of a single node or an initial node and
its son. However, the number of reachable markings in this latter node is infinite (the place
pcount is unbounded). In other words, the repairing state can be reached from an infinite
number of states which means that the transition system associated with an SRPN may have
some states with an infinite in-degree. This capability is neither shared by standard Petri
nets nor by process algebras. In particular, states in a Petri net reachability graph have an
in-degree bounded by |T |. Moreover allowing unobservable transitions does not solve the
problem. Indeed we demonstrate that the transition system depicted in Fig. 4 cannot be
generated by a standard Petri net with unobservable transitions. First, we formally introduce
Petri nets.

Definition 7 (Petri net) A labelled marked Petri net is defined by a tuple N = (〈P, T, W−,〉
〈W+〉, l, m0) where
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Fig. 4 The (infinite) reachability graph of the SRPN of the Fig. 3

– P is the finite set of places,
– T is the finite set of transitions such that P ∩ T = ∅,
– W− and W+ are, respectively, the pre and post incidence matrices from P × T to N,
– l is the labelling function from T to � ∪ {λ} (with � an alphabet and λ the empty word),
– m0 ∈ N

P is the initial marking.

Definition 8 Let N = (〈P, T, W−, W+〉, l, m0) be a labelled marked Petri net, m ∈ N
P be

a marking and t ∈ T be a transition. Then

– t is enabled in m if ∀p ∈ P, m(p) ≥ W−(p, t),
– if t is enabled in m then its firing leads to marking m′ defined by ∀p ∈ P, m′(p) =

m(p)−W−(p, t)+W+(p, t), denoted by m t−→m′.

Let σ be a transition sequence, we denote by m σ−→m′ the fact that σ leads from m to m′.
Such a marking m′ is said reachable from m. The reachable set of a labelled marked Petri
net is the set of all markings reachable from the initial marking. As usual, we extend the
labelling of transitions to labelling of sequences. We now define the observation graph of a
labelled marked Petri net.

Definition 9 (Observation graph) Let N = (〈P, T, W−, W+〉, l, m0) be a labelled marked
Petri net. Then the observation graph of this net is defined by 〈S, A, m0〉 where S ⊆ N

P , the
set of nodes, is the reachability set of the net, A ⊆ S×� × S, the set of edges, and m0 ∈ S,
the initial node, is the initial marking of the net. There is an edge (s, a, s′) ∈ A iff there exists
a sequence σ ∈ T ∗ such that s σ−→s′ and l(σ ) = a ∈ �. Such a sequence is called a witness
sequence of the edge.

The proof of the next theorem is based on the reachability graph depicted in Fig. 4. trstart

is the initial extended marking, tri (with i ∈ N) represents the state of the system where i
instructions have been executed and trrepair represents the state where one repairs the system.

Theorem 1 (Infinite in-degree) Whatever are the labels associated with the SRPN of the
Fig. 3, the graph of the Fig. 4 cannot be the observation graph of any labelled marked Petri
net.

Proof Assume that there exists a labelled marked Petri net which generates an observation
graph isomorphic to the graph of Fig. 4. Let us denote mi (resp. mrepair) the marking of this
net corresponding to the extended marking tri (resp. trrepair). Since the sequence m0, m1, . . .

includes only distinct markings, we extract from it a subsequence mα(0), mα(1), . . . com-
posed of strictly increasing markings: ∀i < j,∀p ∈ P, mα(i)(p) ≤ mα( j)(p) ∧ ∃p ∈ P,
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mα(i)(p) < mα( j)(p). Starting from mα(0), there are at least two witness sequences, one
leading to mrepair (denoted σ ) labelled by the cut step τ0 and the other one leading to mα(0)+1
(denoted σ ′). These two sequences are also enabled from mα(1). Since mα(0) �= mα(1), σ does
not lead to mrepair and thus necessarily leads to mα(1)+1. Consequently, the witness sequence
from mα(1) to mrepair is σ ′. Let us examine the witness sequence leading from mα(2) to the
initial marking m0. As previously argued, it cannot be σ thus it is σ ′. But this sequence leads
also from mα(1) to mrepair . Since mα(1) �= mα(2), there is a contradiction. ��

Stated otherwise, the modelling of crash for a system with an infinite number of states
is impossible with Petri nets. In the restricted case where the system has a finite number of
reachable states, it is theoretically possible to model it with a standard Petri net. However, the
modelling of a crash requires a number of transitions proportional to the number of reachable
states leading to an intricate net. The SRPN design proposed here does not depend on this
number and leads to a compact modelling.

2.3 Analysis of SRPNs

Among the numerous approaches to the verification of systems, a typical one consists in
first designing a specification model and an implementing one; and then checking whether
the two models are bisimilar. Furthermore, as the specification model is often abstract, it
can be modelled by a finite automaton. Consequently, this approach raises the problem of
bisimulation between a finite automaton and a general transition system.

Whereas checking the bisimulation of two Petri nets is undecidable [12], checking the
bisimulation of a Petri net and a finite automaton becomes decidable [13]. In this subsection,
we investigate the generalisation of the latter result to a slightly restricted version of SRPNs.

We will call a restricted sequential recursive Petri net (RSRPN), an SRPN whose sets of
final markings are restricted semilinear sets. The expressive power of these RSRPN is still
high since the proof that the languages family of the SRPN strictly includes the union of the
Petri nets and context-free languages is also valid for RSRPN (see [8]). From a practical point
of view, let us notice that the two previous examples of SRPNs are restricted ones and more
generally, that modelling termination conditions of subsystems very often yields restricted
semilinear sets.

The definitions related to the bisimulation are recalled in the Appendix. Note that restrict-
ing the SRPN definition is only required for Lemma 2.

Lemma 1 Let (N , tr0) be a marked SRPN, tr be a reachable extended marking of (N , tr0)

and n be a positive integer. Then there is a reachable extended marking tr ′ of (N , tr0) such
that (N , tr) ∼n (N , tr ′) and dtr ′ ≤ dtr0 + |Tab| + n.

Proof If dtr ≤ dtr0 + |Tab| + n, we take tr ′ = tr .
Thus we assume that dtr > dtr0 + |Tab| + n. Consequently, the edges corresponding to
t tr
dtr0

, . . . , t tr
dtr0+|Tab| have been created by the firing sequence that leads to tr , say σ . Among

them, there are at least two occurrences of the same transition that we will denote t = t tr
i = t tr

j
with i < j .
We can express the firing sequence σ like σ = σ0 · t · σ1 · t · σ2 with the two occurrences
of t corresponding to the production of the labels t tr

i and t tr
j . Now it is straightforward that

σ = σ0 · t ·σ2 is also a firing sequence leading to an extended marking tr ′ with depth strictly
less than the one of tr .
As j ≤ dtr0+|Tab| < dtr−n, the suffixes of length n (counted as the number of nodes) of the
paths corresponding to the extended markings tr and tr ′ have identical labels (markings and
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transitions). Thus due to the semantics of an SRPN, the behaviours of the marked nets (N , tr)

and (N , tr ′) are identical up to n firings of steps, which implies that (N , tr) ∼n (N , tr ′). If
the depth of tr ′ fulfills dtr ′ ≤ dtr0 +|Tab|+n, we are done. Otherwise we iterate this process
until fulfillment. ��

We introduce some notations related to an RSRPN N and to ordinary markings:

• wN is the maximum over the set of valuations of the arcs for input places of transitions,
i.e., wN is the least integer such that ∀p ∈ P,∀t ∈ T, W−(p, t) ≤ wN .

• kN is the maximum over the integers (k, k′, . . .) occurring in the right sides of the inequal-
ities defining the sets of final markings (see Definition 1).

• Let m and m′ be ordinary markings and H be a positive integer. Then m ≈H m′ iff
∀p ∈ P, m(p) = m′(p) ∨ (m(p) ≥ H ∧ m′(p) ≥ H).

The next lemma establishes a sufficient condition for equivalence of two extended markings
w.r.t. ∼n . This condition relies on two observations. First, only the nth last levels of an
extended marking determine the firing sequences of length less than or equal to n. Second, if
the marking of a place exceeds some bound depending on n then this place will not disable
any firing in such a sequence. More precisely, this lower bound can be set to n ·wN +kN +1.

Lemma 2 Let N be an RSRPN, tr and tr ′ be two extended markings of N and n be a positive
integer. Let H = n · wN + kN + 1. Assume that the following assertions are fulfilled:

1. (dtr ≥ n ∧ dtr ′ ≥ n) ∨ dtr = dtr ′
2. ∀0 < i < min(n, dtr ), t tr

dtr−i = t tr ′
dtr ′−i

3. ∀0 ≤ i < min(n, dtr ), mtr
dtr−i ≈H mtr ′

dtr ′−i

Then (N , tr) ∼n (N , tr ′).

Proof Again we notice that the behaviour of an SRPN up to n firings depends only on the
suffix of length n of the path corresponding to the extended marking. We prove the lemma
by induction on n. The base case n = 0 is trivial. Now assume that n > 0. Let us look at a
possible firing in (N , tr). If this firing is an elementary or abstract transition t then t is also
enabled in (N , tr ′) since, for every p ∈ P , the markings mtr

dtr
(p) and mtr ′

dtr ′ (p) are either

identical or mtr ′
dtr ′ (p) ≥ H does not disable t by definition of H .

Firing t in the two marked nets leads to new extended markings which fulfill the assertion
for n − 1. Indeed, the markings where the firing occurs have for a place p either identical
markings or a new lower bound (n − 1) ·wN + kN + 1. The other markings are unchanged
and still satisfy the assertions.

In case where t is an abstract transition, the transition of the new edge is t and the marking
of the new node is Ω(t) for both new extended markings.

Let us examine the case of a cut step. We claim that an inequality occurring in the definition
of Υ is either satisfied by both mtr

dtr
and mtr ′

dtr ′ or not satisfied by both mtr
dtr

and mtr ′
dtr ′ .

If this inequality does not involve places with different markings, we are done. Otherwise,
let p be such a place, i.e., with mtr

dtr
(p) �= mtr ′

dtr ′ (p) and the corresponding coefficient of the
inequality ap �= 0 (see Definition 1). Then these markings are greater than or equal to H and
due to the positive coefficients of the inequality, this inequality is not satisfied for both the
markings. Hence the evaluation of a boolean combination of inequalities will be identical
for the two markings. Thus the cut step is also enabled in (N , tr ′). The firing of the cut step
leads to two extended markings where the suffixes of length n − 1 still satisfy the assertions
(indeed the marking of places in the new leaf may only be increased). ��
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Fig. 5 An illustrative scheme of the construction of Lemma 3 (first part)

Let H be an integer, an extended marking tr is H -bounded iff ∀p ∈ P,∀1 ≤ i ≤
dtr , mtr

i (p) ≤ H . Given tr an H -bounded extended marking, CH (tr) denotes the set of
extended markings such that tr ′ ∈ CH (tr) iff:

– dtr = dtr ′
– ∀1 ≤ i < dtr , t tr

i = t tr ′
i

– ∀1 ≤ i ≤ dtr , mtr
i ≈H mtr ′

i

Lemma 3 Let (N , tr0) be a marked SRPN, H be an integer and tr be a H-bounded extended
marking of N. Then one can build a marked SRPN (N ′′, tr ′′0 ) such that ⊥ is reachable from
(N ′′, tr ′′0 ) if and only if there exists an extended marking of CH (tr) reachable from (N , tr0).

Proof We assume that tr0 �=⊥ since CH (⊥) = {⊥} and, in consequence, we can set
(N ′′, tr ′′0 ) = (N , tr0).

First, we build an intermediate SRPN (N ′, tr ′0) obtained by a transformation of (N , tr0)

(see Fig. 5). We add two sets of places {p1, p2, . . . , pdtr+1} and {qt | t ∈ Tab}. Any abstract
transition t is replaced by dtr +1 copies (t, 1), (t, 2), . . . , (t, dtr +1) such that ∀d ≤ dtr +1,

(t, d) has pd as additional input and output place. These additional arcs are the only ones
connected to the new places. Moreover ∀d ≤ dtr , in Ω ′((t, d)), pd+1 and qt are marked and
in Ω ′((t, dtr + 1)), pdtr+1 and qt are marked.

tr ′0 has the same depth as tr0 and ∀d < dtr0 , if d ≤ dtr then t
tr ′0
d = (t tr0

d , d) else

t
tr ′0
d = (t tr0

d , dtr + 1). The markings of nodes of tr ′0 are defined as follows:
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– ∀1 ≤ d ≤ dtr0 ,∀p ∈ P, m
tr ′0
d (p) = mtr0

d (p),

– ∀t ∈ Tab, m
tr ′0
1 (qt ) = 0,

– ∀1 < d ≤ dtr0 ,∀t ∈ Tab, if t tr0
d−1 = t then m

tr ′0
d (qt ) = 1 else m

tr ′0
d (qt ) = 0,

– ∀1 ≤ d ≤ dtr0 ,∀1 ≤ d ′ ≤ dtr + 1, if d ′ = d = dtr0 ∧ d ≤ dtr then m
tr ′0
d (pd ′) = 1 else if

d ′ = dtr + 1 ∧ d = dtr0 ∧ d > dtr then m
tr ′0
d (pd ′) = 1 else m

tr ′0
d (pd ′) = 0.

