
TOWARDS THE DYNAMIC ADAPTABILITY OF SOA

Mehdi Ben Hmida1, Céline Boutrous Saab1, Serge Haddad1,

Valérie Monfort1,2, Ricardo Tomaz Ferraz2

1 LAMSADE-CNRS, Université Paris-Dauphine, Place du Maréchal de Lattre Tassigny, Paris Cedex 16, France

{mehdi.benhmida, haddad, celine.boutrous-saab}@lamsade.dauphine.fr

2 CRI, Université Paris 1 Sorbonne, 90 rue de Tolbiac, 75013 Paris, France

valerie.monfort, ricardo.ferraz-tomaz@univ-paris1.fr

Keywords: Service Oriented Architecture (SOA), Web Services (WS), Aspect Oriented Programming (AOP), Process

Algebra (PA), Dynamic Adaptability.

Abstract: Service Oriented Architectures (SOA) aim to give methodological and technical answers to achieve interoper-

abilty and loose coupling between heterogeneous Information Systems (IS). Currently, Web Services are the

fitted technical solution to implement such architectures. However, both Web Services providers and clients

are faced to some important difficulties to dynamically change their behaviours. From one side, Web Services

providers have no mean to dynamically adapt an existing Web Service to business requirements changes. From

the other side, Web Services clients have no way to dynamically adapt themselves to the service changing in

order to avoid execution failures. In this paper, we show how to achieve a dynamic adaptable SOA by using the

Aspect Oriented Programming (AOP) paradigm and Process Algebra (PA) formalism. We extend our previous

works to dynamically modify BPEL processes and to handle client-server communications issues. Then, we

use a process algebra formalism to specify a change-prone BPEL process and demonstrate how to generate

a client which dynamically adapt its behaviour to the service changes. We also present the Aspect Service

Weaver (ASW) prototype which implements our approach.

1 INTRODUCTION

Web Services (WS) are “self contained, self-

describing modular applications that can be pub-

lished, located, and invoked across the Web” (Tid-

well, 2000). They are based on a set of XML (Bray

et al., 2004) standards to make it more portable than

previous middleware technologies. SOA-based ap-

plications are usually composed of simple WSs that

are offered by different providers. The Business Pro-

cess Execution Language for Web Services (BPEL)

has been introduced for this purpose and becomes

a standard (Andrews et al., 2003). BPEL supports

two different types of business processes: Executable

processes executed on a BPEL engine and Abstract

business processes specifying the interaction protocol

with the client.

Actually, SOA applications are faced to some im-

portant limitations concerning their adaptability to

business requirements changes. These limitations af-

fect both WSs providers and consumers.

First, the services providers have no mean to dy-

namically change their WSs implementation or com-

position. They need to undeploy the service, recodify

the business logic and redeploy it again. This scenario

is deficient in an industrial context with a high Time-

to-Market constraints and strong competitiveness be-

tween companies. Second, if a change on the service

description (WSDL) or in the interaction protocol (ab-

stract BPEL) is done (without new publication), the

service consumers could not more interact with the

modified service and this will lead to execution fail-

ures

Regarding the above limitations, we identified two

requirements that WS technology has to handle:

1. Service provider needs to dynamically change the

behaviour of an already existing service to adapt

it to the new applications requirements.

2. Service client needs to dynamically adapt itself to

the service changing to avoid execution failures.

In our previous works, we addressed dynamic ser-



vice adaptability and client interaction issues. We

proposed an Aspect Oriented Programming (AOP)

(Kiczales et al., 1997) approach which aims to change

elementary WSs at runtime (Hmida et al., 2006;

Tomaz et al., 2006). We also proposed a Process

Algebra (PA) approach which solves the interaction

problem between BPEL processes and its clients, by

formally specifying the interaction protocol (abstract

BPEL) and automatically generating a correct client

(Haddad et al., 2006). In this paper, we extend these

works in order to reach the objectives previously dis-

cussed.

This paper is organized as follows: Section 2

briefly presents our previous AOP approach for el-

ementary WSs, then shows its extension to support

BPEL processes and to handle interaction issues.

