Efficient State-Based Analysis
by Introducing Bags in Petri Nets Color Domains

Serge Haddad, Fabrice Kordon, Laure Petrucci, Jean-bisaRgadat-Peyre and Nicolas Treves

Abstract— The use of high-level nets, such as coloured Petri ~ On the contrary, Symmetric Nétd7] only provide a
nets, is very convenient for modelling complex controlla® |imited set of colour functions. Even though the expressive
systems in order to have a compact, readable and structured power is the same as CPNs, practical use is slightly less

specification. However, when coming to the analysis phasesing - .
too elaborate types becomes a burden. amenable. Nevertheless, symmetric nets benefit from the

A good trade-off between expressiveness and analysis capa-definition of the symbolic reachability graph [8], a very
bilities is then to have only simple types, which is achieved condensed way to store the system state space. The use of

with symmetric nets. These latter nets enjoy the possibilit the symbolic reachability graph allows for analysing very
of generating a symbolic reachability graph, which is much large systems via a model checker.

Zrﬁ;l)lgirsthan the whole state space and still allows for exhative Furthermore, this graph can be applied in order to perform

In this paper, we extend the symmetric net model with bags " effici_ent control analysis. This can be done in two
on arcs. Hence, variables can be bags of tokens, leadingto reo Ways: either the model already represents the controlled
flexible models. We show that symmetric nets with bags also system and then safety properties such as deadlock detectio

allow for applying the symbolic reachability graph technique can be directly detected by reachability analysis over the
with application to deadlock detection and more generally ér graph: or (more interestingly) the model represents the yet
safety properties. . ..
uncontrolled system with a partition of states between the

environment states and the controller states.

Thus, viewing the graph as a (finite) game between the

Managing large specifications is a challenge to tackleontroller and the environment, the standard algorithms de
industrial size problems. This is particularly true wheimgs rived from game theory allow for finding a strategy for the
Petri Nets (PN). Since having a good expressiveness is irgontroller (or decides that there is none). The objective of
portant, Coloured Petri Nets (CPN) [1] have been proposdtis game could be to avoid bad states or more sophisticated
as a high-level model derived from PNs. ones based on parity, Blchi, Street, ... conditions. Qleser

The trade-off between expressiveness of the specificatithat these algorithms are polynomial w.r.t. the size of the
formalism and the analysis power (and automation) is &odel [9] and thus remain tractable with the help of the
crucial and recurrent problem one must face: the morgduction provided by the symbolic approach.
expressive the specification language, the more difficelt th Our modelling and verification experience on complex
verification. systems leads to modelling techniques that still permit a

CPNs [2], [3] provide an excellent expressiveness througsﬂmilar expressiveness as in CPNs. For example, discreti-
an association with the ML programming language to us®ation of functions into the initial (and stable) marking of
elaborate functions in arc expressions. As a counterpaft,Place have been experimented to represent operations and
verification can be automated for models relying on compleRehaviour of physical systems such as a braking functionin a
ML functions, only by generating the state space. Reductidfansportation system [10], [11]. However, these techesqu
techniques may hence become difficult to apply, or eveRay transform an atomic operation into several ones, thus
impossible, thus hampering the verification capabilities f generating complexity in the state space.
complex systems. The aim of our contribution is to enhance the symmetric

Other extensions, such as algebraic nets [4] or predi€ts formalism SO as to gain more e>_<pressive_ness by pro-
cate/transition nets [5] also provide more comfortable notiding bags manipulation functions. This extension does no
tations to model complex systems. However, the verificatioppC'ifice the underlying symbolic reachability graph arsd it
capabilities are also tempered with, for reasons similar @€nefits for model checking and control analysis.
those for CPNs. Related work

I. INTRODUCTION

S. Haddad is with LSV, ENS Cachan, Cachan, France Ihe€ construction of a reduced state graph based on sym-
Serge.Haddad@lsv.ens-cachan.fr metries of high level nets was introduced by K. Jensen et

F. Kordon and J-F. Peyre are with LIP6, Universite Pierre ; ;
et Marie Curie, Paris, FranceFabrice.Kordon@Iip6.fr. al. [12]. However, this technique suffers two drawbacks. On

Jean-Francois.Pradat-Peyre @lip6.fr the one hand, the definition of symmetries is left to the
L. Petrucci is with LIPN, Universite Paris 13, VilletaneysFrance

Laure.Petrucci@lipn.univ-paris13.fr 1Ssymmetric Nets were formerly known as Well-Formed Nets, lackss
N. Treves is with CEDRIC, CNAM, Paris, of high-level Petri nets. The nhame “Symmetric Nets” has beleosen in

Nicolas.Treves@cnam.fr the context of the ISO standardisation [6].

modeller leading to miss some symmetries, and on the other So more general colour domains are built by cartesian

hand the transition firing is still managed as the ordinamy.on product of classes. Note that the same class may occur
In order to combine the advantages of automatic symbolic several times in a colour domain (e.g. a network con-

verification of symmetric nets and of the expressiveness of nection between two machines). Also note that the null

coloured nets, T. Junttila proposed in [13] a class of nets product corresponds to a domain reduced to a single

including a set of constructors for coloured functionsl stil colour {e}.

allowing for automatic detection of symmetries. However, Thijs |eads to the following formal definitions.