In the new net, m ∈ Υ ′i iff the projection on the original places belong to Υi and p1 is
unmarked.

Given a firing sequence of (N , tr0) not leading to ⊥, one can build a firing sequence of
(N ′, tr ′0) by substituting for the firing of an abstract transition t the firing of (t, d) where
d = min(d ′, dtr + 1) and d ′ denotes the level where the firing has occurred. Moreover, the
intermediate extended markings coincide on places of P and in N ′, all places pd and qt

are appropriately marked. More precisely, in a marking m occurring at level k ≤ dtr + 1,
m(pk) = 1 ∧ ∀k′ �= k, m(pk′) = 0 and in a marking m occurring at level k > dtr + 1,
m(pdtr+1) = 1 ∧ ∀k′ �= dtr + 1, m(pk′) = 0. If this level has been created by the firing of
the abstract transition t then m(qt ) = 1∧∀t ′ �= t, m(qt ′) = 0. At the root level, all places qt

are unmarked.
Conversely, given a firing sequence of (N ′, tr ′0), one can build a firing sequence of (N , tr0)

by substituting for the firing of an abstract transition (t, d) the firing of t . Moreover the
intermediate extended markings coincide on places of P . We also note that no firing sequence
of (N ′, tr ′0) leads to ⊥ since at the root level, p1 is marked and every Υi requires that
m(p1) = 0.

Now we make the second transformation leading from (N ′, tr ′0) to the construction of the
marked net (N ′′, tr ′′0 ) (see Fig. 6). We add a new place go. Considering places different from

go, tr ′′0 is identical to tr ′0, ∀1 < d < dtr0 , m
tr ′′0
d (go) = 0 and m

tr ′′0
dtr0

(go) = 1.

Furthermore, ∀t ∈ T ′′ab,Ω
′′(t) = Ω ′(t) + go. We now partially define the connection

between go and the transitions: ∀t ∈ T ′′, W ′′−(go, t) = 1 and ∀t ∈ T ′′el , W ′′+(go, t) = 1.
The remaining connections will be defined within the presentation of the new set of
indices.

This set is I ′′ = I ∪{i1, i2}. ∀i ∈ I, m ∈ Υ ′′i iff m(go) = 1 and the projection on the other
places belongs to Υ ′i . And ∀i ∈ I,∀t ∈ T ′ab, W ′′+(go, t, i) = 1. Υ ′′i1

is the set of markings
m′ s.t.:

– m′(pdtr ) = 1,
– dtr > 1⇒ m′

(
qttr

dtr−1

) = 1,

– mtr
dtr
≈H m′|P .

Thus this cut step is only enabled at the level dtr . Υ ′′i2
is the set of markings m′ s.t.

∃1 ≤ d < dtr :

– m′(pd) = 1,
– d > 1⇒ m′

(
qttr

d−1

) = 1,

– mtr
d ≈H m′|P ,

– m′(go) = 0.

Thus this cut step is only enabled at the levels 1 ≤ d < dtr . These two cut steps do not
produce any token: ∀p ∈ P ′′, t ∈ T ′′ab, i ∈ {i1, i2}, W ′′+(p, t, i) = 0.
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Fig. 6 An illustrative scheme of the construction of Lemma 3 (second part)

Let σ be a firing sequence of (N ′′, tr ′′0 ) which does not include τi1 and τi2 steps. This
sequence corresponds to a firing sequence of the original net with the following additional
informations: in every visited extended marking, the marking of places pd witnesses the
level where this marking occurs up to level dtr + 1, the marking of places qt indicates which
abstract transition has created the level and the place go is marked only at the higher level.
Similarly, a firing sequence of the original net (which does not lead to ⊥) can be simulated
in (N ′′, tr ′′0 ) with the same additional informations.

Since a τi2 step requires the place go to be unmarked it can only be fired if at level dtr

there has been a τi1 step.
Thus the behaviour of this net is the following one: it simulates the original net until it

reaches an extended marking tr ′′ corresponding to an extended marking tr ′ of the original
net with dtr ′ = dtr such that at this level, tr ′ fulfills the condition of CH (tr) related to level
dtr , i.e., t tr

dtr−1 = t tr ′
dtr−1 and mtr

dtr
≈H mtr ′

dtr
which is equivalent to mtr ′′

dtr
∈ Υ ′′i1

.
Then it performs a cut step τi1 . The simulation is now stopped (the place go is

unmarked) and the execution can only produce τi2 steps until ⊥ is reached iff at every
level k decreasing from dtr − 1 to 1 all the intermediate markings and abstract transitions
firings of tr ′ fulfill the conditions of CH (tr) related to k, i.e., t tr

k−1 = t tr ′
k−1 (when k > 1) and

mtr
k ≈H mtr ′

k .
When the net stops the simulation, the current extended marking may not correspond to

an extended marking of CH (tr). In this case, the net will reach a deadlock different from ⊥
since one of the τi2 step will not be enabled.

Thus ⊥ is reachable in (N ′′, tr ′′0 ) iff an extended marking of CH (tr) is reachable from
(N , tr0). ��
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In order to state the main result of this section, we introduce transition labels defined by a
label mapping l. l(t), the label of transition t , is either a letter of a finite alphabet or the empty

word. Cut steps are similarly labelled by l. We note tr0
l(t)−→N tr1 whenever tr0

t−→N tr1.

Theorem 2 (Bisimulation of an RSRPN) The problem of bisimulation between a labelled
marked RSRPN (N , l, tr0) where no transition or cut step is labelled by the empty word and
a finite transition system (LT S, s0) is decidable.

Proof Let n be the number of states of LT S. Due to Lemma 6 of the Appendix, it suffices to
check whether (N , l, tr0) ∼n (LT S, s0) and whether there exists an extended marking tr1

reachable from tr0 s.t. tr1 ∈ I ncLT S
n .

In order to check (N , l, tr0) ∼n (LT S, s0), we verify that:

1. for every step tr0
a−→N tr1, there exists s1 s.t. s0

a−→LT Ss1 and (N , l, tr1) ∼n−1 (LT S, s1),
2. for every s1 s.t. s0

a−→LT Ss1, there exists a step tr0
a−→N tr1 s.t. (N , l, tr1)∼n−1 (LT S, s1).

These conditions straightforwardly lead to a recursive procedure where the number of nested
calls is bounded by n.

Due to Lemma 1, in order to check whether there exists tr1 reachable from tr0 s.t. tr1 ∈
I ncLT S

n we can restrict the search to extended markings whose depth is bounded by dtr0 +
|Tab| + n.

Due to Lemma 2, each such extended marking tr1 belongs to some CH (tr) with H =
n ·wN + kN + 1 and tr being H -bounded, whose depth is bounded by dtr0 + |Tab| + n and
such that (N , l, tr) ∼n (N , l, tr1). More precisely, dtr = dtr1 , ∀1 ≤ d < dtr , t tr

d = t tr1
d

and ∀1 ≤ d ≤ dtr ,∀p ∈ P, mtr1
d (p) ≤ H ⇒ mtr

d (p) = mtr1
d (p) and mtr1

d (p) > H ⇒
mtr

d (p) = H .
Let us call T R the set of H -bounded extended markings whose depth is bounded by

dtr0 + |Tab| + n. This set is finite. For each tr ∈ T R, we check whether an extended
marking of CH (tr) is reachable in (N , tr0) using the procedure described in Lemma 3: we
reduce it to a reachability problem for (N ′′, tr ′′0 ) (decidable by Theorem 3 to be shown in
Sect. 3.4 for general recursive Petri nets). If some tr ′ ∈ CH (tr) is reachable then using
the procedure described in the beginning of the proof, we check for every state s ∈ LT S
whether (N , l, tr) ∼n (LT S, s). If no s is found for some tr ∈ T R then (N , l, tr) ∈ I ncLT S

n
and since (N , l, tr ′) ∼n (N , l, tr) then (N , l, tr ′) ∈ I ncLT S

n . So the second condition of
Lemma 6 is not fulfilled when some tr ′ ∈ CH (tr) is reachable from tr0. The Algorithm 1
describes the procedure associated with this proof. ��

Observation. In order to abstract the call mechanism, it would be interesting to hide
abstract transitions and cut steps by labelling them with the empty word. Unfortunately,
the problem of the bisimulation between a Petri net with some empty labels and a LTS is
already undecidable [13]. A partial solution would be to label such items by specific labels
(e.g., “call” and “return”).

3 Recursive Petri nets

Discussion. Let us emphasize the applicability and limits of SRPNs. They are appropriate
when dealing with real-time systems composed by several static tasks ranked by execution
level or with collaborative applications where the interactions are based on synchronous
remote procedure calls. However, as soon as the tasks can be dynamically created or the calls
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Algorithm 1: CheckBisimulation
input : a marked RSRPN (N , tr0) and a finite LTS (LT S, s0)

output: a boolean indicating if (N , tr0) ∼ (LT S, s0)

CheckBisimulation() begin
//n is the number of states of LT S
return CheckCond1(tr0, s0, n) and CheckCond2();

end

CheckCond1(tr, s, l) begin
if l == 0 then return true;
foreach tr a−→N tr1 do

if not (∃s1 s.t. s a−→LT Ss1 and CheckCond1(tr1, s1, l − 1)) then
return false;

end
end

foreach s a−→LT Ss1 do
if not (∃tr1 s.t. tr a−→N tr1 and CheckCond1(tr1, s1, l − 1)) then

return false;
end

end
return true;

end

CheckCond2() begin
foreach H-bounded tr ′ whose depth is bounded by dtr + |Tab| + n do

//using Lemma 3
//and the reachability procedure for RPNs
if CheckReach(tr0, CH (tr ′)) then

found = false;
foreach state s′ of LT S do

found = found or CheckCond1(tr ′, s′, n);
end
if not found then return false;

end
end
return true;

end

are asynchronous, the SRPN model is not enough powerful. This motivates the introduction
of recursive Petri nets.

3.1 Definitions

SRPNs enlarge Petri nets by introducing a “function call” like mechanism. However, concur-
rency (the main feature of Petri nets) is confined inside the single active node. In Recursive
Petri Nets (RPNs), all the nodes are active and therefore concurrency also occurs between
node activities. Thus, in an RPN there is a tree of threads (denoting the fatherhood relation)
where all the threads play their own token game. A step of an RPN is thus a step of one of
its threads. This has an immediate consequence on the cut steps: when a thread performs a
cut step the subtree whose root it is pruned.

Furthermore, RPNs include additional mechanisms which enable the modeler to express
various kinds of control between threads.

– Place capacities: Each place has a specific bound on the number of tokens it can contain.
This bound may be infinite meaning that there is no constraint on the place. The set of
places with a finite bound is denoted Q.
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– Test arcs: A new kind of arcs, called test arcs, checks for the exact number of tokens in
a place. This place must belong to Q (see the end of this section for a discussion about
test arcs).

– Variable starting markings: The starting marking of an abstract transition may depend
on the current ordinary marking of the thread which fires it. More precisely, this depen-
dence is restricted to the submarking of places in Q.

– Thread interrupts: The behaviour of an elementary transition is now twofold and
depends on a partial function which associates with it, a set of abstract interrupted transi-
tions and the indexes of the termination. Thus on the one hand, an elementary transition
consumes and produces the tokens specified by the backward and forward matrices as an
elementary transition of an SRPN. On the other hand, it deletes some subtrees according
to the partial function.

The next definitions formalise the syntax and the semantics of RPNs.

