
Chapter 9

Verification of Probabilistic Systems
Methods and Tools

9.1. Introduction

Historically, functional verification and performance evaluation have been two dis-
tinct stages in the development of applications. Each one had its own models and
methods. For 15 years, numerous works covered both areas. These works are now
referred to as probabilistic verification or, more accurately, by verification of proba-
bilistic systems.

This direction of research is prompted by the new needs of the modelers. They
wish, for instance, to compute the probability that a property expressed as some
logical formula is satisfied. They also wish to analyze a system including both non-
deterministic and probabilistic features. The goal of this chapter is to introduce three
important topics related to this research:

– the definition of high level stochastic models;

– the verification of Markov chains (MC);

– the verification of Markov decision processes (MDP).

We will always follow the same organization for these topics:

– the detailed presentation of one approach;

– an overview of the other approaches;

– the description of an analysis tool related to this topic.

Chapter written by Serge HADDAD and Patrice MOREAUX.

289

Modeling and VeriJication of Real-Time Systems: 
Formalisms and Software Tools 

Edited by Stephan Merz & Nicolas Navet 
Copyright 0 2008, ISTE Ltd. 



290 Modeling and Verification of Real-Time Systems

The first part of this chapter consists of preliminary notions related to stochastic
processes and Markov chains. The second part is devoted to high level formalisms.
The third part covers the verification of Markov chains and the chapter ends with a
discussion of the verification methods for Markov decision processes.

9.2. Performance evaluation of Markovian models

9.2.1. A stochastic model of discrete event systems

We assume that the reader is familiar with the basics of probability theory. For
more details, see the following books [FEL 68, FEL 71, TRI 82].

In this chapter, we use the following notations:

– Pr(E) denotes the probability of an event E and Pr(A | B) the probability of A
given B;

– the adverb “almost”, in expressions such as “almost everywhere” or “almost
surely”, means for a set of probability 1;

– R (respectively R
+,R+∗) denotes the set of real numbers (respectively non neg-

ative real numbers, positive real numbers). If x is a real number then "x# denotes the
greatest integer less than or equal to x;

– if E ⊆ R then Inf(E) (respectively Sup(E)) denotes the greatest lower bound
(respectively least upper bound) of E.

An execution of a discrete event system (DES) is characterized by a sequence
(a priori infinite) of events {e1, e2, . . .} separated by time delays. Only the occurrence
of an event changes the state of the system.

More formally, the stochastic behavior of a DES is defined by two families of
random variables:

– X0, . . . , Xn, . . . ranging over the (discrete) space of states, denoted S. In the
sequel, unless explicitly mentioned, we assume that this space is finite. X0 represents
the initial state of the system and Xn (n > 0) the current state after the occurrence of
the nth event. The occurrence of an event does not necessarily change the state of the
system, hence Xn+1 may be equal to Xn;

– T0, . . . , Tn, . . . ranging over R
+ where T0 represents the delay before the first

event and Tn (n > 0) represents the time elapsing between the nth and the (n+ 1)th

event. Observe that these delays may be zero (e.g., a sequence of instructions consid-
ered as instantaneous compared to database transactions including I/O operations).

When initial distribution X0 is concentrated in a single state s, we say that the
process starts in s (i.e., Pr(X0 = s) = 1).
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A priori, there is no restriction on these families of random variables. However,
for the categories of processes that we study, a DES cannot execute an infinite number
of actions in a finite time. Otherwise stated:

∞∑
n=0

Tn =∞ almost surely. (9.1)

This property allows us to define the state of the system at any instant. Let N(τ)
be the random variable defined by:

N(τ) =def Inf

({
n |

n∑
k=0

Tk > τ

})

Due to (9.1), N(τ) is defined almost everywhere. As can be seen in Figure 9.1,
N(τ) presents jumps strictly greater than 1. The state Y (τ) of the system at instant τ ,
is now XN(τ). Observe that Y (τ) is not equivalent to the stochastic process, but that
it allows, in most cases, to proceed to standard analyses. The scheme in Figure 9.1
presents a possible realization of the process and illustrates the meaning of the random
variables introduced above. In this example, the process is initially in state s4 and
remains in this state until τ0 where it visits s6. At time τ0+τ1, the system successively
visits in zero time, states s3 and s12 before reaching s7 where it remains some non-
zero amount of time. Observing Y (τ) in continuous time hides the vanishing states
s3 and s12 of the process.

The performance evaluation of a DES leads to two kinds of analysis:

– the study of the transient behavior, i.e. the computation of measures depending
on the time elapsed since the initial state. This study aims to analyze the initializa-
tion stage of a system and the terminating systems. For instance, dependability and
reliability [LAP 95, MEY 80, TRI 92] require transient analysis;

– the study of steady-state behavior of the system. In numerous applications, the
modeler is interested by the behavior of the system once it is stabilized.

Obviously, this requires that such a steady-state behavior exists. This condition
can be expressed, denoting π(τ) the distribution of Y (τ), by:

lim
τ→∞

π(τ) = π (9.2)

where π is also a distribution called the steady-state distribution.

Transient and steady-state distributions are often only intermediate values useful to
compute performance indices. For instance, the steady-state probability that a server
is available, the probability that at time τ a connection is established or the mean
number of clients waiting for a service are such indices.
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Figure 9.1. A realization (trajectory) of the stochastic process

In order to reason in a generic way about DES we assume in the following that
we are given a set of functions defined on the set of states and ranging over R. Such
a function f may be interpreted as a performance index and, given a distribution π,
quantity

∑
s∈S π(s) · f(s) represents the measure of this index.

When the index is a function ranging over {0, 1}, it can be viewed as an atomic
proposition satisfied in a state if the function is equal to 1. In the following, we note P ,
the set of atomic propositions and s � φ, and the fact that s satisfies φ, with s a state
and φ an atomic proposition. In this case, given a distribution π, quantity

∑
s�φ π(s)

represents the measure of this index.

9.2.2. Discrete-time Markov chains

9.2.2.1. Presentation

A discrete-time Markov chain (DTMC) presents the following characteristics:

– the delay between successive instants Tn is the constant value 1;

– the successor of the current state depends only on this state and the transition
probabilities are time-invariant1:

Pr(Xn+1 = sj | X0 = si0 , . . . , Xn = si)

= Pr(Xn+1 = sj | Xn = si) = pij =def P[i, j].

1. Hence the name homogenous chain used in studies about more general definitions of Markov
chains.
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In the following sections, we use both notations for state transitions.

9.2.2.2. Transient and steady-state behaviors of DTMC

In this section we recall classical results while providing intuitive justifications
which are not mathematical proofs.

The analysis of the transient behavior does not present any difficulty. State changes
occur at time {1, 2, . . .}. Given an initial distribution π0 and a transition matrix P,
then πn the distribution ofXn (i.e. the state of the chain at time n) is given by formula
πn = π0 ·Pn which is obtained with the help of an elementary recurrence.

