
Accepted Manuscript

Timed Petri Nets and Timed Automata: On the Discriminating Power of Zeno

Sequences

Patricia Bouyer, Serge Haddad, Pierre-Alain Reynier

PII: S0890-5401(07)00108-3

DOI: 10.1016/j.ic.2007.10.004

Reference: YINCO 3521

To appear in: Information and Computation

Received Date: 26 July 2006

Revised Date: 15 May 2007

Accepted Date: 14 October 2007

Please cite this article as: P. Bouyer, S. Haddad, P-A. Reynier, Timed Petri Nets and Timed Automata: On the

Discriminating Power of Zeno Sequences, Information and Computation (2007), doi: 10.1016/j.ic.2007.10.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ic.2007.10.004
http://dx.doi.org/10.1016/j.ic.2007.10.004

ACCEPTED MANUSCRIPT

Timed Petri Nets and Timed Automata:

On the Discriminating Power of Zeno Sequences?

Patricia Bouyer a Serge Haddad b Pierre-Alain Reynier a

aLSV, CNRS & ENS Cachan, France
bLAMSADE, CNRS & Université Paris-Dauphine, France

Abstract

Timed Petri nets and timed automata are two standard models for the analysis of real-
time systems. We study in this paper their relationship, and prove in particular that they
are incomparable w.r.t. language equivalence. In fact, we study the more general model
of timed Petri nets with read-arcs (RA-TdPN), already introduced in [17], which unifies
both models of timed Petri nets and of timed automata, and prove that the coverability
problem remains decidable for this model. Then, we establish numerous expressiveness
results and prove that Zeno behaviours discriminate between several sub-classes of RA-
TdPNs. This has surprising consequences on timed automata, for instance on the power of
non-deterministic clock resets.

Key words: Timed Automata, Timed Petri Nets, Expressiveness

1 Introduction

Timed automata (TA) [3] are a well-accepted model for representing and analyzing
real-time systems: they extend finite automata with clock variables which give tim-
ing constraints on the behaviour of the system. Another prominent formalism for
the design and analysis of discrete-event systems is the model of Petri nets (PN) [8].
An important interest of PNs lies in their applicability to the verification of infinite-
state systems because some standard problems are decidable for this model (bound-
edness, coverability, reachability, action-based linear-time formula checking, etc.).

? A preliminary version of this work has been published in [6].
Email addresses: bouyer@lsv.ens-cachan.fr (Patricia Bouyer),

haddad@lamsade.dauphine.fr (Serge Haddad), reynier@lsv.ens-cachan.fr
(Pierre-Alain Reynier).

Preprint submitted to Elsevier Science 18 October 2007

ACCEPTED MANUSCRIPT

Thus, in order to model concurrent systems with constraints on time, several timed
extensions of PNs have been proposed as a possible alternative to TA.

Time Petri nets (TPN), introduced in the 70’s, associate with each transition a time
interval [4]. A transition can be fired if it is enabled (every input place contains
the required number of tokens) and if the time since it has been enabled lies in the
specified interval. Time can elapse only if it does not disable some transition: thus,
the decision to wait some amount of time and then fire a transition cannot be done
locally, but requires to check globally that no other transition is disabled during the
delay, even though this transition does not share any input or output place with the
transition we plan to fire. This restricts a lot applicability of partial order methods
for this model. Moreover, because of this “urgency” requirement, all significant
problems are undecidable for unbounded TPNs.

Timed Petri nets (TdPN), also called timed-arc Petri nets, associate with each arc
an interval [18]. In TdPNs, each token has an age. This age is initially set to a value
belonging to the interval of the arc which has produced it or set to zero if it be-
longs to the initial marking. Afterwards, ages of tokens evolve synchronously with
time. A transition may be fired if tokens with age belonging to the intervals of its
input arcs may be found in the current configuration. Note that “old” tokens may
die (i.e., they cannot be used anymore for firing a transition but they remain in the
place), and that conditions for firing transitions are hence local and do not depend
on the global configuration of the system, unlike in TPNs. This “lazy” behaviour
has important consequences. Whereas the reachability problem is undecidable for
TdPNs [18], the coverability problem [2] and some significant other ones are de-
cidable [1]. Furthermore, TdPNs cannot be transformed into equivalent TA (for the
language equivalence), since the untimed languages of the latter model are regular.
However the question whether (bounded) TdPNs are more expressive than TA w.r.t.
language equivalence was not known.

Read-arc timed Petri nets (RA-TdPN) extend TdPNs with read-arcs, i.e. arcs that
check the presence of a token (with an age as specified on the arc), without con-
suming it. This model has been first introduced by Jiří Srba in [17] in order to
compare TA with 1-bounded TdPNs (and its extension with read-arcs). Moreover,
this feature has already been introduced in the untimed framework [14] in order to
define a more refined concurrent semantics for the nets. For semantics taking into
account fairness, it has been shown in [19] that read arcs add expressive power. For
the interleaving semantics, they however do not add any expressive power in the
untimed framework as they can be replaced by two arcs which check that a token
is in the place and replace it immediately.

Our contributions. We first investigate the decidability of the coverability prob-
lem for the RA-TdPN model, and we prove that, as for TdPNs, it is decidable.

2

ACCEPTED MANUSCRIPT

We then focus on the expressiveness of read-arcs, and prove quite surprising results.
Indeed, we show that read-arcs add expressiveness to the model of TdPNs when
considering languages of (possibly Zeno) infinite timed words. On the contrary,
we also prove that when considering languages of finite or non-Zeno infinite timed
words, read-arcs can be simulated and thus don’t add any expressiveness to TdPNs.

Furthermore we investigate the relative expressiveness of several subclasses of RA-
TdPNs, depending on the following restrictions: boundedness of the nets, integral-
ity of constants appearing on the arcs, resets labelling post-arcs. We give a complete
picture of their relative expressive power, and distinguish between three timed lan-
guage equivalences (equivalence over finite words, or infinite words, or non-Zeno
infinite words) which, as before, lead to different results.

We finally establish that timed automata and bounded RA-TdPNs are language
equivalent. From this result and former ones, we deduce several worthwhile ex-
pressiveness results, for instance we prove that non-determinism in clock resets
adds expressive power to timed automata with integral constants over (possibly
Zeno) infinite timed words, which contrasts with the finite or non-Zeno infinite
timed words case [5]. If rational constants are allowed, this is no more the case: it
should be emphasized that this latter result implies that the granularity of the au-
tomaton has to be refined if we want to remove non-deterministic updates while
preserving expressiveness.

Organisation of the paper. In Section 2, we define the RA-TdPN model and
its different subclasses. We show in Section 3 that the coverability problem is de-
cidable for that model. In Sections 4, 5, 6 and 7 we establish our numerous ex-
pressiveness results on RA-TdPNs and their subclasses. We present an overview of
these results in Section 8. In Section 9, we give expressiveness results for timed
automata.

2 Read-Arc Timed Petri Nets

Preliminaries. If A is a set, A∗ denotes the set of all finite words over A whereas
Aω denotes the set of infinite words over A. Given a function f over some set X,
we may extend wordlessly f to the set of subsets of X, by f (Y) = { f (y) | y ∈ Y},
for every subset Y of X. An interval I of R≥0 is a Q≥0-(resp. N≥0-)interval if its left
endpoint belongs to Q≥0 (resp. N≥0) and its right endpoint belongs to Q≥0 ∪{∞}

(resp. N≥0∪{∞}). We denote by I (resp. IN≥0) the set of Q≥0-(resp. N≥0-)intervals
of R≥0.

Bags. Given a set E, Bag(E) denotes the set of mappings f from E to N≥0 such that

3

ACCEPTED MANUSCRIPT

the set dom(f) = {x ∈ E | f (x) , 0} is finite. Given such an element f ∈ Bag(E),
we use the notation f =

∑
x∈dom(f) f (x) · x (omitting f (x) when f (x) = 1). We note

size(f) =
∑

x∈E f (x). Let x, y ∈ Bag(E), then y ≤ x iff ∀e ∈ E, y(e) ≤ x(e). If y ≤ x,
then x − y ∈ Bag(E) is defined by: ∀e ∈ E, (x − y)(e) = x(e) − y(e). For d ∈ R≥0 and
x ∈ Bag(R≥0), x+d ∈ Bag(R≥0) is defined by ∀τ <d, (x+d)(τ) = 0 and ∀τ ≥ d, (x+
d)(τ) = x(τ−d). We finally define the operation of projection. Let x ∈ Bag(E1×...×

En), and let I = {i1,..., ik} be a set of indices such that 1 ≤ ii <...<ik ≤ n. The
bag πi1,...,ik (x) ∈ Bag(Ei1 ×...× Eik) is defined by: for all (ei1 ,..., eik) ∈ Ei1 ×...×

Eik , πi1,...,ik (x)(ei1 ,..., eik) =
∑

e j1 ,...,e jn−k∈E j1×...×E jn−k
x(e1,..., en), where { j1,..., jn−k}

is the unique set of indices such that 1 ≤ j1 <...<jn−k ≤ n satisfying {i1,..., ik} ∩

{ j1,..., jn−k} = ∅. Finally, note that if A is a finite set and B a set, then Bag(B)A, the
set of applications from A to Bag(B), is isomorphic to Bag(A × B).

Timed words and timed languages. Let Σ be a fixed finite alphabet such that ε < Σ
(ε is the silent action), we denote Σε = Σ ∪ {ε}. A timed word w over Σε (resp. Σ)
is a finite or infinite sequence w = (a0, τ0)(a1, τ1)...(an, τn)...such that for every
i ≥ 0, ai ∈ Σε (resp. ai ∈ Σ), τi ∈ R≥0 and τi+1 ≥ τi. The value τk gives the time point
at which action ak occurs. We write Duration(w) = supk τk for the duration of the
timed word w. Since ε is a silent action, it can be removed in timed words over Σε,
and it naturally gives timed words over Σ. An infinite timed word w over Σ is said to
be Zeno whenever Duration(w) is finite. We denote byTW ∗(Σ) (resp. TW ω(Σ),
TW

ωnz(Σ)) the set of finite (resp. infinite, non-Zeno infinite) timed words over Σ.
A timed language of finite (resp. infinite, non-Zeno infinite) words is a subset of
TW

∗(Σ) (resp.TW ω(Σ),TW ωnz(Σ)).

The Model of RA-TdPNs. The qualitative component of a RA-TdPN is a Petri
net extended with read-arcs. A read-arc checks for the presence of tokens in a place
without consuming them. The quantitative part of a RA-TdPN is composed of tim-
ing constraints on arcs. Informally, when firing a transition, tokens are consumed
whose ages satisfy the timing constraints specified on the input-arcs (they are speci-
fied using bags), and it is checked whether the constraints specified by the read-arcs
are satisfied. Tokens are then produced according to the constraints specified on the
output-arcs.

Definition 1 A timed Petri net with read-arcs (RA-TdPN for short) N is a tuple
(P,m0,T,Pre,Post,Read, λ,Acc) where:

• P is a finite set of places;
• m0 ∈ Bag(P) denotes the initial marking of places;
• T is a finite set of transitions with P ∩ T = ∅;
• Pre, the backward incidence mapping, is a mapping from T to Bag(I)P;
• Post, the forward incidence mapping, is a mapping from T to Bag(I)P;
• Read, the read incidence mapping, is a mapping from T to Bag(I)P;
• λ : T → Σε is a labelling function;

4

ACCEPTED MANUSCRIPT

• Acc is an accepting condition defined as a finite set of formulas, each of which

is generated by the grammar

acc ::=
n
∑

i=1

pi ./ k | acc ∧ acc

where pi ∈ P, k ∈ N≥0 and ./ ∈ {≤,≥}.

Since Bag(I)P is isomorphic to Bag(P × I), Pre(t), Post(t) and Read(t) may also
be considered as bags. Given a place p and a transition t, if the bag Pre(t)(p) (resp.
Post(t)(p), Read(t)(p)) is non null then it defines a pre-arc (resp. post-arc, read-
arc) of t connected to p.

A configuration ν of a RA-TdPN is an item of Bag(R≥0)P (or equivalently Bag(P
×R≥0)). Intuitively, a configuration is a marking extended with age information for
the tokens. We will write (p, τ) for a token which is in place p and whose age is
τ. A configuration is then a finite sum of such pairs. A token (p, τ) then belongs to
the configuration ν whenever (p, τ) ≤ ν (in terms of bags). The initial configuration
ν0 ∈ Bag(P×R≥0) is defined as ν0 =

∑

p∈P m0(p)·(p, 0), where it means that for each
p, there are m0(p) tokens of age 0 in place p. Given a configuration ν ∈ Bag(P×R≥0)
and a bag f ∈ Bag(P × I), we say that ν satisfies f , and write ν |= f , if and only if
there exists a bag x ∈ Bag(P × R≥0 × I) verifying the following conditions.

π1,2(x) = ν,

π1,3(x) = f ,

∀(p, τ, I) ∈ dom(x), τ ∈ I.

We now describe the semantics of a RA-TdPN as a transition system.

Definition 2 (Semantics of a RA-TdPN) Let N = (P,m0,T,Pre,Post,Read, λ,
Acc) be an RA-TdPN. Its semantics is the transition system (Q, ν0,Σε,→) where
Q = Bag(R≥0)P, ν0 =

∑

p∈P m0(p) · (p, 0), and the transition relation → is com-
posed of delay and discrete transitions as follows:

• For each d ∈ R≥0, there is a delay transition ν
d
−→ ν + d where the configuration

ν + d is defined by (ν + d)(p) = ν(p) + d for every p ∈ P.
• Given a transition t ∈ T and two configurations ν, ν′ ∈ Bag(P×R≥0), there exists

a discrete transition from ν to ν′ labelled by λ(t), denoted by ν
λ(t)
−−→ ν′, if and only

5

ACCEPTED MANUSCRIPT

if there exist three bags •ν, ◦ν, ν• ∈ Bag(P × R≥0) such that:

•ν |= Pre(t),
◦ν |= Read(t),

ν• |= Post(t),
•ν + ◦ν ≤ ν,

ν′ = ν − •ν + ν•.

The intuition of the previous definition is as follows: •ν is the set 1 of tokens which
is removed from the configuration ν when firing transition t, whereas ◦ν is the set
of tokens that needs to be in p for transition t to be fired (note that these two sets
of tokens need to be disjoint, hence the fourth condition •ν + ◦ν ≤ ν); finally ν• is
the set of tokens that are created by the transition firing. Moreover, the ages of all
these tokens need to satisfy the constraints specified by the various arcs (conditions
written using the |= operator defined above). Finally, all tokens used by a read-
arc are not removed, that’s why the new configuration is given by ν′ computed as
ν′ = ν − •ν + ν•.

To reason about the behaviour of the net, we also consider the transition system
obtained when λ is the identity mapping. We then write ν

t
−→ ν′ when transition t is

fired, according to the previous definition.