Definition 10 (Recursive Petri nets) A recursive Petri net is defined by a tuple N =
〈P, B, T, I, W−, W ∗, W+,Ω, Υ, K 〉 where

– P is a finite set of places,
– B is the bounding function from P to N ∪ {∞} inducing the following notations:

– Q = {p ∈ P | B(p) �= ∞} the subset of bounded places,
– B[Q] = {m ∈ N

Q | ∀q ∈ Q, m(q) ≤ B(q)},
– B[P] = {m ∈ N

P | ∀p ∈ P, m(p) ≤ B(p)},
– T is a finite set of transitions such that P ∩ T = ∅,
– a transition of T can be either elementary or abstract. The sets of elementary and abstract

transitions are, respectively, denoted by Tel and Tab,
– I is a finite set of indexes,
– W− is the pre function from P × T to N,
– W ∗ is the test partial function from Q × T to N,
– W+ is the post function from P × [Tel ∪ (Tab × I )] to N,
– Ω is the starting marking function from Tab × B[Q] to B[P],
– Υ is a family indexed by I of effective representations of semilinear sets of final markings,
– K is a partial function from Tel × Tab to I such that ∀t ∈ Tab,

(∃t ′ ∈ Tel , K (t ′, t) is defined⇒ ∀p ∈ Q, W−(p, t) = 0,∀i ∈ I, W+(p, t, i) = 0).1

Notations and terminology:

– Let t be an abstract transition, K (t) denotes the set of elementary transitions which
interrupt t (i.e., K (t) = {t ′ | K (t ′, t) is defined}). Remark that the index relative to an
interrupt is deterministically selected contrary to the index of the cut steps.

– Let t be an elementary transition, K (t) denotes the set of abstract transitions which are
interrupted by t
(i.e., K (t) = {t ′ | K (t, t ′) is defined}).

– We denote by Q the set P\Q.
– We will often focus on the subnet generated by Q. Thus we introduce a useful abbreviation.

Let t be a transition and m a submarking on Q then m is compatible with t iff ∀q ∈ Q,

(W ∗(q, t) is undefined or m(q) = W ∗(q, t)) and m(q) ≥ W−(q, t).

1 The requirement that an interruptible abstract transition does not modify the marking of places of Q will
be used for the proof of the decidability of the reachability problem (see the first part of the proof of the
Lemma 5).
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Definition 11 (Extended marking) An extended marking tr of a recursive net N = 〈P, B,

T, I, W−, W ∗, W+,Ω, Υ, K 〉 is a labelled rooted tree directed from the root to the leaves
tr = 〈V, M, E, A〉 where

– V is the (possibly empty) finite set of nodes. When it is non-empty v0 ∈ V denotes the
root of the tree,

– M is a mapping from V to N
P associating an ordinary marking with any node and such

that ∀v ∈ V,∀p ∈ P, M(v)(p) ≤ B(p),
– E ⊆ V × V is the set of edges,
– A is a mapping from E to Tab associating an abstract transition with any edge.

A marked recursive Petri net (N , tr0) is a recursive Petri net N together with an initial
extended marking tr0.

When we deal with different extended markings, we will denote the items of an extended
marking tr as a function (e.g., V (tr)) and more particulary, when tr is non-empty, we denote
by v0(tr) the root node. For any node v ∈ V , we denote by Succ(v) the set of its direct
and indirect successors including v (∀v ∈ V, Succ(v) = {v′ ∈ V | (v, v′) ∈ E∗} where E∗
stands for the reflexive and transitive closure of E). Moreover, when v is not the root of the
tree, we denote by pred(v) its (unique) predecessor. The empty tree is denoted by ⊥. Any
ordinary marking m can be seen as an extended marking, denoted by �m�, consisting of a
single node.

An elementary step of an RPN may be either a firing of a transition or a cut step (denoted
by τi with i ∈ I ).

Definition 12 The firing of an elementary transition t from a node v of an extended mark-
ing tr = 〈V, M, E, A〉 leads to the extended marking tr ′ = 〈V ′, M ′, E ′, A′〉 (denoted by
tr t,v−→tr ′) if and only if:

Let E ′′ = {(v, v′) ∈ E |A((v, v′)) ∈ K (t)} and V ′′ = {v′ ∈ V |(v, v′) ∈ E ′′},
– ∀p ∈ P, M(v)(p) ≥ W−(p, t),
– ∀q ∈ Q s.t. W ∗(q, t) is defined, M(v)(q) = W ∗(q, t),
– V ′ = V \(∪v′∈V ′′ Succ(v′)), E ′ = E ∩ (V ′ × V ′),
– ∀e ∈ E ′, A′(e) = A(e), ∀v′ ∈ V ′\{v}, M ′(v′) = M(v′),
– ∀p ∈ P, M ′(v)(p) = M(v)(p)−W−(p, t)+W+(p, t)+

�e∈E ′′W+(p, A(e), K (t, A(e))).

Definition 13 The firing of an abstract transition t from a node v of an extended marking tr =
〈V, M, E, A〉 leads to the extended marking tr ′ = 〈V ′, M ′, E ′, A′〉 (denoted by tr t,v−→tr ′)
if and only if:

Let v′ be a fresh identifier,

– ∀p ∈ P, M(v)(p) ≥ W−(p, t),
– ∀q ∈ Q s.t. W ∗(q, t) is defined, M(v)(q) = W ∗(q, t),
– V ′ = V ∪ {v′}, E ′ = E ∪ {(v, v′)},
– ∀e ∈ E, A′(e) = A(e), A′((v, v′)) = t ,
– ∀v′′ ∈ V \ {v}, M ′(v′′) = M(v′′),
– ∀p ∈ P, M ′(v)(p) = M(v)(p)−W−(p, t),
– M ′(v′) = Ω(t, M(v)|Q).
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Definition 14 The firing of a cut step τi from a node v of an extended marking tr =
〈V, M, E, A〉 leads to the extended marking tr ′ = 〈V ′, M ′, E ′, A′〉 (denoted by tr τi ,v−→tr ′)
if and only if:
M(v) ∈ Υi and if v is the root of the tree then tr ′ =⊥, otherwise:

– V ′ = V \Succ(v), E ′ = E ∩ (V ′ × V ′), ∀e ∈ E ′, A′(e) = A(e),
– ∀v′ ∈ V ′\{pred(v)}, M ′(v′) = M(v′),
– ∀p ∈ P, M ′(pred(v))(p) = M(pred(v))(p)+W+(p, A(pred(v), v), i).

Let tr s,v−→tr ′ be a firing, then s is said to be an enabled step in v, denoted by tr s,v−→. Other
notations about firing sequences and reachability in SRPNs are carried over RPNs.

Remarks

– i ∈ I represents a possible effect (see the domain of function W+) consecutive to a
subtree pruning. There are two ways to prune a subtree: by a cut step when the ordinary
marking of the subtree root belongs to Υi or by the firing of an elementary transition t
which interrupts t ′, the transition labelling the edge to the subtree [i.e., K (t, t ′) = i].
When Υi is the empty set this means that the index i can only be the effect of an interrupt.

– The bounding constraint on places of Q is implicitly taken into account by requiring that
tr ′ introduced in Definitions 12, 13 and 14 is an extended marking (see the second item
of Definition 11).

– Since in the previous definitions, an elementary step requires the tree is not empty, the
extended marking ⊥ is dead.

– Inhibitor arcs connected to bounded places could be easily simulated by test arcs. Due
to the boundedness requirement, this does not lead to undecidability for the reachability
problem.

We now justify the introduction of test arcs in the model. In ordinary Petri nets, a test arc
on a bounded place can be simulated by the introduction of a complementary place which
records the difference between the bound and the current marking such that an input arc
from the original place generates an output arc to this place and vice versa. Then, a test arc
is transformed in two loops around the two places, respectively, labelled by the tested value
and its difference with the bound.

Such a construction is no more valid when the test arc is connected to an abstract transition
since then the consuming and producing of tokens are performed in two distinct steps. Indeed,
the effect of W+ is delayed until a cut step occurs in the new thread or an elementary transition
is fired which interrupts the thread subtree initiated by the abstract transition.

Furthermore, note that according to semantics ∀p ∈ P,∀t ∈ T when defined W ∗(p, t) ≥
W−(p, t) since otherwise the transition t will never be enabled.

Although the semantics of SRPN and RPN are different, any marked SRPN (N , tr0)

can be simulated by a marked RPN (N ′, tr ′0) in such a way that the standard equivalent
relations are fulfilled by the two nets (bisimulation, language equivalence, reachability graph
isomorphism, etc). The construction is straightforward, so we informally describe it. First N ′
is a copy of N . Then a control place is added to N ′ and is both an input and a output place of
every transition. The starting marking of any abstract transition is equal to the original one
plus a token in this control place. Similarly, tr ′0 is a copy of tr0 with the control place marked
only in the active node.
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3.2 An illustrative example

The net of Fig. 7 illustrates the characteristic features of RPNs. The items which are absent
in SRPNs are represented graphically as follow:

– a place of Q by a double border circle whose bound is indicated in brackets after its name
and

– a test arc between a place p and a transition t by a simple line. This line is labelled with
W ∗(p, t) when W ∗(p, t) �= 1.

The name of an elementary transition t is followed by the set {t ′〈i〉 | K (t, t ′) = i} when
this set is non-empty. The starting marking of an abstract transition is defined by a mapping
from a finite domain to the set of ordinary markings. So the modeler could define it by an
enumeration. However for our examples, we adopt a more concise way to specify it. Given an
abstract transition t , its starting marking mapping is indicated in a frame with the following
syntax: �p∈P [Ωp,t ] · p where Ωp,t is an arithmetical expression involving the variables {q |
q ∈ Q}. Given a current submarking m on Q and a place p the value of Ω(t, m)(p) is obtained
by evaluating the expression where any variable q is replaced by m(q). Here again, when
Ωp,t is null the term [Ωp,t ]· p is omitted and is abbreviated to p when Ωp,t = 1. For instance,
[prec−1] · prec+ pint means that the starting marking m of a node created by firing t f ork will
be defined by ∀p ∈ P \ {pint , prec}, m(p) = 0, m(pint ) = 1 and m(prec) = v − 1 where v

is the number of tokens in place prec in the marking of the node where the firing occurs.
The net in Fig. 7 shows the modelling of similar transactions performed by a remote

server. A transaction is started by the firing of the transition tstart . The status of the server
is described by the places On and Off . Thus, the firing of tstart is controlled by a test arc
connected to the place On. A transaction may either commit (represented by the index 〈0〉)
or abort when the server is reset (represented by the index 〈1〉). Since there are two ways to
terminate a transaction, I includes two items (I = {0, 1}). In the first case, the termination
of a transaction is indicated by a token in pend (see Υ0). Then the cut step puts a token in the
place poutput which controls the transition toutput modelling the transmission of the result. In
the second case, the abortion is modelled by the transition treset which interrupts tstart with

Fig. 7 A simple recursive Petri net
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Fig. 8 A firing sequence

the index 〈1〉. This firing produces a token in place pstart meaning that the transaction does
not provide a result. Υ1 is empty since the abortion is never triggered by the execution of the
transaction but only when the server is reset. If the modelling of faults would be required, it
could be introduced by additional places and modifying Υ1.

When started, a transaction may proceed locally by firing tlocal or starts a new process
by firing tfork . The place prec controls the maximal number of nested forks. The starting
marking of tstart expresses that there will be at most two forks per transaction. Note that a
thread initiated by the transition tfork has an initial marking with one token less in the place
prec than its initiator. The abortion process realised by the transition treset applies on the
whole transactions, i.e., in the root of the reached extended markings. It is easy to see that in
another node the transition treset is never enabled.

Notice that the bounded places are On and prec. Thus, this net fulfills the conditions of
Definition 10: the single test arc is connected to On and starting marking of tfork depends
exclusively on prec.

The initial state of the net is a tree reduced to a single node with two tokens in pstart

corresponding to two transactions to begin and one token in On indicating that the server
is operational. A firing sequence of this marked RPN is presented in the Fig. 8. The arcs
of the trees composing the visited extended markings are labelled by the abstract transition
tstart for the outgoing arcs from the root and by t f ork for the other ones. The black node
of an extended marking denotes the thread initiator of the current step. Let us notice that
each firing of an abstract transition leads to the creation of a new node in the tree whereas
the firing of the cut step prunes the subtree of the root represented in the figure as its right
branch. Moreover the firing of the elementary transition treset prunes its remaining subtree
by the interrupt mechanism.

3.3 Expressivity of RPNs

Modelling of asynchronous remote procedure calls: The procedure we model has a non-
negative integer as input and returns whether this parameter is odd or even. During the
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Fig. 9 An asynchronous remote
procedure call example

Fig. 10 A Petri net modelling of
the parity test

computation the caller is not suspended and for instance may modify the variable which has
been transmitted (by value) to the procedure.

The caller consists in two processes: the first one, modelled by the subnet on the left part
of the Fig. 9, iteratively calls the procedure whereas the second one, modelled by the subnet
on the central part, increments or decrements the value of variable x in the interval [0, 3].
The current value of the variable x is denoted by the marking of the eponymous place. The
procedure call is represented by the firing of the abstract transition t . Its starting marking
“copies” the value of x in place p. The result returned by the procedure is specified by the
index of the reached final marking set labelling the output arcs of t : the post condition of t
produces a token either in the place A or in B with respect to the final marking reached by
the thread initiated by t .