We also present the architecture of our Aspect Ser-

vice Weaver (ASW) tool which integrates these con-

cepts. Section 3 presents the process algebra formal-

ism which supports change-prone BPEL processes.

This formalism leads us to generate clients that adapt

themselves to the service changes. Section 4 dis-

cusses related works. We conclude and present some

future works in section 5.

2 DYNAMIC SERVICE

ADAPTABILITY

2.1 Aspect Oriented Programming

Many researches (Charfi and Mezini, 2004; Courbis

and Finkelstein, 2005; Verheecke et al., 2003) con-

sider Aspect Oriented Programming (AOP) as an an-

swer to improve WS flexibility. AOP is a paradigm

that enables the modularization of crosscutting con-

cerns into single units called aspects, which are mod-

ular units of crosscutting implementation. AOP con-

cepts were formulated by Chris Maeda and Gregor

Kiczales (Kiczales et al., 1997). Aspect-oriented lan-

guages are implemented over a set of definitions:

1. Joinpoints: They denote the locations in the pro-

gram that are affected by a particular crosscutting

concern.

2. Pointcuts: They specify a collection of condi-

tional joinpoints.

3. Advices: They are codes that are executed before,

after or around a joinpoint.

In AOP, a tool named weaver takes the code specified

in a traditional (base) programming language, and the

additional code specified in an aspect language, and

merges the two together in order to generate the final

behaviour. The weaving can occur at compile time

(modifying the compiler), load time (modifying the

class loader) or runtime (modifying the interpreter).

2.2 Applying AOP to Web Services :

The Aspect Service Weaver (ASW)

In our previous approach, we developed an AOP-

based tool named Aspect Service Weaver (ASW)

(Hmida et al., 2006; Tomaz et al., 2006). The ASW

intercepts the SOAP messages between a client and an

elementary WS , then verifies during the interaction

if there is a new behaviour introduced (advice ser-

vices). We use the AOP weaving time to add the new

behaviour (before, around or after an activity execu-

tion). The advice services are elementary WSs whose

references are registered in a file called “aspect ser-

vices file descriptor”. The pointcut language is based

on XPath (Clark and DeRose, 1999). XPath queries

are applied on the service description (WSDL) to se-

lect the set of methods on which the advice services

are inserted.

Figure 1: Interaction schema for the insertion of a security
policy.

We extend this approach to BPEL processes. The

ASW controls the BPEL process execution instead of

intercepting SOAP messages. It is integrated in the

BPEL engine in order to interpret the BPEL process

and apply the aspect services. It verifies before the ex-

ecution of each BPEL activity if some Aspect service

has ti be inserted. Then, it executes the corresponding

advice service. We also add a new functionality to the

ASW. The tool dynamically generates messages called

execute messages, encapsulating the identifier and the

interaction protocol of the advice service. These mes-

sages are sent to the client to advertise it about a new

behaviour inserted at runtime. This message is neces-

sary since the new behaviour can require new infor-

mation exchange involving messages not expected by



the client, leading to execution failures. At the client

implementation, the developer has to handle this type

of message: it has to extract the interaction protocol

of the advice service and integrate it in its behaviour.

This part is detailed in the next section.

Considering a scenario where a service devel-

oper wants to change dynamically a Kerberos to-

ken security policy by a digital certificate ones. He

can develop an aspect service called “authentica-

tion” and specify, in the “aspect services file descrip-

tor”, that before the invocation of the authenticated

methods in the base BPEL process, the engine must

invoke a digital-certificate authentication instead of

the Kerboros token security. For instance, The “as-

pect services file descriptor” in Figure 1 indicates

to the engine that when the methods whose names

match with the XPath expression “//invoke[starts-

with(@name,“SendResult”)]” were invoked (equiv-

alent to the invocation of methods whose names

match the regular expression “SendResult*”), the en-

gine must invoke before the advice service digital-

certificate.

This way, during the normal process execution

(step 2 in Figure 1) , the ASW looks in the “aspect

services file descriptor” (step 3) for aspect services

applied to the current activity. It finds (for example)

a joinpoint matching between a “sendResult” method

invocation and the aspect “authentication”. Then, it

generates the execute message encapsulating the in-

teraction protocol of the advice service identified by

id and sends it to the client (step 4). After that, the

ASW begins the execution of the advice service (step

5). When its execution terminates, the ASW continues

the execution of the base process.