A path in the RA-TdPNN is a sequence ν0
d1
−→ ν′1

t1
−→ ν1

d2
−→ ν′2

t2
−→ ν2 . . . in the above

transition system, which alternates between delay and discrete transitions. A timed
transition sequence is a (finite or infinite) timed word over alphabet T , the set of
transitions of N . A firing sequence is a timed transition sequence (t1, τ1)(t2, τ2) . . .
such that ν0

τ1
−→ ν′1

t1
−→ ν1

τ2−τ1
−−−−→ ν′2

t2
−→ ν2 . . . is a path. If (p, τ) ≤ ν is a token of a

configuration ν, it is a dead token whenever for every interval I labelling a pre- or
a read-arc of p, τ is strictly greater than I. It means that this token cannot be used
anymore (either by a pre- or a read-arc) to fire a transition.

The timed word which is read along a path ν0
d1
−→ ν′1

t1
−→ ν1

d2
−→ ν′2

t2
−→ ν2 . . . is the

projection over Σ of the timed word (λ(t1), d1)(λ(t2), d1 + d2) . . . Petri nets can be
considered as language acceptors, as formally defined by the next definition.

1 This is a language misuse, the right term should be “bag”, as there can be several tokens
with the same age.

6

ACCEPTED MANUSCRIPT

We first define a satisfaction relation for the accepting conditions. It is defined over
configurations of the nets, inductively as follows:

ν satisfies
∑n

i=1 pi ./ k iff
∑n

i=1 size(ν(pi)) ./ k

ν satisfies acc1 ∧ acc2 iff ν satisfies acc1 and ν satisfies acc2

where ./ ∈ {≤,≥}.

Definition 3 (Language accepted by a RA-TdPN) Let N = (P,m0,T,Pre,Post,
Read, λ,Acc) be an RA-TdPN. A finite path inN is accepting if it ends in a config-
uration satisfying one of the formulas of Acc. An infinite path is accepting if every
formula of Acc is satisfied infinitely often along the path (Acc is then viewed as
a generalized Büchi condition 2). We note L∗(N) (resp. Lω(N), Lωnz(N)) the set
of finite (resp. infinite, non-Zeno infinite) timed words accepted by N along finite
(resp. infinite) paths.

It is worth noticing that the accepting conditions only depend on the untimed mark-
ings associated with configurations. Note also that infinite paths leading to finite
timed words are not considered in this work.

Two RA-TdPNs N and N ′ are ∗-equivalent (resp. ω-equivalent, ωnz-equivalent)
whenever L∗(N) = L∗(N ′) (resp. Lω(N) = Lω(N ′), Lωnz(N) = Lωnz(N ′)). These
equivalences naturally extend to subclasses of RA-TdPNs. In the following, we
will use notations like “{∗, ω, ωnz}-equivalence” to mean the intersection of all three
equivalences. Idem for “{∗, ωnz}-equivalence” and other combinations. We will also
use notations like ≡ω or ≡∗,ωnz to denote the ω- (resp. {∗, ωnz}) equivalence between
classes of nets.

Notations. Read-arcs are represented by undirected arcs. On pictures, we may use
shorthands to represent bags: for all I ∈ I, I stands for the bag 1 · I, [a] is for
the interval [a, a]. We may write intervals as constraints, e.g. “≤ a” stands for the
interval [0, a]. A bag n represents the bag n · R≥0, and no bag on an arc means that
this arc is labelled by the bag 1 · R≥0.

Example 1 An example of RA-TdPN is depicted on Figure 1. This net models an
information provided by a server and asynchronously consulted by clients (transi-
tion “read”). Since the information may be obsolete with validity duration “val”,
the server periodically refreshes the value, but the frequency of this refresh may
vary between min and max depending on the workload of the server (transition
“start”). Note that, due to the “lazy” semantics of RA-TdPNs, nothing prevents the

2 We do not know whether generalized Büchi conditions could be reduced to Büchi con-
ditions in the context of timed Petri nets. Nevertheless, the standard construction for finite
automata does not extend to Petri nets.

7

ACCEPTED MANUSCRIPT

token in place “busy” (resp. “ready”) to die (i.e., to reach an age strictly greater
than max, resp. than 0), hence blocking the system. A suitable accepting condi-
tion like “Acc = {busy = 0, ready = 0}” prevents such a blocking behaviour by
enforcing infinitely often the server to refresh the cache. Note the importance of
using a generalized Büchi condition to enforce the firing of both transitions “start”
and “refresh”. The admission control ensures that at least one time unit elapses
between two client arrivals (transition “entry”). Note the interest of the read-arc
between the places “cache” and “read”: when transition “read” is fired, a token in
place “client” with age 0 is consumed, and it is checked whether at least one token
in place “cache” has age less than or equal to “val”. However, this token is not
consumed (and can hence be used later on again) and its age is unchanged.

Acc = {busy = 0, ready = 0}

• •

input

entry

client

read

cache

readybusy

refresh

start

≥ 1[0]

[0]
[0] ≤ val

[0]

[0]
[0]

[0][min,max]

Fig. 1. An example of RA-TdPN.

We give an example of a path in this RA-TdPN, assuming that min = 2, max = 4,
and val = 3.

(input, 0) + (busy, 0)
(2)
−→ (input, 2) + (busy, 2)
start
−→ (input, 2) + (ready, 0)

refresh
−→ (input, 2) + (busy, 0) + (cache, 0)

(3)
−→ (input, 5) + (busy, 3) + (cache, 3)
entry
−→ (input, 0) + (client, 0) + (busy, 3) + (cache, 3)
read
−→ (input, 0) + (busy, 3) + (cache, 3)

Subclasses of RA-TdPNs. We define several natural subclasses of RA-TdPNs.

Definition 4 Let N = (P,m0,T,Pre,Post,Read, λ,Acc) be an RA-TdPN. It is

8

ACCEPTED MANUSCRIPT

• a timed Petri net (TdPN for short) 3 if for all t ∈ T, size(Read(t)) = 0,
• integral if all intervals appearing in bags of N are in IN≥0 ,
• 0-reset if for all t ∈ T, for all p ∈ P, I , [0, 0]⇒ I < dom(Post(t)(p)),
• k-bounded if all configurations ν appearing along a firing sequence of N are

such that for every place p ∈ P, size(ν(p)) ≤ k,
• bounded if there exists k ∈ N≥0 such that N is k-bounded,
• safe if it is 1-bounded.

All above notions are quite standard, except the 0-reset property which implies that
all tokens which are produced are produced with initial age 0.

Note that the RA-TdPN of Example 1 is integral, 0-reset, but not bounded as there
can be an unbounded number of tokens in place “cache” or “client”.

3 The Coverability Problem.

Let N be an RA-TdPN. Let N be a set of configurations of N . By N↑, we denote
the upward closure of N, i.e., the set {ν | ∃ν′ ∈ N, ν′ ≤ ν}.

Let N be a finite set of configurations of N where all ages of tokens are rational.
The coverability problem for N and set of configurations N asks whether there
exists a path inN from ν0, the initial configuration ofN , to some ν ∈ N↑. We prove
the following result.

Theorem 1 The coverability problem is decidable for RA-TdPNs.

In order to prove this theorem, we introduce the notion of region for a net. A region
is a classical object used in the framework of timed automata for representing an
infinite set of configurations [3], that we can extend to RA-TdPNs. Such a construc-
tion has been done for example in [12] for TdPNs, and has been used recently in
several other contexts [15,16,11]. An alternative proof based on zones rather than
regions could be used as well, like in [2].

Regions of RA-TdPNs. Let N = (P,m0,T,Pre,Post,Read, λ,Acc) be a net
where the bounds of intervals are in N≥0 ∪ {∞}. Let N be a finite set of markings
with integral ages. There is no loss of generality in assuming that finite bounds of
the net and that values of ages are integers or +∞ (otherwise we refine the granular-
ity of the regions). By max we denote the maximal integer appearing in the bounds
of intervals of the net and in the ages of the tokens in the configurations of N.

3 This is the standard model, as defined in [18].

9

ACCEPTED MANUSCRIPT

Definition 5 A region R for N is a sequence a0a1 . . . ana∞ where n ∈ N≥0, for
all 0 ≤ i ≤ n, ai ∈ Bag(P × {0, 1, . . . ,max}) with size(ai) , 0 if i , 0, and
a∞ ∈ Bag(P × {∞}).

We first informally explain the semantics of a region. Given the bag of tokens
defining a configuration, we obtain its associated region as follows. We put in
a∞ all the tokens whose ages are strictly greater than max and forget their ages.
We then put in a0 the tokens with integral ages and add the information about
their ages. Finally, we order the remaining tokens depending on the fractional
part of their ages in a1, . . . , an, forget their fractional part, and only store the in-
tegral part of their ages. Hence n is the number of different positive fractional
values for ages of the remaining tokens. For instance, consider the bag of tokens
(p, 1) + (p, 2.8) + (q, 0.8) + (q, 5.1) + (r, 1.5). Then, if the maximal constant is 4,
its region encoding will be a0a1a2a∞ where a0 = (p, 1) (because there is a sin-
gle token with integral age), a∞ = (q,∞) (because the age of token (q, 5.1) is 5.1,
hence above the maximal constant), a1 = (r, 1) (among all fractional parts, 0.5 is
the smallest one), and a2 = (p, 2) + (q, 0) (all tokens with fractional part 0.8).

We now define more formally the semantics of the regions. Let φ be the mapping
from R≥0 to {0, 1, . . . ,max,∞} defined by: if x > max then φ(x) = ∞ else φ(x) =
bxc. We extend φ to P ×R≥0 by φ((p, x)) = (p, φ(x)) and to Bag(P×R≥0) by linearity.

Let R = a0a1 . . . ana∞ be a region. Then [R] is a set of configurations ν such that
there exist ν1, ν2, . . . , νn, ν∞ belonging to Bag(P × R≥0) with:

• ν = a0 + ν1 + ν2 + . . . + νn + ν∞,
• ∀1 ≤ i ≤ n, φ(νi) = ai, and φ(ν∞) = a∞,
• ∀1 ≤ i ≤ n, ∀(p, x) + (q, y) ≤ νi, 0 < x − bxc = y − byc,
• ∀1 ≤ i < j ≤ n, ∀(p, x) ≤ νi, (q, y) ≤ ν j, x − bxc < y − byc.

Note that every configuration ν belongs to a single region, that we write R(ν), and
that if ν ∈ N, then [R(ν)] = {ν}. The original coverability problem thus reduces to
the coverability problem for finitely many regions, which itself reduces to solving
the coverability problem for a single region R.

Decidability of the coverability problem. We can now prove Theorem 1.

Proof. We first notice that, given two regions R = a0a1 . . . ana∞ and R′ = a′0a′1 . . .
a′n′a

′
∞, one can check whether [R]↑ ⊆ [R′]↑: the necessary and sufficient conditions

are a0 ≥ a′0, a∞ ≥ a′∞ and the existence of a strictly increasing mapping ψ from
{1, . . . , n′} into {1, . . . , n} such that for every 1 ≤ i ≤ n′, aψ(i) ≥ a′i .

We define a partial order between regions by R ≤ R′ iff [R′]↑ ⊆ [R]↑. Then, using
Higman’s lemma [9], we can show that this is a well quasi-order, i.e., for every

10

ACCEPTED MANUSCRIPT

infinite sequence of regions {Ri}i∈N≥0 there exist i < j such that Ri ≤ R j. Indeed,
each region R is a finite sequence of bags over a finite set, hence applying [2,
Theorem 1], the above-mentioned partial order is a well quasi-order.

The algorithm for solving the coverability problem for the upward closure of a
single region R then consists in computing iteratively the predecessors (by time
elapsing and by discrete steps) of [R]↑. As we will see, each such predecessor is
a finite union of upward closures of regions. We stop exploring the predecessors
of an upward closure of a region when it is larger (for partial order ≤) than an
already computed region. Note that all configurations reachable from [R2]↑ are also
reachable from [R1]↑ whenever R1 ≤ R2. The computation can then be seen as
a finitely branching tree. To prove that it terminates, it is sufficient to prove that
this tree is finite. Suppose it is not. By applying König lemma, this tree has an
infinite branch. However, as ≤ is a well quasi-order, we will eventually obtain a
region which is larger than a previous one. This leads to a contradiction. Hence, the
computation tree is finite, and the computation terminates. The set of configurations
N is covered by the RA-TdPN N if and only if its initial configuration ν0 occurs in
the upward closure of some region of the tree.

It remains to explain how we compute the time and discrete predecessors of the
upward closure of a region R = a0a1 . . . ana∞.

Time predecessors. If a0 contains a token (p, 0), there is no strict time predeces-

sor of [R]↑. Otherwise if size(a0) , 0, then the time predecessor is [R′]↑ with
R′ = a′0a1 . . . ana′n+1a∞ where a′0 is the empty bag and a′n+1 is obtained from a0 by
decrementing by 1 the (integral) age of each token. Informally, this operation rep-
resents a (reverse) small time elapse such that no token of a1 reaches an integral
value and no token of a∞ reaches back max.

Otherwise (i.e., size(a0) = 0) we need to choose if tokens of a1 will first reach an
integral value or some tokens of a∞ will first reach max. It could be the tokens of a1,
a bag of tokens b∞ ≤ a∞, or both. We only illustrate this last case (which assumes
n ≥ 1). The above-mentioned time predecessor is [R′]↑ where R′ = a′0a′1 . . . a

′
n−1a′∞

is obtained as follows.

• a′∞ = a∞ − b∞,
• a′0 = a1 + c∞ where c∞ is obtained from b∞ by setting the age of each token to

max,
• ∀1 ≤ i ≤ n − 1, a′i = ai+1.

Discrete predecessors. We pick a transition t. Note that given an interval I of the
net and a token (p, x) belonging to some ai for i ∈ {0, 1, . . . , n,∞}, we can compute
whether, given a configuration belonging to that region, the corresponding token
belongs to I. By property of the regions, this is independent of the choice of the
configuration. We then write (i, x) � I.

11

ACCEPTED MANUSCRIPT

We consider the upward closure of the region a0a1 . . . ana∞, and want to compute
its preimage by transition t. Transition t produces the bag of tokens Post(t). These
tokens may appear in one of the ai’s, but this is not required, they may only be in
the upward closure. Similarly, some tokens of Read(t) may appear in some of the
ai’s, but this is also not required. Hence, we choose bags of tokens posti, read+i ∈
Bag(P×{0, 1, . . . ,max}×I) for every i ∈ {0, 1, . . . , n} and post∞, read+∞ ∈ Bag(P×
{∞} × I) such that

• for all (p, x, I) ≤ posti + read+i , (i, x) � I,
• for all i ∈ {0, 1, . . . , n,∞}, π1,2(posti) + π1,2(read+i) ≤ ai,

(recall that π1,2 projects bags onto the two first components.)
•
∑

i π1,3(posti) ≤ Post(t),
•
∑

i π1,3(read+i) ≤ Read(t).