The procedure is modelled by the subnet on the right part of Fig. 9. This subnet determines
whether the starting marking of the place p is even (by reaching a marking of Υ0) or not (by
reaching a marking of Υ1). Notice that the process which updates x is not suspended during
the call and then the marking of x can evolve between the firing of t and the firing of the
corresponding cut step.

The modelling of this pattern by a Petri net raises the problem consisting in assigning
the marking of a place to the marking of another place (representing the transmission of a
parameter). To the best of our knowledge, even when places are bounded, there is no structural
solution, i.e., the nets modelling such a pattern depend on the bounds of the places.

Figure 10 presents one possible modelling of the asynchronous remote procedure call by a
Petri net. Since the place x is bounded, we have used the test arcs in order to obtain a concise
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Fig. 11 An emergency reaction

model. With the help of a complementary place, each test arc connected to some ti could be
replaced by two loops connecting, on the one hand, ti and x and, on the other hand, ti and
the complementary place of x .

Our solution uses B(x)+ 1 transitions (one per possible marking of x) to return the result
of the procedure. It is an open question even in this particular case whether a Petri net may
be designed independently of the bound of x (here 3).

Modelling of emergency situations: The activity scheduling of an embedded critical system
depends on the behaviour of the environment. When an emergency situation is encountered,
non-critical activities are aborted in order to react to this situation. Let us describe how to
model such a system with RPNs.

The net of Fig. 11 represents a system which can initiate any number of tasks by firing
tstart . Each task is abstracted by the trivial subnet at the right of the figure. At any time,
transition temergency is enabled in the root of the extended marking and its firing interrupts all
the subtrees initiated at this level. The tasks may also achieve their execution. The two kinds
of termination are distinguished by the corresponding indexes of the RPN similarly to the net
of Fig. 7. Assume a current extended marking with n executions of tasks, i.e., a tree where
the root has n direct successors which are the leaves of the tree. Note that there are n + 1
such extended markings (related to the number of tasks where pend is marked). Assume that
temergency is fired. Then whatever the extended marking among them, the reached one is the
same. Since n may be arbitrarily chosen, this means that the input degree of states of this
RPN is unbounded. As already discussed, such a behaviour is impossible with standard Petri
nets.

3.4 Analysis of RPNs

Decidability of the reachability and boundedness problems: First, we recall that, in a Petri
net N , the problem whether a semilinear set of markings SL is reachable from an initial one
m0 (i.e., whether at least one marking of SL is reachable from m0) is reducible to the standard
reachability problem and thus decidable. The principle of the reduction is the following one:

– One successively tests the reachability of the linear sets composing the semilinear set.
– Let a linear set L be defined by a marking m and a finite set of markings {m1, . . . , mk}

such that L = {m′ | ∃(λ1, . . . , λk) ∈ N
k, m′ = m +∑

i=1,...,k λi ·mi }. One builds a net
NL from N and L . It includes N as a subnet and k supplementary transitions in order to
consume the tokens corresponding to m1, . . . , mk .

– It is straightforward that L is reachable from m0 in N iff m is reachable from m0 in NL .
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We will assume that all the bounded places have the same bound b, i.e., ∀q ∈ Q, B(q) = b
since first it alleviates notations and second all subsequent proofs can be straightforwardly
extended to the general case. We note B = [0, b] and so B[Q] = B Q .

Notations:

– Let t ∈ T and P ′ ⊆ P then W−(P ′, t) is the vector belonging to N
P ′ defined by

∀p ∈ P ′, W−(P ′, t)(p) = W−(p, t),
– Let t ∈ Tel and P ′ ⊆ P then W+(P ′, t) is the vector belonging to N

P ′ defined by
∀p ∈ P ′, W+(P ′, t)(p) = W+(p, t),

– Let t ∈ Tab, i ∈ I and P ′ ⊆ P then W+(P ′, t, i) is the vector belonging to N
P ′ defined

by ∀p ∈ P ′, W+(P ′, t, i)(p) = W+(p, t, i),
– Let t ∈ T and Q′ ⊆ Q then W ∗(Q′, t) is the partial function from Q′ to N such that ∀q ∈

Q′, W ∗(Q′, t)(q) is defined iff W ∗(q, t) is defined and then W ∗(Q′, t)(q) = W ∗(q, t).

The procedure which decides whether an extended marking is reachable in a marked RPN
involves two stages:

– The first stage is independent from the initial and the final extended markings. It consists
in deciding whether an RPN starting with an extended marking reduced to a node with
initial marking Ω(t, m) reaches a state where the marking of the root belongs to Υi .
In other words, we check whether the firing of an abstract transition t with m as the
current submarking on Q is able to produce a τi step. We call this problem the closability
problem. We restrict m to be a submarking on Q compatible with t since otherwise t is
never enabled with such an m.

– The second step works top down on the trees associated with the initial and the final
states. Given a potential firing sequence from the initial to the final states, it predicts
the corresponding behaviour of each subtree (i.e., the tree rooted in a son of the root)
of the two roots: either a subtree of the initial extended marking has disappeared or it
has been transformed into a subtree of the final state. The remaining subtrees of the final
state must have been created during the firing sequence. For each potential behaviour, it
checks whether a firing sequence exists between the two roots and applies recursively a
similar procedure on the reachability problems induced by its hypothesis on the subtrees.
Its answers positively iff at least one behaviour is valid (see Fig. 12 for two examples of
possible behaviours).

All the elementary steps of this procedure are based on the same pattern: the building
of an ordinary Petri net and of a reachability problem equivalent to the elementary problem
to be decided. We proceed to solve the closability problem. The next definition introduces
some sets of tuples (t, m, i) meaning that the firing the abstract transition t when the current
marking of the node over Q is m may be followed by a cut step τi fired in the node created by
the firing of t . We will call a corresponding firing sequence a closing sequence of (t, m, i).
Closable is the set of all such tuples. Its subset Closable0 requires that along at least one
closing sequence there will be no cut step whereas Closablen , with n > 0, requires that along
at least one closing sequence, there will be no cut step in a node whose depth in the tree
is greater than n (with depth 1 for the root). Below, we define these sets with an equivalent
inductive definition.

Definition 15 Let N = 〈P, B, T, I, W−, W ∗, W+,Ω, Υ, K 〉 be a recursive Petri net, then:

– Closable is the set of tuples (t, m, i) with t ∈ Tab, m ∈ B Q compatible with t , i ∈ I such
that there exist tr �=⊥ an extended marking and σ a firing sequence with:
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Fig. 12 Two possible matchings
of subtrees

�Ω(t, m)� σ−→N tr and v0(tr), the root of tr , belongs to Υi

such a sequence σ is said a closing sequence w.r.t. (t, m, i).
– Closable0 ⊆ Closable is such that a tuple (t, m, i) ∈ Closable0 iff there exists a closing

sequence σ w.r.t. (t, m, i) which does not include any cut step occurring in a direct
successor of the root.

– Closablen+1 ⊆ Closable is such that a tuple (t, m, i) ∈ Closablen+1 iff there exists a
closing sequence σ w.r.t. (t, m, i) where any cut step τ j , occurring in a direct successor
of the root, corresponds to the firing of an abstract transition t ′ with a current submarking
m′ on Q and (t ′, m′, j) ∈ Closablen .

We illustrate this definition on the net of the Fig. 13. The set of abstract transitions is
{t, t ′}; Q, the subset of bounded places, is the singleton {q} where the bound of q is 3 and
I = {0, 1}. Thus Closable ⊆ {t, t ′} × {(0), (1), (2), (3)} × {0, 1}. Moreover, the tuples
(t ′, (k), i) such that k > 0 and the tuples (t, (0), i) whatever i are excluded of Closable since
their submarking is not compatible with their transition.

We indicate below both the sets Closablen and some corresponding closing sequences.

– Closable0 = {(t ′, (0), 1)}

Since Ω(t ′, (0)) = p1 and the marking p2 ∈ Υ1, σ0 is a closing sequence for (t ′, (0), 1).
Note that (t, (k), i) (whatever k and i) does not belong to Closable0 since, due to the
definition of Ω(t, (k)), p2 can never be marked and pend can only be marked by firing
one of the abstract transitions t and t ′ later followed by a cut step.

– Closable1 \ Closable0 = {(t, (1), 0)}
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Fig. 13 A RPN N

Then σ1 and σ ′1 are closing sequences of {(t, (1), 0)}. Note that both sequences include
the sequence σ0 in order to prune the subtree created by the firing of t ′.

– Closable2 \ Closable1 = {(t, (2), 0)}

Then σ2 is a closing sequence of {(t, (2), 0)}.
– Closable3 \ Closable2 == {(t, (3), 0)}

Then σ3 is a closing sequence of {(t, (3), 0)}.
– Closable4 \ Closable3 = ∅ and Closable3 = Closable
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As pointed out by the previous example, the following lemma is a direct consequence of
the Definition 15 and is the basis for an iterative computation of Closable =⋃

n≥0 Closablen .

Lemma 4 Let n0 ∈ N such that Closablen0+1 = Closablen0 . Then, ∀n > n0, Closablen =
Closablen0 . Consequently, since Closable is a finite set, ∃n0 such that Closable = Closablen0

with∀0 ≤ n ≤ n0, Closablen\Closablen−1 �= ∅ (using the convention that Closable−1 = ∅).
The next lemma is the crux of the decidability of the reachability problem. Notice that,

due to Lemma 4, it already implies that Closable is computable.

Lemma 5 Let N = 〈P, B, T, I, W−, W ∗, W+,Ω, Υ, K 〉 be a recursive Petri net and n ∈
N ∪ {−1}. Assume that Closablen is known then Closablen+1 is computable.

Proof This proof is divided in two parts. Given a recursive Petri net N , n such thatClosablen

is known and a tuple (ta, ma, i) /∈ Closablen , first we build a marked Petri net (N∗, m∗0)
[depending on N , Ω(ta, ma) and Closablen] and a semilinear set Υ ∗i of its markings (depend-
ing on Υi ). Then, we prove that (ta, ma, i) ∈ Closablen+1 iff Υ ∗i is reachable from m∗0 in
N∗.

Building of (N∗, m∗0) and Υ ∗i : (N∗, m∗0) is obtained as the synchronised product of a marked
Petri net (N ′, m′0) and of a finite automaton A. The net N ′ mimics the behaviour of N at the
root level when the constraints relative to the places of Q are not taken into account and when
all tuples are assumed to belong to Closable. The finite automaton A mimics the behaviour of
N at the root level when the constraints relative to the places of Q are not taken into account.
Furthermore in A, the firing of an abstract transition t , whenever the current marking over Q
at the root level is m and leading to a cut step τ j , requires that (t, m, j) ∈ Closablen .

Let us briefly recall how the synchronized product of a marked Petri net and a finite
automaton is performed:

– Its places are the ones of the net and the states of the automaton.
– The initial marking of places of the net is unchanged, the place corresponding to the initial

state of the automaton contains a unique token and the places corresponding to the other
states are unmarked.

– There is a transition (t, s t−→s′) for every pair composed by t a transition of the net and
s t−→s′ a transition of the automaton whose label is the name of the net transition. Its
inputs are the inputs of the net transition completed by s (with valuation one) and its
outputs are the outputs of the net transition completed by s′ (with valuation one).

The main property of the synchronized product that we will use is the following one:
there is a firing sequence (t0, s0

t0−→s1) . . . (tn, sn
tn−→sn+1) in the synchronized product iff

there is a firing sequence t0 . . . tn in the Petri net and a path s0
t0−→s1 . . .

tn−1−→sn
tn−→sn+1 in

the automaton.

Construction of (N ′, m′0):
In the following, Tia =⋃

t∈Tel
K (t) denotes the set of interruptible abstract transitions.

Notice that N ′ = 〈P ′, T ′, W ′−, W ′+〉 does not depend on Closablen .
The set of places of N ′ is composed by Q (whose incidence will be computed from the

one of their corresponding places in N ) and a set of additional control places:

P ′ = Q ∪ {pt,t ′ | t ∈ Tab, t ′ ∈ K (t)} ∪ {pt , pt | t ∈ Tel} ∪
{pt,i | t ∈ Tab\Tia, i ∈ I }
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The arcs connected with these control places will be presented with the transitions of N ′.
Notice that the places of Q are not represented in N ′ but their effect is taken into account in
the automaton A.