Figure 2: The extended abstract BPEL process.

The change-prone BPEL process interaction pro-

tocol is described by an extended abstract BPEL pro-

cess which integrates the sending of execute mes-

sages. The extended interaction protocol is generated

from the base BPEL process and the aspect service

file descriptor based on the defined pointcuts and the

type of advices (before, after or around) (figure 2).

The generation process performs transforma-

tions on the base BPEL process syntactic tree. It

inserts the action of sending execute messages

in the selected joinpoints depending on the kind

of the advice service. The figure 3 shows the

transformations made on the abstract base process

sequence(receive(ResReq),switch(reply(ResResp),
reply(error)) which receives a ResReq message then

replies by a ResResp or error message depending on

an internal action (the switch process). In the case of

an around service advice (figure 3.d), the specified

joinpoint is replaced by the reply(execute(id))
message because we consider that the advice service

can encapsulate the joinpoint.

Figure 3: transformations on the syntactic BPEL process
tree.

In the extended abstract BPEL process, the exe-

cute message contains only the identifier of the advice

service (id). The interaction protocol corresponding

to that id is sent to the client at runtime.

3 DYNAMIC CLIENT

ADAPTABILITY

BPEL provides a set of operators describing in a

modular way the observable behaviour of an abstract

process. As shown in (Staab et al., 2003), this kind

of process description is close to the process alge-

bra paradigm illustrated for instance by CCS (Milner,

1995).

However, time is explicitly present in some of the

BPEL constructors and thus the standard process al-

gebra semantics are inappropriate for the description



of such process. Thus, we defined a new process alge-

bra semantics that associates a timed automaton (TA)

(Alur and Dill, 1994) with an abstract process (Had-

dad et al., 2006). The theorical developments follow

these steps: associating operational rules with each

abstract BPEL construct, defining an interaction rela-

tion which formalizes the concept of a correct interac-

tion between two communicating systems (the client

and the WS), and designing an algorithm that gen-

erates a client automaton which is in an interaction

relation with the WS.

The client automaton is interpreted by our generic

client interpreter (figure 4). Our client downloads the

abstract BPEL process from an UDDI registry and

generates its corresponding TA. Then, based on the

TA of the service and the interaction relation, it gen-

erates the client TA if the service is not ambiguous.

Finally, it executes the client TA and displays graphi-

cal interfaces allowing to the human user to enter the

messages parameters.

Figure 4: Generic client interpreter.

3.1 The dynamic client interpreter

In order to communicate with change-prone BPEL

processes, we extend the previous client interpreter.

The new client has to achieve the following tasks:

1. When the client receives an execute(id) message,

it has to extract the advice service interaction pro-

tocol (identified by id) and generates its corre-

sponding server and client TA.

2. It simultaneously executes the client TAs of the

main process and its advices clients TA.

3. It makes synchronisation between the main client

TA and the advices clients TA on the termination

of services advices execution.

Furthermore, the generation module of the dy-

namic client interpreter also integrates new opera-

tional rules for the sending and receiving processes

in order to handle the execute(id) messages.

3.2 Formalisation steps

In order to formalize BPEL as dense timed process

algebra, we have to define the actions (alphabet) of

the process algebra. The possible actions are message

receiving (?m) and sending (!m), internal actions (τ)

(not observable from the client side), raise of excep-

tions (e∈ E), expiration of timeout (to) and the termi-

nation of the process (
√

). We distinguish three kinds

of actions: the immediate actions corresponding to a

logical transition (τ,e,
√
), the asynchronous actions

where an unknown amount of time elapses before the

occurrence of actions (?m, !m) and the synchronous

actions (to) which occur after a fixed delay.

Now, we present some operational rules and pre-

cisely the new rules for the sending and receiving pro-

cesses. To see all rules and in particular the handling

of clocks in TA, the reader is invited to refer to (Had-

dad et al., 2006).

For example, the empty process which represents

the process that does nothing can only terminate by

executing the
√

action (0 is the null process).

empty

√
−→ 0 (1)

For the sending and receiving processes, we define

the following rules.