The bag posti represents the tokens produced by t which “belong” to ai, whereas
the bag read+i represents the tokens read by t which also “belong” to ai. However,
there might be additional tokens (either that are read or that are produced) which
do not appear in one of the ai’s (this is possible as we consider the upward closure
of the region), that’s why the two last conditions are inequalities and not equalities.
Figure 2 illustrates the decomposition.

Applying this first decomposition, we build an intermediate regionR′ = a′0a′1 . . . a
′
n′a
′
∞

by substracting π1,2(posti) from ai for every i and deleting the item in the resulting
sequence if its size is null (for 1 ≤ i ≤ n).

Then, to really simulate the discrete transition t, we need to initially have all tokens
required by the read-arcs and all tokens that are consumed by the pre-arcs. We set
bags of tokens prei, read−i ∈ Bag(P×{0, 1, . . . ,max}×I) for every i ∈ {0, 1, . . . , n′′}
for some integer n′′, pre∞, read−∞ ∈ Bag(P × {∞} × I) and a strictly increasing
mapping ψ from {1, . . . , n′} into {1, . . . , n′′} such that

• for all (p, x, I) ≤ prei + read−i , (i, x) � I,
• a′′0 = a′0 + π1,2(pre0) + π1,2(read−0),

a′′∞ = a′∞ + π1,2(pre∞) + π1,2(read−∞),
for every i ∈ {1, . . . , n′′}, if there exists j such that ψ(j) = i then
a′′i = a′j + π1,2(prei) + π1,2(read−i), otherwise a′′i = π1,2(prei) + π1,2(read−i),
•
∑

i π1,3(prei) = Pre(t),
•
∑

i π1,3(read−i) +
∑

i π1,3(read+i) = Read(t).

The bags read−i complement the already defined bags read+i ’s to satisfy the Read(t)
constraint, whereas prei are the tokens required by the pre-arcs of the transition. See
Figure 2 for an illustration of the construction.

Under those conditions, the region R′′ = a′′0 a′′1 . . . a
′′
n′′a
′′
∞ is a predecessor by t of

[R]↑. Note that the constructed region R′′ depends on the various choices we have
made (all bags read+, read−, pre, etc. and also the indices n′, n′′, the mapping

12

ACCEPTED MANUSCRIPT

ψ, etc.). For each of these (finitely many) choices, it gives a region which is in
the preimage of R by t (indeed, take any configuration ν′′ ∈ [R′′]↑, then quite
straightforwardly, any configuration image of ν by t is in [R]↑), and all regions in
the preimage by t can of course be obtained in that way.

|=
∑

i π1,3posti
and ∈ψ−1(

∑

i π1,2(posti)) |=Post(t)

|=
∑

i π1,3read+i
and ∈ψ−1(

∑

i π1,2(read+i))

|=Read(t)

|=
∑

i π1,3read−i
and ∈ψ−1(

∑

i π1,2(read−i))

|=Pre(t)=
∑

i π1,3prei

and ∈ψ−1(
∑

i π1,2(prei))

∈[R′′]

∈[R′]

∈[R]

∈[R′′]↑ ∈[R′]↑ c∈[R]↑

c = d + e + f with e∈[R]

Fig. 2. Decomposition of the set of tokens for the discrete predecessor computation

Hence, time predecessors and discrete predecessors of regions are finite unions of
regions, and can be effectively computed, which concludes the proof of the theo-
rem. �

4 Two Discriminating Timed Languages

We design two timed languages which distinguish between several subclasses of
RA-TdPNs. Notice that these two languages are Zeno. This remark will be impor-
tant later on in this section.

The timed language L1. The RA-TdPN N1 of Figure 3 (with a single Büchi
accepting condition p ≥ 1) is a 0-reset, integral and bounded RA-TdPN which
recognizes the timed language (of infinite timed words)

L1 = {(a, τ1) . . . (a, τn) . . . | 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . ≤ 1}.

13

ACCEPTED MANUSCRIPT

•p
a

[0, 1]

Acc = {p ≥ 1}

Fig. 3. A RA-TdPNN1 recognizing L1

Lemma 1 The timed language L1 is recognized by no TdPN.

Proof. Assume that there is a TdPN N which recognizes the timed language L1.
We denote by d the least common multiple of the denominators of the constants
appearing in the intervals of N . We pick an infinite word w = (a, τ1)(a, τ2) . . .
(a, τn) . . . such that for every i ≥ 1, 1 − 1/(2d) < τi < τi+1 < 1.

The word w is accepted by N1, and thus by N : there is an infinite firing sequence
σ = σ1(t1, τ1)σ2(t2, τ2) . . . σn(tn, τn) . . . over Σε which is an accepting run ofN and
where all transitions of σi are labelled by ε whereas the transitions ti are labelled
by a.

The set Tok of tokens part of the initial marking or produced along the sequence σ1

is finite. Hence, there is an integer n such that tokens in Tok are not used for firing
transitions in the sequence (tn−1, τn−1)σn(tn, τn) . . . Since τn−1 < τn, there is a suffix
(t′0, τ)(t′1, τn) . . . (t′k, τn)(tn, τn) of the timed transition sequence (tn−1, τn−1)σn(tn, τn)
with τ < τn (k may be equal to 0). We note σ′ the finite prefix of σ up to (t′0, τ),
and σ′′ the suffix starting right after (t′0, τ) (hence σ = σ′σ′′). We will prove that
the infinite sequence σ̃ = σ′(σ′′ + 1/(2d)) is a firing sequence of N (σ′′ + 1/(2d)
is the timed transition sequence obtained from σ′′ by delaying firings of transitions
by 1/(2d) time units). To that aim, we will analyse the age of tokens used for firing
a transition of σ′′ = (t′1, τn) . . . (t′k, τn)(tn, τn)σn+1(tn+1, τn+1) . . . in the original timed
transition sequence σ, and we will show that (when necessary) we can modify the
initial age of these tokens in order for the timed transition sequence σ̃ to be firable.

We pick a token in place p which, along σ, is produced by some transition t and
used for firing a transition t′ along σ′′. This means in particular that this token is
not in Tok, and thus that transition t occurs along σ at some date τ with τ1 ≤ τ.
If t is a transition of σ′′, then we do not need to modify the initial age of p along
σ̃, since t and t′ will be separated by the same delay along σ and along σ̃, hence
the token p can be used similarly in σ and in σ̃. Otherwise, t occurs along σ′ in σ,
hence 1− 1/(2d) < τ1 ≤ τ ≤ τ < τn ≤ τ

′ < 1 where τ′ is the date at which t′ is fired
along σ. We set δ = τ′ − τ: obviously, 0 < δ < 1/(2d). Let us call I− the interval
of Post(t)(p) associated with the production of the token, and I+ the interval of
Pre(t′)(p) associated with the consumption of the token. We first notice that I− and
I+ cannot be both singletons: assume I− = [h/d, h/d] and I+ = [k/d, k/d] with
h, k ∈ N≥0, then k/d = h/d + δ, which is impossible since 0 < δ < 1/(2d). We
distinguish between several cases for I− and I+:

14

ACCEPTED MANUSCRIPT

• We assume I− = [h/d, h/d] and I+ = (k/d, k′/d) with k < k′ (the brackets defin-

ing I+ are either “strict” or “non-strict”). The age of the token when it is con-
sumed by transition t′ along σ is h/d + δ ∈ I+. Thus h < k′, and we get that
h/d + δ + 1/(2d) ∈ I+ (since 0 < δ < 1/(2d)). In this case, we do not change the
initial age of the token for firing the timed transition sequence σ̃, and the firing
of t′ can be delayed by 1/(2d) time units.
• We assume I− = (h/d, h′/d) and I+ = [k/d, k/d] with h < h′. The age of the

token when it is produced (i.e., when transition t is fired) along σ is k/d− δ ∈ I−.
Thus, h < k and k/d − δ − 1/(2d) ∈ I− since 0 < δ < 1/(2d). For firing the
sequence σ̃, we thus change the initial age of the token down to k/d−δ−1/(2d),
and the firing of t′ can then be delayed by 1/(2d) time units.
• We assume I− = (h/d, h′/d) and I+ = (k/d, k′/d) with h < h′ and k < k′. We note
α the initial age of the token when transition t is fired along σ: α + δ (≤ k′/d)
is its age when the token is consumed for firing transition t′ along σ. If α + δ <
k′/d − 1/(2d), we do not modify its initial age in σ̃, and the firing of t′ can be
delayed safely by 1/(2d) time units.

Assume conversely that α ≥ k′/d − 1/(2d) − δ. Then, (k′ − 1)/d < α < k′/d,
and thus h ≤ k′ − 1 < h′. Along σ̃, choose as new initial age α′ = (k′ − 1)/d + β
with 0 < β < 1/(2d) − δ for the token (when transition t is fired), then we can
check that α′ ∈ I− and α′ + δ + 1/(2d) ∈ I+, hence the firing of t′ can also be
delayed by 1/(2d) time units.

With these new initial ages for the tokens, the timed transition sequence σ̃ is firable,
and accepts the timed word (a, τ1) . . . (a, τn−1)(a, τn + 1/(2d))(a, τn+1 + 1/(2d))
Moreover, the discrete markings along the run accepting the initial word and the
above word are the same, both timed words are thus accepted by N . However this
timed word should not be accepted by N as it is not accepted by N1 (because
τn + 1/(2d) > 1), which contradicts the existence of a TdPN N equivalent to N1.
Thus, there is no classical TdPN which recognizes L1. �

The timed language L2. The RA-TdPN N2 of Figure 4 is an integral bounded
RA-TdPN which recognizes the timed language (of infinite timed words)

L2 = {(a, 0)(b, τ1) . . . (b, τn) . . . | ∃τ < 1 s.t. 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . < τ}.

•
p q

a b
[0]]0, 1[]0, 1[

Acc = {q ≥ 1}

Fig. 4. A RA-TdPNN2 recognizing L2

Lemma 2 The timed language L2 is recognized by no 0-reset integral RA-TdPN.

15

ACCEPTED MANUSCRIPT

Proof. Assume that the timed language L2 is recognized by the 0-reset integral RA-
TdPN N . Pick a word w = (a, 0)(b, τ1) · · · (b, τi) . . . in L2, with 0 < τ1 ≤ τ2 ≤ . . . ≤

τi ≤ . . . < τ and limi→∞ τi = τ. We note σ an accepting firing sequence in N for w.

We write σ = σ1σ2 where σ1 is an instantaneous firing sequence, and σ2 =

(t0, d)σ2 for some delay d > 0 (hence, t0 is the first transition along σ which does
not occur at date 0). We claim that σ′ = σ1σ

′
2 where σ′2 is obtained from σ2 by

delaying all dates by 1 − τ time units, is a firing sequence of N . Let us select an
occurrence of a transition t fired in σ2 and a token read or consumed by t corre-
sponding to an interval I. If the token has been produced by a transition fired in σ2,
then it has the same age in σ′2. If the token is an initial token or has been produced
by σ1, then its age x when firing t in σ2 is such that 0 < d ≤ x < τ < 1, thus
]0, 1[⊆ I (because the net N is integral and 0-reset). The age of this token when it
is checked for firing t in σ′2 is x + 1 − τ and satisfies 0 < x + 1 − τ < 1. Thus, the
same occurrence of t is firable in σ′2.

Since the untimed firing sequences of σ and σ′ are equal, σ′ is an accepting se-
quence. The timed word which is read on σ′ is w′ = (a, 0)(b, τ1 + 1 − τ) . . . (b, τi +

1 − τ) . . . with limi→∞ τi + 1 − τ = 1. Thus, w′ < L2, which contradicts the assump-
tion that it is accepted by N , and thus by N2. Finally, there is no 0-reset integral
RA-TdPN which recognizes the language L2. �

5 Normalization of RA-TdPNs

We present a transformation of RA-TdPNs which preserves both languages over
finite and (Zeno or non-Zeno) infinite words, as well as boundedness and integral-
ity of the nets. This construction transforms the net by imposing strong syntactical
conditions on places, which will simplify further studies of RA-TdPNs. This con-
struction is decomposed into three steps. The first step consists in splitting inter-
vals so that two intervals are either disjoint or equal. The second step is somehow
close to one-dimensional regions of [10], and records ages of tokens and how time
elapses. The third step duplicates places so that all pre- (resp post-) arcs connected
to a place are labelled by the same interval.

Proposition 1 For every RA-TdPNN , we can effectively construct a RA-TdPNN ′

which is {∗, ωnz, ω}-equivalent to N , and in which all places are configured as one
of the five patterns depicted in Figure 5, which reads as: “there is an a (which is a
positive rational, or is possibly equal to +∞ for patterns P2 and P4) such that the
place is connected to possibly several post-arcs, pre-arcs and read-arcs, with bags
as specified on the figure”. Note that parameters n, n′ and n” are not necessarily
shared by arcs (whereas a is). Moreover the construction preserves boundedness
and integrality.

16

ACCEPTED MANUSCRIPT

 n · [0]

n′ · [0]

n′′ · [0]
p

t′

t t′′

(a) Pattern P1

[0]

n′ ·]0, a[

n′′ ·]0, a[
p

t′

t t′′

(b) Pattern P2 (a > 0 or a = ∞)

[0]

n′ ·]0, a[

[a]
p

t′

t t′′

(c) Pattern P3 (a > 0)

n ·]0, a[

n′ ·]0, a[

n′′ ·]0, a[
p

t′

t t′′

(d) Pattern P4 (a > 0 or a = ∞)

n ·]0, a[

n′ ·]0, a[

[a]
p

t′

t t′′

(e) Pattern P5 (a > 0)

Fig. 5. The five normalized patterns for an RA-TdPN.

To avoid difficulties due to the initial marking, we first apply a straightforward
transformation to the net. We add a place pinit containing initially one token and
a transition tinit labelled by ε, whose single pre-arc labelled by [0] is connected
to pinit and whose post-arcs correspond to the initial marking, i.e., for all p ∈ P,
Post(t)(p) = m0(p) · [0]. All other places are initially unmarked. Finally we add
pinit = 0 to the acceptance conditions. It is trivial that this transformation does
not modify any accepted language. In the sequel, we assume that we have already
applied this transformation to the net, and we apply the next transformations on
each place, except pinit.

As announced above, for proving Proposition 1 we proceed in three steps, and
successively construct a net which satisfies syntactical restrictions (1), (2) and (3)
below:

(1) For every place, there exists a finite set of pairwise disjoint intervals {Ik}1≤k≤K

such that every arc connected to this place has a bag of the form
∑

1≤k≤K nk · Ik.
Moreover, every Ik is either of the form [a] or]a, b[with a ∈ Q≥0 and b ∈
Q>0 ∪ {∞}.