this approach is also based on the ordinary firing rule which, pefinition 1 (Class and subclass)¥he set of classes of a

in the case of complex operators such as the powersg§immetric net is denoted b§C, ..., Cy}. The partition of
constructor, leads to an exponential number (w.r.t. the siz classC; is denotedC; = W, . C;, wheres; is the

of the high-level net) of ordinary firings from a single number of static subclasses@q{. o

marking whereas in similar cases our technique reduces ity order to alleviate notations and emphasise the meaning

to a polynomial number. o ~ of a class, renamings such asbs = C; are permitted.
Numerous works on different exploitations of symmetries \ne now introduce the3ag notion.

have been developed. Let us cite the main contributions. a) Notations: Let C' be a set, then hag (or multise)
Symmetries are the support for model checking general tegyer C is a mapping: from C to N such that the set (called
poral logic formulas rather than safety properties (e.4D[1 ihe supportof a) |la]| = {c | a(c) # 0} is finite. Leta,b €
Detection of symmetries within ordinary Petri nets is alsqgag(c)_ ThenaUb is defined by(a Ub)(c) = a(c) + b(c)
possible (e.g. [15]). Efficient verification and evaluationgnd,, > b holds iff Ve € C, a(c) > b(c). Whena > b, a\ b
procedures are also possible in partially symmetric systeny qefined by(a\ b)(c) = a(c) —b(c). The size ofa, denoted
(e.g. [16], [17]). size(a), is defined bysize(a) = 3. a(c). A baga is de-
The paper is structured as follows. Section Il formally0ted by the symbolic expression, .. a(c).c. In this sum,
defines symmetric nets with bags and illustrates their bisneffve €lide scalara(c) = 1 and terms when(c) = 0 whatever
with an example that points out the interest of the formalisrfi FOT instance¢ denotes the bag reduced to the single item
for deadlock detection due to the management of differefit2Nd >_.cc ¢ denotes the bag equivalent to the whole set
kinds of resources. Then, Section 11l shows that the syrobolC- Let ' andC” be two sets, thelag(C') x Bag(C’) may
reachability graph technique still applies. Finally, sty ~ Pe viewed as a subset éfag(C' x C’) by mapping(b,b’)

concludes and gives some perspectives to this work. onto > cc rec D(OV' (') (¢, ¢). This embedding can be
generalised to any cartesian product of sets of bags. For
[I. SYMMETRIC NETS WITH BAGS (SNB) instance,(2c + 3¢/, 4¢”) = 8(¢,) + 12(c,).
A. Definitions Definition 2 (Colour domain):A colour domain is a

Based on the Symmetric Nets (SN) from [7], [13], Sym-cartesian product of classesmd sets of bags over classes
metric Nets with Bags (SNB) are formally defined. AnMore precisely, a colour domai) can be writtenD =

example is presented in section 1I-B. Ric1.1(Ci)" X @y i, Bag(Ci) wher?ei is the number
1) Colour domains:In symmetric nets, the colour do- Of occurrences of clas¢’; in D and ¢; the number of
mains are structured. occurrences oBag(C;) in D.

An item d of a colour domainD =), , ,(Ci)® x

resent primitive objects like processes, jobs, files, rddic1 ., Bag(Ci) will be denoted by d

sources, etc. Classes are finite sets. For some mOdE|S®E€1._.k,jel..ei ¢ % ®ie1.,k,je1,.e; by with ¢ € G
is interesting to define a (total) order between colours agindb] € Bag(C;).

« Colour domains are calledlassesand generally rep-

a class. In such a case, a class is said tordered In Most definitions in this section can easily be restricted to
the example of figure 5, there are three clas€eaint, Symmetric Nets by leaving out the Bags part.
Jobs andCores . Note thatD = &),cq ,(Ci)% X Q,eq i Bag(Ci)© is

« The colours of a class are objects of the same kinihfinite as soon as somé # 0. If D is the colour domain
but they may have different behaviours. For instance, af a place, this does not raise any difficulty. Indeed, in a
class of jobs may include interactive and batch jobs. IRetri net (resp. a CPN with finite domaing)p) € IN (resp.
order to represent such differences, a class is partitioned(p) € Bag(C(p))) and N (resp.Bag(C(p))) is infinite.
into static subclassedn the example of figure 5, the The key point w.r.t. effectiveness is that a marking musehav
Cores (resp.Jobs) class is not partitioned since all a finite representation which is also the case for bags of
cores (resp. jobs) have the same potential behavioduples of bags. However iD is the colour domain of a
while the Count class is completely partitioned sincetransition, then the firing rule cannot be applied. Thushwit
each different element of this class may explicitly behe help of transition guards (see definition 7), we restrict
checked by a transition. the colour domain of a transition to be a finite subset/bof

o When modelling, associations between objects are quite2) Colour functions: In high-level Petri nets, arcs are
usual. For instance, a core executes a thread of a jddibelled by colour functions which select tokens in adjacen
and then one needs to memorise such an associatigaces depending on the instantiation performed for the

firing. of X} ,. andk instead ofX2,,,,. Furthermore, thevhole
The simplest colour functions are the projections, denotegplour function will frequently be used in colour functions

ch i € 1.k, j € l.e;, that select one component of aComposition Iikewholeo Yg}ag(ci), and in this case will be

colour ; the successor functions, denoté@ ++, i € 1.k, denotedwhole(Y, c.,))-

j € 1..e;, that select the successor of a component of a colour The effect of these functions is illustrated in the net of