The transitions of N ′ are the following ones:

T ′ = {t−|t ∈ Tab} ∪ (Tia × I ) ∪ {(t, i)−, (t, i)+|t ∈ Tab \ Tia, i ∈ I }
∪ {(t, t ′)−, (t, t ′)+|t ∈ Tia, t ′ ∈ K (t)} ∪ {t−, t+|t ∈ Tel}

We simultaneously describe the meaning of each group of transitions and the incidence
matrices:

– for each t ∈ Tab, a transition t− which simulates the firing of the abstract transition not
followed either by a cut step or an interrupt which closes the subtree initiated by t . t−
consumes the tokens of W−(Q, t):
∀t ∈ Tab,∀p ∈ Q, W ′−(p, t−) = W−(p, t), W ′+(p, t−) = 0

– for each couple t ∈ Tia, i ∈ I , a transition (t, i) which simulates the firing of t , immedi-
ately followed by the cut step τi :
∀(t, i) ∈ Tia × I,∀p ∈ Q,

W ′−(p, (t, i)) = W−(p, t), W ′+(p, (t, i)) = W+(p, t, i)
As will be shown later, the closing sequence, when it exists, can be chosen such that every
cut step related to the firing of an interruptible abstract transition occurs immediately after
this firing.

– for each couple t ∈ Tab\Tia, i ∈ I , two transitions (t, i)− and (t, i)+. The transition
(t, i)− simulates the firing of t by consuming the tokens required to fire t and producing
a token in a control place pt,i . The transition (t, i)+ simulates the subsequent cut step τi

consuming a token in pt,i and producing the tokens associated with i th termination mode
of t :
∀t ∈ Tab\Tia,∀i ∈ I,∀p ∈ Q,

W ′−(p, (t, i)−) = W−(p, t), W ′+(p, (t, i)+) = W+(p, t, i),
W ′+(pt,i , (t, i)−) = 1, W ′−(pt,i , (t, i)+) = 1

Along the simulating sequence of a closing one, a token in pt,i corresponds to a subtree
created at the root level by a firing of the abstract transition t that will be later followed
a cut step. So we require that such places are unmarked in the final marking (see the
definition of Υ ∗i ).

– for a couple of transitions t ∈ Tia , t ′ ∈ K (t), two transitions (t, t ′)−, (t, t ′)+. The
transition (t, t ′)− corresponds to a firing of t that will be interrupted by t ′. Thus it consumes
the input tokens of t and puts a token in a place pt,t ′ in order to control the interrupt
process. The transition (t, t ′)+ consumes this token and produces the tokens associated
with W+(Q, t, K (t ′, t)); it is a part of the simulation of the firing of t ′:
∀t ∈ Tia, t ′ ∈ K (t),∀p ∈ Q,

W ′−(p, (t, t ′)−) = W−(p, t), W ′+(pt,t ′ , (t, t ′)−) = 1,
W ′−(pt,t ′ , (t, t ′)+) = 1, W ′−(pt ′ , (t, t ′)+) = 1,
W ′+(p, (t, t ′)+) = W+(p, t, K (t, t ′)), W ′+(pt ′ , (t, t ′)+) = 1

– for each transition t ∈ Tel , two transitions t−, t+. The firing of t , occurring in a closing
sequence, is simulated by a firing sequence beginning by t− followed by firings of tran-
sitions (t ′, t)+ [where such a firing corresponds to an interrupt which closes a subtree
created by the firing of t ′ ∈ K (t) at the root level] and finished by t+. The transition
t− consumes the tokens consumed by t , a token of a control place pt and puts a token
in another control place pt . Furthermore, pt loops around every transition (i.e., it is an
input and output of these transitions with corresponding valuations equal to 1) except the
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transitions (t ′, t)+. So t− freezes the remaining transitions; the control place pt loops
around the transitions (t ′, t)+ enabling their firing if tokens are present in pt,t ′ . The firing
of t+ consumes the token in pt and produces a new token in pt unfreezing the net:

∀t ∈ Tel ,∀p ∈ Q,

W ′−(p, t−) = W−(p, t), W ′+(p, t+) = W+(p, t),

W ′−(pt , t−) = 1, W ′+(pt , t−) = 1,

W ′−(pt , t+) = 1, W ′+(pt , t+) = 1

∀t ∈ Tel ,∀t ′ ∈ T ′\({t−, t+} ∪ {(t ′′, t)+ | t ′′ ∈ K (t)}),
W ′+(pt , t ′) = 1, W ′−(pt , t ′) = 1

– For all other pairs (p′, t ′) ∈ P ′ × T ′,
W ′−(p′, t ′) = 0 and W ′+(p′, t ′) = 0.

The initial marking m′0 of the net is the projection of Ω(ta, ma) on Q and a token in each
place pt . All other places are unmarked:

∀p ∈ Q, m′0(p) = Ω(ta, ma)(p)

∀t ∈ Tel , m′0(pt ) = 1 and m′0(pt ) = 0

∀t ∈ Tab,∀t ′ ∈ Tel , m′0(pt,t ′) = 0

∀t ∈ Tab\Tia,∀i ∈ I, m′0(pt,i ) = 0
The construction of (N ′, m′0) for the recursive net of Fig. 13 is given in Fig. 14. m′0

corresponds to the closability problem of (t, m, i) (for any m and any i): m′0(pinit) =
m′0(pwork) = 1 due to the definition of Ω(t, m);m′0(ptel

) = m′0(ptkill
) = 1 and the other

places are unmarked according to the construction. We do not describe all the transitions but,
for instance, a firing of t ′ in N is simulated either by (t ′, 1) if the firing of t ′ is later followed
by a corresponding cut step, either by t ′− if the subtree created by t ′ is still present in the final
marking, or by a pair (t ′, tkill)

−, (t ′, tkill)
+ if the subtree created by t ′ will be later deleted by

the firing of tkill (which interrupts t ′).
We now give three firing sequences of (N ′, m′0) in order to show how the simulation

works:

– t−kill ·t+kill ·(t ′, 1) which corresponds to the simulation of σ ′1. We will show that this sequence
will be accepted by the automaton A relative to Closable0 and the closability of (t, (1), 0).

– (t, 0)− · (t, 0)+ which corresponds to the simulation of both σ2 and σ3. We will show
that the automaton A relative to Closable1 and the closability of (t, (2), 0) accepts this
sequence while the automaton A relative to Closable1 and the closability of (t, (3), 0)

discards it.
– t ′− · t−kill · t+kill which cannot simulate any firing sequence of N since in N a firing of t ′

followed by a firing of tkill must delete the subtree created by t ′ and then produce a token
in pend . Such a sequence will be discarded by the automaton A relative to any Closablei

and the closability of any tuple.

Construction of A: The automaton A = 〈S, { t−→}t∈T ′ , s0〉, which depends on N , Closablen

and the considered pair (ta, ma), is defined as follows.
Each state is a tuple (m, (Mtb)tb∈Tia , T c) where:

– m ∈ B Q corresponds to the submarking on Q at the root level of the simulated extended
marking of N ,

– Mtb ⊆ B Q denotes the sets of submarkings on Q at the root level of the simulated
extended marking of N encountered since the last firing of a transition t ′ ∈ K (tb) (or
since the initial marking if none has been fired),
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Fig. 14 The ordinary net (N ′, m′0) corresponding to the net N of Fig. 13 and the closability problem for
(t, m, i) (for any m and any i)

– T c ⊆ Tel is the set of elementary transitions still allowed to fire at the root level of the
simulated extended marking of N [i.e., not belonging to some K (t) with t ∈ Tab when
the firing of a transition t− has previously occurred]: S = B Q × (

2(B Q )
)Tia × 2Tel .

The first component of the initial state is Ω(ta, ma)|Q , the second one is the vector of
singletons associated with this submarking and the third one is Tel : s0 = (Ω(ta, ma)|Q,

({Ω(ta, ma)|Q})tb∈Tia , Tel).
The transitions of the automaton are labelled by the transitions of N ′ and defined accord-

ing to their interpretation. These transitions are only defined when they lead to a new mark-
ing m′ belonging to B Q and this condition will be implicit in the sequel. Given a state
(m, (Mtb)tb∈Tia , T c), we define below its output transitions:

– for each t ∈ Tab, the transition t− is enabled depending on m and W ∗(Q, t) and then leads
to the state (m′, (Mtb∪{m′})tb∈Tia , T c\K (t)), where m′ is defined from m by consuming
the tokens specified by W−(Q, t):
∀t ∈ Tab s.t. m is compatible with t ,
let m′ defined by ∀p ∈ Q, m′(p) = m(p)−W−(p, t) then

(m, (Mtb)tb∈Tia , T c) ta−−→(m′, (Mtb ∪ {m′})tb∈Tia , T c\K (t))
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– for each t ∈ Tia , i ∈ I , the transition (t, i) is enabled iff (t, m, i) ∈ Closablen and
then loops around the state (since the marking of places in Q is not modified by the
interruptible abstract transitions):
∀t ∈ Tia,∀i ∈ I s.t. (t, m, i) ∈ Closablen ,

(m, (Mtb)tb∈Tia , T c) (t,i)−→(m, (Mtb)tb∈Tia , T c)
– for each t ∈ Tab\Tia , i ∈ I , the transition (t, i)− is enabled iff (t, m, i) ∈ Closablen

and then leads to the state (m′, (Mtb ∪ {m′})tb∈Tia , T c), where m′ is defined from m by
consuming the tokens specified by W−(Q, t):
∀t ∈ Tab\Tia,∀i ∈ I s.t. (t, m, i) ∈ Closablen ,
let m′ defined by ∀p ∈ Q, m′(p) = m(p)−W−(p, t) then

(m, (Mtb)tb∈Tia , T c)(t,i)
−

−→(m′, (Mtb ∪ {m′})tb∈Tia , T c)
– for each t ∈ Tab\Tia , i ∈ I , m ∈ B Q , the transition (t, i)+ is enabled and leads to the

state (m′, (Mtb ∪ {m′})tb∈Tia , T c), where m′ is defined by producing the tokens specified
by W+(Q, t, i):
∀t ∈ Tab\Tia,∀i ∈ I ,
let m′ defined by ∀p ∈ Q, m′(p) = m(p)+W+(p, t, i),

(m, (Mtb)tb∈Tia , T c)(t,i)
+

−→(m′, (Mtb ∪ {m′})tb∈Tia , T c)
– for each t ∈ Tia and t ′ ∈ T c ∩ K (t), the transition (t, t ′)− is enabled depending on m

and W ∗(Q, t) and then loops around the state (since the marking of places in Q is not
modified by the interruptible abstract transitions):
∀t ∈ Tia s.t. m is compatible with t , ∀t ′ ∈ T c ∩ K (t),

(m, (Mtb)tb∈Tia , T c)(t,t
′)−−→ (m, (Mtb)tb∈Tia , T c)

– for each t ∈ Tia , t ′ ∈ T c ∩ K (t), the transition (t, t ′)+ is enabled depending on the
existence of m′ ∈ Mt compatible with t and then loops around the state:
∀t ∈ Tia,∀t ′ ∈ T c ∩ K (t), if ∃m′ ∈ Mt compatible with t then

(m, (Mtb)tb∈Tia , T c)(t,t
′)+−→ (m, (Mtb)tb∈Tia , T c)

– for each t ∈ T c, the transition t− is enabled depending on m, W ∗(Q, t) and W−(Q, t) and
leads to (m′, (Mtb)tb∈Tia , T c) where m′ is defined by consuming the tokens specified by
W−(Q, t). Since m′ is an intermediate submarking which does not necessarily correspond
to a marking of the RPN, it is not added to the subsets (Mtb)tb∈Tia :
∀t ∈ T c s.t. m is compatible with t ,
let m′ defined by ∀p ∈ Q, m′(p) = m(p)−W−(p, t) then

(m, (Mtb)tb∈Tia , T c) t−−→(m′, (Mtb)tb∈Tia , T c)
– for each t ∈ T c, the transition t+ is enabled and, denoting m′ the marking after producing

the tokens of W+(Q, t), leads to (m′, (M ′tb)tb∈Tia , T c) a new state where m′ is added to
any Mtb with a preliminary reset if tb belongs to K (t):
∀t ∈ T c, let m′ defined by ∀p ∈ Q, m′(p) = m(p)+W+(p, t),

(m, (Mtb)tb∈Tia , T c) t+−→
(m′, (({m′})tb∈K (t), (Mtb ∪ {m′})tb∈Tia\K (t)), T c)