(2) For every place,
• either it is connected to (possibly) several post-arcs labelled by bags n · [0],

(possibly) several read-arcs labelled by bags n′ · [0] and (possibly) several
pre-arcs labelled by bags n′′ · [0].
• or there exists a ∈ Q>0 such that it is connected to one post-arc whose bag is

[0], (possibly) several post-arc labelled by bags n ·]0, a[, (possibly) several
read-arcs labelled by bags n′ ·]0, a[, one pre-arc labelled by a bag [a], and
(possibly) several pre-arcs labelled by bags n′′ ·]0, a[.
• or it is connected to one post-arc whose bag is [0], (possibly) several post-

arc labelled by bags n ·]0,+∞[, (possibly) several read-arcs labelled by bags

17

ACCEPTED MANUSCRIPT

n′ ·]0,+∞[, and (possibly) several pre-arcs labelled by bags n′′ ·]0,+∞[.

(3) Every place is configured as one of the five patterns depicted on Figure 5.

In all following lemmas, the equivalence mentioned is the {∗, ω, ωnz}-equivalence,
which means that the constructions are correct for finite and infinite timed words.

The transformation proceeds as follows: it starts with an RA-TdPN N and suc-
cessively builds the three RA-TdPNs N1, N2 and N3 obtained respectively by
Lemma 3, 4 and 5.

Lemma 3 We can build a RA-TdPN N1, equivalent to N , and satisfying restric-
tion (1).

Proof. Let p be a place ofN . We consider the finite bounds of intervals which occur
in the bag of some arc connected to p, say {a1, . . . , am} with i < j ⇒ ai < a j. We
then define the set SIp = {[a1, a1],]a1, a2[, . . . ,]am−1, am[, [am, am],]am,∞[}. W.l.o.g.
we assume that a1 = 0. Moreover, to ease the presentation, we define am+1 = ∞ and
set am+1 − am = ∞, and write the set SIp as SIp = {Ik}1≤k≤K . Note that for every
interval Ik ∈ SIp and for every interval I which occurs in the bag of some arc
connected to p, we have either I ∩ Ik = ∅ or I ∩ Ik = Ik.

We will iteratively apply the following transformation to the transitions connected
to p. Let us pick a transition t connected to p by an arc whose associated bag is
x =
∑

1≤k′≤K′ nk′ · Jk′ . We will replace the transition t by copies with the same arcs
and the same bags except the one which is concerned by the transformation. We
denote such copies by tφ, where φ is a mapping from {1, . . . ,K}× {1, . . . ,K′} to N≥0

such that Ik ∩ Jk′ = ∅ ⇒ φ(k, k′) = 0 and
∑

1≤k≤K φ(k, k′) = nk′ . The modified bag is
defined by:

xφ =
∑

1≤k′≤K′
∑

1≤k≤K φ(k, k′) · (Ik ∩ Jk′)

=
∑

1≤k′≤K′
∑

1≤k≤K φ(k, k′) · Ik

=
∑

1≤k≤K(
∑

1≤k′≤K′ φ(k, k′)) · Ik.

This transformation is valid. Indeed given any choice of an item b ∈ Bag(R≥0 × I)
with π2(b) = x there exists a mapping φ and an item b′ ∈ Bag(R≥0 × I) such that
π1(b′) = π1(b) and π2(b′) = xφ. More precisely, we associate with a token (d, Jk′) ≤
b a token (d, Ik) such that d ∈ Ik. Conversely, given an item b′ ∈ Bag(R≥0 ×I) with
π2(b′) = xφ, we pick φ(k, k′) tokens {(di, Ik)}1≤i≤φ(k,k′) and replace them by the tokens
{(di, Jk′)}1≤i≤φ(k,k′). In this way, we obtain a bag b ∈ Bag(R≥0 × I) with π2(b) = x
and π1(b) = π1(b′).

The resulting RA-TdPN is denoted N1. �

Lemma 4 We can build a RA-TdPN N2, equivalent to N1, and satisfying restric-
tions (1) and (2).

18

ACCEPTED MANUSCRIPT

Proof. We iteratively apply the following transformation to each place ofN1. Let p
be a place ofN1 and assume that {[a1, a1],]a1, a2[, . . . ,]am−1, am[, [am, am],]am, am+1[}
is the set of pairwise disjoint intervals required by restriction (1).

We substitute to p a set of places {pa1 , pa1,a2 , . . . , pam−1,am , pam , pam,am+1}. We thus need
to modify the accepting condition Acc1 of N1: the accepting condition Acc2 of
N2 is obtained by replacing all occurrences of p in Acc1 by the term

∑m
i=1(pai +

pai,ai+1). Besides, in the transformed net, a token with age d in place pai or pai,ai+1

will correspond to a token with age d + ai in place p.

In order to pick (i.e., produce, consume or read) a token with age ai in place p, one
must pick a token with age 0 in the new place pai . In order to pick a token with age
d ∈]ai, ai+1[in place p, one must pick a token with age d − ai ∈]0, ai+1 − ai[in the
new place pai,ai+1 .

Thus we transform an arc connected to p with bag

x = n1 · [a1, a1] + n1,2 ·]a1, a2[+ · · · + nm · [am, am] + nm,m+1 ·]am, am+1[

into arcs connected to the new places such that the bag corresponding to pai is
ni · [0, 0], and the bag corresponding to pai,ai+1 is ni,i+1 ·]0, ai+1 − ai[.

Finally, we add transitions to “transfer” tokens from one of the new places to an-
other one when their age increases: ta1,a2 , ta2 , . . . , tam , tam,am+1 . A transition tai con-
sumes a token with age ai − ai−1 in pai−1,ai and produces a token with age 0 in place
pai . A transition tai,ai+1 consumes a token with age 0 in pai and produces a token
with age 0 in place pai,ai+1 . All these transitions are labelled by ε.

Let N2 be the transformed net and ν′ be a configuration of N2. We associate with
ν′ a configuration ν = f (ν′) of N1 defined by:

f (p′, d) = (p′, d) if p′ , p place of N1

f (pai , d) = (p, ai + d) for every pai

f (pai,ai+1 , d) = (p, ai + d) for every pai,ai+1

which we extend on bags by linearity. Note that f (ν′0) = ν0. Straightforwardly,
time elapsing commutes with this mapping. Moreover, firing a new transition does
not modify the image of a configuration and finally the transformation of the arcs
ensures that firing an existing transition is also possible in the original net and that
this firing commutes with the mapping. Finally, we easily check that the image by
this mapping of a configuration satisfying Acc1

4 is a configuration satisfying Acc2.
An accepting firing sequence ofN2 leads thus by this mapping to an accepting firing
sequence of N1.

4 Recall that a configuration ν satisfies an acceptance condition Acc whenever the number
of tokens in the places satisfies the constraint of Acc.

19

ACCEPTED MANUSCRIPT

Conversely, assume that σ is an accepting firing sequence of N1. First, we split
time elapsing steps in such a way that if at some time a token corresponding to the
sequence reaches the age ai, this instant is associated with an intermediate config-
uration. In order to build the corresponding sequence σ′ of N2, we will add firings
of the new transitions at this instant some them just after the last time elapsing and
some others just before the next time elapsing. The first set of firings will corre-
spond to transitions tai+1 and will transfer all tokens in place pai,ai+1 with age ai+1−ai

to place pai+1 . The second set of firings will correspond to transitions tai,ai+1 and will
transfer all tokens in place pai with age 0 in place pai,ai+1 . With these enforced tran-
sition firings, tokens are always in the appropriate place for simulating a transition
firing in σ. �

Example 2 We illustrate the above construction on the net below:

5 · [0] + 2 ·]0, 2[

2 · [0]+]0, 2[

3 · [2]+]2,∞[
p

Read

Post Pre

The new (part of) net which is constructed is the following:

p0 p0,2 p2 p2,∞

Read

Pret0,2 t2 t2,∞Post
5 · [0] [0] [0] [2] [0] [0] [0]]0,∞[

3 · [0]

2 ·]0, 2[

2 · [0]]0, 2[

We consider an execution in the initial net, and will give the corresponding ex-
ecution in the constructed net. We consider the following execution in the initial

20

ACCEPTED MANUSCRIPT

net:

Post
−→ 5 · (p, 0) + (p, 1) + (p, 1.2)
(0.5)
−→ 5 · (p, 0.5) + (p, 1.5) + (p, 1.7)
Post
−→ 5 · (p, 0) + 5 · (p, 0.5) + 2 · (p, 1) + (p, 1.5) + (p, 1.7)
Post
−→ 10 · (p, 0) + 5 · (p, 0.5) + 4 · (p, 1) + (p, 1.5) + (p, 1.7)
Read
−→ 10 · (p, 0) + 5 · (p, 0.5) + 4 · (p, 1) + (p, 1.5) + (p, 1.7)

(1)
−→ 10 · (p, 1) + 5 · (p, 1.5) + 4 · (p, 2) + (p, 2.5) + (p, 2.7)
Pre
−→ 10 · (p, 1) + 5 · (p, 1.5) + (p, 2) + (p, 2.7)

In the above sequence, tokens are gathered by age, for example the first bag means
that there are seven tokens in place p, five of age 0, one of age 1 and one of age 1.2.
The corresponding sequence of transitions in the constructed net is:

Post, (t0,2)5, (0.5),Post,Post,Read, (t0,2)10, (0.3), t2, t2,∞, (0.2), t2, t2,∞, (0.5), (t2)4,Pre

Lemma 5 We can build an RA-TdPNN3, equivalent to N2, and satisfying restric-
tions (1), (2), and (3).

Proof. To prove this lemma, we need to explain how we can transform the snippets
built in the proof of the previous lemma into equivalent other snippets where all
places have the shape of one of the five patterns of Figure 5. In RA-TdPN N2 we
have 5 ,

• places pai are connected to (possibly) several post-arcs labelled by bags n · [0],
(possibly) several read-arcs labelled by bags n′ · [0] and (possibly) several pre-
arcs labelled by bags n′′ · [0].
• places pai,ai+1 (with ai+1 < ∞) are connected to one post-arc whose bag is [0],

(possibly) several post-arc labelled by bags n ·]0, ai+1 − ai[, (possibly) several
read-arcs labelled by bags n′ ·]0, ai+1−ai[, one pre-arc labelled by a bag [ai+1−ai],
and (possibly) several pre-arcs labelled by bags n′′ ·]0, ai+1 − ai[.
• place pam,∞ is connected to one post-arc whose bag is [0], (possibly) several post-

arc labelled by bags n ·]0,+∞[, (possibly) several read-arcs labelled by bags
n′ ·]0,+∞[, and (possibly) several pre-arcs labelled by bags n′′ ·]0,+∞[.

We apply successively the following transformations to the different places:

• duplicate the place for each incident post-arc, and duplicate all transitions con-
nected with read- and pre-arcs as depicted on the next picture (transition t can be
connected by a pre- or a read-arc):

5 Parameters n, n′ and n′′ are not necessarily shared by arcs.

21

ACCEPTED MANUSCRIPT

k1 · I1

k2 · I2

n · I
{

k1 · I1

k2 · I2

m · I

(n − m) · I

p
p1

p2

t t(m)

Thus, each transitions connected by a pre- or read-arc is replaced by copies, one
for every m ≤ n if n · I is the bag labelling the arc between p and t.
• duplicate the place for each incident pre-arc, and duplicate all transitions con-

nected with read- and post-arcs as depicted on the next picture (transition t can
be connected by a post- or a read-arc):

k1 · I1

k2 · I2

n · I
t1

t2

{

k1 · I1

k2 · I2

m · I

(n − m) · I

p
p1

p2

t t(m)
t1

t2

Thus, each transition connected by a post- or a read-arc is replaced by copies,
one for every m ≤ n if n · I is the bag labelling the arc between p and t.

We modify accordingly the accepting conditions by replacing occurrences of p by
the sum p1 + p2 if we have duplicated the place p into the two places p1 and p2. It
is straightforward to prove that these constructions do not change the accepted lan-
guages. There is only one point that needs to be detailed. In the last transformation,
given an occurrence of t in a sequence σ of N , we obtain the corresponding σ′ of
N ′ by choosing the appropriate t(m) which depends on σ. Indeed, we count m1 the
number of tokens produced by t that will be consumed by t1 and m2 the number of
tokens produced by t that will be consumed by t2. Note that m1 +m2 ≤ n, so we can
choose any m such that m1 ≤ m ≤ n − m2.

Finally, the places of the resulting net satisfy the property that they are connected
to post-arcs (resp. pre-arcs) labelled by the same interval. Moreover, because of the
form of the intervals in the former construction, this means that every place is of
the form of one of the five patterns of Figure 5. �

Note that all transformations we have presented in this section preserve both bound-
edness and integrality of the nets. Note also that the transformation is doubly-
exponential. This bound may be improved, but here we only focus on expressive-
ness. This concludes the proof of Proposition 1.

22

ACCEPTED MANUSCRIPT

6 Removing the Read-Arcs

In this section, we study the role of read-arcs in RA-TdPNs. Thanks to Lemma 1
(language L1), we already know that read-arcs add expressive power to TdPNs for
the ω-equivalence. We then prove that read-arcs do not add expressiveness to the
model of TdPNs when considering finite or infinite non-Zeno timed words. We
present two different constructions: the first one is correct only for finite timed
words, whereas the second one, which extends the first one, is correct for non-
Zeno infinite timed words. In both correction proofs, we need to assume that places
connected to read-arcs do not occur in the acceptance condition. This can be done
without loss of generality, as stated by the following lemma.

Lemma 6 Given an RA-TdPNN , we can build a RA-TdPNN ′ {∗, ω, ωnz}-equiva-
lent to N such that no place connected to a read-arc does occur in the acceptance
condition.

Proof. We iteratively apply the following transformation to every place of N con-
nected to a read-arc and occurring in the acceptance condition. Let p be such a
place. The net N ′ is obtained by adding to N a new place p′ such that for every
t ∈ T , Post(t)(p′) = Post(t)(p), Pre(t)(p′) = Pre(t)(p), Read(t)(p′) = 0. We as-
sume in addition that ν0(p′) = ν0(p), and we set the acceptance condition of N ′ to
the one of N where place p is replaced by place p′.

We claim that N ′ is equivalent to N . First note that given any reachable config-
uration of N ′, p and p′ contain the same number of tokens, but not necessarily
the same (i.e., with the same age) tokens (because pre-arcs may choose different
tokens).

Let σ′ be a firing sequence of N ′ leading to an accepting configuration. Then σ,
obtained from σ′ by deleting the tokens of p′ in the bags x, y, z associated with the
firing of a transition, is a sequence of N . Indeed as N is a subnet of N ′ obtained
by deleting places, all behaviours of the latter net are behaviours of the former
one. Furthermore, due to the previous observation about markings of p and p′, the
configuration reached after the firing sequence σ satisfies the acceptance condition
of N .