; and the “global” selection€;.all =) .. ¢ that map any figure 1 and one example of firing for transitibrshown in

colour to the “sum” of colours in class;. figure 2. PlacesPx and Pa are typed byC while places
New colour functions are defined, that operate both on tHeS and Pw are typed byBag(C) and thus hold tokens
tokens and on the “bag” part of the colour domain. containing a bag. We also provide a comparison between

Definition 3 (Basic colour functions)tet C; be a class functions<C.all> and <whole(C)>. .
and D = ®,cy +(C)" x @, kBag(C-)ei a colour Figure 3 also illustrates a simple net using theand \
; = =i ’ j functions on bags. A possible transition firing is shown in
domain. Letd = @;cq ket € Rict ket e bj. The

basic colour functions deal with colour domains and are Figure 4, after whiclpl is unmarked.

defined fromD to Bag(C;) by : Igegniti_on 5 (Claszci)]our function;)'_etCCie{be a cllass
i X7, (d) = ¢! (for all j such thatl < j < e); and D = ier.1 ()" X Bier. Bag(C)" 2 colour

ii: X7, (d)++ = the successor of! in C; (C; is supposed

, . A class colour functionf : D Bag(C;) is a linear
to be ordered angl is such thatl < j <e¢;) ; / — Bag(Ci)

combination of basic colour functions and colour functions
- Ci"_l”(d) = Dzec, @ andCig.all(d) = Zreci,q L for bags such thatd € D,Ve € C;, f(d)(c) > 0.

Let b} = 3~ cc, az-x. Then thebasic colour functions We now define theuple colour functions of a SNB. To
for bags produce a single element which is a bag and ar@o so, we denot€'(x), wherez is either a transition or a

defined fromD to Bag(Ci) by: place, the color domain associated with it (see definitian 9)
B-i: Yéaq(ci (d) = b (for all j such thatl < j < ¢)) Definition 6 (Tuple colour functions)A colour function
which denotes the function thdtspatchestems of a labelling an arc between a transitiorand a place is:

_ bag; , i either a natural number whenC(p) = {e} with Vc €

B-ii: ~ Yéag(ci)(d) = seCija.—o La (forall j such that C(t),n(c) = n.e;
1 < j < e}) which denotes the function which i or a tuple f = (f1,..., fi), whenC(p) = Ca, X ... X
_ produces theomplementarpf a bag; C., where everyf; is a colour function fromC(t) to
B-ii: (Yéag(ci)uyéag(ci))(d) = ZIECi (a_w + Oélm)(E (for Bag(cai)' Thenvc € C(t)v f(C) - <f1 (C)v CER fk(c)>
all j,j" such thatl < j, ;" < e;) which denotes the ii: or a tuple f = (fi,..., fx, fi,---, fi), whenC(p) =
union of two bags; Cay %...xCq, xBag(Cyy) ... x Bag(Cy,) where ev-
B-v: (Y2000 \YBago)) (@) = >,ec, max(0, (o - ery f; is a class colour function fror(t) to Bag(C.,)
o).z (for all 7,5" such thatl < j, 5" < ¢) which and f/ is the composition of a class colour function
denotes thelifferencebetween two bags. from C(t) to Bag(C.,) and thewholec , mapping. Let

Note that theu!l function (iii) is a constant function. It can c€C(t): f(e) = (fi()s-- -, frle), F{(e) s flu(0):

markings. _ domain. When applied to a transition, they restrict the cor-
~ Basic colour functions are those of SN. The colour funcresponding colour domain. They can also be combined with
tions ranging over a class are obtained by linear combinatios typle colour function as follows. Either the instantigtin

of basic colour functions (note that some constraints aigour fulfils the guard and the new colour function behaves
required to ensure that the colour functions selepbsitive 55 the tuple function whilst in the other case, the new

number of tokens). I_:unctions labelled by B are those of SNBynction returns the empty bag. For instance the colour
In order to manipulatehags we also use the operator fnction (X, ") produces a token with two components but
whole which, applied to a bag, produces a single bagye cannot require thak should be different front” (see
containing it. _ o definition 7.i). Similarly, the colour function selects an
Definition 4 (Whole mapping)tet C' be a finite set, jtem in a class but we cannot require this item to be selected
wholec(c) is the mapping fronC' to Bag(C) defined by: in 3 given static subclass (see definition 7.iii). We alsotwan
givenc in C, wholec(c) = 1.{1.c} € Bag(C). We extend g restrict the instantiation of a bag variable to be an @gin
whole to a mapping fromBag(C') to Bag(Bag(C)) by: get (see definition 7.B.i) or to constrain the size of the bag
givenb € Bag(C), wholec(b) = 1.b € Bag(Bag(C)). instantiation (see definition 7.B.ii).
Remark 1:As for SN, when no confusion is possible, Guardsexpress such requirements.
the co-domain of colour functions may be omitted ; for pafinition 7 (Guards):A (basic) guard for bags is a
instance, the mappingééag(ci) will frequently be denoted p,5jean mapping defined on a colour domain —
Y; or <Y> as in figure 6, and the mappingiéjci will ®._, (CH xRy 4 Bag(ci)ei with b{ =3 ec, QeC.
be denotedX’, X;, <X> or by any name (different from Let < be either the= or the < relation. SNB guards are
all) as in the model of figure 5 where is used instead syntactically built with:

<X>*>O Px C Px: (9)

Class .C is[a, b, c]; Pa:
Var X in C; <C.a11>*>©l’a C p:@® UX_=a> Ps~® ©
b :
<{(X}>>(_)Ps Bag(C) Pw: @@
<whole(Cy>>{_) Pw Bag(C)
)) .) Fig. 2. Result of firing for transitiort with X = a in the model of
Fig. 1. Model illustrating functions figure 1
Class Cis|[a, b, ¢, d]; Var Y1, Y2 in Bag(C);
tY=@® PrE@OOO
PLO® <Y1UY2>>()Pu C r:@® 00 Pd:()
C <Y1> Y2=

P2: Q) e P2: @

p2 @@ <Y2>
C t <Y1\Y2> Pd C

Fig. 3. Model illustrating functions

Fig. 4. Result of firing for transition with Y1 = 1l.a + 1.b andY?2 =
1.b + 1.c in the model of figure 3

i [X¢, > X2](c) equalstrue iff ¢} bac;?; o Cl=/{C4,...,C.}isthe set of classes, each being par-
i [X& = Xgi""*'](c) equalstrue iff cél is the successor titioned into s; static sub-classes’{ = Wy—1.,Ci q);
of 022 in Cz, we denoteni = |Cz| andni,q — |Cz,q|.

C defines for each place and each transition its colour
domain, denoted’(s), which is a finite cartesian prod-
uct of classes and of bags of classes;

i [XZ € C;gl(c) equalstrue iff ¢ belongs to the static ~ *
sub-clasC; 4.

B.i [Unique(Y?)](c)equalstrue iff Ve € C;, a. <

Bag(Cy) o Post (resp.Pre) is the forward (resp. backward) inci-
. L . _ dence mapping which associates with each fait) €
Bii [card(Yg,,c,) 1 nl(c) equals true iff P x T a general colour function for bags defined from
size(Yi o (€)) bam; C(t) to Bag(C(p));
B.ii [Yéaq(C') - Yé;q(c.)](c) equals true iff « d is_g mapping that associates a guard with each
G i g transition.
YBag(Ci)(c) > Y Bag(ci): Remark 3:By default, the guard®(t) is the constant
More generally a guard is inductively defined by: true .
« Let g be a basic guard, thepis a guard; Definition 10 (Marking): A markingof a SNB is a map-
« Let g1, g» be guards, thep; V g2, g1 A g» and—g; are PINg that associates with each plagea bagm(p) €
guards. Bag(C(p)). The initial marking of a net is denoted by.

Remark 2:When a colour functiodt, has been denoted ~ Definition 11 (Firing rule): Let m be a marking,? a
by another symbol, then this name must be used for tHEansition andc; € C(t). (t,c;) is firable atm (denoted

guards. ml(t, ct))) iff:

Definition 8 (General colour function)tet {fi}1<i<n 1) the guard associated withevaluates tarue for c¢;
be a family of tuple colour functionslg;}1<i<, @ family (i.e. @(t)(ct) = true)
of guards, anda; }1<;<, a family of positive integers. 2) Vp € P, m(p) = Pre(p, t)(ct). _

A general colour functiorf = 3, ., [gi]o. f; is defined ~ When ml(t,¢;)), the firing of ¢ instantiated by ¢
by == leads to markingm’' defined by:vVp € P, m/(p) =

B m(p) — Pre(p,t)(c;) + Post(p,t)(c;). Given a SNB,
flo= > aifilo) Reach(SN B, mg) denotes the set of all reachable markings

ilgi(c)=true from markingm
Some abbreviations of colour expressions are useful for gmao.

modelling such as therd function. LetD = C7* x...xC* B. The multi-thread example

and f be a tuple function fromD to someBag(D). Then: The growing market of multi-core processors generates an
ord(X]).f =301 <4<s,[X] € Ciglg.f. This function allows jncreased need for the analysis of parallel systems that are
the modeller to specify a dynamic multiplicative factormych more difficult to design than sequential ones. Since
corresponding to the index of the static subclass to whieh thy;ch systems are usually very regular, a formal notation

colour associated with a variable by the instantiation @s8C capturing symmetries is of interest because it can cope with
belongs. Its use will be illustrated in the example of figure Garger specifications.