All the possible automata A, corresponding to the net N of Fig. 13, have been factorized
in Fig. 15. The thickness of an arrow denotes to which automata it belongs. The initial state
of the automaton depends on the tuple (t, m, i) and more precisely, on Ω(t, m); we indicate
it by a label on the initial arrows. In order to alleviate the notations in the figure, a submarking
m over place q has been denoted by m(q) instead of (m(q)). Notice that only reachable states
have been represented on the figure.
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Fig. 15 The possible automata A corresponding to the net N of Fig. 13

As an illustration of the role of the automaton, we check whether the three sequences
previously exhibited for the Petri net of the Fig. 14 are recognised by the automaton or not:

– t−kill · t+kill · (t ′, 1)

This sequence (which corresponds to the simulation of σ ′1) is recognised by the following
path of the automaton relative to Closable0 and the closability of (t, (1), 0):

– (t, 0)− · (t, 0)+
This sequence corresponds to the simulation of both σ2 and σ3. Starting from the initial
state corresponding to Ω(t, (2)), it is recognised by the following path of the automaton
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relative to Closable1 and the closability of (t, (2), 0):

But, starting from the initial state associated with Ω(t, (3)), the automaton relative to
Closable1 and the closability of (t, (3), 0) discards it:

– t ′− · t−kill · t+kill
This sequence cannot simulate any firing sequence of N and is discarded by the automaton
relative to any Closablei and the closability of any tuple. For instance, the automaton
relative to Closable0 and the closability of (t, (1), 0) discards it:

Specification of Υ ∗i : For all i ∈ I , we define Υ ∗i as the set of pairs of states of N ′ and A
where the induced current marking on P belongs to Υi and the marking of the additional
control places is identical to their initial marking. Formally:
Υ ∗i =

{
(m1, (m2, (Mtb)tb∈Tia , T c)) |

m1 ∈ N
P ′ ∧ m2 ∈ B Q ∧ ∀tb ∈ Tia, Mtb ⊆ B Q ∧ T c ⊆ Tel ∧

(m1|Q, m2) ∈ Υi ∧ m1|P ′\Q = m′0|P ′\Q
}

Let us illustrate this definition on the net of the Fig. 13. In case of
In N ′, Υ ∗0 corresponds to markings m such that m(pend) = m(ptkill

) = m(ptel
) = 1 and

the other control places are unmarked.
In A, Υ ∗0 corresponds to every state since place q is not involved in the specification of

Υ0.

Correctness of the previous construction
Let N be a RPN, ta be an abstract transition, ma be a submarking over Q compatible with ta
and i be a termination index. Let (N∗, m∗0) be the marked Petri net and Υ ∗i be the semilinear
set, both corresponding to the closability problem of (ta, ma, i) when Closablen is known.
We now prove that there is a witness sequence relative to this problem in N iff there is
sequence from m∗0 to Υ ∗i in N∗.
(⇒)

(ta, ma, i) ∈ Closablen+1 ⇒ ∃σ ∗, ∃m1 ∈ Υ ∗i s.t. m∗0
σ ∗−→N∗m1

Assume that there exist σ and tr with M(v0(tr)) ∈ Υi such that �Ω(ta, ma)� σ−→N tr
such that every firing of an abstract transition t in the root of the extended marking when
the submarking over Q is m later followed by a corresponding cut step τ j implies that
(t, m, j) ∈ Closablen . First, we show that we can transform the sequence in such a way that,
at the root level, any firing of an interruptible abstract transition that will be closed by a cut
step, occurs in σ immediately before this cut step. So assume that σ = σ1 · t · σ2 · τ j · σ3

where the occurrence of t is a firing at the root level and τ j is the corresponding cut step.
Then we build a sequence σ ′ by firing immediately after t all the occurrences of firings
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and cut steps in the subtree created by t and then τ j . The order of the remaining firings
is unchanged. We claim that σ ′ is a firing sequence. Indeed in all subtrees of the root,
the firing order is unchanged. Now at the root level, the cut step has been anticipated. This
anticipation leads to intermediate markings where the submarking on Q is unchanged (due to
the requirement about interruptible abstract transitions in Definition 10) and the submarking
on Q has increased (since a cut step can only produce tokens). Thus the new subsequence of
occurrences of transitions at the root level is still a firing sequence.

After these transformations, the subsequence of σ ′ of firing occurrences at the root level
is straightforwardly simulated by a sequence σ ∗ in N∗ from m∗0. To an abstract transition
firing t which creates a subtree still present in the final state, corresponds a firing of t−. To
an interruptible abstract transition firing followed by a cut step corresponds the appropriate
transition (t, j) [s.t. if m is the current marking on Q then (t, m, j) ∈ Closablen by definition
of σ ′]. To a non-interruptible abstract transition firing subsequently followed by a cut step
corresponds the appropriate transition (t, j)− [s.t. if m is the current marking on Q then
(t, m, j) ∈ Closablen by definition of σ ′] subsequently followed by the firing of the transition
(t, j)+. To an abstract transition firing t that will be interrupted by an elementary transition
t ′ corresponds the firing of (t, t ′)−. To an elementary transition t corresponds a sequence
t−·(t ′, t)+ . . . (t ′′, t)+·t+where the intermediate firings correspond to the abstract transitions
firings interrupted by this occurrence.

It is also straightforward from the definition of Υ ∗i that the final marking belongs to this
set.
(⇐)

(ta, ma, i) ∈ Closablen+1 ⇐ ∃σ ∗, ∃m1 ∈ Υ ∗i s.t. m∗0
σ ∗−→N∗m1

Let us assume that there exist σ ∗ and m1 ∈ Υ ∗i s.t. m∗0
σ ∗−→N∗m1. Before building the

corresponding sequence in N , we transform σ ∗. We note that by construction of N∗ and
by definition of Υ ∗i , given t ∈ Tia and t ′ ∈ K (t) there is the same number of occurrences
of (t, t ′)− and (t, t ′)+ and the kth occurrence of the former precedes the kth occurrence
of the latter. However, between these occurrences there may be an occurrence of t ′′+ with
t ′′ ∈ K (t). In such cases, due to the management of Mt in the automaton, we know that
there is a submarking on Q which is compatible with t and encountered between the last
occurrence of such t ′′+ and the kth occurrence of (t, t ′)+. Thus we delay the kth firing of
(t, t ′)− until this submarking is reached. This can be done since the intermediate markings
are increased on Q and unchanged on the other places of N∗ except pt,t ′ which is decreased
by one unit. However, this temporary decrease does not forbid any firing since this token will
only be necessary to the kth firing of (t, t ′)+.

Now we build the corresponding sequence σ of N as follows. An occurrence of t− with
t ∈ Tab is substituted by t ; the subtree created will still be present in the final marking due
to the management of T c in the automaton. An occurrence of (t, j) with m as the current
marking on Q [thus (t, m, j) ∈ Closablen] is substituted by the firing of t followed in the
subtree by the closing sequence associated with (t, m, j) and finally by the cut step τ j . An
occurrence of (t, j)− with m as the current marking on Q [thus (t, m, j) ∈ Closablen] is
substituted by the firing of t followed in the subtree by the closing sequence associated with
(t, m, j). We note that by construction of N∗ and by definition of Υ ∗i , given t ∈ Tab\Tia and
j ∈ I there is the same number of occurrences of (t, j)− and (t, j)+ and the kth occurrence
of the former precedes the kth occurrence of the latter. The kth occurrence of (t, j)+ is
substituted by the cut step τ j in the subtree initiated by the firing of t corresponding to the
kth of (t, j)−. An occurrence of (t, t ′)− is substituted by the firing of t . An occurrence of t+
is substituted by the firing of t . The other occurrences are skipped.
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Algorithm 2: Closable
Comp = ∅;
Possible = {(t, m) ∈ Tab × B Q |m is compatible with t};
Pot = Possible× I ;
Build N ′ and {Υ ∗i }i∈I ;
repeat

New = ∅;
Build AComp and then N∗;
foreach (t, m) ∈ Possible do

Build m∗0 depending on (t, m);
foreach i s.t. (t, m, i) ∈ Pot \ Comp do

/*ElemDecide returns true iff Υ ∗i is reachable from m∗0 in the ordinary Petri net N∗ */
if ElemDecide(N∗, m∗0, Υ ∗i ) then

New = New ∪ {(t, m, i)};
end

end
end
Comp = Comp ∪ New;

until (New == ∅);
return Comp;

With the initial transformation of the sequence σ ′, we obtain that the firing of t ∈ Tia in
σ corresponding to the kth occurrence of (t, t ′)− creates a subtree that will be destroyed by
the firing of t ′ corresponding to the subsequence in σ ′, t ′− . . . (t, t ′)+ . . . t ′+ where the kth
occurrence of (t, t ′)+ appears. Thus at the root level the behaviour of σ is similar to σ ∗ and
reaches a marking of Υi . ��

Proposition 1 Let N = 〈P, B, T, I, W−, W ∗, W+,Ω, Υ, K 〉 be a recursive Petri net, then
Closable is computable.

Proof Using Lemmas 4 and 5, an iterative construction of Closable is immediate. The Algo-
rithm 2 summarises the decision procedure. ��

Theorem 3 The reachability problem is decidable for RPNs.

Proof Let N be an RPN and tr0 and tr1 two extended markings of N .
First, assume that tr0 =⊥ then one checks whether tr1 =⊥.
Now assume that tr0 �=⊥ and tr1 =⊥. Then the last step of a hypothetical sequence from

tr0 to tr1 is a cut step which means that, before this step, the marking at the root level belongs
to some Υi . So we design the Algorithm 3 which decides whether starting from tr0, one can
reach⊥ by a sequence ended by a cut step τi . This procedure looks for a sequence depending
on the possible futures of every subtree rooted in v0(tr0). Possible futures are represented by
the set Choices and correspond to the three potential behaviours for every subtree tr0

j (with

t0
j being the abstract transition labelling the edge to it). Let ch ∈ Choices be such a choice:

– ch( j) = k ∈ I means that tr0
j has disappeared in the penultimate state by the firing of a

cut step τk .
– ch( j) = t ′ ∈ K (t0

j ) means that tr0
j has disappeared in the penultimate state by the firing

of an elementary transition denoted t ′.
– ch( j) = � means that tr0

j is still present in the penultimate state.
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Algorithm 3: Decide⊥(N , tr0, i)
/*Is ⊥ reachable from tr0 �=⊥ by a cut step τi , in N? */
/*Let

(
t0
1 , tr0

1
)
, . . . ,

(
t0
n0

, tr0
n0

)
be the branches rooted in v0(tr0) */

/*Let Choices = (
I ∪ K

(
t0
1
) ∪ �)× · · · × (

I ∪ K
(
t0
n0

) ∪ �)
*/

foreach ch ∈ Choices do
foreach j ∈ {1, . . . , n0} do

if ch( j) ∈ I ∧ ¬Decide⊥(
N , tr0

j , ch( j)
)

then
goto continue;

end
end
Build N [ch], m0[ch] and Υi [ch];
if ElemDecide(N [ch], m0[ch], Υi [ch]) then

return true;
end
continue:

end
return false;

We explain now a round of the outer loop corresponding to some ch ∈ Choices. First,
it checks for every j such that ch( j) ∈ I whether starting from tr0

j , one can reach ⊥ by a
sequence ended by a cut step τch( j). This is performed by a recursive call where the depth of
the extended marking has been decreased by 1.

When all answers are positive, it builds an ordinary Petri net N [ch], an initial marking
m0[ch] and a semilinear set Υi [ch] such that:

∃σ, ∃tr s.t. tr0
σ−→N tr , M(v0(tr)) ∈ Υi and the induced behaviour

of the subtrees rooted in v0(tr0) is defined by ch

iff ∃σ ∗, ∃m1 ∈ Υi [ch] s.t. m0[ch] σ ∗−→N [ch]m1

Since N [ch], m0[ch] and Υi [ch] are similar to the net N∗, m∗0 and Υ ∗i used in the proof
of the Lemma 5, we just indicate the differences between the two constructions.

– We use Closable instead of Closablen in the definition of the automaton involved in the
specification of N [ch]. By Proposition 1, this set is computable. With this modification,
the simulation of every firing of an abstract transition followed later by a cut step is sound
and complete.

– For every subtree tr0
j such that ch( j) = k ∈ I and t0

j is an interruptible abstract transition,
the corresponding cut step can be safely anticipated at the beginning of the sequence since
the transformed sequence is still enabled. So, the tokens produced by the cut step are added
to the marking m0[ch].

– For every subtree tr0
j such that ch( j) = k ∈ I and t0

j is a non-interruptible abstract
transition, then in the ordinary Petri net N [ch], we add a token to pt0

j ,k
in m0[ch]. Let

us recall that consuming a token in pt0
j ,k

simulates a cut step τk of a tree created by the

firing of t0
j . Furthermore, since Υi [ch] requires that this place is empty, the simulating

sequence must perform the cut step simulation.
– For every subtree tr0

j such that ch( j) = t ′ ∈ K (t0
j ), a token is added to pt0

j ,t
′ in m0[ch].