The analysis of the asymptotic behavior of a DTMC (in the case of a countable or
finite set of states) leads to the following classification of states:

– a state s is transient if the probability that it occurs again once it has occurred
is strictly less than 1. Consequently, its occurrence probability Pr(Xn = s) goes to 0
when n goes to∞. A state is called recurrent if it is not transient;

– a state is null recurrent if the mean time between two successive occurrences of
this state is infinite. Intuitively, once reached, the mean delay between occurrences
of this state will go to∞ as the number of occurrences goes to∞ and consequently,
once again, the occurrence probability will go to 0. This intuitive reasoning is mathe-
matically sound;

– a state is non-null recurrent if the mean delay between two successive occur-
rences of this state is finite. If a stationary distribution exists then it is concentrated on
the non-null recurrent states.

We discuss this analysis when the state space is finite. Let us consider the graph
defined as follows:

– the set of vertices is the set of states of the Markov chain;

– there is an edge from si to sj if pij > 0.

Let us study the strongly connected components (SCC) of this graph. If an SCC
has an outgoing edge then necessarily the states of this SCC are transient. Conversely,
all the states of a terminal SCC (i.e. without an outgoing edge) are non-null recurrent.
In the particular case where a terminal SCC is reduced to a state s (i.e. P[s, s] = 1),
we say that s is an absorbing state.

When the graph is strongly connected, we say that the chain is irreducible. In the
general case, every terminal SCC is an irreducible subchain.

Let us study the existence of a steady-state distribution when the chain is irre-
ducible. First notice that it may not exist. For instance, a chain with two states s0 and
s1, an initial distribution concentrated in a state and where p0,1 = p1,0 = 1, alternates
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between the two states and thus does not converge to a steady-state distribution. By
generalization, an irreducible chain is periodic with period k > 1 if we can parti-
tion the states in subsets S0, S1, . . . , Sk−1 such that from states of Si the chain only
reaches, in one step, states of S(i+1) mod k.

It turns out that an irreducible and aperiodic chain (called ergodic) yields a steady-
state distribution and that it is independent from the initial distribution. Computing
this distribution is relatively easy. Indeed, we have πn+1 = πn · P. With the limit
(which is mathematically sound), we obtain π = π · P. Moreover, π is the single
distribution of:

X = X ·P (9.3)

Let us note that an initial distribution, the solution of this equation, is invariant:
whatever an observation time, the current distribution is identical to the initial distri-
bution. In order to solve equation (9.3), we can proceed to a direct computation by
substituting the normalization equation (X · 1T = 1 where 1T denotes the column
vector with all 1s) for any other equation.

However, iterative computations are more interesting if the state space is huge.
The simplest one consists of iterating X← X ·P [STE 94].

Let us tackle the general case assuming only that the terminal SCC (denoted
{C1, . . . , Ck}) are aperiodic with steady-state distributions {π1, . . . , πk}. In this case,
the chain also generates a stationary distribution (which here depends on the initial
distribution). This distribution is given by formula π =

∑k
i=1 Pr(to reach Ci) · πi.

Thus, it remains to compute the probability of reaching a terminal SCC. We evaluate
this quantity starting from a fixed state and then condition it following the initial dis-
tribution: Pr(to reach Ci) =

∑
s∈S π0(s) · π′

Ci
(s) where π′

Ci
(s) = Pr(to reach Ci |

X0 = s). Let PT,T be the transition submatrix of the chain restricted to the tran-
sient states and PT,i the transition submatrix from transient states to states of Ci, then
π′

Ci
= (

∑
n�0 (PT,T )n) ·PT,i · 1T = (I−PT,T )−1 ·PT,i · 1T . The first equality is

obtained by conditioning the reachability of Ci by the possible length of the associated
path whereas the second can be straightforwardly checked.

9.2.3. Continuous-time Markov chains

9.2.3.1. Presentation

A continuous-time Markov chain (CTMC) presents the following characteristics:

– the delay between successive instants Tn is a random variable whose distribution
is a negative exponential with a rate only depending on state Xn. Otherwise stated:

Pr(Tn � τ | X0 = si0 , . . . , Xn = si, T0 � τ0, . . . , Tn−1 � τn−1)

= Pr(Tn � τ | Xn = si) = 1− e−λi·τ ;



Verification of Probabilistic Systems 295

– the successor state of the current state only depends on this state and transition
probabilities are time-invariant2:

Pr(Xn+1 = sj | X0 = si0 , . . . , Xn = si, T0 � τ0, . . . , Tn−1 � τn−1)

= Pr(Xn+1 = sj | Xn = si) = pij =def P[i, j].

The discrete chain defined by matrix P is called embedded chain. It “observes”
the state changes of the CTMC without taking into account time elapsing. A state of
the CTMC is absorbing if it is absorbing with respect to the embedded DTMC.

9.2.3.2. Transient and steady-state behaviors of CTMC

In a CTMC, due to the memoryless characteristic of the exponential law, at any
time the evolution of DES only depends on its current state.

More precisely, the process is characterized by its initial distribution π(0), ma-
trix P and the family of λis. Let us call π(τ) the distribution of Y (τ) and πk(τ) =
π(t)(sk). If δ is small then the probability that more than one event occurs between
τ and τ + δ is negligible and the probability that one event occurs and triggers a state
change from k to k′ is approximatively equal to λk · δ · pkk′ (by definition of the
exponential law).

πk(τ + δ) ≈ πk(τ) · (1− λk · δ) +
∑
k′ 
=k

πk′(τ) · λk′ · δ · pk′k

Thus:

πk(τ + δ)− πk(τ)
δ

≈ πk(τ) · (−λk) +
∑
k′ 
=k

πk′(τ) · λk′ · pk′k

And finally:

dπk
dτ

= πk(τ) · (−λk) +
∑
k′ 
=k

πk′(τ) · λk′ · pk′k.

Let us define matrix Q by: qkk′ = λk · pkk′ for k �= k′ and qkk = −λk(=
−
∑
k′ 
=k qkk′). Then the previous equation can be rewritten as:

dπ

dτ
= π ·Q. (9.4)

2. Here again, we say that the chain is homogenous.
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Matrix Q is called the infinitesimal generator of the CTMC. From (9.4), this generator
entirely specifies the chain evolution.

If this equation establishes the memoryless feature of a CTMC, it does not provide
a practical means to compute the transient behavior of the chain. For this, we describe
a second CTMC equivalent to the first one from a probabilistic point of view (a tech-
nique introduced in [JEN 53] and known as uniformization). Let us choose a value
μ � Sup({λi}). Whatever the current state, the delay before the next event follows
an exponential law with (uniform) parameter μ. The state change is then triggered
by transition matrix Pμ defined by ∀i �= j,Pμ[si, sj ] = (μ)−1 · λi · P[si, sj ]. The
DTMC associated with matrix Pμ is called the uniformized chain (for μ) of the orig-
inal CTMC. The (straightforward) computation of the infinitesimal generator of the
second CTMC shows that it is equal to that of the first chain. So this is the same
stochastic process (forgetting the vanishing states). The transient distribution π(τ)
is obtained as follows. We compute the probability of being in s at time τ knowing
that there have been n state changes during [0, τ ]. This probability is given by the
uniformized chain and more precisely by π(0) · (Pμ)n. Afterwards, we “uncondi-
tion” this probability by computing the probability of n state changes knowing that
the delay between two changes follows the exponential law. This probability is given
by e−μ·τ · (μ · τ)n/n!. Thus:

π(τ) = π(0) ·
(
e−μ·τ

∑
n�0

(μ · τ)n(Pμ)n

n!