Definition 9 (Symmetric net with Bagsk SNB is a 7- 5o, we consider the example of a multi-core processor that
tuple SNB = (P, T, Pre, Post,Cl,C, ®) wheré: is based on the following assumptions:

« P is a finite non-empty set of places; « a job may be multi-threaded;

« T is a finite non-empty set of transitiong,N P = {; « a job is assigned to a subset of cores;

o among the cores a master one is associated with the job
2When bags are omitted, the definition holds for SN. itself while the other cores are slave ones;

GenJobs < j . k>—M)JobsGen
T Mo

Confl <jk.z> Conf2
Cores Cores
i <
class <XI>+<X2>+<x3> JobsWait <x1>+<x2> Koy
Countis 1..3; <xI>+<x2> <j2z> JKC Gaz> <X+ o

Jobs is 1..4;

Coresis 1..4; <j2.z> <j3z> <x3>
e <dobs, Gounts: 1b2TC1 1b2TC2 Ib3TC1 Ib3TC2 <jk>

JKC is <Jobs, Count, Cores>; ‘ <>+ <xI>+
CJKC is <Cores, Jobs, Count, Cores>; <x1j2.2>+ <xX2>+ <X2>+
<x3> <x3>

<x1>+
<x2>

<X I>+<x2>

"ajrin Jobs; <x2j27> <x é q,§,z>+ o« JobEnds
KERIE AS: 2 In Cores: AllocatedCores <<xx IJJ ’fz>>+ <x2,,3,2>+<x3,j,3,2>
kin Count; CJKC Js 2 AR
FreeCores <> ord(K) <j k,z>

<x,jk.z> . . . J
XA <x1,,3,2>+ <x2,j,3,2>+<x3,j,3,2> Cores TermThreads
TEnds jk.z> JKC

Fig. 5. The multi-thread system modelled with a SN

JobsWait ; : JobsGen
< joK.z> <jk>
JKC Q GenJobs?(i JK

class <jk ’ZibTh 5 <z>

Count is 1..3; Configs reads <ik>

i . <Y 1> Js

Jobsis 1.4; Bag(Cores) (K)<<whole(v2)> T [card(Y D=ord(k) and

Cores is 1..4; var <Y1jkz>y] <= Y2l FreeCores
domain jin Jobs; A4 <z> JobEnds

! AllocatedCores Cores
JK is <Jobs, Count>; X, z in Cores; CIKC

i . ki t; N ord(k).<j.k,z>
JKC is <Jobs, Count, Cores>; in Count; <xjkz> (k).<jk

CJKC is <Cores, Jobs, Count, Cores>; Y1, Y2 in bag(Cores); £7/<x> TermThread
TEnds <jk.z> JKC

Fig. 6. The multi-thread system modelled with a SNB

« the set of cores is partitioned according to some harduple with the slave core, the job identifier, the number

ware configuration; of threads for this job, and the master core. This allows
« all threads associated with one job are assigned to slaf@ ensuring a clean termination at a later stage. When a
cores simultaneously; thread execution is finished (transitioFEndg, the slave

o every core can manage simultaneously a fixed maximabre becomes free again. When all threads have finished,
number of threads (denoted in the sequel Mgx- a final phase takes place: the terminated threads (place
ThreadsPerCore TermThreadg are discarded by transitiodobEndsand the

: R, master core is released, terminating the job execution.

1) The SN modelin figure 5, a job is initially generated One can note that there is a possible deadlock in this

by transitionGenJobs A triple containing the job number,
: model when master threads consume cores that cannot then
the number of corresponding threads and the master cqrge .
e allocated to slave threads. In the net, this case comespo

is put to wait for being handled in plac&obsWait This 10 100 many occurrences GenJobsoreventing the firind of
corresponds to the execution of an initialisation phasdeNo y ur sreventing nng
any lb,, TC; transition.

that place JobsGencontains the different configurations This example reveals a major drawback of Symmetric

Ti,tziilgfgrn:ga:‘se tﬁﬁtjeon& (PT; irlf[:ng thrgoar dgxzrzgp}(e)b Nets, represen_ted by the U—sha_pe in _the upper part of figure 5.
We must duplicate the transitions in order to capture the
2 has three threads). . :
consumption of a variable number of tokens. It means that,
.)) 0, Offfve change theCountcolour domain (denoting the number
of the fqur transitionsib, T'C; assignsk cores W'th config- of threads to associate with a given job), we must adapt the
urat|pn ! t_o the k thre‘?‘ds- These cores, having t_h?_ SaMEaries of transitiongb,, 7'C;. This is not very convenient for
configuration as described iBonfl and Coni2 (the initial modellers. Furthermore, the system cannot be parameterise
markings of these places are respectivBlyand K’), are easily, which is a problém.
removed from the set oFreeCores(with initial marking 2) ']'he SNB modelA new version for the multi-threads
M’ = MazThreadsPerCore x <Cores.alb). example is shown in figure 6. The modified part is framed.
Markings K and K’ is expressed in a symbolic way: One can note that the numerous transitidnsI’C; in the
K =71+ 7y andK' = Z, + Z3. Z; are called “dynamic net of figure 5 are now expressed using a single transition:
subclasses” (see definition in section I1I-B) whatever thei_bThreads Configurations are now stored in one place:
values.Z; is the part that is duplicated in plac€®nfland Configsthat containsBag(Cores)tokens. Let us note that
Conf2 Z; the part located irConflonly and Z; the part the marking ofConfigs K” is defined fromK and K’ by
located inConf2only. K" = {K} U {K'} = whole(Z; U Z,) Uwhole(Z, U Z3).
The information logged with théllocatedCoress a 4- A bag of coresY1 is selected among the free cores, with

the same cardinality as the number of threads to executgmbolic firing rule is mandatory in order to manage large
(this is specified in the guard of transitidbThreadswith models.

formulacard(Y21)=ord(k)). For the transition to be fired,

an available configuration wher¢l <= Y2 (i.e. |[Y1|| € B. Symbolic marking representation