Let σ be a firing sequence of N leading to an accepting configuration. Then we
build σ′ a firing sequence of N ′ from σ by consuming and producing in place
p′, the same tokens consumed and produced in p by the sequence σ. The final
configuration of σ′ has the same tokens in p and p′ and thus satisfies the acceptance
condition ofN ′. �

23

ACCEPTED MANUSCRIPT

6.1 Case of finite words

As announced above, we establish now a result proving that with respect to the
equivalence of finite timed words, it is possible, given an RA-TdPN, to build an-
other one which is equivalent. One of the key ideas underlying this construction
is the resort to a modification of the acceptance conditions which allows us to add
some vivacity to the model. Before stating our result, we illustrate this idea on an
example.

Example 3 We consider the RA-TdPNN1 depicted on Figure 3. We transform this
net into the net illustrated on Figure 6, which recognizes the same language of finite
timed words. In this net, initially, transition t1 labelled by ε puts one token in place
p1 and another one in place p2. Then a’s are produced by firings of the transition
t3, and finally before one time unit has elapsed, the transition t2 labelled by ε is
taken, which empties places p1 and p2. This last firing is enforced by the accepting
condition p1 + p2 = 0.

•

t1, ε t2, ε

p2

p1

t3, a

[0]

[0]

[0]
[0, 1]Acc = {p1 + p2 = 0}

Fig. 6. An illustration of the ideas used for removing the read-arcs.

Theorem 2 Let N be an RA-TdPN, then we can effectively build a TdPN N ′,
which is ∗-equivalent to N . Note that the construction preserves boundedness and
integrality of the net.

Proof. To prove this result, we first normalize the net. We consider only places
incident to read-arcs and, thanks to the previous lemma, we can suppose that these
places are not in the acceptance condition. We then distinguish between the five
possible patterns of Figure 5 for a place p incident to a read-arc, and show that in
every case, we can remove the read-arcs incident to place p.

Pattern P1. The construction is presented on Figure 7. This is the simplest case.
Indeed, the simulation is the same as in the untimed case. It is easy to verify that
the firing sequences of the two nets are exactly the same, and thus the two nets are
equivalent.

Pattern P2. We handle separately the cases a = +∞ and a < +∞. The construc-
tion for the first case is presented on Figure 8. For the second case, the construction
is presented on Figure 9.

24

ACCEPTED MANUSCRIPT

 n · [0]

n′ · [0]n′ · [0]

n′′ · [0]
p

t′

t t′′

Fig. 7. Removing read-arcs in pattern P1

[0]

n′n′ · [0]

n′′> 0 [0]
p

t′

t t′′

Fig. 8. Removing read-arcs in pattern P2, case a = +∞

The case a = +∞ is relatively simple. It is indeed sufficient to notice that, once a
token has a positive age, it can be used forever by read-arcs and pre-arcs, since its
age does not constrain their firings. In particular, we do not modify the accepting
condition.

The case a < +∞ is a little bit more involved since we have to take into account
the ages of the tokens. Simulating the read-arcs is thus not so easy. To ensure the

t′

t

t′′

p3

p1

p2 t1, ε
t2, ε

[0]

[0]

> 0 [0]

n′n′ · [0]

n′′

]0, a[

n′′ ·]0, a[

Fig. 9. Removing read-arcs in pattern P2, case a < +∞

correctness of this construction, we also modify the accepting condition of N by
adding the following constraint: p1 + p2 + p3 ≤ 0. Before proving the equivalence
between the two nets, we make preliminary remarks on several invariants of the net
N ′. Every configuration ν appearing on an accepting firing sequence ofN ′ satisfies
the following properties:

25

ACCEPTED MANUSCRIPT

(i) size(ν(p1)) = size(ν(p2)) + size(ν(p3))

(ii) size(ν(p2)) ≥ size(ν(p1)|=0)
where ν(p1)|=0 is the bag of tokens in place p1 whose age is equal to 0

(iii) size(ν(p1)) = size(ν(p1)|<a)
where ν(p1)|<a is the bag of tokens in place p1 whose age is strictly less
than a

The two first properties are simple invariants obtained by comparing producing and
consuming arcs connected to places p1, p2 and p3.

The last property relies on the accepting property of the sequence. Indeed, this
implies that every token produced in place p1 has to be consumed by one of the two
transitions t′′ and t2. The timing requirements (]0, a[) of arcs connected to place p1

of transitions t′′ and t2 then implies that the age of these tokens is always strictly
less than a.

We first consider an accepting firing sequence σ of N , and build a corresponding
accepting firing sequence σ′ of N ′. We make two kinds of modifications to this
sequence. First, we move tokens from place p2 to place p3 with the silent transition
t1 as soon as we need them for transition t′ or t′′ (if a token is never used, we
move it when its age is equal to a/2). Secondly, we empty places p1 and p3 using
the silent transition t2 as soon as the tokens are no more used until the end of
the sequence. In this way, we consume every dead token of place p of net N . The
silent transitions we have inserted allow to verify that we can fire the corresponding
discrete transitions in the net N ′.

Conversely, we consider an accepting firing sequence σ′ of N ′. We build a firing
sequence σ of N obtained from σ′ by erasing silent transitions t1 and t2. We now
verify that transitions t′ and t′′ are still firable in σ. First note that the producing
arcs imply the following inequality between two configurations ν and ν′ obtained
respectively after the same prefix of σ and σ′:

ν(p) ≥ ν′(p1)

This implies that every firable occurrence of the transition t′′ in σ′ is still firable in
σ. To prove the same property for t′, we will use the preliminary remarks. Suppose
that t′ is firable in ν′. Then, there are at least n′ tokens in place p3. Properties (i), (ii)
and (iii) together imply that there are at least n′ tokens of age belonging to]0, a[in
place p1. The previous inequality between ν(p) and ν′(p1) finally implies that the
transition t′′ is also firable in N . This concludes the proof for pattern P2.

Pattern P3. The construction is presented on Figure 10. We also modify the ac-
cepting condition of N by adding the following constraint:

∑6
i=1 pi ≤ 0. Before

proving the equivalence between the two nets, we also make preliminary remarks

26

ACCEPTED MANUSCRIPT

t′

t

t′′
p1

p2

p3

p4

p5

p6

t1, ε

t2, ε

t3, ε

t4, ε

t5, ε

[0]

[0]

[0]

[0]

> 0

[0]

[0]

[0]

[0]

[a]

]0, a[

> 0

n′n′ · [0]

Fig. 10. Removing read-arcs in pattern P3

on several invariants of the netN ′. Every configuration ν appearing on an accepting
firing sequence of N ′ satisfies the following properties:

(i) size(ν(p1)|=0) + size(ν(p2)|=0) + size(ν(p4)|=0) = size(ν(p3)|=0)
(ii) size(ν(p2)|=a) ≤ size(ν(p6)|>0)

(iii) size(ν(p2)|>0) + size(ν(p4)|>0) = size(ν(p3)|>0) + size(ν(p5)) + size(ν(p6))
(iv) size(ν(p2)|]0,a[) + size(ν(p4)|>0) ≥ size(ν(p3)|>0) + size(ν(p5))

The first property is an invariant obtained by comparing producing and consuming
arcs connected to the different places.

The second property relies on the accepting condition. Since a token with age a in
place p2 has to be consumed in zero time by transition t′′, this transition has to be
enabled, and thus we obtain the inequality (ii).

The third property is obtained from the first one by letting time elapse, using the
fact that the acceptance condition implies that size(ν(p1)>0) = 0.

Finally, the fourth property can be obtained from properties (ii) and (iii) by sub-
traction.

We first consider an accepting firing sequence σ of N , and build a corresponding
accepting firing sequence σ′ ofN ′.

At each time a token is produced by the transition t, we move the corresponding
token of place p1. If this token will be consumed by the transition t′′, then we use
the silent transition t1 to move it to the place p2. Otherwise, we move it with t2 to
the place p4.

27

ACCEPTED MANUSCRIPT

Moreover, we also move the copy of the token of place p3 to place p5 with the
silent transition t3 as soon as we need it for transition t′ (if a token is never checked
by t′, we move it when its age is equal to a/2). This instant must appear after a
strictly positive delay of time since the interval of t′ is]0, a[, which ensures that the
transition t3 is firable.

Finally, as soon as a token of place p5 is no more used until the end of the sequence
by the transition t′, we have to consume it using t4 or t5. Two cases are possible:

• either the corresponding token of σ is consumed by t′′, and then we move it to
p6 using t4. Note that since the last read appears strictly before its age equals a,
the age of the produced token in p6 will be strictly positive when the age of the
corresponding token of place p2 will reach a, and thus the transition t′′ will be
firable.
• or the token is never consumed by t′′, and then we consume it immediately by t5,

which is possible since the last occurrence of t′ appears strictly before a.

Note that the previous modifications are possible if we have done the same choices
for the copies of the token placed in p1 and p3. In this way, we consume every dead
token of place p of the net N . This implies that the corresponding firing sequence
will be accepting.

Finally, it can be checked that the silent transitions we have inserted lead to a firable
sequence of the net N ′.

Conversely, we consider an accepting firing sequence σ′ of N ′. We build a firing
sequence σ of N obtained from σ′ by erasing silent transitions t1, . . . , t5. We now
verify that transitions t′ and t′′ are still firable in σ. First note that the producing
arcs imply the following inequality between two configurations ν and ν′ obtained
respectively after the same prefix of σ and σ′:

ν(p) ≥ ν′(p1) + ν′(p2) + ν′(p4)

In particular, we have ν(p) ≥ ν′(p2). This implies that every firable occurrence of
the transition t′′ in σ′ is still firable in σ. To prove the same property for t′, we will
use the preliminary remarks. Suppose that t′ is fireable in ν′. Then there are at least
n′ tokens in place p5. Using inequality (iv), and the fact that the age of every token
in place p4 is strictly less than a (since we consider an accepting sequence), we get:

size(ν(p2)|]0,a[) + size(ν(p4)|]0,a[) ≥ n′

This implies, using the previous inequality on ν, that there at least n′ tokens in place
p of age belonging to the interval]0, a[in the configuration ν. This proves that t′ is
firable in ν and concludes the proof for pattern P3.

28

ACCEPTED MANUSCRIPT

Pattern P4. We distinguish the two cases a = +∞ (Figure 11) and a < +∞

(Figure 12).

n · [0]

n′n′ · [0]

n′′
p

t′

t t′′

Fig. 11. Removing read-arcs in pattern P4, case a = +∞

For the case a = +∞, the construction is similar to that for pattern P1. Indeed,
a token produced is immediately and forever available for use since its age does
not constrain the firing of transitions. Note that we do not modify the accepting
conditions.

As for the pattern P2, the case a < +∞ is more involved since we have to take
into account the ages of the tokens. We also modify the accepting condition of N

t′

t

t′′

p2

p1

t1, εn · [0]

n ·]0, a[

n′n′ · [0]

n′′

]0, a[

n′′ ·]0, a[

Fig. 12. Removing read-arcs in pattern P4, case a < +∞

by adding the following constraint: p1 + p2 ≤ 0. This pattern is treated similarly
as the pattern P2. Indeed, the pre- and read-arcs are the same. The only modifica-
tion then comes from the post-arc. In this pattern, tokens are produced with initial
age belonging to the interval]0, a[, whereas they were produced with initial age 0
in pattern P2. The construction is simpler here since we do not need to let some
time elapse before allowing the transition t′ (corresponding to the read-arcs) to use
produced tokens.

The correctness proof for this pattern can easily be derived from the proof for pat-
tern P2.

29

ACCEPTED MANUSCRIPT

Pattern P5. The construction is presented on Figure 13. We also modify the ac-

t′

t

t′′
p1

p2

p3

p4

p5

t1, ε

t2, ε t3, ε

t4, ε

n · [0]

n · [0]

[0]

[0]

]0, a[

]0, a[[0]

[a]

]0, a[

> 0

n′n′ · [0]

Fig. 13. Removing read-arcs in pattern P5

cepting condition of N by adding the following constraint:
∑5

i=1 pi ≤ 0. Pattern P5

is treated in a way similar to pattern P3 since pre- and read-arcs are the same and
the only modification comes from the post-arc: production in the interval [0, 0] has
been replaced by a production in the interval]0, a[.

We make two main modifications to the case of pattern P3.

First, we let the choice of the initial age of the produced tokens to the transitions t1

and t2. Since there is no timed copy of the token, the choice of an initial age raises
no difficulty. Recall that the choice of firing t1 or t2 corresponds as previously to
the distinction between tokens that will be eventually consumed by the transition
t′′ before the end of the firing sequence, and the tokens that will not.

Then, since produced tokens have initial age belonging to the interval]0, a[, these
tokens can immediately be used by the transition t′, and thus, as in the previous
case, we do not need to let some time elapse before moving tokens in the place p4.

The correctness proof for this pattern can easily be derived from the one for pattern
P3. �

6.2 Case of infinite non-Zeno words

The previous construction cannot be applied to languages of infinite words. Indeed,
it relies on the following idea: the acceptance condition requires that one empties
the places at the end of the sequence in the simulating net in order to check whether
ages of tokens have been appropriately simulated.

30

ACCEPTED MANUSCRIPT

pb a
]0, 3[[0, 0]

Acc = tt

Fig. 14. A RA-TdPNN3

In the case of infinite timed words, a similar Büchi condition would require that
the places of the simulating net are empty infinitely often, but this may not be the
case. Consider for example the net N3 depicted on Figure 14. This net recognizes
the following language of infinite timed words :

Lω(N3) = {w = (ai, τi)i≥0 | ai = a⇒ ∃ j < i, a j = b and τi − τ j ∈]0, 3[}

In particular the following timed word belongs to L(N3):

w = (b, 0)(b, 2)(a, 2)(b, 4)(a, 4) . . . (b, 2i)(a, 2i) . . .

Any configuration of the execution accepting w always contains a token in place p
that needs to be read later on and thus a Büchi condition similar to the one used for
finite words would “eliminate” the timed word w. However in the divergent case,
we will first apply a transformation of the net that will not change the language, in
such a way that in the new net, every infinite non-Zeno timed word will be accepted
by an appropriate generalized Büchi condition. Roughly, this construction consists
on this example in creating two copies of the net and producing tokens alternatively
in a copy of place p or in the other one. As a consequence, each copy will be empty
infinitely often.

Theorem 3 Let N be an RA-TdPN, then we can effectively build a TdPN N ′,
which is ωnz-equivalent toN . Note that the construction preserves the boundedness
and the integrality of the nets.

Proof. We assume that N is normalized and that no place connected to a read-
arc occurs in the acceptance conditions. First note that the only cases in which
bounds of intervals may be infinite are in patterns P2 and P4. Moreover, in these
cases, when a is infinite, we have proposed constructions which do not rely on
a modification of the acceptance conditions and which are thus also correct for
equivalences on infinite timed words. In the sequel, we are thus only interested in
cases of finite bounds, i.e., when a is finite.