)
.

In practice, this infinite sum does not raise any difficulties since it converges very
quickly and the summation may be stopped as soon as the required precision is greater
than e−μ·τ · (μ · τ)n/n!.

Let us examine the asymptotic behavior of a CTMC. The simplest way to analyze
its behavior consists of studying the embedded DTMC of the uniformized chain. As
observed during the presentation of this approach, this chain is not unique. Let us
select a DTMC obtained with a choice of μ > Sup({λi}). In this case, every state s
fulfills Pμ[s, s] > 0 and thus every terminal SCC of this chain is ergodic. This implies
that it yields a steady-state distribution. This distribution measures the steady-state
probability of the occurrence of a state. However, since the uniform description of the
CTMC implies a mean sojourn time identical for every state (1/μ), it also provides
the steady-state distribution of the CTMC.

In the particular (and frequent) case where the embedded chain is ergodic, this
distribution is obtained by solving the equation X = X · Pμ. We observe that Pμ =
I + (1/μ)Q. Thus, the distribution is also the unique solution of the equation:

X ·Q = 0 and X · 1T = 1. (9.5)

By analogy, we say that the CTMC is ergodic.
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9.3. High level stochastic models

The notion of a stochastic process provides a probabilistic framework for DES,
and Markov chain are a subclass of processes whose analysis is feasible. However,
the modeler wishes to use a specification model at a higher level whose semantics
given by a stochastic process then allows a quantitative analysis. It turns out that the
stochastic semantics of a high level model raises specific problems. The goal of this
section is to show how to identify and solve these problems.

We have chosen to illustrate these semantical features through the model of Petri
nets. We first introduce a general model and then a Markovian sub-model in order
to show how to obtain the characteristics of the corresponding CTMC. We assume
that the reader is aware of the model of ordinary Petri nets. Otherwise, we advise
consulting [GIR 03].

9.3.1. Stochastic Petri nets with general distributions

The stochastic feature of Petri nets is introduced by considering that a transition
has a variable firing delay once it is enabled, obtained by sampling some distribution
(ranging over R

+) and that firing conflicts are solved by some probabilistic sampling
depending on the transition weights. Different subclasses of stochastic Petri nets are
defined by restricting these kinds of distributions. In the next definition, we do not
restrict these distributions in any way.

DEFINITION 9.1.– A (marked) stochastic Petri net with general laws (GLSPN) N =
(P, T, Pre, Post,Φ, w,m0) is defined by:

– P , the finite set of places;

– T , with P ∩ T = ∅, the finite set of transitions;

– Pre (respectively Post), the backward (respectively forward) incidence matrix
from P × T to N;

– Φ, a function from T to the set of distributions ranging over R
+, the law of

transition delays;

– w, a function from T to R
+∗, the transition weights;

– m0, a vector of N
P , the initial marking.

The introduction of distributions and weights is not enough to specify the stochas-
tic process associated with the GLSPN. We are going to study the problems related to
this specification.

NOTE.– Most of the parameters of this process could depend on the current marking.
For sake of readability, we will not consider it in the following discussion.
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9.3.1.1. Choice policy

Given that some marking has been reached, we need to determine the next transi-
tion to fire among the enabled ones. There are two possibilities:

– a probabilistic choice according to a distribution proportional to the weight of
enabled transitions. This is a pre-selection since the choice takes place before the
sampling of the delay;

– conversely, an independent sampling of the delay for every enabled transition
followed by the choice of the shortest delay (with a possible re-use of some previ-
ous sampling; see below). When there are multiple shortest delays, we perform an
additional probabilistic choice according to the weights, called post-selection.

The second solution is generally chosen since on the one hand it corresponds to
most of the modeling interpretations and on the other hand, with the help of immediate
transitions (see section 9.3.4), the pre-selection can be simulated by the post-selection.
Observe that, except when the distributions are continuous, the specification of a dis-
tribution for a post-selection is required (here by the weight of transitions).

9.3.1.2. Service policy

If, given a marking m, a transition t has enabling degree e = "Inf({m(p)/
Pre[p, t]})# > 1, we may consider that the marking provides e clients to the transition
viewed as a server. So when sampling the delay, there are three options depending on
the modeled event:

– a single sampling is performed, the transition accepts clients one by one (single-
server mode);

– e samplings are performed, the transition accepts all the clients (infinite-server
mode);

– Inf({e, deg(t)}) samplings are performed, the transition accepts no more than
deg(t) clients simultaneously; this case generalizes the previous ones (with deg(t) =
1 or ∞) (multiple-server mode). Here the modeler must specify deg(t) for every
transition.

9.3.1.3. Memory policy

Once transition t is fired, what is the effect of the sampling of another transition t′

for its next firings?

The first possibility consists of forgetting this sampling. If transition t′ is still en-
abled, a new sampling is performed (resampling memory mode). With such a seman-
tic, t could model a crash (immediately repaired) of a service specified by t′.

The second possibility consists of storing the sampling decremented by the short-
est sampling, only if t′ is still enabled (enabling memory PRD (Preemptive Repeat
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Different) mode). If t′ is disabled, this mechanism could model a time-out (t′) can-
celed by the firing of t.

The third possibility is identical when the transition is still enabled but keeps the
sampling unchanged if t′ is disabled. This sampling will be used again when t′ be-
comes enabled (enabling memory PRI (Preemptive Repeat Identical) mode). Transi-
tion t′ when disabled could model a job aborted by t in order to be achieved later in
the same conditions.

The fourth possibility consists of storing the sampling decremented by the shortest
sampling. A transition t′ once disabled could model a job suspended by t (age memory
mode, also called PRS (Preemptive ReSume)).

In order to achieve the specification of this policy, we must take into account the
case of multiple-server transitions, which requires selecting which samplings should
be kept, suspended or forgotten. The simplest solution is a First In First Out (FIFO)
policy for samplings. The last sampling is the first one to be suspended or forgotten.
Other policies (such as suspend or forget the least advanced “client”) may be incom-
patible with some analysis methods.

It is clear that once these three policies are defined, the stochastic process is deter-
mined without ambiguity. Let us now restrict the kinds of delay distributions.

9.3.2. GLSPN with exponential distributions

In the original model [FLO 85, MOL 81] (called stochastic Petri net or SPN), ev-
ery transition t has a delay distribution which is a negative exponential with rate λ(t)
(assuming an enumeration of T , we denote λk = λ(tk)).

Let us examine the stochastic process generated by such a net with single-server
mode. Let m be a marking, t1, . . . , tk the enabled transitions from m. We check that:

– the sojourn time in m is an exponential law with rate λ1 + · · ·+ λk;

– the probability of firing ti before the other transitions is equal to λi∑
λj

and it does
not depend on the elapsed sojourn time;

– the distribution of the remaining firing delay of ti knowing that tj is fired is
identical to its initial distribution (memoryless law).