[[Y2]]) must be found (this is expressed by the second term - . .)
of the guard). Let m be an explicit marking. Roughly speaking, we first

The job ends when all corresponding threads are tepartition every static subclas&”; ;) such that inside the

minated, and they are removed simultaneously from pla&artition, two colours have the same distribution of token

TermThreadas in the Symmetric Net version of the examplecompqnents c_orres_pondlng to the_ CI?SS for m. Then,
forgetting the identities of colours inside any partitiont b

[1l. SYMBOLIC REACHABILITY GRAPH FOR SNB memorizing the size of this partition leads to our symbolic

The symbolic reachability graph aims at reducing thé&harking representation.
reachability graph size (thus rendering verification ariéeja ~ More formally, we define for every clas§; a set of
by regrouping some “equivalent’ markings ingymbolic dynamic subclassesZ; }1<;<m, such that every; has two
markingsand using a symbolic firing rule compatible w.r.t.attributes: its cardinalitycard(Z})) and the index of the
the normal firing rule. Thus, many properties of the modeBtatic subclass it belongs td(Z})). Given these partitions,
like accessibility, boundness or liveness can directly b#e symbolic markingiark) is represented as an ordinary
checked on the symbolic reachability graph, allowing far thmarking where the dynamic subclasses are substituted to
analysis of larger specifications. colours. The following definition formalises the charaeter
istics of a symbolic marking representation.

Definition 12 (Symbolic marking representation):

Symbolic markings are based on the notioradmissible A symbolic marking representation of a SNB,
permutationsin the set of colour classes. An admissibleM = (m, card, d, mark) is defined by:
permutation is a family = {o; },<; such that a permutation
o; of C; fulfils: 1) VC; 4, 0i(Ciq) = Ciq i€., any item
of a static subclasg’; , of C; is mapped to an item of
the same subclass and 2) @f; is an ordered class then
admissible permutations are restricted to rotation (ttdeior
of an ordered class cannot be modified).

Given these restrictions, the action of a permutation

A. Symbolic markings

o m: I+ IN" defines the number of dynamic subclasses
for every classC;. m(i) is also denotedn; andC; =
{Z] | 0 < j < m;} denotes the set of dynamic
subclasses of’;.

o card : |J;c; Ci — IN* denotes the size of every
dynamic subclass.

o d:,c; Ci — IN™ denotes the index of the correspond-

_ J

on a _colou.rc of a placep, ¢ = Qicrjer.cin) @ € ing static subclass to which every dynamic subclass be-
C(p), is defined byo(c) = Qjcy je1..c,(p) 7ilc7)- We can longs. Hencel andcard fulfil the following constraints:
define the action ob on a markingm by vp & P, Ve € 1) d(Z]) € {1,...,s} i.e.d(Z!) is the index of a static
C(p),o.m(p)(c(c)) = m(p)(c). Note that the enabling rule subclass of; !

for a trapsmon is pres.erved when apply!r}g an adm|SS|b.Ie 2) Zd(Z.j):q Cm,d(zij) = n, the size of a static
permutation on a marking and on a transition occurrence: subclass is the sum of the sizes of the dynamic

ml(t,c)ym’ < o.ml(t,o(c)))o.m’ subclasses that belong to it.

) Vie IVl <j<j <mdZ) < dZ/): the
dynamic subclasses are ordered w.r.t. the order of
static subclasses.

« mark associates with every plagea symbolic content:
mark(p) € Bag(®,c;(Ci)*") @,c; Bag(Ci)).

Then, dynamic subclasses act as colours for ordinary

Thus, markings obtained with the application of a permu-
tation for a given markingn are “equivalent” in terms of
behaviour. Therefore an equivalence class of markings ean b
defined:m ~ m’ <= Jo|o.m = m/, yielding equivalence
classes nameslymbolic markingand denoted\1.

The first problem is the representation of a symbolic]

. i . L markings.
marking. Describing an equivalence class of a set with its h . ¢ boli ki tation i
own elements is obviously very expensive in terms of storagSeT ¢ sen_wanncs of & Symbalic marking representation Is a
and brings no advantage w.r.t. the explicit reachabiligpdr. et of-e.qluwalent ordlnar.y markings. ,)
To tackle this problem, a first approach [12], [13] represent Definition 13 _(Symbth representanpn semanticsgt
an equivalence class with one of its elements (i.e. a ma)kind\/l be a symbolic marking representation. Then the] sd{

This method reduces the storage requirement for marking5 @ssociated ordinary markings is definedshye [M] iff:

but does not provide any saving w.r.t. the state transitionse Vi € I,3ca; : C; +— C; ; «; distributes the colours
issued from these markings. among the dynamic subclasses. As usual, we linearly

An alternative approach [7] consists in a symbolic repre- extenda; to a mapping fromBag(C;) to Bag(C;).
sentation of both the markings (inside an equivalence klass « V7! € C;,|a; ' (Z])| = card(Z]) ; these mappings
and the transitions issued from these markings. Observe tha must preserve the size constraints.
the number of transitions issued from a marking of a SN « VC?, ;' (Z7) C C, 4(z7) » these mappings must pre-

may be exponential w.r.t. the size of the SN and thus, the serve the static subclass constraints.