Furthermore, the transformation indicated in the Fig. 16 is applied to ensure that the first
occurrence of t ′− precedes the first occurrence of t ′′− for any t ′′ ∈ K (t)\{t ′}. The added
place ctrlt ′ does not modify the specification of Υi [ch].
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Fig. 16 Modification in N [ch] for an interruptible transition t0
j such that ch( j) ∈ K

(
t0
j

)

– For every subtree tr0
j such that ch( j) = � and every t ∈ K (t0

j ), we delete in N [ch] every
pair of transitions t−, t+. Indeed, such transition t cannot occur in a firing sequence
of N where the subtree tr0

j is present along the extended markings encountered by the
sequence.

At last, assume that tr1 �=⊥. This case is handled by the general Algorithm 4. This
procedure looks for a sequence depending on the possible futures of every subtree rooted
in v0(tr0) and the possible past of every subtree rooted in v0(tr1). The set F BChoices
represents every consistent choice (see Fig. 12). Let ( f ch, bch) ∈ F BChoices be such a
choice, tr0

j be a subtree rooted in v0(tr0) (with t0
j being the abstract transition labelling the

edge to it) and tr1
− j ′ be a subtree rooted in v0(tr1) (with t1

− j ′ being the abstract transition
labelling the edge to it) then:

– f ch( j) = k ∈ I means that tr0
j has disappeared tr1 by the firing of a cut step τk .

– f ch( j) = t ′ ∈ K
(
t0

j

)
means that tr0

j has disappeared in tr1 by the firing of an elementary
transition denoted t ′.

– f ch( j) = −k means that tr0
j has become tr1−k in tr1.

– bch(− j ′) = m ∈ B Q means that tr1
− j ′ has been created by the firing of t1

− j ′ when the
current submarking over Q was m.

– bch(− j ′) = k means that tr0
k in tr0 has become tr1

− j ′ .

Furthermore, we require that: ∀ j ∈ {1, . . . , n0}, t0
j = t1

f ch( j) ∧ ∀k ∈ {−1, . . . ,−n1},
f ch( j) = k ⇔ bch(k) = j in order that the past and the future are consistent.

We explain now a round of the outer loop corresponding to some ( f ch, bch)∈F BChoices.
First, it checks for all j such that f ch( j) ∈ I whether starting from tr0

j , one can reach ⊥
by a sequence ended by a cut step τch( j). This is performed by a call to Decide⊥. Second, it
checks for every j such that f ch( j) = −k whether starting from tr0

j , one can reach tr1−k by
a recursive call where the depth of the extended markings has been decreased by 1. Third, it
checks for every− j ′ such that bch(− j ′) = m ∈ B Q whether starting from a subtree created
by the firing of the abstract transition t1

− j ′ when the submarking over Q is m, one can reach

tr1
− j ′ by a recursive call where the depth of the extended markings has been decreased.
When all answers are positive, it builds an ordinary Petri net N [ f ch, bch], an initial

marking m0[ f ch, bch] and a final semilinear set of markings M1[ f ch, bch] such that:

∃σ s.t. tr0
σ−→N tr1 and the induced behaviour

of the subtrees rooted in v0(tr0) is defined by ( f ch, bch)

iff ∃σ ∗, ∃m1 ∈ M1[ f ch, bch] s.t. m0[ f ch, bch] σ ∗−→N [ f ch,bch]m1

Since N [ f ch, bch] and m0[ f ch, bch] are similar to the net N∗, m∗0 used in the proof of
the Lemma 5, we just indicate the differences between the two constructions.
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Algorithm 4: Decide(N , tr0, tr1)

/*Is tr1 reachable from tr0, in N? */
if tr0 ==⊥ then return tr1 ==⊥;
if tr1 ==⊥ then

foreach i ∈ I do
if Decide⊥(N , tr0, i) then return true;

end
return false;

end
/*Let

(
t0
1 , tr0

1
)
, . . . ,

(
t0
n0

, tr0
n0

)
be the branches rooted in v0(tr0) */

/*and
(
t1−1, tr1−1

)
, . . . ,

(
t1−n1

, tr1−n1

)
the branches rooted in v0(tr1) */

/*Let FChoices = (
I ∪ K

(
t0
1
) ∪ {−1, . . . ,−n1}

)× · · · × (
I ∪ K

(
t0
n0

) ∪ {−1, . . . ,−n1}
)

*/

/*Let BChoices = (B Q ∪ {1, . . . , n0})× · · · × (B Q ∪ {1, . . . , n0}) */
/*Let F BChoices = {( f ch, bch) ∈ FChoices × BChoices | ∀ j ∈ {1, . . . , n0}, t0

j = t1
f ch( j) ∧ ∀k ∈

{−1, . . . ,−n1}, f ch( j) = k ⇔ bch(k) = j} */
foreach ( f ch, bch) ∈ F BChoices do

foreach j ∈ {1, . . . , n0} do
if f ch( j) ∈ I ∧ ¬Decide⊥(

N , tr0
j , f ch( j)

)
then goto continue;

if f ch( j) ∈ {−1, . . . ,−n1} ∧ ¬Decide
(
N , tr0

j , tr1
f ch( j)

)
then

goto continue;
end

end
foreach j ∈ {−1, . . . ,−n1} do

if bch( j) ∈ B Q ∧ ¬Decide
(
N , �Ω(

t1
j , bch( j)

)�, tr1
j

)
then

goto continue;
end

end
Build N [ f ch, bch], m0[ f ch, bch] and M1[ f ch, bch];
if ElemDecide(N [ f ch, bch], m0[ f ch, bch], M1[ f ch, bch]) then

return true;
end
continue:

end
return false;

– We use Closable instead of Closablen in the definition of the automaton involved in the
specification of N [ f ch, bch].

– For every subtree tr0
j such that f ch( j) = k ∈ I and t0

j is an interruptible abstract
transition, the corresponding cut step can be safely anticipated at the beginning of the
sequence since the transformed sequence is still enabled. So, the tokens produced by the
cut step are added to the marking m0[ f ch, bch].

– For every subtree tr0
j such that f ch( j) = k ∈ I and t0

j is a non-interruptible abstract tran-
sition, then in the ordinary Petri net N [ f ch, bch], we add a token to pt0

j ,k
in m0[ f ch, bch].

– For every subtree tr0
j such that f ch( j) = t ′ ∈ K (t0

j ), a token is added to pt0
j ,t
′ in

m0[ f ch, bch]. Furthermore, the transformation indicated in the Fig. 16 is applied to
ensure that the first occurrence of t ′− precedes the first occurrence of t ′′− for any t ′′ ∈
K (t)\{t ′}.

– For every subtree tr0
j such that f ch( j) = − j ′ and every t ∈ K (t0

j ), we delete in
N [ f ch, bch] every pair of transitions t−, t+.

– For every subtree tr1− j such that bch( j) = m ∈ B Q , in N [ f ch, bch] we add a transition

t− j which has the same input and output as t1− j
−

except that, in the automaton associated
with N [ f ch, bch], it additionally requires to be enabled that the submarking on Q is m.
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In order to ensure that this transition is fired exactly one, we add to it an input place
be f oret− j with m0[ f ch, bch](be f oret− j ) = 1 that will occur in the specification of
M1[ f ch, bch].

It remains to define the semilinear set M1[ f ch, bch]. Let m1 ∈ M1[ f ch, bch]. For every
place p ∈ Q, m1(p) = M(v0(tr1))(p). In the subnet corresponding to the
automaton, exactly one state of the automaton (m, (Mtb)tb∈Tia , T c) (i.e., one place) must be
marked with the requirement that m = M(v0(tr1))|Q . In m1, the marking of control places
defined pt , pt , pt ′,i , pt ′,t , ctrlt and be f oret ′ must be the following one: ∀t, t ′, i, m1(pt ) =
0, m1(pt ) = 1, m1(pt ′,i ) = 0, m1(pt ′,t ) = 0, m1(ctrlt ) ≥ 1 and m1(be f oret ′) = 0.

The proofs of the two equivalences indicated in a frame are performed exactly as in the
proof of Lemma 5. ��

We now focus on boundedness and finiteness of marked RPNs. The boundedness property
ensures that there is a bound for any place of the ordinary markings labelling the nodes of any
reachable extended marking and the finiteness property states that the number of reachable
extended markings is finite. In Petri nets, these two properties are equivalent and decidable
space exponentially in the size of the net [23]. In RPNs, the equivalence does not hold but
decidability remains for both properties. However, as we use in the decision procedure a
reachability test [20] for some Petri nets, our procedure is no more primitive recursive.

Theorem 4 The boundedness problem is decidable for marked RPNs.

Proof Let us assume that some place p is unbounded, then for any integer n there is a
reachable extended marking and one of its node for which the marking of p is greater than
n. One can notice that the number of initial markings of nodes is finite (the initial markings
of nodes composing the initial extended marking and the initial markings associated with
abstract transitions). So the place p is unbounded in the root of some marked RPN with the
same structure as the original one and an initial extended marking which may be: either a
simple node labelled by some Ω(t, m) where t is enabled in a node v of a reachable extended
marking with current submarking on Q, M(v)|Q , is equal to m, or some subtree of the initial
extended marking. We note T r this subset of extended markings.

So the first step of the procedure consists, given a marked RPN, an abstract transition t∗
and a submarking m∗ on Q, to decide whether t∗ will be enabled in some node v of a reachable
extended marking such that M(v)|Q = m∗. We reduce this problem to a reachability one
where the final extended marking is ⊥ and the RPN is transformed as follows. We add a
control place Ctrl, marked in the root of the initial extended marking and unmarked in the
other nodes. Then we restrict every Υi with the additional constraint m(Ctrl) = 0. This
intermediate RPN has the same behaviour as the original one except that the cut steps are
impossible in the root of the reachable extended markings. We add a second place Reach
initially unmarked in every node. Afterwards, the set of indexes I is completed with a new
index i∗ such that Υi∗ = {m | (m|Q = m∗ ∧ t is enabled in m) ∨ m(Reach) = 1}. Finally,
∀t ∈ Tab, W+(Reach, t, i∗) = 1 and these are the only arcs connected to Reach. This
additional index witnesses that the required condition is reached in a node and, due to the
previous definitions, allows a sequence of cut steps from this node to the root leading to ⊥.

When T r is computed, we decide whether a place p is unbounded in the root of some
extended marking of T r . We first compute for each immediate subtree of this extended
marking the subset of indexes I ′ such that i ∈ I ′ iff a cut step τi is enabled in the root of this
subtree. This computation relies on the reachability procedure with the final extended marking
being⊥. Furthermore, the marked net as well as the set of final markings are transformed in
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order that the cut steps enabled in the root are restricted to τi whereas in any other node the
cut steps are unchanged using a similar construction as the one explained above.

Given a subtree of this extended marking, any firing sequence either closes this subtree by
a cut step τi with i ∈ I ′, either closes it by the firing of an elementary transition in the root of
the current extended marking, or does not close it. Hence, we search for an infinite sequence
increasing the marking of p in the root distinguishing the (finite) possible behaviours of
sequence w.r.t. the subtrees of the initial extended marking. Each possible behaviour leads
to a similar simulation given in the proof of Proposition 1 by an ordinary Petri net. Given
such a subtree, if we search for a sequence which does not close it, we ignore this subtree in
the simulation. If we search for a sequence where a cut step closes it, we check whether ⊥
is reachable from the subtree. If so, we add a transition in the ordinary net which fires once
and whose effect is the one of the cut step at the root level. The case of an interrupt by an
elementary transition is handled similarly. ��
Theorem 5 The finiteness problem is decidable for marked RPNs.

Proof The reachability set of a marked RPN is infinite iff either the marked RPN is unbounded
or it is bounded and the width or the depth of reachable extended markings are unbounded.
From the previous proposition, we have just to decide for a bounded marked RPN whether
the width or the depth are unbounded.

First, we deal with the case of bounded marked RPN with unbounded width. Such a case
means that: ∃t∗ ∈ Tab, ∃m∗ ∈ B Q such that ∀n ∈ N, ∃trn a reachable extended marking
obtained by a sequence σ and with a node v whose at least n immediate descendants have
been created by the firings of t∗ when m∗ was the current submarking on Q. Assume that
there is a place p such that W−(p, t∗) > 0 and consider tr ′n the reachable extended marking
reached by a subsequence σ ′ obtained from σ by deleting the firings of t∗ in v corresponding
to the creation of these descendants and the subsequent firings in their subtrees. In tr ′n ,
M(v)(p) ≥ n which means that p is unbounded contrary to the hypothesis. Hence, such a
t∗ has no input place; and if t∗ may be fired once, it may fired indefinitely. In order to check
for such a case, we apply the procedure described for the boundedness problem.