First we transform N into another RA-TdPN N∗ as follows. We duplicate every
place p connected to a read-arc by an arc labelled with]0, a[(a finite), into two
places podd and peven. Then we apply the following transformation iteratively to
every place p and every arc connected to p. Let t be a transition connected to p and
n · I be the bag labelling the arc connecting them. We replace t by a set of transitions
{t(k)}0≤k≤n such that the arcs of these transitions are identical to those of t except the

31

ACCEPTED MANUSCRIPT

one under examination. We add to transition t(k) two arcs (of the same kind as the
original one), one labelled by k · I connected to podd and one labelled by (n − k) · I
connected to peven. Note that an original transition may be duplicated several times.
The label of the duplicated transitions is the one of the original transition.

It is clear that N and N∗ are equivalent for all the language equivalences and in
particular for the ωnz-equivalence. HoweverN∗ satisfies an additional property that
we explain now. We select an integer strictly greater than every finite interval bound
occurring in N∗ and call it max. Given an infinite sequence σ and a token initially
present or produced along the sequence, we say that a token is useless in some
configuration reached along σ, if it will not be “used” in the remaining sequence
by a read-arc or a pre-arc.

Let w be an infinite non-Zeno timed word accepted by a firing sequence σ of N
then we build a firing sequence σ∗ ofN∗ whose label is w and such that:

• at any time (2k) · max with k ∈ N≥0, there is a configuration such that all places
peven contain only useless tokens,

• at any time (2k + 1) · max with k ∈ N≥0, there is a configuration such that all
places podd contain only useless tokens.

Note that, due to the (time) divergence of σ, a token produced in some place p
(defined as before) will either become useless or it will be consumed in some con-
figuration. This is true because we are concerned with intervals whose bounds are
finite. If this configuration occurs in some interval [(2k+1) ·max, (2k+2) ·max[, we
say that this token is even otherwise we say that it is odd. We build σ∗ by appropri-
ately replacing a transition by one of its copies: the choice of the copy depends on
whether tokens that are read, consumed or produced are even or odd. For instance,
an odd (resp. even) token will be produced in the odd (resp. even) copy of the place.

Now take the last configuration of σ∗ reached at time (2k + 1) · max and suppose
that place podd contains a token which is not useless yet, then it will become useless
during the interval](2k+ 1) ·max, (2k+ 2) ·max[. So it is an even token and should
have been produced in peven. The proof for the last configuration of σ∗ reached at
time (2k) ·max is similar.

We now apply the transformation of Theorem 2 to N∗ yielding N ′. In the trans-
formation of patterns 2, 3, 4, 5 when a is finite we memorize the character of the
new places. For instance, in the pattern P4, a place podd is replaced by two places
podd,1 and podd,2. Then we add to the generalized Büchi condition of N ′ two new
conditions: the sum of tokens in odd (resp. even) places must be infinitely often 0.

Let w be a non-Zeno infinite timed word of N (and of N∗). Now take a sequence
σ∗ of N∗ accepting w with the additional property. Simulate the sequence in N ′

as for Theorem 2 except that tokens not consumed by σ∗ are consumed by the
“emptying” transitions of N ′ as soon as they become useless. Due to the property

32

ACCEPTED MANUSCRIPT

of σ∗, this simulating sequence fulfills the new conditions added to the generalized
Büchi condition.

Conversely let σ′ be an infinite non-Zeno sequence of N ′ and suppose that it does
not respect previous conditions, i.e., that it produces tokens in the wrong copies of
the place p, or that it does not consume tokens that are useless. Then some tokens
in odd or even places will never be consumed in σ′ and σ′ is not accepting. Thus
for an accepting sequence σ′ of N ′, we apply exactly the same transformations as
those performed in Theorem 2 in order to obtain an accepting sequence of N∗. �

Example 4 (Application of the construction of Theorem 3) Consider the netN3

depicted on Figure 14. It is easy to see that the net depicted on Figure 15, say N ′3,
is the net obtained by the construction presented in the proof of Theorem 3. Indeed,
the only place p of N3 is configured as pattern P2. The construction thus consists
in duplicating this place into two copies called “Even” and “Odd”, and then ap-
plying the construction described for finite timed words to each of this copies. The
accepting condition is a generalized Büchi condition requiring that the two sets
of places obtained respectively for the even copy and for the odd copy are empty
infinitely often. Recall that the following word is accepted by N3.

Acc =

3∑

i=1

pi
e = 0,

3∑

i=1

pi
o = 0

Even copy

t3
e , a

t1
e , b

p3
e

p1
e

p2
e

t2
e , ε

t4
e , ε

[0]

[0]

> 0 [0]

[0]

]0, 3[
Odd copy

t3
o, a

t1
o, b

p3
o

p1
o

p2
o

t2
o, ε

t4
o, ε

[0]

[0]

> 0 [0]

[0]

]0, 3[

Fig. 15. Application of Theorem 3 to the netN3

w = (b, 0) (b, 2) (a, 2) (b, 4) (a, 4) . . . (b, 2i) (a, 2i) . . .

odd even even

We give here the corresponding execution σ′ in N ′3, as it is defined in the proof
of Theorem 3. Note that it could be possible on this example to provide a simpler
execution. By definition, we consider 4 as the constant max of the proof. Then a

33

ACCEPTED MANUSCRIPT

token is “even” if it becomes useless in an interval of the form [(2k + 1).4, (2k +
2).4[, and “odd” otherwise. We have indicated under the occurrences of b in w
whether the produced token is odd or even. Using this information, we can derive
the following sequence σ′.

σ′ = (t1
o, 0)(t2

o, 2)(t1
e , 2)(t3

o, 2)(t4
o, 2)(t1

e , 4)(t2
e , 4)(t3

e , 4)(t4
e , 4)(t1

o, 6)(t2
e , 6)(t3

e , 6)(t4
e , 6) . . .

Let us note ν1 (respectively ν2) the configuration reached after firing the 5 first tran-
sitions (respectively 13) of σ′. It is routine to verify that ν1 satisfies the accepting
condition

∑3
i=1 pi

o = 0 and that ν2 satisfies the accepting condition
∑3

i=1 pi
e = 0.

7 Removing General Resets

In this section, we study the role of general resets in RA-TdPNs. Thanks to Lemma 2
(language L2), we know that the class of integral RA-TdPNs is strictly more expres-
sive than the class of 0-reset integral RA-TdPNs for the ω-equivalence. We now
prove two results, which show that this is the combination of the presence of read-
arcs together with the integrality property which explains the expressiveness gap
between 0-reset nets and nets with general resets. Indeed, we first propose a con-
struction which is correct for TdPNs (i.e., without read-arcs), and which preserves
integrality of the net. Then we present a second construction, which is correct even
for nets with read-arcs, but which does not preserve the integrality of the nets.

Theorem 4 For every TdPNN , we can effectively build a 0-reset TdPNN ′ which
is {∗, ω, ωnz}-equivalent to N . Moreover, this construction preserves boundedness
and integrality of the net.

This result is not difficult and consists in shifting intervals of pre-arcs connected to
a place, depending on the intervals which label post-arcs connected to this place.

Proof. LetN be a TdPN. Observing that the transformation related to Proposition 1
preserves the absence of read-arcs, we can assume that every place p ofN satisfies
one of the five patterns of Figure 5, in which there is no read-arc.

Only patterns P4 and P5 have general resets, we thus only describe a construction
for these two cases. The constructions are depicted on Figure 16, and it is straight-
forward to prove their correctness. Indeed, in the case of pattern P4, if, in the initial
net, a token enters place p with age x ∈]0, a[and leaves place p with age y ∈]0, a[,
then in the second net, it will enter place p with age 0, and leave place p with age
y − x ∈ [0, a[. Conversely, if a token arrives in place p (with age 0) in the second
net, and leaves the place with age x ∈ [0, a[, then it will arrive in place p (in the first
net) with age a−x

2 ∈]0, a[if a < ∞ (with age 1 otherwise) and it will leave place p

34

ACCEPTED MANUSCRIPT

{

n ·]0, a[n′′ ·]0, a[

n · [0] n′′ · [0, a[

p
t t′′

p
t t′′

(a) Case of pattern P4

{

n ·]0, a[[a]

n · [0]]0, a[

p
t t′′

p
t t′′

(b) Case of pattern P5

Fig. 16. Removing general resets in TdPNs.

at age a+x
2 ∈]0, a[if a < ∞ (at age 1 + x otherwise). Dead tokens in the first net

correspond to dead tokens in the second net. The case of pattern P5 is similar. �

The second construction is much more involved, and requires to refine the granular-
ity of the net which is built. However, it is correct for the whole class of RA-TdPNs.

Theorem 5 For every RA-TdPN N , we can build a 0-reset RA-TdPN N ′ which is
{∗, ωnz, ω}-equivalent toN . The construction preserves boundedness of the net, but
not its integrality.

Proof. First, it it worth noticing that in the case of finite timed words, and non-Zeno
infinite timed words, this result is a corollary of previous results (Theorems 2, 3
and 4). The construction we explain now, though correct for all finite and infinite
timed words, is thus only necessary to deal with Zeno infinite timed words.

Let N be a RA-TdPN which, we assume, only includes the patterns of Proposi-
tion 1. The only places ofN which are connected to non 0-reset post-arcs are those
which satisfy pattern P4 or pattern P5 (Figures 5(d) and 5(e)).

Case of pattern P4. The construction for this case is depicted on Figure 17. We
denote N ′ the resulting net. We prove now the equivalence of the two nets N and
N ′.

First, let σ be an (infinite) accepting firing sequence inN . We construct a sequence
σ′ in N ′ accepting the same timed word as follows.

Let us pick a token of p with initial age δ. Two cases have to be distinguished:

• First case: this token will not be consumed by t′′. If δ ≥ a
2 then we permanently

leave it in p1. Otherwise (0 < δ < a
2), after letting a

2−δ time units pass, we transfer
it to p2 using the silent transition t1. Note that the token in N ′ is available in p1

or in p2 at least as long as it is available in N .

35

ACCEPTED MANUSCRIPT

0 ≤ n′1 ≤ n′

0 ≤ n′′1 ≤ n′′

n · [0] [0, a
2[[0] (n′′ − n′′1) · [0, a

2[

n′′1 · [0,
a
2 [

n′1 · [0,
a
2[(n′ − n′1) · [0, a

2[

p1 p2

t′(n′1)

t t′′(n′′1)

t1, ε

Fig. 17. 0-reset equivalent for pattern P4

• Second case: this token will be consumed by t′′ when its age is δ′. If 0 < δ′−δ(<
a), then we transfer it to p2 after letting δ′−δ

2 time units pass. Otherwise, the token
is immediately consumed and no time elapses: we thus do not transfer the token.
Note again that the token in N ′ is available in p1 or in p2 at least as long as it is
available in N .

Now the sequenceσ′ is obtained from σ by inserting the occurrences of the transfer
transition and by substituting the appropriate t′(n′1) (resp. t′′(n′′1)) for t′ (resp. t′′)
depending on the locations of the tokens of p in N ′ used by the firing of t′ (resp.
t′′) in N .

Conversely, let σ′ be an (infinite) accepting firing sequence in N ′. We construct a
sequence σ in N accepting the same timed word as follows.

We simply delete the occurrences of the transfer transition and we substitute the
transition t′ (resp. t′′) for t′(k′1) (resp. t′′(k′′1)). It remains to define the initial age
of a token produced in p. If this token corresponds to a token in N ′ which is not
transfered to p2, its initial age is a

2 . If the token is transfered to p2 when its age is δ,
then in N , its initial age is a

2 − δ. Due to this choice, the token is available in p at
least as long as it is available in p1 or in p2 ofN ′, and every firable transition of σ′

will thus be firable in σ.

This concludes the case of pattern P4.

Case of pattern P5. This construction is more involved since read actions and
consumptions happen in different intervals (]0, a[and [a] respectively). In order
to understand the problem raised by this new constraint, compared to pattern P4,
we start with a wrong simulation (depicted in Figure 18) directly adapted from the
previous simulation.

Using a proof similar to the one for pattern P4, we can show that every firing se-

36

ACCEPTED MANUSCRIPT

0 ≤ n′1 ≤ n′

n · [0]]0, a
2[[0] [0, a

2]

n′1 · [0,
a
2[(n′ − n′1) · [0, a

2[

p1 p2

t′(n′1)

t t′′
t1, ε

Fig. 18. A wrong 0-reset simulation for pattern P5

quence σ inN can be simulated in this net. However the converse is wrong. Indeed,
assume for instance that n = n′ = 1. Then, the firing sequence (t, 0)(t1,

a
4)(t′(1), a

4)
(t′′, a

4) does not correspond to any sequence in the original net. Indeed if such a
sequence did exist then the token produced by t would have an age belonging to
]0, a[at time a

4 in order to fire t′. But then at time a
4 , the transition t′′ is not firable.

The problem with this simulation is that at the same point in time, a token may be
used first to simulate a firing of t′ and then to simulate the firing of t′′.

0 ≤ n′1 ≤ n′

n · [0]]0, a
2[[0]

[0, a
2]

x · [0, a
2[

n′1 · [0,
a
2[(n′ − n′1) · [0, a

2[

p1 p2

t′(n′1)

t t′′
t1, ε

Fig. 19. A 0-reset simulation for pattern P5 ... with a dynamical weight

We now present a second simulation (depicted in Figure 19) which is correct but
uses a “dynamical” weight x on an arc. Let us explain the semantics of x: when
firing t′′ at some time point τ, x is the maximum value of n′ − n′1 corresponding to a
previous firing of some t′(n′1) at date τ. Thus, one avoids the problem faced by the
previous simulation, but there are no dynamical weights in the RA-TdPN model.
The next (correct) simulation, depicted on Figure 20, mainly consists in simulating
such a dynamical weight. We again denote by N ′ the resulting RA-TdPN.