‘Zl‘ ‘C ‘ =nl ClassCis 1N,
1

splitting <C.All>
<Y> <~Y> [Unique(Y)]
it

ql C q2 C

wmbollcflrlngs

o] 1
<C.All> T t(zl+,,,+zg)

<C.All>

|z1] =|Z| = =Z}=1
Fig. 7. Example of symbolic firing
e Vp € P, Ve e C(p) with symbolic rule to correspond to the explicit firing rule, we
¢ = Qicrjet..c.(p) G it jer. el (p) bi need to preprocess a symbolic representatian The goal
of this preprocessing, called splitting, is to produet such
m(p)(¢) = mark(p)(Qicrjcr. e.(p) i(Ciy) that [M] = [M’] and the cardinality of every dynamic

.
eLjel. e1(p) ai(bi ;) subclass ofM’ is 1.

the marking of a place must be preserved by the Once this splitting has been performed, the transition is
symbolic transformation. flred as in definition 11 with dynamic subclasses instead of

When C: is ordered.VZ/3c ¢ a_—l(Z_j) such that colours; this leads to a new symbolic marking. However, this
a(16) El (i mod mi)+1 Zand ve! Ze a-_ll(Z-?') ¢+ firing insludss an (_)pt_imisation step that reduces the number
c,ai(c) € Z! ; the instantiation vian; of dynamic of possible instantiations.) S .
subclasses must preserve the orde€iof Rat_her than for_mally define the optimisation, we |IIusFrate
It must be emphasized that different representations y|e| on f{lrg]]ure I7tt I f'rSAt sr:ows the S?/mb;)th mtarklng (;b'g;\/lned
the same set of explicit markings. However, it is possible t8 elrd be spll Ingt deO ytlrl:g usus ns agjlaflon va? -
define and compute a canonical representation as develop?éljﬂjl € assogg N tvr\:l any ?add. I"?r afn;(/j =
in the appendix [18]. Roughly speaking, a symbolic repreL A I s nlrwelng (1a_hr.naX|ma|1d clar c;na gzlod_ﬁynamlc
sentation is canonical if the number of dynamic subclasses%u classes | 'S would lead to fiferent

Bag(C;)*
minimal and the numbering of dynamic subclasses ensurfé
that the representation is minimal w.r.t. some lexicogiaph However we require that if a dynamic subclassoccurs

ordering. in Y then anyZJ with j° < j also occurs inY". This re-
o striction does not eliminate any associated explicit firdhug
C. Symbolic firing rule to the semantics of symbolic markings. Now, the number of

The second step in the symbolic reachability graph corélifferent firings is onlyn;. This constraint can be generalised
struction is the design of a symbolic firing rule for symbolicto any number of variables occurring in a transition by an
markings. Our goal is to “produce” and “consume” dynami@rbitrary order over these variables.
subclasses instead of colours. A dynamic subclass is edlect In this case, IetZiJ ZJ obtained by the splitting of
for each occurrence of a class in the colour domain. Howevehe same dynamic subclass with < 7. We require that
assume that we instantiate variable, with the dynamic if 7/ occurs in the instantiation of a variable, thefj’
subclassZF. Such an instantiation is sound iffird(ZF) =1 occurs either in the instantiation of the same variable or
(meaning that this subclass is reduced to a single colour).of a previous variable. We emphasize that this reduction is

Furthermore, the instantiation Gféag(c) should require impossible with the approach in [12], [13].
to select 1) only a subset of colours in so# and 2) The last step is the canonisation of the representation. The
to select colours from differenf’. Thus in order for the whole process is formally described in [18].

Example: Our approach preserves the use of symbolic[3] K. Jensen, L. Kristensen, and L. Wells, “Coloured Petétd and

states together with bag functions. For example, let us
consider the model of figure 5 with/’ containing 4 available

cores, andV/ containing 4 configurations (two requiring two
additional cores and two requiring three additional cares)[®

If there is at least 3 occurrences GlenJobsprior to any

occurrence oflb;TC;, the system will inevitably become [6]
deadlocked in the following configuration: there is no token
in eitherAllocatedCoresr FreeCore— one symbolic state.

In the SNB of figure 6, the same configuration is the single[7]

symbolic state representing a deadlock.

Thus, the introduction of bags can only reduce the size of

the symbolic reachability graph.

Moreover, it may also reduce the number of symbolic
firings (those that are expensive in terms of CPU usage). For

example, the firing of botthb2TC1andlb2TC2in the model
of figure 5 corresponds to only a single firing ldfThreads
in the model of figure 6.

IV. CONCLUSION

In this paper, we have extended the symbolic reachability
graph and its related symbolic firing to Symmetric Nets with

bags in tokens (SNB) as introduced in [13].

SNB have two main advantages. First, the use of bags in
Symmetric nets allows for easier and more readable mofi3]
elling. The Petri net specification can thus be parametgrise
without changes in its structure (e.g. adding places ostran [14]
tions). Hence, the specifier does not have to concentrate on
choosing tricks or duplicating large parts of nets. Morepve
these could lead to bad choices that would hamper thes

analysis capabilities.

Second, it enables the use of the symbolic reachabilif}®!
graph technique, thus allowing for analysing large Peti$.ne
Our approach maintains a low complexity on the symbolic
reachability graph constructions, contrary to previouskso [17]

like [12], [13].