The case of a bounded marked RPN with bounded width and unbounded depth is decided as
follows. We call a fresh node, a node which was not present in the initial extended marking.
We build a reachability graph until either we finish the building or we find an extended
marking tr such that there are two fresh nodes v1 and v2 of tr issued by the firings of the
same abstract transition t and with the same submarking on Q, m; and v1 is an ancestor of
v2. As the marked RPN is bounded and the width is also bounded, this construction will
terminate. The termination in the second case is equivalent to the unboundedness of the
depth. Indeed, let σ be a firing sequence leading to tr and call σ1 the subsequence obtained
from σ by deleting all steps not originating from a descendant node of v1. Then a similar
sequence σ2 can be played from tr at the level of v2 leading to tr ′. In tr ′, a new node v3

descendant of v2 has been created issued by the firings of the same abstract transition t and
with the same submarking on Q, m. Iterating this process, we obtain a sequence of reachable
extended markings with unbounded depth. ��

Exploiting the linear invariants: In this subsection, we show how the linear invariant com-
putation can be conducted in order to structurally analyse an RPN.

First, we define the incidence matrix W of an RPN. The rows of this matrix are composed
of the places and of the abstract transitions. The intended meaning of a variable indexed by
a place is its number of tokens while the interpretation of a variable indexed by an abstract
transition is the current number of the subtrees created by its firing.
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(a)

(b)

Fig. 17 A sample net and the corresponding matrix W

The columns of this matrix are composed of the transitions and the pairs (t, i) for t an
abstract transition and i ∈ I . A column indexed by a transition represents its firing while a
pair (t, i) represents a τi step in a subtree created by a firing of t .

Then W is defined by:

– ∀p ∈ P,∀t ∈ Tel ,∀t ′ ∈ Tab,
W (p, t) = W+(p, t)−W−(p, t) and W (t ′, t) = 0

– ∀p ∈ P,∀t, t ′ ∈ Tab with t ′ �= t ,
W (p, t) = −W−(p, t) and W (t, t) = 1 and W (t ′, t) = 0

– ∀p ∈ P,∀t, t ′ ∈ Tab,∀i ∈ I with t ′ �= t ,
W (p, (t, i)) = W+(p, t, i) and W (t, (t, i)) = −1 and
W (t ′, (t, i)) = 0

Figure 17 illustrates the definition of matrix W . The matrix is divided into six blocks
depending on the type of rows and columns. Let us have a look at some items of the row
indexed by place p: elementary transition tel picks one token from p and puts four into it,
thus the corresponding item of the matrix is 3; firing abstract transition tab consumes two
tokens thus the corresponding item is −2 and the cut step associated with tab and index 0
(resp. 1) produces one token (resp. four tokens) thus the corresponding item is 1 (resp. 4).
Let us have a look at the row indexed by abstract transition tab: firing tab creates one more
subtree initiated by tab thus the corresponding item is 1 while firing any of the two cut steps
corresponding to tab deletes one such subtree yielding an item −1.

Given a node v in an extended marking tr , we denote by f ire(v)tr the vector, indexed on
Tab, such that, ∀t ∈ Tab, f ire(v)tr (t) is the number of subtrees issued from v by the firing
of t . The next proposition justifies the choice of W for introducing invariants.

Proposition 2 Let N be an RPN and tr σ−→tr ′ such that a node v is present in tr and tr ′
(and then in all intermediate extended markings along σ ), let x be a solution of x · W = 0
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then:
x · (m(v)tr ′ , f ire(v)tr ′) = x · (m(v)tr , f ire(v)tr ). (1)

The proof is obtained by an examination of the different kinds of steps.
For instance, assume that σ = τi is a cut step corresponding to abstraction transition t

fired in a direct successor of v. f ire(v)tr ′(t) = f ire(v)tr (t)− 1, ∀t ′ �= t, f ire(v)tr ′(t ′) =
f ire(v)tr (t ′) and ∀p ∈ P, m(v)tr ′(p) = m(v)tr ′(p)+W+(p, t, i).

Thus (m(v)tr ′ , f ire(v)tr ′) − (m(v)tr , f ire(v)tr ) is the column of W indexed by (t, i).
Hence x · ((m(v)tr ′ , f ire(v)tr ′)− (m(v)tr , f ire(v)tr )) = 0 as required.

As in ordinary Petri nets, when tr is the initial extended marking, the Eq. (1) is called a
linear invariant.

In order to obtain linear invariants, one can compute a generative family of solutions
{x1, . . . , xn} of this equation. We obtain a superset of the reachable “states” of a node in a
tree by the set of equations ∀1 ≤ i ≤ n, xi · (m(v)tr , f ire(v)tr ) = xi · (m(v)tr0 , f ire(v)tr0).
The same overestimation can be done for the reachable ordinary marking space of a node v

dynamically created by the firing of t when the current submarking on Q is m∗: ∀1 ≤ i ≤
n, xi · (m(v)tr , f ire(v)tr ) = xi · (Ω(t, m∗), �0) (where �0 denotes the null vector).

Compared to the Petri nets model, we have here additional sources of overestimation: the
matrix W ∗, the interrupt effect of the elementary transitions (specified by the mapping K )
which are not taken into account and finally the fact that depending on the initial marking
Ω(t, m) some transitions are dead and thus may be excluded from the computation. Since
this last factor often happens in practical cases, we describe now an iterative method which
tackles this problem. In fact, the method is also applicable to Petri nets but it is of limited
interest in this case since usually the transitions of a Petri net are not dead.

The Algorithm 5 simultaneously computes a set of linear invariants fulfilled by markings
reachable from m, an ordinary marking, and a superset of the transitions enabled at least once
from m.

More precisely, it initialises Tlive as the empty set. Then it computes the positive invariants
for the recursive Petri net whose transitions are reduced to Tlive. In the Algorithm 5, the
function Invariant returns a generative family of invariants (see [2] for efficient computation
of such families).

Algorithm 5: structReach
input : an ordinary marking m
output: a set of invariants and a set of transitions
Tlive = ∅;
New = ∅;
In = ∅;
repeat

New = ∅;
In = Invariant(N , m, Tlive);
foreach t ∈ T \ Tlive do

Build a linear problem Pb in N
P with In, W−(P, t) and W∗(Q, t);

if Pb admits a solution then
New = New ∪ {t};

end
end
Tlive = Tlive ∪ New;

until (New == ∅);
return 〈In, Tlive〉;
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For each transition not belonging to Tlive, it builds a linear problem with the invariants
and the firing conditions of this transition. If this problem admits a solution, it is possibly
enabled and so, it adds it to Tlive. This resolution may be performed for rational numbers with a
polynomial time complexity or for integer numbers with a higher complexity. However, it may
occur that the problem admits a rational solution but no integer one. In the Petri net context,
experiments show that this situation is rarely encountered and yield to select the rational
resolution. This process is iterated until Tlive is saturated. The returned invariants specify an
overestimation of reachable markings with their current firings of abstract transitions.

We finally describe how the linear invariants can be used to obtain information about the
tree structure of the reachable extended markings.

We build a graph whose nodes are the tuples (t, m) with t ∈ Tab and m ∈ B Q , compatible
with t . There is an edge from (t, m) to (t ′, m′) if starting from the marking Ω(t, m) a thread
may fire t ′ when the current submarking on Q is m′. In order to determine such an edge, we
compute the invariants associated with Ω(t, m) by a call to structReach. Then we build a
linear problem including these invariants, the firing condition of t ′ and fixing the submarking
on Q to be m′. If such a problem has a solution then an edge is added.

This graph is a skeleton for the dynamical structure of the extended markings. For instance,
if it is acyclic, then any reachable extended marking has a bounded depth.

4 Conclusion

We have introduced the model of recursive Petri nets for which we have developed some
theory. On the one hand, we have studied its expressive power showing its ability to model
complex mechanisms of DESs like interrupts, fault-tolerance, remote procedure calls and
environment-driven behaviours. We have also proved that some of these patterns cannot be
modelled by ordinary Petri nets. On the other hand, we have designed decidability algorithms
of some problems: reachability, finiteness and bisimulation. At last, we have developed the
concept of linear invariants for this kind of nets and designed associated efficient computa-
tions.

Our goal is the experimentation of this model for industrial case studies. In order to achieve
it, we plan to implement our algorithms in a verification tool managing extensions of Petri
nets like [25,18]. From a theoretical point of view, we now want to study more thoroughly
the relations between the different extensions of Petri nets. For instance, the exact relation
between parallel rewrite systems [21] and recursive Petri nets is still an open problem.

Acknowledgments We thank the anonymous referees for their helpful comments.

Appendix: Recall of bisimulation definitions and results

Since the bisimulation relation is defined on transitions systems, we recall their definition.
For instance, the state graphs of a Petri net and of an RPN can be viewed as transitions
systems.

Definition 16 A labelled transition system is a tuple 〈�, S, { a−→}a∈�〉 where

– � is a finite alphabet
– S is a set of states
– ∀a ∈ �,

a−→ is a binary relation included in S × S
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Below, we define the bisimulation relation ∼ and weaker relations than the bisimulation
{∼n}n∈N.

Definition 17 Let LTS and LTS′ be two labelled transition systems defined by LTS =
〈�, S, { a−→}a∈�〉 and LTS′ = 〈�, S′, { a−→}a∈�〉, then:

– R ⊆ S × S′ is a bisimulation relation iff ∀s ∈ S, ∀s′ ∈ S′ s.t. s R s′, ∀a ∈ �:
1. ∀s1 ∈ S, s a−→LTSs1 ⇒ ∃s′1 ∈ S′ s.t. (s′ a−→LTS′s′1) ∧ (s1 R s′1)
2. ∀s′1 ∈ S′, s′ a−→LTS′s′1 ⇒ ∃s1 ∈ S s.t. (s a−→LTSs1) ∧ (s1 R s′1)

Two states s and s′ are bisimilar iff there exists some bisimulation relation R such that
s R s′. This is denoted by (LTS, s) ∼ (LTS′, s′).

– ∀s ∈ S,∀s′ ∈ S′, (LTS, s) ∼0 (LTS′, s′)
– ∀s ∈ S,∀s′ ∈ S′, (LTS, s) ∼n+1 (LTS′, s′) iff for every a ∈ �:

1. ∀s1 ∈ S, s a−→LTSs1 ⇒ ∃s′1 ∈ S′ s.t.
(s′ a−→LTS′s′1) ∧ (LTS, s1) ∼n (LTS′, s′1)

2. ∀s′1 ∈ S′, s′ a−→LTS′s′1 ⇒ ∃s1 ∈ S s.t.
(s a−→LTSs1) ∧ (LTS, s1) ∼n (LTS′, s′1)

We may explain the relation (LTS, s) ∼n (LTS′, s′) as follows: first, one builds the labelled
transition system LT Ss

n (resp. LT S′s′n ) by considering the behaviour tree of LT S (resp.
LT S′) issued from s (resp. s′) up to n steps. Then (LTS, s) ∼n (LTS′, s′) iff (LT Ss

n, s) ∼
(LT S′s′n , s′). We now introduce two useful notations for the next lemma.

Definition 18 Let LTS = 〈�, S, { a−→}a∈�〉 be a labelled transition system,

– I ncLTS
n is the family of initialised systems incompatible with LTS for ∼n :

I ncLTS
n = {(LTS′, s′) | ∀s ∈ S, (LTS, s) �∼n (LTS′, s′)}

– ∗−→ is the reflexive and transitive closure of the union of a−→. In other words, s ∗−→LTSs′
iff s′ is reachable from s.

This lemma establishes a characterisation of the bisimulation of a finite transition system
by a (possibly infinite) transition system.

Lemma 6 [13] Let LTS = 〈�, S, { a−→}a∈�〉 be a finite labelled transition system (with
n = |S|) and LTS′ = 〈�, S′, { a−→}a∈�〉 be a (possibly infinite) labelled transition system,
then ∀s ∈ S,∀s′ ∈ S′,

(LTS, s) ∼ (LTS′, s′) ⇔
{

(LTS, s) ∼n (LTS′, s′) ∧
�(LTS′, s′′) ∈ I ncLTS

n s.t. s′ ∗−→LTS′s′′.
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12. Jančar, P.: Undecidability of bisimilarity for Petri nets and some related problems. Theor. Comput.

Sci. 148, 281–301 (1995)
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