Otherwise stated, the current marking fully determines the future behavior of the
stochastic process. Thus this process is a continuous-time Markov chain, “isomor-
phic” to the reachability graph of the net, whose parameters are deduced from the
states (i.e. the reachable markings). This reasoning can be generalized to the other
modes. Assuming that the graph is finite, the transient and steady-state analyses of
this model are performed as described in section 9.2.3.
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9.3.3. Performance indices of SPN

Since the state of a Petri net is a marking, the functions associated with indices are
expressed by numerical expressions where variables are the possible place markings
(xp representing the marking of place p). For instance, assume there is a place cli
counting the number of clients and a place off witnessing the fact that the server is
unavailable. The expression xcli provides the number of clients whereas xcli � 1 ∧
xoff = 1 means that at least one client is waiting for a service during the unavailability
of the server.

Observe that, using some ad hoc reasoning, it is possible to compute indices related
to transitions. For instance, assume that t represents the arrival of a client and that we
want to compute the probability that a client arrives when the server is unavailable.
First we identify markings where t is enabled. For any such marking m, we compute
the probability that t is the next transition to be fired. In SPNs, this probability that we
denote πfire(m, t) is obtained as the ratio between its rate and the sum of the rates of
enabled transitions from m. Let π be the state distribution for which the index has to
be measured, then the searched value is:∑

m
t−→m′∧m′(off )=1

π(m) · πfire(m, t)∑
m

t−→m′ π(m) · πfire(m, t)
.

9.3.4. Overview of models and methods in performance evaluation

The domain of performance evaluation is extremely vast due to the long history of
telecommunications. Thus, we limit ourselves to skipping through this area, referring
to books for the interested reader.

The first evaluation models were the queues and then the queuing networks
[KLE 75, KLE 76]. This model mainly focuses on the kinds of laws, the type and
the number of clients, the service policies and the routing between queues. How-
ever, although appropriate for studying telecommunication networks, it misses generic
mechanisms in order to model systems (such as operating systems) which include syn-
chronization between components. We can add ad hoc mechanisms but it is safer to
add probabilistic features to functional models of concurrent systems.

Stochastic Petri nets have been the support of numerous modelings with ordinary
Petri nets [AJM 95]. Their elementary firing rule makes it possible to easily transform
them into a stochastic model as we have done in the previous section. Furthermore,
high-level Petri nets which provide support for data structure and parametrization of
actions have also be enlarged with a stochastic semantics [CHI 93b].
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Process algebra integrate compositional features and thus are appropriate for
a hierarchical design. So, they have also been enlarged with a stochastic seman-
tics [HIL 96]. Contrary to Petri nets, this semantic raises subtle problems like, for
instance, the quantitative specification of action synchronization.

The evaluation methods are generally classified with respect to the complexity of
computations. We follow this order restricting the references to the ones related to
Petri nets for sake of conciseness.

When the structure of a model is really simple, it is possible to obtain a formula ex-
pressing the steady-state distribution with respect to the numerical parameters. In the
case of a formula obtained by sub-formulae associated with the system components,
we call such formula a product form. In the framework of Petri nets, a product form is
difficult to obtain due to the synchronization required for firing a transition. However,
for subclasses of Petri nets such formulae have been established [HEN 90, HAD 05].

In the general case, it is necessary to generate the CTMC associated with the SPN
and to compute its steady-state distribution. When the size of the chain is too large, an
analysis of the structure of the net makes it possible to compute bounds [CHI 93a] or
to design approximate methods [CAM 94]. In the case of high-level nets, the aggre-
gation techniques a priori generate a smaller CTMC equivalent to the CTMC of the
net [CHI 93b]. When the Petri net is unbounded (i.e. when the place markings may
be arbitrarily large), the associated CTMC is infinite. However, if a single place is
unbounded, it is still possible to obtain the steady-state distribution [HAV 95].

If exponential laws are suitable to model events whose time distribution is un-
known, some operations have a duration belonging to some time interval or even close
to be constant. In such cases, the choice of an exponential law leads to loose approx-
imations. Thus, a study of nets including transitions with deterministic laws (also
called Dirac laws) has been undertaken [AJM 87, LIN 98]. Numerous alternative ap-
proaches have then been proposed depending on the kind of laws and the occurrence
of the corresponding transitions [DON 98, GER 99, LIN 98, LIN 99].

9.3.5. The GreatSPN tool

GreatSPN [AJM 95] is one of the most prominent tools for the qualitative and
quantitative analysis of Petri nets, developed since the beginning of the 1980s by the
performance evaluation team of Torino University. First analyzing SPNs, it has gradu-
ally integrated the semantical extensions related to the transition distributions. It is also
the only tool to cope with the model of the stochastic well-formed Petri net (SWN), a
high-level model which takes advantage of behavioral symmetries in order to obtain
a lumped CTMC directly from the definition of the net. GreatSPN is available from
the authors, free for academic use. The software includes a graphical interface for the
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definition of the net, which also handles non-graphical properties (like delays) and
triggers the computations. Most of the results are presented in the graphical interface.

9.3.5.1. Supported models

GreatSPN manages ordinary Petri nets whose transitions have negative exponential
distributions (standard SPN), but also phase type distribution (like ERLANG), deter-
ministic distribution (i.e. constant) and the null Dirac distribution (immediate tran-
sitions). GreatSPN also manages stochastic well-formed Petri nets, the most widely
used high-level stochastic Petri net model. Both models are analyzed using the graph-
ical interface.

9.3.5.2. Qualitative analysis of Petri nets

The tool integrates most of the standard analysis methods for Petri nets: bound-
edness checking, linear invariant computations, trap and deadlock computations, etc.
When the net is bounded, GreatSPN computes and saves on disk its reachability graph.
For an SWN, it computes a symbolic reachability graph which can be transformed into
a lumped Markov chain.

9.3.5.3. Performance analysis of stochastic Petri nets

GreatSPN computes the transient and steady-state distributions of bounded nets.
The user can also specify complex performance indices that the tool computes on
demand. The software also provides distributions and performance indices for SWN
at the lumped level and if necessary at the ordinary level.

Despite numerous improvements for the state representation (i.e. the markings),
the size of the reachability graph may forbid the exact resolution of very large models.
Thus, GreatSPN includes a stochastic simulator in order to cope with such situations.

9.3.5.4. Software architecture

The implementation of GreatSPN is based on a modular structure which follows
the analysis process for Petri nets (definition, qualitative analysis, performance eval-
uation). Every step is realized by programs written in C, whose executable code can
also be triggered by commands. This makes it possible to write scripts in order to
combine the different algorithms implemented in the tool. The reader can refer to the
site www.unito.it/~GreatSPN for more details.
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9.4. Probabilistic verification of Markov chains

The detailed discussion refers to CTMC.