To achieve this goal, we provide a new consistent set ¢fg]
definitions for SNB. We show on an example in figure 6
the advantages of SNB for a more concise modelling : a
single transition corresponds to several similar ones @ th19]
SN model of figure 5. Then, we define for SNB the symbolic
reachability graph structure and the associated optimised

firing rule.

We plan to soon develop within the CPN-AMI Petri

net environmentHhttp://move.lip6.fr/software/

CPNAMI/) [19] both the extended formalism, the adaptation
of the symbolic reachability graph and the game-based

algorithms for control synthesis.

REFERENCES

[1] K. Jensen, “Coloured Petri nets and the invariant-megthd heor.
Comput. Scj.vol. 14, pp. 317-336, 1981.
[2] M. Beaudouin-Lafon, W. Mackay, M. Jensen, P. AnderseldaRecek,

H. Lassen, K. Lund, K. Mortensen, S. Munck, A. Ratzer, K. Ravn

S. Christensen, and K. Jensen, “CPN/Tools: A Tool for Editand
Simulating Coloured Petri Nets ETAPS Tool Demonstratiofafee to

TACAS,” in Tools and Algorithms for the Construction and Analysis of

Systems, 7th International Conference, TACAS 2008pringer Ver-
lag, Ed., vol. 2031, 2001, pp. 574-577.

CPN Tools for modelling and validation of concurrent syss¢STTT
vol. 9, no. 3-4, pp. 213-254, 2007.

[4] W. Reisig, “Petri nets and algebraic specificationBtieoretical Com-

puter Sciencevol. 80, pp. 1-34, 1991, newsletterinfo: 38,39.

H. Genrich and K. Lautenbach, “System modeling with higbel
Petri-nets,” inTheoretical Computer Scienceo. 13, 1981, pp. 103—
136.

L. Hillah, F. Kordon, L. Petrucci, and N. Treves, “PN stardisa-
tion : a survey,” inInternational Conference on Formal Methods for
Networked and Distributed Systems (FORTE08)l. 4229. Paris,
France: Springer Verlag, LNCS, September 2006, pp. 307-322

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Hatld&tochastic
well-formed colored nets and symmetric modeling applast|”’ IEEE
Transactions on Computersol. 42, no. 11, pp. 1343-1360, 1993.
[Online]. Available: citeseer.ist.psu.edu/chiola98siastic.html

[8] ——, “A symbolic reachability graph for coloured Petritsg¢ Theo-

retical Computer Sciencevol. 176, no. 1-2, pp. 39-65, 1997.

H. Klauck, “Algorithms for parity games,” ilAutomata, Logics, and
Infinite Gamegsser. LNCS, vol. 2500. Springer, 2002, pp. 107-129.
A. de Groot, J. Hooman, F. Kordon, E. Paviot-Adet, |. Ner-
Mounier, M. Lemoine, G. Gaudiere, V. Winter, and D. Kapur, “A
survey: Applying formal methods to a software intensiveteys” in
6th International Symposium on High-Assurance Systems&egng
IEEE Computer Society, 2001, pp. 55-64.

F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont, “Ap@roach to
model variations of a scenario: Application to Intelligeftansport
Systems,” inWorkshop on Modelling of Objects, Components, and
Agents (MOCA'06) Turku, Finland, June 2006.

P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen, tddity
trees for high-level petri netsTheoretical Computer Science, Vol,45
no. 3, pp. 261-292, 1986, newsletterinfo: 27.

T. Junttila, “On the symmetry reduction method for petets and
similar formalisms,” Ph.D. dissertation, Helsinki Unigéy of Tech-
nology, Espoo, Finland, 2003.

F. A. Emerson and A. P. Sistla, “Symmetry and model chegk
Formal Methods in System Design: An International Journal
vol. 9, no. 1/2, pp. 105-131, August 1996. [Online]. Avai&ab
citeseer.ist.psu.edu/emerson94symmetry.html

K. Schmidt, “How to calculate symmetries of petri nétécta Inf,
vol. 36, no. 7, pp. 545-590, 2000.

E. A. Emerson and R. J. Trefler, “From asymmetry to fulmsye-
try: New techniques for symmetry reduction in model chegRin
in CHARME ser. Lecture Notes in Computer Science, vol. 1703.
Springer, 1999, pp. 142-156.

S. Baarir, C. Dutheillet, S. Haddad, and J.-M. llig,fGhe use of
exact lumpability in partially symmetricalwell-formed ts¢ in QEST
IEEE Computer Society, 2005, pp. 23-32.

S. Haddad, F. Kordon, L. Petrucci, J.-F. Pradat-Pegne] N. Treves,
“Efficient State-Based Analysis by Introducing Bags in Pétets
Color Domains,” LSV,Ecole Normal Supérieure de Cachan, Tech.
Rep. RR LSV 09-07, March 2009.

A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-AgeX. Renault,
and Y. Thierry-Mieg, “New features in CPN-AMI 3 : focusing d¢ine
analysis of complex distributed systems,” 6% International Con-
ference on Application of Concurrency to System Design DAGE.
Turku, Finland: IEEE Computer Society, June 2006, pp. 273-2