∀m 6= execute

∗o[m]
∗m−→ empty avec ∗ ∈ {?, !} (2)

!o[m]
!execute(id)−−−−−−→WaitAdvice(id) (3)

WaitAdvice(id)
id.

√
−−→ empty (4)

Rule 2 states that the process ?o[m] (resp. !o[m])
which corresponds to the reception of a message of

type m (resp. sending of message of type m) exe-

cutes the action ?m (resp. the action !m) which cor-

responds to the message reception action (resp. the

message sending action) and becomes the empty pro-

cess. In the case of sending an execute message,

the automaton evolves to an intermediary state named

WaitAdvice(id) (rule 3). WaitAdvice(id) waits for

the termination of the advice service identified by id.

When advice service id terminates, WaitAdvice(id)
state executes id.

√
and becomes empty process (rule

4).

The sequential process P;Q (P and Q are BPEL

processes) corresponds to the execution of the pro-

cess P followed by the execution of the process Q. It

becomes the process P′;Q if the process P executes

an action a different from termination action and be-

comes P′. If P terminates and Q can execute an action



a and becomes Q′, the process P;Q executes the ac-

tion a then becomes the process Q′.

∀a 6=√ P
a−→ P′

P;Q
a−→ P′;Q

(5)

P

√
−→ and Q

a−→ Q′

P;Q
a−→ Q′

(6)

Finally, the switch{Pi}i∈I process evaluates an in-

ternal condition represented by τ then becomes the

process Pi.

∀ i ∈ I, switch{Pi}i∈I
τ−→ Pi (7)

3.3 Execution Scenario

Considering the abstract BPEL process defined in sec-

tion 2. If we want to add dynamically an authentica-

tion process before the switch process, the extended

abstract BPEL process have to integrate a sending

execute(id) message process before the switch pro-

cess.

?o[ResReq]; !execute(id);switch(!o[ResResp], !o[error])

At the execution, our dynamic client interpreter

downloads the extended abstract BPEL specification.

Then, it generates the corresponding service TA based

on the operational rules previously defined. Then,

based on the service TA and the interaction relation,

our client generates the client TA and begins its inter-

pretation. Figure 5 shows the generation process.

Figure 5: Adaptable service and client automata

When our client receives an execute(id)
message, it extracts the abstract BPEL advice

service process from the message. In our ex-

ample, the advice service is an authentication

process which abstract BPEL specification is

!o[authDataRequest] ; ?o[authDataResp] ;P1. This

process sends an authentication data request to the

client asking for authentication data, receives these

data then performs some actions to authenticate the

user. Our client generates the corresponding advice

client automaton, associates with the received id

and begins its execution (Figure 6, states in grey

represents the current execution step).

Figure 6: Receiving an execute(id,Q) message.

When the advice client id terminates, our client

makes synchronisation with the main client automa-

ton. it deletes the advice client, performs the id.
√

action and continues the execution of the main client

automaton (figure 7).

Figure 7: Termination of the advice client id.

4 RELATED WORKS

In (Charfi and Mezini, 2004) and (Courbis and

Finkelstein, 2005), the authors define specific AOP



languages to add dynamically new behaviours to

BPEL processes. But, neither of these approaches ad-

dress the client interaction issue. The client has no

mean to handle the interactions that can be added or

modified during the process execution.

The Web Service Management Layer (WSML)

(Verheecke et al., 2003) is an AOP-based platform for

WSs that allows a more loosely coupling between the

client and the server sides. WSML handles the dy-

namic integration of new WSs in client applications

to solve client execution problems. WSML dynam-

ically discover WSs based on matching criteria such

as: method signature, interaction protocol or quality

of service (QOS) matching. In a complementary way,

our work proposes to adapt a client to a modified WS.

Some proposals have emerged recently to ab-

stractly describe WSs, most of them are grounded

on transition system models (Labelled Transition Sys-

tems, Petri nets, etc.) (Hamadi and Benatallah, 2003;

Fu et al., 2004; Ferrara, 2004). These works pro-

pose to formally specify composite WSs and handle

the verification and the automatic composition issues.