9.4.1. Limits of standard performance indices

Performance indices defined above give valuable information to the system de-
signer. However, they do not express all significant measures. Let us illustrate this
point with the help of a service availability. Some properties related to this concept
are as follows:

– instantaneous availability guarantee in transient mode. That is, the probability,
at a given time τ , of the service availability;

– instantaneous availability guarantee in steady-state. That is, the probability, at
any time, of the service availability in steady-state;

– sustained availability guarantee in transient mode. That is, the probability that
the system is permanently available between times τ and τ ′;

– sustained availability guarantee in steady-state. That is, the probability that the
service is permanently available between two instants in steady-state. Since the pro-
cess is in steady-state, this index depends only on the duration between these two
instants;

– availability and response time guarantee in steady-state. That is, the probability
that, after a request, the service stays on until the response and that the response time
is lower than a given upper bound.

Although the first two properties may be easily deduced from the transient and
steady-state distributions, this is not the case for the other properties. We could figure
out an ad hoc algorithm for each of these. It is however more judicious to introduce a
new logic to express complex performance indices and to design a general evaluation
algorithm for this logic.

9.4.2. A temporal logic for Markov chains

The continuous stochastic logic (CSL) is an adaptation of the computation tree
logic (CTL) [EME 80] to continuous Markov chains. It expresses formulae evalu-
ated on states with the following syntax. Here we mainly refer to the approach of
[BAI 03a].

DEFINITION 9.2.– A CLS formula is inductively defined as:

– if φ ∈ P , then φ is a CSL formula;

– if φ and ψ are CSL formulae, then ¬φ and φ ∧ ψ are CSL formulae;

– if φ is a CSL formula, a ∈ [0, 1] is a real number, ��∈ {<,�, >,�}, then S�aφ
is a CSL formula;

– if φ and ψ are CSL formulae, a ∈ [0, 1] is a real number, ��∈ {<,�, >,�} and
I is an interval of R�0, then P�aX Iφ and P�a φUIψ are CSL formulae.
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Only the two last items require some explanation. Formula S�aφ is satisfied by a
state s of the chain if, for the process started in s, the stationary cumulated probability
(say p) of the states satisfying φ verifies p �� a. The value of this formula is well
defined since a finite CTMC has a stationary distribution. Let us note that this value
does not depend on state s if the chain is ergodic.

A sample of the stochastic process satisfies X Iφ if the first state change occurs
in the interval I and if the reached state verifies φ. State s satisfies P�aX Iφ if the
probability (say p) that a sample of the process started in s satisfies the given condition
fulfills p �� a.

A sample of the stochastic process satisfies φUIψ if there is a time τ ∈ I such
that ψ is satisfied and at all previous times φ is satisfied. State s satisfies P�aφUIψ
if the probability (say p) that a sample of the process, started in s satisfies the given
condition fulfills p �� a.

To exemplify these definitions, let us give the formal expressions of the availability
properties expressed above.

– 99% instantaneous availability guarantee in transient mode:

P�0.99trueU [τ,τ ]disp

where disp is an atomic proposition meaning that the service is available.

– 99% instantaneous availability guarantee in steady-state:

S�0.99disp

– 99% sustained availability guarantee in transient mode:

P<0.01trueU [τ,τ ′]¬disp

– 99% sustained availability guarantee in steady-state:

S<0.01trueU [τ,τ ′]¬disp

– 99% availability and response time (3 time units) guarantee in steady-state:

S�0.99(req ⇒ P�0.99(dispU [0,3]ack))

where req is an atomic proposition meaning a receiving request and ack is an atomic
proposition meaning an answer to a request. Let us note that the two 99% occurrences
do not have the same meaning. The internal operator occurrence is a requirement on
the behavior of the process started in a specific state, while the second one is a global
requirement on the states weighed with a stationary distribution. A priori, different
required values could have been specified.
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9.4.3. Verification algorithms

Given a CTMC and a CSL formula φ, the verification algorithm proceeds by the
successive evaluation of the sub-formulae of φ, “upwards” in the syntactic tree of the
formula φ, from leaves to the root, labeling each state with the sub-formulae this state
verifies. Thus, every step of the algorithm evaluates a formula viewing the operands
of the most external operator as atomic propositions.

This leads us to study each operator.

φ = ¬ψ The algorithm labels each state with φ if it is not labeled with ψ.

φ = ψ ∧ χ The algorithm labels each state with φ if it is labeled with ψ and χ.

φ = S�aψ The algorithm computes the steady-state distribution of the process
started in s (as mentioned in section 9.2.3). Then it sums up the probabilities of the
states labeled with ψ and labels s with φ if the computed value (say p) verifies p �� a.
Let us note that, for all states of a sink SCC, only one computation is required. Also,
if the CTMC has a unique stationary distribution, then the truth value of the formula
is state independent.

φ = P�aX Iψ Let s be a state. The occurrence of the next transition inside the in-
terval I and the satisfaction of ψ by the reached state are two independent events.
Thus, the searched probability is the product of the probabilities of these events. Let
us denote I = [τ, τ ′]; we assume without loss of generality that intervals are closed.
Indeed, since distributions are continuous, taking or not taking interval bounds into
account does not matter with regard to the value of the formula. If Q is the infinitesi-
mal generator of the chain and P the transition matrix of the embedded Markov chain,
then the probability of the first event is eτQ[s,s] − eτ ′Q[s,s] and the probability of the
second event is

∑
s′�ψ P[s, s′].

φ = P�aψUIχ The evaluation of this formula mainly consists of transient analy-
ses of chains derived from the original chain by elementary transformations. For a
chain X , we denote by Xφ the chain derived by transforming all states verifying φ as
absorbing states. To simplify matters, we study the various kinds of intervals.

– φ = P�aψU [0,∞[χ. In this case, the sample of the process must stay in states
verifying ψ until reaching a state verifying χ, without time constraint. In other words,
we track the behavior of the chain until a state verifying ¬ψ∨χ. Let us study the chain
X¬ψ∨χ. If a terminal SCC of this chain holds a state verifying χ, then it is reduced to
a single state and the requested probability is 1, otherwise this probability is zero for
all states of the SCC since they cannot reach a state verifying χ. Let us call “good”
a SCC associated with probability 1. So, the requested probability for the remaining
states is the probability of reaching a state of a good SCC. This probability depends
only on the embedded chain of X¬ψ∨χ and its computation has been described in
section 9.2.2.
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– φ = P�aψU [0,τ ]χ. In this case, the sample of the process must stay in states
verifying ψ until reaching a state verifying χ no later than time τ . In other words,
we track the behavior of the chain until reaching a state verifying ¬ψ ∨ χ. Thus, the
probability to be computed is Pr(X¬ψ∨χ(τ) � χ | X¬ψ∨χ(0) = s).

– φ = P�aψU [τ,τ ]χ. In this case, the sample of the process must stay in states
verifying ψ during the interval [0, τ ] and moreover these states must verify χ at time τ .
We overlook state changes at time τ since its probability is zero. Thus, the probability
to be computed is Pr(X¬ψ(τ) � ψ ∧ χ | X¬ψ(0) = s).