Before proving the correctness of the construction, we give some explanations
about N ′. First, place ready is connected to every transition of N by a read-arc
whose bag is [0]. Secondly, we denote by K the largest constant n′ appearing on a
bag n′ ·]0, a[of a read-arc and, for every integer k such that 0 ≤ k ≤ K, we define a
place q(k) and two silent transitions in(k) and out(k). The lower part of the net plays
three roles. First it schedules the upper part as follows: it makes explicit the alterna-
tion between time elapsing and “simulating” instantaneous firing sequences in the
upper part of the net. Then before any “simulating” instantaneous firing sequence, it
selects the maximal number of tokens that will be simultaneously checked by a fir-
ing of t′ in this firing sequence (i.e., selects the number k which corresponds to the
previous dynamical weight). Finally, after some time has elapsed, it moves tokens
from p1 to p2 in order to avoid these transfers during the “simulating” instanta-
neous firing sequences. More precisely, every behaviour of N ′ must be a (possibly

37

ACCEPTED MANUSCRIPT

0 ≤ k ≤ K ∧ 0 ≤ n′1 ≤ n′ ∧ n′ − n′1 ≤ k

n · [0]]0, a
2[[0]

[0]

[0, a
2]

k · [0, a
2 [

n′1 · [0,
a
2[

(n′ − n′1) · [0, a
2 [

[0]

[0]
[0]

[0] [0]

p1 p2

t′(n′1, k)

t t′′(k)t1, ε

tr

q(k)

ready

•

> 0

> 0

[0]

[0]

[0] [0]

[0]

[0]

[0]

[0]

[0]

[0]
[0][0]

sel
ready

q(0)

q(K)

tr
wait

tend, ε

tsel, ε

in(0), ε

in(K), ε

out(0), ε

out(K), ε

Fig. 20. 0-reset equivalent for pattern P5.

infinite) iteration of the following sequence:

• First, exactly one of the transitions in(k) is fired, thus putting instantaneously
(i.e., in zero delay) a token in some place q(k) and in the place ready.
• Then the net fires the transitions ofN , including t, t′, t′′, (or more precisely their

versions in N ′) in zero delay. Then, instantaneously, transition tend is fired and
the token in place ready is moved to the place wait.
• Afterwards, some time elapses, enabling the firing of the silent transition out(k),

which picks the token out of the place q(k) and puts a token in place tr.
• The upper part of the net can then transfer in zero delay some tokens from p1 to

p2 using the silent transition t1.
• Finally, the silent transition tsel is fired instantaneously and puts back the token

of the lower part in place sel.

38

ACCEPTED MANUSCRIPT

We can now prove that the two nets are equivalent.

Let σ be an (infinite) accepting firing sequence in N . We add to this sequence
additional information in order to build a sequence σ′ in N ′ accepting the same
timed word. We assume that the sequence includes the intermediate markings and
that the tokens in the markings are distinguished (meaning for instance, that if two
tokens have the same age, then one of them is the first, the other is the second).

First, we add a (possibly infinite) transfer date to all tokens produced in p. Let us
pick a token of p with initial age δ produced at time τ. Two cases are possible:

• First case: this token will not be consumed by t′′. If δ ≥ a
2 , then we affect to it a

transfer date equal to∞. Otherwise (0 < δ < a
2), its transfer date will be τ+ a

2 −δ.
• Second case: this token will be consumed by t′′ (necessarily when its age is a).

Its transfer date will be τ + a−δ
2 .

Let us now consider a maximal instantaneous firing sequence ρ, i.e., a (possibly
infinite) maximal subsequence of σ of time length equal to 0. In this subsequence,
we add to every occurrence of some transition t′ connected to p with a read-arc
n′·]0, a[, the number of tokens checked by this read-arc which have not yet reached
their transfer date, let say n′1. We affect to the whole subsequence the (finite) maxi-
mal value among n′ − n′1 for such n′1 (0 if this set is empty). Let us denote this value
k: k = max{n′ − n′1 | n

′
1 is attached to t′, t′ ∈ ρ}. We have k ≤ K.

We now build σ′ as follows. Let 0 = τ0 < τ1 < τ2 < · · · be the (finite or infinite)
sequence of instants corresponding to either a firing of a transition in σ or to a finite
transfer date (or both).

In σ′, the lower part of the net of Figure 20 “decomposes” time elapsing according
to τ0, τ1, τ2, Let us describe the iterative “behaviour” of σ′. If τi corresponds
to a firing subsequence of σ then it selects the value k described above by firing
in(k), otherwise, it selects 0 by firing in(0). Afterwards, the upper part simulates
the maximal subsequence substituting t′(n′1, k) (resp. t′′(k)) for t′ (resp. t′) with n1

specified above. Then, after firing tend, it lets τi+1 − τi time units elapse and (after
firing out(k)), fires t1 as many times as specified by the number of tokens with
transfer date τi+1 and finally fires tsel.

We claim that we obtain in this way a firing sequence in N ′ accepting the same
timed word. The validity of the firing of a transition t′(n1, k) is obtained as for
pattern P4. Thus the only point to be detailed is the validity of a t′′(k) firing in N ′

since there is an additional read-arc. However, this firing takes place in a maximal
instantaneous firing subsequence where k tokens have been read in p2 with an age
belonging to [0, a

2[. Due to our choice of firings of the transfer transition t1, these
tokens correspond in N to tokens in p whose age was strictly less than a during
this subsequence. So they cannot be consumed by this subsequence and thus are

39

ACCEPTED MANUSCRIPT

present when firing t′′(k).

Conversely, let σ′ be an (infinite) accepting firing sequence of N ′. We obtain a
sequence σ of N with same timed word as follows. First we remark that each time
a transition t′′(k) is fired in σ′, we can consume the oldest token in p2 with age less
than or equal to a

2 without modifying the firability of the sequence (since tokens in
p2 are checked for downwards closed intervals). Thus we assume this behaviour.

We simply delete the occurrences of the transfer transition and the cycle transitions
(i.e., those occurring in the lower net) and we substitute the transition t′ (resp. t′′)
for t′(n′1, k) (resp. t′′(k)). It remains to define the initial age of a token produced in
p. If this token corresponds to a token inN ′ which is not transfered to p2, its initial
age is a

2 . If the token is transfered to p2 when its age is δ and not consumed by some
t′′(k), then inN , its initial age is a

2 − δ. At last, if the token is transfered to p2 when
its age is δ and consumed by some transition t′′(k) when its age is δ′, then its initial
age is a−δ−δ′ (note that this last choice implies that the corresponding occurrence
of transition t′′ will also be firable in N).

Finally, we need to verify that these definitions of the initial ages of the tokens inN
are compatible with the firing of the transitions t′. Let us consider an occurrence in
σ of a transition t′ with a read-arc labelled by bag n′ ·]0, a[. To be firable, t′ requires
the presence of n′ tokens in p with age less than a. This checking corresponds in
N ′ to the firing of a transition t′(n′1, k) with n′ − n′1 ≤ k in some instantaneous firing
sequence ρ. The n′1 tokens in p1 used by this firing have, by construction, an age
less than a (note that these tokens will be possibly transfered to p2 after a time
elapsing). Now take the n′ − n′1 youngest tokens in p2 at the beginning of ρ. We
will prove that they all have an age in N strictly less than a. First, note that none
of them can be consumed by a transition t′′ during ρ since a firing of t′′ requires
at least k ≥ n′ − n′1 tokens in addition to the one to be consumed, and since we
have assumed above that transitions t′′(k) consume the oldest tokens. Now, let us
consider one of these tokens. Two cases are possible: either it is consumed later
(i.e., in another instantaneous firing sequence) by a transition t′′(k), and then its age
in N is necessarily less than a. Or this token is never consumed, and then if its age
in N ′ is equal to some δ′ < a

2 , we have defined above its age in N as a
2 + δ

′, which
satisfies a

2 + δ
′ < a.

This concludes the proof of the second case. �

8 Summary of Our Expressiveness Results

Case of finite and infinite non-Zeno words. Applying the results of the two pre-
vious sections, we get equality of all subclasses of RA-TdPNs mentioned on Fig-

40

ACCEPTED MANUSCRIPT

ure 21, for the {∗, ωnz}-equivalence. Note that this picture is correct for the general
classes, for the restriction to integral nets, and also for the restriction to bounded
nets.

RA-TdPN ≡∗,ωnz TdPN ≡∗,ωnz 0-reset TdPN︸︷︷︸
Theo. 4

︸︷︷︸
Theo. 2,3

Fig. 21. Relative expressiveness of RA-TdPNs for finite and infinite non-Zeno words

Case of infinite words. The picture in the case of infinite timed words is much
different (see Figure 22). Indeed the hierarchy in the previous case collapses, whereas
we get in that case the lattice depicted on Figure 22. Plain arcs represent strict in-
clusion, and dashed arcs indicate that the classes are incomparable. Finally note
that this picture holds for both bounded and general nets.

9 Application to Timed Automata

First defined in [3], the model of timed automata (TA) associates with a finite au-
tomaton a finite set of non negative real-valued variables called clocks.

RA-TdPN ≡ω 0-reset RA-TdPN

integral RA-TdPN

0-reset integral RA-TdPN

TdPN ≡ω 0-reset TdPN

integral TdPN ≡ω 0-reset integral TdPN
︸︷︷︸

Theo. 4

︷︸︸︷Theo. 5

︸︷︷︸
Theo. 4

&ω

integral

&
ω lang. L2

'
ω

lang. L1

'
ω

lang. L1
&ω

integral

Fig. 22. Relative expressiveness of RA-TdPN for infinite words

41

ACCEPTED MANUSCRIPT

9.1 Definition of Timed Automata

Let X be a finite set of variables, which we call clocks. We write C(X) for the set of
constraints over X, which consist of conjunctions of atomic formulas of the form
x ./ h for x ∈ X, h ∈ Q≥0 and ./ ∈ {<,≤,=,≥, >}. The model we will define here
is a slight extension of the classical model of [3] and a subclass of updatable timed
automata [5].

Definition 6 (Timed Automaton (TA)) A timed automaton A over Σε is a tuple
(L, `0, X,Σε, E, A) where L is a finite set of locations, `0 ∈ L is the initial location,
X is a finite set of clocks, E ⊆ L×C(X)×Σε × (X ↪→ I)× L is a finite set of edges,
A ⊆ 2L is the accepting condition. An edge e = 〈`, γ, a, µ, `′〉∈ E represents a
transition from location ` to location `′ labelled by a with constraint γ and update
partially defined function µ called a reset.

A valuation v is a mapping in RX
≥0. If µ : X ↪→ I is a partially defined function, if v

is a valuation, µ(v) is the set of valuations v′ such that v′(x) ∈ µ(x) if µ is defined in
x, and v′(x) = v(x) otherwise. Constraints of C(X) are interpreted over valuations,
and the relation v |= γ is defined inductively by v |= (x ./ h) when v(x) ./ h, and
v |= (γ1 ∧ γ2) whenever v |= γ1 and v |= γ2.

The semantics of timed automata is defined as a timed transition system.

Definition 7 (Semantics of a TA) The semantics of a TA A = (L, `0, X,Σε, E) is a
TTS SA = (Q, q0,→) where Q = L × (R≤0)X, q0 = (`0, 0) and→ is defined by:

• either a delay move (`, v)
d
−→ (`, v + d),

• or a discrete move (`, v)
e
−→ (`′, v′) iff there exists some e = (`, γ, a, µ, `′) ∈ E s.t.

v |= γ and v′ ∈ µ(v).

We recover classical timed automata by restricting the resets to partial functions µ
assigning only the interval [0], but we will call them here 0-reset timed automata.
If all constants appearing in guards and updates are integers, we say that the timed
automaton is integral.

As for RA-TdPNs, we define the various timed languages accepted by a TA A:
L∗(A), Lω(A), and Lωnz(A), where the acceptance condition is given by the set
of finite locations

⋃
F∈A F for finite timed words, and by the generalized Büchi

condition A for infinite timed words 6 . We extend the ∗-(resp.ω-,ωnz-)equivalences
to TA and to comparisons between subclasses of RA-TdPNs and subclasses of TA.

6 Here we could use standard Büchi conditions since the classical construction for finite
state automata also works for TA.

42

ACCEPTED MANUSCRIPT

Two examples of TA are given on Figure 23. Note that the TA A1 of Figure 23(a)
recognizes the timed language L1 introduced in section 4. Similarly, the TA A2 of
Figure 23(b), which uses a non-deterministic reset of clock x in the interval]0, 1[,
recognizes the timed language L2 also introduced there.

x ≤ 1, a

(a) A TAA1 recognizing L1

x = 0, a
x :∈]0, 1[

x < 1, b

(b) A TAA2 recognizing L2

Fig. 23. Two examples of timed automata

9.2 TA and Bounded RA-TdPNs.

Our aim was to compare the relative expressiveness of RA-TdPNs and TA. In this
subsection, we prove the equivalence between bounded RA-TdPNs and TA. In this
context, the following result has been obtained by Jiří Srba:

Theorem 6 ([17]) Safe RA-TdPNs and TA are {∗, ωnz, ω}-equivalent. 7

We strengthen the above result and prove that this also holds for bounded RA-
TdPNs.

Theorem 7 Bounded RA-TdPNs and TA are {∗, ωnz, ω}-equivalent. Moreover, the
translation preserves integrality and 0-reset.

To improve readability, we however give here a self-contained proof of the com-
plete result.

Proof. From bounded RA-TdPNs to TA. Let N be a bounded RA-TdPN, and as-
sume that the net is bounded by k. We will build a TA A equivalent to N . The
construction is made in two steps. We first construct an equivalent (structurally)
safe RA-TdPN N ′, and we then build an equivalent timed automatonA.

Copies of places. Every place p ofN is replaced by 2k places {p0
i , p1

i | 1 ≤ i ≤ k} in
N ′. The two places p0

i and p1
i will be mutually exclusive, and the (at most) k tokens

in place p in N will be spread in the places p1
i ’s. The intuition of the construction

is to use the places p1
i to simulate one of the at most k tokens in place p. To ensure

that these places are safe, we use the complementary places p0
i . We make these

7 The result proved in [17] is even stronger because the equivalence considered is not a
language equivalence, but isomorphism of timed transition systems.

43

ACCEPTED MANUSCRIPT

two places (p0

i and p1
i) mutually exclusive by imposing, when producing (resp.

consuming) a token in p1
i , to consume (resp. produce) a token in place p0

i .

Copies of transitions. Let us consider a transition t of N . Transition t will be
replaced by copies. Pre(t)(p) (resp. Read(t)(p), Post(t)(p)) is a bag in Bag(I),
whose size is denoted by s(p) (resp. s′(p), s′′(p)). We order the tokens in these
bags and assume that Pre(t)(p) = I1 + . . . + Is(p), Read(t)(p) = I′1 + . . . + I′s′(p) and
Post(t)(p) = I′′1 + . . . + I′′s′′(p). The copies of t are parameterized by three functions
indicating for every place p in which copies of the place p the tokens should be
consumed (resp. read, produced).

Pre-arcs. For every place p such that s(p) > 0. Consider an injective function
ζp defined from {1, . . . , s(p)} into Nk = {1, . . . , k}. This function defines in which
places the pre-arc between t and p will consume the s(p) tokens.

Read-arcs. For every place p such that s′(p) > 0. Consider an injective function
ζ′p defined from {1, . . . , s′(p)} into Nk = {1, . . . , k}. This function defines in which
places the read-arc between t and p will read the s′(p) tokens.