But, neither of these works propose to formalize the

dynamics of SOA architectures and to handle runtime

interaction changes.

5 CONCLUSION AND FUTURE

WORKS

In this paper, we proposed a solution based on

AOP and PA to handle dynamic changes in the WS

context. We extended our previous AOP approach to

support BPEL processes and to handle interaction is-

sues. We also use process algebra formalism to spec-

ify change-prone BPEL processes and generate dy-

namic clients.

As future works, we want to extend the work to

take into account the client execution context. We

also want to formally handle the aspects interactions

issue (aspects applied at the same joinpoint). Finally,

we plane to improve the current ASW prototype as

proof-of-concepts.

REFERENCES

Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theoretical Computer Science, 126(2):183–235.

Andrews, T. et al. (2003). Business Pro-
cess Execution Language for Web Ser-
vices. 2nd public draft release, Version 1.1,
http://www.ibm.com/developerworks/webservices/lib
rary/ws-bpel/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
and Yergeau, F. (2004). Extensible markup lan-
guage(xml) 1.0, http://www.w3.org/xml/.

Charfi, A. and Mezini, M. (2004). Aspect-oriented web
service composition with AO4BPEL. In Proceed-
ings of the 2nd European Conference on Web Ser-
vices (ECOWS), volume 3250 of LNCS, pages 168–
182. Springer.

Clark, J. and DeRose, S. (1999). Xml path language (xpath)
ver. 1.0, http://www.w3.org/tr/xpath.

Courbis, C. and Finkelstein, A. (2005). Weaving aspects
into web service orchestrations. In ICWS ’05: Pro-
ceedings of the IEEE International Conference on
Web Services (ICWS’05), pages 219–226, Washing-
ton, DC, USA. IEEE Computer Society.

Ferrara, A. (2004). Web services: a process algebra ap-
proach. In ICSOC ’04: Proceedings of the 2nd inter-
national conference on Service oriented computing,
pages 242–251, New York, NY, USA. ACM Press.

Fu, X., Bultan, T., and Su, J. (2004). Analysis of interact-
ing bpel web services. In WWW ’04: Proceedings of
the 13th international conference on World Wide Web,
pages 621–630, New York, NY, USA. ACM Press.

Haddad, S., Moreaux, P., and Rampacek, S. (2006). Client
synthesis for web services by way of a timed seman-
tics. In Proceedings of the 8th Int. Conf. on Enterprise
Information Systems (ICEIS06), pages 19–26.

Hamadi, R. and Benatallah, B. (2003). A petri net-based
model for web service composition. In ADC ’03:
Proceedings of the 14th Australasian database con-
ference, pages 191–200, Darlinghurst, Australia, Aus-
tralia. Australian Computer Society, Inc.

Hmida, M. B., Tomaz, R. F., and Monfort, V. (2006). Ap-
plying aop concepts to increase web services flexi-
bility. Journal of Digital Information Management
(JDIM), 4(1):37–43.

Kiczales, G., Lamping, J., Maeda, C., and Lopes, C.
(1997). Aspect-oriented programming. In Proceed-
ings European Conference on Object-Oriented Pro-
gramming, volume 1241, pages 220–242. Springer-
Verlag, Berlin, Heidelberg, and New York.

Milner, R. (1995). Communication and concurrency. Pren-
tice Hall International (UK) Ltd., Hertfordshire, UK.

Staab, S., van der Aalst, W., and Benjamins, V. R. (2003).
Web services: been there, done that? IEEE Intelligent
Systems [see also IEEE Intelligent Systems and Their
Applications], 18(1):72–85.

Tidwell, D. (2000). Web services: The web’s next revolu-
tion, http://whitepapers.techrepublic.com.com/.

Tomaz, R. F., Hmida, M. B., and Monfort, V. (2006).
Concrete solutions for web services adaptability us-
ing policies and aspects. The International Journal of
Cooperative Information Systems (IJCIS), 15(3):415–
438.

Verheecke, B., Cibrán, M., and Jonckers, V. (2003). AOP
for Dynamic Configuration and Management of Web
Services. In Proceedings of the International Con-
ference on Web Services Europe 2003, volume 2853,
pages 137–151. Springer.