– φ = P�aψU [τ,∞[χ. In this case, the sample of the process must stay in states
verifying ψ during the interval [0, τ ], then it must verify the formula ψU [0,∞[χ from
state s reached at time τ . The requested probability is then

∑
s′�ψ Pr(X¬ψ(τ) = s′ |

X¬ψ(0) = s) · π(s′) where π(s′) is computed as in the first case.

– φ = P�aψU [τ,τ ′]χ. The same reasoning as above leads to the following for-
mula for the requested probability:

∑
s′�ψ Pr(X¬ψ(τ) = s′ | X¬ψ(0) = s) ·

Pr(X¬ψ∨χ(τ ′ − τ) � χ | X¬ψ∨χ(0) = s′).

9.4.4. Overview of probabilistic verification of Markov chains

Historically, the verification of discrete-time chains happened before the verifi-
cation of continuous-time chains. The first attempt for verifying LTL formulae on
DTMC [VAR 85] is conceptually easy: translate the formula into a Büchi automaton;
then determinize this automaton into a Rabin automaton; build the synchronized prod-
uct of this automaton with the DTMC, leading to a new DTMC; and apply a variant of
the analysis presented in section 9.2. Unfortunately, the complexity of this algorithm
is doubly exponential with respect to the size of the formula. In [COU 95], the au-
thors also build a new DTMC by iterative refinement of the initial DTMC analyzing
the formula operators. This leads to a simple exponential procedure. Moreover, they
show that this is the optimal complexity. A third algorithm [COU 03] also translates
the formula into a Büchi automaton. However, the chosen translation algorithm allows
us to directly evaluate the probability related to the formula on the synchronized prod-
uct of the automaton and the DTMC. This method also presents an optimal theoretical
complexity and behaves better than the previous method in effective modeling cases.

A standard analysis technique for performance models is to combine “rewards” to
states and/or to transitions of a chain and to compute performance indices related to
these rewards. In order to extend the scope of probabilistic verification to such models,
a new logic, PRCTL, is introduced in [AND 03] together with a formula evaluation
algorithm.

The first significant works on CTMC were established in [AZI 96, AZI 00]. They
proved that verification of CSL formulae on CTMC is decidable. However, the corre-
sponding algorithm is very complicated since it forbids the approximations we have
implicitly used in the computations of the previous section.
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In fact, even with the above method, computation may become intractable for large
Markov chains. An efficient approach to cope with this problem is to profit from the
modularity of the specification. In this context, we try to replace a module with a
smaller but equivalent one with respect to the formula to be checked. Then we check
the model made up of reduced modules. This approach, initialized in [BAI 03a], was
generalized in [BAI 03b] which studies numerous kinds of equivalence.

A completely different approach to reduce complexity of the verification is pro-
posed in [YOU 06]. Assuming we have to check the formula P�aφ, we can generate
random executions and compute the ratio of executions satisfying φ; in accordance
with classical probability results, this value converges on the requested probability.
This method is very efficient when the evaluation of the formula φ only requires a
time bounded execution.

9.4.5. The ETMCC tool

ETMCC (Erlangen-Twente Markov chain model checker) is the first model check-
ing tool (2000) for CSL formulae on CTMC. It is developed by several German uni-
versities, originally Erlangen, and the Deutch university of Twente. A limited version
is available from the authors. ETMCC allows analysis of CTMC with properties given
in CSL extended with several convenient features for the modeler, including rewards.
Tool usage is standard: model specification with a specific formalism, definition of the
properties with probabilistic temporal logic and results analysis. Even if ETMCC also
analyzes discrete-time models, we present functionalities for continuous-time systems
for which it was specifically designed. Moreover, the discrete-time case is the subject
of common work with the PRISM tool team (see below).

9.4.5.1. Language of system models

ETMMC has chosen a very simple solution: models are CTMC, provided by the
user as the rate matrix given through textual sparse version. Let us note this allows us
to use ETMCC from various higher-level models (process algebras, Petri nets, etc.) as
soon we are able to generate their (finite) state spaces. It is enough to translate these
descriptions into the textual input format of ETMCC. The list of atomic properties
satisfied on states must also be provided through a text file.

9.4.5.2. Language of properties

ETMCC allows us to define properties with the CSL logic detailed above. They
are given through the graphical user interface. CSL is extended to mean reward com-
putations in transient or steady-state mode, from state or event reward functions; this
allows the practitioner to obtain useful indices such as the mean cost of a transaction
during a given duration.
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9.4.5.3. Computed results

The software analyzes the model with respect to required properties and shows
results, truth values of CSL formulae and reward indices, through the user interface.

9.4.5.4. Software architecture

ETMCC is implemented in Java. The most involved part is the evaluation of
bounded time (Next and Until) operators. It makes use of numerical integration solvers
or CTMC uniformization solvers. The application also involves graph algorithms
especially for computation of maximal SCC. The graph of reachable states is im-
plemented with a sparse representation. This representation is also used for all nu-
merical computations. The reader can visit the ETMCC web site http://www7.
informatik.uni-erlangen.de/etmcc for a detailed description of the tool.

9.5. Markov decision processes

9.5.1. Presentation of Markov decision processes

Let us assume that we have to analyze executions of a set of transactions such that
each one can be modeled with a CTMC. Seeking for a model of the global system,
we are then faced to the fact that we do not know the scheduler of the transactional
system. We could model choices of the scheduler as probabilistic actions and thus,
come down to a global CTMC. However, this solution reduces significantly the scope
of computed measures. Indeed, such results would be interpreted as performance in-
dices of an “average” scheduler. However, in practice, we are looking for extremal
indices such as maximal probability of a transaction abort, for all (an infinite number
of) schedulers.

It is thus necessary to use a more expressive formalism than DTMC. More
precisely, this formalism must allow us to express probabilistic choices and non-
deterministic choices. This naturally leads us to Markov decision process (MDP).

DEFINITION 9.3.– A Markov decision process Σ = (S,P, V, next) is defined by:

– S, the (finite) set of states;

– P , the (finite) set of atomic propositions;

– V , the state characteristic function which associates with each state s, the subset
V (s) of P of true propositions in s;

– next, the function which associates with each state s, the set next(s) =
{πs1, . . . ,πsks

} of distributions with support S.

The fundamental element of this definition is the next function which controls the
evolution of the process. In state s, the process non-deterministically chooses a distri-
bution πsi ∈ next(s), and then samples this distribution, which defines the next state.
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In agreement with this interpretation, we introduce a (immediate) succession relation
ρ defined by ρ(s, s′) ⇔ ∃πsi , πsi (s

′) > 0. An execution path is then a sequence of
states such that every pair of consecutive states fulfills this relation.

We wish to put this system in a full probabilistic setting. To do so, we define
so called strategies. A strategy t is a function providing for every execution path
s0, s1, . . . , sn, St(s0, s1, . . . , sn), a distribution from next(sn). For a given strategy
and a given initial state, the Markov decision process behaves like a discrete-time
stochastic process so that the probability of an event Ev of this process is well defined
and will be denoted by PrSt(Ev).

9.5.2. A temporal logic for Markov decision processes

Probabilistic computation tree logic (pCTL), the temporal logic that we will
present, is an adaptation of CTL to Markov decision processes. We refer here mainly
to the approach of [BIA 95]. Formulae of pCTL are evaluated on states with the fol-
lowing syntax.

