
Efficient State-Based Analysis
by Introducing Bags in Petri Nets Color Domains

Serge Haddad, Fabrice Kordon, Laure Petrucci, Jean-François Pradat-Peyre and Nicolas Trèves

Abstract— The use of high-level nets, such as coloured Petri
nets, is very convenient for modelling complex controllable
systems in order to have a compact, readable and structured
specification. However, when coming to the analysis phase, using
too elaborate types becomes a burden.

A good trade-off between expressiveness and analysis capa-
bilities is then to have only simple types, which is achieved
with symmetric nets. These latter nets enjoy the possibility
of generating a symbolic reachability graph, which is much
smaller than the whole state space and still allows for exhaustive
analysis.

In this paper, we extend the symmetric net model with bags
on arcs. Hence, variables can be bags of tokens, leading to more
flexible models. We show that symmetric nets with bags also
allow for applying the symbolic reachability graph technique
with application to deadlock detection and more generally for
safety properties.

I. I NTRODUCTION

Managing large specifications is a challenge to tackle
industrial size problems. This is particularly true when using
Petri Nets (PN). Since having a good expressiveness is im-
portant, Coloured Petri Nets (CPN) [1] have been proposed
as a high-level model derived from PNs.

The trade-off between expressiveness of the specification
formalism and the analysis power (and automation) is a
crucial and recurrent problem one must face: the more
expressive the specification language, the more difficult the
verification.

CPNs [2], [3] provide an excellent expressiveness through
an association with the ML programming language to use
elaborate functions in arc expressions. As a counterpart,
verification can be automated for models relying on complex
ML functions, only by generating the state space. Reduction
techniques may hence become difficult to apply, or even
impossible, thus hampering the verification capabilities for
complex systems.

Other extensions, such as algebraic nets [4] or predi-
cate/transition nets [5] also provide more comfortable no-
tations to model complex systems. However, the verification
capabilities are also tempered with, for reasons similar to
those for CPNs.

S. Haddad is with LSV, ENS Cachan, Cachan, France
Serge.Haddad@lsv.ens-cachan.fr

F. Kordon and J-F. Peyre are with LIP6, Université Pierre
et Marie Curie, Paris, FranceFabrice.Kordon@lip6.fr,
Jean-Francois.Pradat-Peyre@lip6.fr

L. Petrucci is with LIPN, Université Paris 13, Villetaneuse, France
Laure.Petrucci@lipn.univ-paris13.fr

N. Trèves is with CEDRIC, CNAM, Paris,
Nicolas.Treves@cnam.fr

On the contrary, Symmetric Nets1 [7] only provide a
limited set of colour functions. Even though the expressive
power is the same as CPNs, practical use is slightly less
amenable. Nevertheless, symmetric nets benefit from the
definition of the symbolic reachability graph [8], a very
condensed way to store the system state space. The use of
the symbolic reachability graph allows for analysing very
large systems via a model checker.

Furthermore, this graph can be applied in order to perform
an efficient control analysis. This can be done in two
ways: either the model already represents the controlled
system and then safety properties such as deadlock detection
can be directly detected by reachability analysis over the
graph; or (more interestingly) the model represents the yet
uncontrolled system with a partition of states between the
environment states and the controller states.

Thus, viewing the graph as a (finite) game between the
controller and the environment, the standard algorithms de-
rived from game theory allow for finding a strategy for the
controller (or decides that there is none). The objective of
this game could be to avoid bad states or more sophisticated
ones based on parity, Büchi, Street, ... conditions. Observe
that these algorithms are polynomial w.r.t. the size of the
model [9] and thus remain tractable with the help of the
reduction provided by the symbolic approach.

Our modelling and verification experience on complex
systems leads to modelling techniques that still permit a
similar expressiveness as in CPNs. For example, discreti-
sation of functions into the initial (and stable) marking of
a place have been experimented to represent operations and
behaviour of physical systems such as a braking function in a
transportation system [10], [11]. However, these techniques
may transform an atomic operation into several ones, thus
generating complexity in the state space.