Post-arcs. For every place p such that s′′(p) > 0. Consider an injective function
ζ′′p defined from {1, . . . , s′′(p)} into Nk = {1, . . . , k}. This function defines in which
places the post-arc between t and p will produce the s′′(p) tokens.

We now define the function ζ (resp. ζ′, ζ′′) as the function mapping each place
p ∈ P to the function ζp (resp. ζ′p, ζ′′p).

Suppose moreover that these three functions satisfy the following conditions:

∀p ∈ P,

ζp and ζ′p have disjoint images,
ζ′p and ζ′′p have disjoint images.

These conditions simply require that for every place p, the simulation of t does not
try to consume and read a token in the same copy of the place p (resp. does not try
to read and produce a token in the same copy of the place p).

44

ACCEPTED MANUSCRIPT

For every 3-tuple of such functions (ζ, ζ′, ζ′′) verifying these conditions, we add to
the new net the transition t′ = tζ,ζ′,ζ′′ defined, for every place p ∈ P, by

∀i ∈ {1, . . . , s(p)},

Pre(t′)(p1

ζp(i)) = Ii

Post(t′)(p0
ζp(i)) = [0]

∀ j ∈ {1, . . . , s′(p)}, Read(t′)(p1
ζ′p(j)) = I′j

∀l ∈ {1, . . . , s′′(p)},

Pre(t′)(p0

ζ′′p (l)) = R≥0

Post(t′)(p1
ζ′′p (l)) = I′′l

Moreover, the label of tζ,ζ′,ζ′′ is the one of t.

Given a place p, the arcs connecting transition tζ,ζ′,ζ′′ to copies of p are represented
on Figure 24.

i ∈ {1, . . . , s(p)}

p1
ζp(i)

p0
ζp(i)

p1
ζ′′p (l)

p0
ζ′′p (l)

l ∈ {1, . . . , s′′(p)}

p1
ζ′p(j)

j ∈ {1, . . . , s′(p)}

tζ,ζ′,ζ′′ , λ(t)Ii

[0]

I′′l

R≥0

I′j

Fig. 24. Simulating a bounded RA-TdPN using a safe RA-TdPN

Initial marking. Given the original initial marking M0 ∈ Bag(P), the new initial
marking M′0 is defined by

M′0 =
∑

p∈P

M0(p)∑

i=1

p1
i .

Acceptance condition. Finally, the acceptance condition is transformed in a natural
way: every occurrence of a place p in the acceptance condition is replaced by the
term

∑k
i=1 p1

i .

It is easy to verify that this transformation provides a structurally 1-safe RA-TdPN
N ′ which is strongly bisimilar to N . The fact that N ′ is 1-safe is obvious by con-
struction (recall that places p0

i and p1
i are mutually exclusive). The existence of a

bisimulation relation relies on the fact that a configuration with n tokens in place p
is encoded by a configuration where n places p1

i contains 1 token (whose ages are

45

ACCEPTED MANUSCRIPT

the ones of tokens of p) whereas for the k − n other i’s, there is 1 token in place p0

i
(with arbitrary ages). It is then easy to prove that t is firable from a configuration
ν of N if and only if there exists a copy of t which is firable from a correspond-
ing configuration in N ′. Since the initial markings and the acceptance conditions
are preserved by the bisimulation, the strong bisimulation implies the {∗, ω, ωnz}-
equivalence.

We now present the construction which transforms a safe RA-TdPN into a TA. Let
N = (P,m0,T,Pre,Post,Read, λ,Acc) be a safe RA-TdPN. We define a TA A =
(L, `0, X,Σε, E, F, A) equivalent toN . By notation misuse, given a transition t ofN ,
we simply write in this construction Pre(t) for the set of places p ∈ P such that
size(Pre(t)(p)) > 0 (and similarly for Post and Read). Note that since N is safe,
we can assume that for every transition t ∈ T , we have Pre(t) ∩ Read(t) = ∅ and
Read(t) ∩ Post(t) = ∅ (otherwise the transition will never be firable).

We defineA as follows:

• L = 2P,
• `0 = dom(m0) (there is exactly one token per initially marked place),
• X = P (xp denotes the clock corresponding to the place p),
• there is a transition `

γ,a,µ
−−−→ `′ whenever there exists a transition t in N such that:

· Pre(t) ∪ Read(t) ⊆ `,
· Post(t) ∩ (` \ Pre(t)) = ∅,
· `′ = (` \ Pre(t)) ∪ Post(t),
· γ is the conjunction of all xp ∈ Ip such that (p, Ip) ∈ Pre(t) ∪ Read(t),
· a is the label of transition t in N ,
· µ resets clock xp in interval Ip if (p, Ip) ∈ Post(t).
• if Acc = {acc1, . . . , acck}, A is defined as the set of formulas {A1, . . . , Ak} where

for every 1 ≤ i ≤ k, Ai =
{
` ∈ 2P |

(∧

q∈`

q = 1 ∧
∧

q<`

q = 0
)
⇒ acci

}
.

Note that since a place contains at most one token, one clock is enough to encode
the behaviour of a place. It is then routine to verify that this construction is correct.

From TA to bounded RA-TdPNs. LetA = (L, `0, X,Σε, E, F) be a TA. We construct
the RA-TdPN N = (P,m0,T,Pre,Post,Read, λ,Acc) as follows.

• P = L ∪ X,
• m0 = `0 +

∑
x∈X x,

• T = E,
• for all e = `

g,a,µ
−−−→ `′ in E,

· if x is such that µ(x) is defined, Post(e)(x) = µ(x), Pre(e)(x) = g|x, where g|x is
the interval of x imposed by constraint g,
· if x is such that µ(x) is not defined, Read(e)(x) = g|x,

46

ACCEPTED MANUSCRIPT

· Pre(e)(`) = R≥0, Post(e)(`′) = [0],
· λ(e) = a,
• if A = {A1, . . . , Ak}, then Acc is the set {acc1, . . . , acck}where for every 1 ≤ i ≤ k,

acci =

∧

`∈Ai

` = 1

The net N that we have constructed is strongly bisimilar to the original timed au-
tomaton. Indeed, we consider the relation R defined by

(`, val) R ν iff

size(ν(`)) > 0
size(ν(`′)) = 0 ∀`′ , `

ν(x) = 1 · val(x) ∀x ∈ X,

where (`, val) ∈ L × RX
≥0 is a configuration of A, and ν ∈ Bag(R≥0)P is a configu-

ration of N . It is straightforward to verify that R is a bisimulation relation which
respects accepting configurations.

Finally, just notice that there is always exactly one token in one of the places ` for
` ∈ L. This justifies the definition of Acc. Moreover, it is easy to verify that the net
we have constructed is safe, thus bounded. �

Example 5 We illustrate the transformation of a TA into a bounded RA-TdPN on
the automaton depicted on Figure 25.

•

• •

{

`1 `2

`1 `2

x y

a
x < 2 ∧ y ≥ 3, a

x := 1
< 2

[1]

≥ 3

Fig. 25. An example of the construction from TA to safe RA-TdPNs.

9.3 Expressiveness Results for TA

Combining the previous result with the results of the previous section on Petri nets,
we get interesting side results on timed automata, and in particular quite surprising
results for languages of infinite timed words.

Corollary 1 For the {∗, ωnz}-equivalence,

(1) bounded TdPNs and TA are equally expressive;
(2) (integral) TA and 0-reset (integral) TA are equally expressive.

Corollary 2 For the ω-equivalence,

47

ACCEPTED MANUSCRIPT

(3) TdPNs and TA are incomparable; 8

(4) TA are strictly more expressive than bounded TdPNs;
(5) integral TA are strictly more expressive than integral 0-reset TA;
(6) TA and 0-reset TA are equally expressive.

As a folklore theorem, it was thought that TA and bounded TdPNs are equally ex-
pressive. We have proved that this is indeed the case for finite and infinite non-Zeno
timed words (item (1)), but that it is wrong when considering also Zeno behaviours
(item (4)). Indeed, the result is even stronger: even though TdPNs can be somehow
seen as timed systems with infinitely many clocks, we have proved that TA and
TdPNs are in general incomparable (item (3)).

The three other results complete the picture of known results about general resets in
TA [5]. Item (2) was already partially proved in the above-mentioned paper, and we
provide here a new proof of this result. Items (5) and (6) are quite surprising, since
they show that refining the granularity of the guards is necessary for removing
general resets in TA (and for preserving the languages of infinite timed words).
It is one of the first such results in the framework of timed systems (up to our
knowledge). Finally, the construction provided in the proof of Theorem 5 applied
to TA provides an extension to infinite words of the construction presented in [5] for
removing general resets in TA (which is indeed only correct for finite and infinite
non-Zeno timed words). We illustrate this construction on Figure 26 by giving a
0-reset TA ω-equivalent to the timed automaton of Figure 23(b).

x = 0, a
x := 0

x < 1
2 , b

x < 1
2 , ε

x < 1
2 , b

Fig. 26. An example of the construction for removing general resets in TA.

10 Conclusion

In this paper , we have thoroughly studied the relative expressiveness of TdPNs and
TA, and we have proved in particular that they are incomparable in general. This
makes the model of RA-TdPNs (introduced earlier in [17]) very interesting, as it
unifies TA and TdPNs while it enjoys the interesting property that coverability is
still decidable. Surprisingly, this rather general model also enjoys nice expressive-
ness properties.

8 Recall that (untimed) Petri nets may recognize non regular languages, unlike timed au-
tomata whose untimed languages are always regular.

48

ACCEPTED MANUSCRIPT

We have studied the expressive power of read-arcs in RA-TdPNs, and we have
proved that, when restricting to finite or infinite non-Zeno behaviours, read-arcs
do not add expressiveness. On the other hand, we show that Zeno behaviours dis-
criminate between several subclasses of RA-TdPNs. For instance, RA-TdPNs are
strictly more expressive than TdPNs. This implies in particular that, in this context,
the classical assumption which consists in forgetting Zeno behaviours is restrictive.
Since we also prove that bounded RA-TdPNs and TA are equally expressive, we
get the surprising result that TA are strictly more expressive than bounded TdPNs,
which is quite counter-intuitive.

Classically, TdPNs use quite general resets, whereas TA only use resets to 0. We
have thus studied the expressive power of these general resets, compared with resets
to 0. We have shown that they don’t add any expressiveness to the above-mentioned
models, but that the granularity has to be refined for removing general resets in RA-
TdPNs when considering Zeno behaviours. Up to our knowledge, this is one of the
first expressiveness results (at least in the domain of timed systems), which requires
to refine the granularity of the model. As side results, we complete the work in [5],
and get that it is necessary to refine the granularity of guards in TA for removing
general resets, when considering languages of infinite possibly Zeno timed words.

Our main further work is to develop unfolding techniques for RA-TdPNs, taking
advantage of the locality of the firing rules. A first step in that direction is [7],
where we have extended the seminal work of McMillan [13] to networks of timed
automata with invariants (using some ideas presented in this paper for translating
timed autamata to RA-TdPNs). Note that read-arcs increase concurrency between
events, but they require some attention when building unfoldings [20,21]. Another
possible research direction is to study other kinds of arcs, for instance arcs which
do not reset ages of tokens when moving the tokens from one place to another one.

References

[1] P. A. Abdulla, P. Mahata, and R. Mayr. Decidability of Zenoness, syntactic
boundedness and token-liveness for dense-timed petri nets. In Proc. 24th
Conference on Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’04), volume 3328 of Lecture Notes in Computer Science, pages 58–70.
Springer, 2004.

[2] P. A. Abdulla and A. Nylén. Timed Petri nets and bqos. In Proc. 22nd International
Conference on Application and Theory of Petri Nets (ICATPN’01), volume 2075 of
Lecture Notes in Computer Science, pages 53–70. Springer, 2001.

[3] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[4] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems

49

ACCEPTED MANUSCRIPT

using time Petri nets. IEEE Transactions in Software Engineering, 17(3):259–273,
1991.

[5] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theoretical
Computer Science, 321(2–3):291–345, 2004.

[6] P. Bouyer, S. Haddad, and P.-A. Reynier. Timed Petri nets and timed automata: On
the discriminating power of Zeno sequences. In Proc. 33rd International Colloquium
on Automata, Languages and Programming (ICALP’06) — Part II, volume 4052 of
Lecture Notes in Computer Science, pages 420–431. Springer, 2006.

[7] P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings of networks of timed
automata. In Proc. 4th International Symposium on Automated Technology for
Verification and Analysis (ATVA’06), volume 4218 of Lecture Notes in Computer
Science, pages 292–306. Springer, 2006.

[8] C. Girault and R. Valk, editors. Petri Nets for Systems Engineering. Springer, 2002.

[9] G. Higman. Ordering by divisibility in abstract algebras. In Proc. London Math. Soc.,
volume 2, pages 326–336, 1952.

[10] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata with
one or two clocks. In Proc. 15th International Conference on Concurrency Theory
(CONCUR’04), volume 3170 of Lecture Notes in Computer Science, pages 387–401.
Springer, 2004.

[11] S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. 8th
International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS’05), volume 3441 of Lecture Notes in Computer Science, pages
250–265. Springer, 2005.

[12] P. Mahata. Model Checking Parameterized Timed Systems. PhD thesis, Department of
Information Technology, Uppsala University, Uppsala, Sweden, 2005.

[13] K. McMillan. A technique of state space search based on unfolding. Formal Methods
in Syst. Design, 6(1):45–65, 1995.

[14] U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6):545–596, 1995.

[15] J. Ouaknine and J. B. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. In Proc. 19th Annual Symposium on Logic in Computer
Science (LICS’04), pages 54–63. IEEE Computer Society Press, 2004.

[16] J. Ouaknine and J. B. Worrell. On the decidability of metric temporal logic. In Proc.
19th Annual Symposium on Logic in Computer Science (LICS’05), pages 188–197.
IEEE Computer Society Press, 2005.

[17] J. Srba. Timed-arc petri nets vs. networks of timed automata. In Proc. 26th
International Conference Application and Theory of Petri Nets (ICATPN’05), volume
3536 of Lecture Notes in Computer Science, pages 385–402. Springer, 2005.

[18] V. Valero, D. Frutos-Escrig, and F. R. F. . Cuartero. On non-decidability of reachability
for timed-arc Petri nets. In Proc. 8th Int. Work. Petri Nets and Performance Models
(PNPM’03), pages 188–196. IEEE Computer Society Press, 1999.

50

ACCEPTED MANUSCRIPT

[19] W. Vogler. Efficiency of asynchronous systems, read arcs, and the MUTEX-problem.

Theor. Comput. Sci., 275(1–2):589–631, 2002.

[20] W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with
read arcs. In Proc. 9th Int. Conf. Concurrency Theory (CONCUR’98), volume 1466
of LNCS, pages 501–516. Springer, 1998.

[21] J. Winkowski. Reachability in contextual nets. Fundam. Inform., 51(1-2):235–250,
2002.

51