DEFINITION 9.4.– A pCTL formula is inductively defined by:

– if φ ∈ P , then φ is a pCTL formula;

– if φ and ψ are pCTL formulae, then ¬φ and φ ∧ ψ are pCTL formulae;

– if φ andψ are pCTL formulae, a ∈ [0, 1] is a real number and ��∈ {<,�, >,�},
then AφUψ, EφUψ and P�aφUψ are pCTL formulae.

Only the last point requires some explanation. The first two operators do not in-
volve numerical values of the distributions. AφUψ (respectively EφUψ) is true in
state s if and only if every (respectively at least one) execution path starting in s com-
prises a prefix made of states satisfying φ followed by a state satisfying ψ. The last
operator involves strategies in the following way: P�aφUψ is true in s if for every
strategy, the probability (say p) for the corresponding stochastic process that an exe-
cution path stating in s comprises a prefix made of states satisfying φ, followed by a
state satisfying ψ, satisfies p �� a.

9.5.3. Verification algorithms

Given a Markov decision process, and a pCTL formula φ, the model checking
algorithm proceeds by successive evaluation of sub-formulae of φ, “going upwards”
the syntactic tree of the formula φ, from leaves to the root, and labeling each state
with the sub-formulae it satisfies. Thus, each step of the algorithm evaluates a formula
viewing the operands of the most external operator as atomic propositions.

This leads us to study each operator.

φ = ¬ψ The algorithm labels each state with φ if it is not labeled with ψ.
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φ = ψ ∧ χ The algorithm labels each state with φ if it is labeled with ψ and χ.

φ = EψUχ In a first step, the algorithm labels states labeled with χ. Then, going
back up from these states using the precedence relation (ρ−1) it labels states labeled
with ψ. It iterates this step starting from the newly labeled states until saturation.

φ = AψUχ The algorithm uses a recursive function tagging visited states. When it
evaluates a state labeled with χ, it labels it with φ and returns true. When it evaluates a
state not labeled with χ or ψ it returns false. When it evaluates a state not labeled with
χ but labeled with ψ and not yet visited, it calls the function for each successor of the
state and labels it with φ if all calls return true. When it evaluates an already visited
and not labeled state, it returns false. The reader could check that this procedure
returns false if there is a path starting in the state, which comprises a state not labeled
with φ or χ before every state labeled with χ, or a (infinite) path made of states labeled
with φ but not with χ. This last case is detected by the presence of a circuit, thanks to
tagging states.

φ = P�aψUχ We only study this probabilistic operator since the other ones are
similar. The algorithm computes simultaneously for all states the minimal proba-
bility (say πmin(s) = Inf({PrSt(s � ψUχ)})) of “good” paths and then compares
it with a to find states to be labeled. If a state verifies χ, then whatever the strat-
egy St, PrSt(s � ψUχ) = 1 and so πmin(s) = 1. Let us call Sgood this subset
of states. From Sgood, we get the set of states where πmin(s) > 0. This set, de-
noted by S>0, is first initialized to Sgood and it is iteratively enlarged with states
which have, whatever the strategy, a non-zero probability of reaching it in one step:
S>0 ← S>0 ∪ {s | ∀πis,∃s′ ∈ S>0,π

i
s(s

′) > 0}. This procedure necessary termi-
nates. Let us call Sbad = S \ S>0. We can easily check that ∀s ∈ Sbad,πmin(s) = 0.
It remains to evaluate Sint = S>0 \ Sgood. Since this evaluation is at the heart of the
method and its extensions, we explain it in detail below and we prove its correctness.

First claim. Vector πmin is a solution of equation (9.6) where vector x is the un-
known.

∀s ∈ Sint,x(s) = Inf

({ ∑
s′∈Sint

πi
s(s

′)x(s′) +
∑

s′∈Sgood

πi
s(s

′)

}
1�i�ks

)
. (9.6)

Proof. We state the equality, proving the two inequalities.
(�) Let St be a strategy for the process starting in s, then:

PrSt(s � ψUχ) =
∑

s′∈Sint

πSt(s)
s (s′)PrSts′ (s′ � ψUχ) +

∑
s′∈Sgood

πSt(s)
s (s′)

with Sts′ the strategy defined by Sts′(s′, . . . , sn) = St(s, s′, . . . , sn).
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So,

PrSt(s � ψUχ) �
∑

s′∈Sint

πSt(s)
s (s′)πmin(s′) +

∑
s′∈Sgood

πSt(s)
s (s′)

� Inf

({ ∑
s′∈Sint

πi
s(s

′)πmin(s′) +
∑

s′∈Sgood

πi
s(s

′)

}
1�i�ks

)

With this final inequality being true for all St, we get:

∀s ∈ Sint,πmin(s) � Inf

({ ∑
s′∈Sint

πi
s(s

′)πmin(s′) +
∑

s′∈Sgood

πi
s(s

′)

}
1�i�ks

)
.

(�) Now, let ε > 0 given, then, by definition of πmin, for all s′ there is a strategy
Sts′ such that PrSts′ (s′ � ψUχ) � πmin(s′) + ε. Given a state s, we build a strategy
St for the process starting in s in the following way. St chooses the distribution πis
which minimizes

∑
s′∈Sint

πis(s
′)PrSts′ (s � ψUχ)+

∑
s′∈Sgood

πis(s
′), then applies

to the next reached state s′the strategy Sts′ . By construction,

∀i,PrSt(s � ψUχ) �
∑

s′∈Sint

πi
s(s

′)PrSts′ (s′ � ψUχ) +
∑

s′∈Sgood

πi
s(s

′)

�
∑

s′∈Sint

πi
s(s

′)(πmin(s′) + ε) +
∑

s′∈Sgood

πi
s(s

′)

� ε+
∑

s′∈Sint

πi
s(s

′)πmin(s′) +
∑

s′∈Sgood

πi
s(s

′)

Thus,

πmin(s) � PrSt(s � ψUχ)

� ε+ Inf

({ ∑
s′∈Sint

πi
s(s

′)πmin(s′) +
∑

s′∈Sgood

πi
s(s

′)

}
1�i�ks

)

This last equality being true for arbitrary small ε, the second equality is established
and concludes the proof.

Second claim. Vector πmin is the unique solution of (9.6).

Proof. To establish uniqueness, we study Markovian strategies, that is to say strategies
for which the chosen distribution depends only on the last state of the execution. Let
us denote St(s) the chosen distribution when this state is s. Let us also note that
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the behavior of the process is then a DTMC. The equation satisfied by a Markovian
strategy is:

∀s ∈ Sint, PrSt(s � ψUχ) =
∑

s′∈Sint

πSt(s)
s (s′)PrSt(s′ � ψUχ)

+
∑

s′∈Sgood

πSt(s)
s (s′)

(9.7)

To simplify notations, x(s) will stand for PrSt(s � ψUχ), A[s, s′] will stand
for π

St(s)
s (s′) and b(s) will stand for

∑
s′∈Sgood

π
St(s)
s (s′). Equation (9.7) is then

rewritten in vector notation x = A·x+b. Quantity An[s, s′] is the probability of being
in s′ starting from s after n steps without leaving Sint. From the definition of Sint, for
every strategy, the probability of staying forever in Sint is zero, which is expressed
in DTMC context by the convergence of the series

∑
n�0 An (see section 9.2.2).

Replacing (n times) x with its expression in the right-hand side of the equality, we get
x =

∑
i�nAib+An+1x. Taking the limit, x =

∑
n�0 Anb, which means that (9.7)

has a unique solution.

Now, let x be a solution of (9.6). Let us denote by St the Markovian strategy
which chooses for a state s, the distribution πis for which the minimum is reached
with the solution x. Then x satisfies (9.7) corresponding to this strategy. Thus, x(s) =
PrSt(s � ψUχ). We deduce that ∀s,x(s) � πmin(s). Now, let St′ be the Markovian
strategy leading to πmin. We note that, for every s ∈ Sint:∑

s′∈Sint

πSt′(s)
s (s′)(x(s′)−πmin(s′))

=

( ∑
s′∈Sint

πSt′(s)
s (s′)x(s′) +

∑
s′∈Sgood

πSt′(s)
s (s′)

)

−
( ∑
s′∈Sint

πSt′(s)
s (s′)πmin(s′) +

∑
s′∈Sgood

πSt′(s)
s (s′)

)

� x(s)−πmin(s)

Rewritten with previous vector notations, this is given by A(x − πmin) � x −
πmin � 0. By iteration, we get An(x− πmin) � x− πmin � 0. Finally, taking the
limit, x− πmin = 0 which proves the claim.

Third claim. Vector πmin is the unique solution of the linear programming problem:

Maximize
∑
s∈Sint

x(s) under the constraints:

∀s ∈ Sint, ∀1 � i � ks, x(s) �
∑

s′∈Sint

πi
s(s

′)x(s′) +
∑

s′∈Sgood

πi
s(s

′).
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Proof. If x satisfies the constraints of this problem, then x satisfies the version of
(9.6) where equalities are replaced with inequalities. Let us assume moreover that
x is an optimal solution and that one of the inequalities (say for x(s)) of (9.6) is a
strict inequality. Then we may replace x(s) with the right-hand side of this specific
inequality and get a better solution. Thus, an optimal solution verifies (9.6) and from
the second claim, πmin is the unique solution of this problem.

So, evaluation consists of solving this linear programming problem.

Complexity. By construction, the algorithm has a linear complexity with respect to
the size of the formula. The complexity as a function of the size of the process depends
on operators. For non-probabilistic operators, the above description should convince
the reader that the complexity is again linear. For probabilistic operators, the most
costly step is the resolution of a linear programming problem whose time complexity
is polynomial with interior point methods [ROO 97].

9.5.4. Overview of verification of Markov decision processes

Markov decision processes were introduced mainly for modeling and solving op-
timization problems [PUT 94]. One of the pioneering works ([COU 95]) on MDP
model checking refers to probabilistic satisfaction of linear temporal logic properties,
and establishes exact complexity bounds for evaluation of formulae in (propositional)
LTL or expressed as Büchi automata. The approach of the previous section has been
extended to various branching-time logics: pCTL∗ [BIA 95], a variant of CTL∗, and
pTL and pTL∗ introducing observation clocks [ALF 97]. Another extension concerns
logic semantics. For instance, going back to our introductory example, the modeler
does not wish to take all schedulers into account. Indeed, a “real life” scheduler sat-
isfies (even weak) fairness properties with regard to the choice of the transaction to
be executed. However, the usual method which modifies the formula to take into ac-
count these hypotheses cannot be used in this context. Thus, we must introduce fair
operators into the logics and design adapted algorithms [BAI 98, ALF 00]. Finally, to
cope with the inaccuracy of numerical parameters of the MDP, other logics have been
introduced and analyzed [ALF 04].

Temporal logic evaluation methods for MDP may also be combined with other
methods to deal with more expressive models. As an example, probabilistic timed
automata specify continuous-time systems where non-determinism corresponds both
to the choice of the next event and its occurrence time. When these automata are
non-probabilistic, the usual method builds a finite abstraction of their (usually infi-
nite) timed transition system, which is sufficient to model check formulae of some
temporal logics (such as, for instance, TCTL). This abstraction leads to several rep-
resentations: region graph, zone graph, etc. In the probabilistic case, abstraction is
also feasible, but the result is then an MDP which is analyzed with methods explained
above [KWI 01, KWI 02b, KWI 02a]. Other more expressive models can only be an-
alyzed with approximation techniques [KWI 00].
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9.5.5. The PRISM tool

PRISM (Probabilistic Symbolic Model Checker) is the reference tool for model
checking of probabilistic systems, developed at Birmingham University, UK, since
the beginning of 2000, and available under the GPL Licence. It allows us to analyze
discrete-time systems (Markov chains and Markov decision processes, PCTL logic)
and continuous-time systems (Markov chains, CSL logic). PRISM usage is standard:
model definition with a specific formalism, definition of the properties with proba-
bilistic temporal logic, then computation and analysis of the results. We focus here
on discrete-time system functionalities, functionalities for continuous-time systems
being connected to those of the ETMCC tool presented above.

9.5.5.1. Language of system models

System descriptions in PRISM are based on reactive modules, close to the Alur
and Henzinger [ALU 99] model used in the CTL model checking tool SMV. Modules
correspond to active entities of the system and a state is defined as values of (global)
variables declared and handled by modules. Synchronization is carried out by guards
on values of variable. Stochastic parameters (transition probabilities) are defined in
modules and the user indicates in the model if this is a DTMC or a MDP. Extending
the basic model, state and transition reward functions may be defined in PRISM; it is
then possible to get mean performance indices (cumulated profits or losses), in finite
time horizon or in steady-state.

9.5.5.2. Properties language

For DTMC and MDP, PRISM allows us to define properties to be checked in the
PCTL logic presented above. PRISM also computes the probability that a given PCTL
formula is satisfied by all the states of a DTMC, without prefixing a probability thresh-
old.

9.5.5.3. Computed results

The software analyzes the model in accordance with requested properties and re-
turns results in the user interface, in the form of a set of graphical representations
giving a syntactic view of the properties of the system. Moreover, we get mean pa-
rameters defined by reward functions of the model.

9.5.5.4. Software architecture

From the internal point of view, implementation is programmed with C++ for
numerical code and with Java for the user interface and the overall structure of the
software. An important feature of PRISM is the management of symbolic data struc-
tures based on multi-valued binary decision diagrams (MTBDD, [CLA 93]) allow-
ing analysis of large systems (more than 1010 states in suitable cases). The non-
probabilistic model checker systematically manages BDD structures. For numerical
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solvers, PRISM uses three “engines” based on MTBDD, sparse matrix representations
and a mixed model of both. Indeed, experiments and many studies carried out with
the tool show that MTBDD representations tend to notably slow down numerical with
respect to, now well optimized, (iterative) methods, based on sparse representations.
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