The aim of our contribution is to enhance the symmetric
nets formalism so as to gain more expressiveness by pro-
viding bags manipulation functions. This extension does not
sacrifice the underlying symbolic reachability graph and its
benefits for model checking and control analysis.

Related work

The construction of a reduced state graph based on sym-
metries of high level nets was introduced by K. Jensen et
al. [12]. However, this technique suffers two drawbacks. On
the one hand, the definition of symmetries is left to the

1Symmetric Nets were formerly known as Well-Formed Nets, a subclass
of high-level Petri nets. The name “Symmetric Nets” has beenchosen in
the context of the ISO standardisation [6].

modeller leading to miss some symmetries, and on the other
hand the transition firing is still managed as the ordinary one.

In order to combine the advantages of automatic symbolic
verification of symmetric nets and of the expressiveness of
coloured nets, T. Junttila proposed in [13] a class of nets
including a set of constructors for coloured functions still
allowing for automatic detection of symmetries. However,
this approach is also based on the ordinary firing rule which,
in the case of complex operators such as the powerset
constructor, leads to an exponential number (w.r.t. the size
of the high-level net) of ordinary firings from a single
marking whereas in similar cases our technique reduces it
to a polynomial number.

Numerous works on different exploitations of symmetries
have been developed. Let us cite the main contributions.
Symmetries are the support for model checking general tem-
poral logic formulas rather than safety properties (e.g. [14]).
Detection of symmetries within ordinary Petri nets is also
possible (e.g. [15]). Efficient verification and evaluation
procedures are also possible in partially symmetric systems
(e.g. [16], [17]).

The paper is structured as follows. Section II formally
defines symmetric nets with bags and illustrates their benefits
with an example that points out the interest of the formalism
for deadlock detection due to the management of different
kinds of resources. Then, Section III shows that the symbolic
reachability graph technique still applies. Finally, section IV
concludes and gives some perspectives to this work.

II. SYMMETRIC NETS WITH BAGS (SNB)

A. Definitions

Based on the Symmetric Nets (SN) from [7], [13], Sym-
metric Nets with Bags (SNB) are formally defined. An
example is presented in section II-B.

1) Colour domains: In symmetric nets, the colour do-
mains are structured.

• Colour domains are calledclassesand generally rep-
resent primitive objects like processes, jobs, files, re-
sources, etc. Classes are finite sets. For some models, it
is interesting to define a (total) order between colours of
a class. In such a case, a class is said to beordered. In
the example of figure 5, there are three classes:Count ,
Jobs andCores .

• The colours of a class are objects of the same kind
but they may have different behaviours. For instance, a
class of jobs may include interactive and batch jobs. In
order to represent such differences, a class is partitioned
into static subclasses. In the example of figure 5, the
Cores (resp.Jobs) class is not partitioned since all
cores (resp. jobs) have the same potential behaviour,
while the Count class is completely partitioned since
each different element of this class may explicitly be
checked by a transition.

• When modelling, associations between objects are quite
usual. For instance, a core executes a thread of a job
and then one needs to memorise such an association.

So more general colour domains are built by cartesian
product of classes. Note that the same class may occur
several times in a colour domain (e.g. a network con-
nection between two machines). Also note that the null
product corresponds to a domain reduced to a single
colour {•}.

This leads to the following formal definitions.
Definition 1 (Class and subclass):The set of classes of a

symmetric net is denoted by{C1, . . . , Ck}. The partition of
a classCi is denotedCi =

⊎
q∈1..si

Ci,q where si is the
number of static subclasses ofCi.

In order to alleviate notations and emphasise the meaning
of a class, renamings such asJobs ≡ C1 are permitted.

We now introduce theBag notion.
a) Notations: Let C be a set, then abag (or multiset)

overC is a mappinga from C to IN such that the set (called
the supportof a) ‖a‖ = {c | a(c) 6= 0} is finite. Let a, b ∈
Bag(C). Thena∪ b is defined by(a∪ b)(c) = a(c) + b(c)
anda ≥ b holds iff ∀c ∈ C, a(c) ≥ b(c). Whena ≥ b, a \ b

is defined by(a \ b)(c) = a(c)−b(c). The size ofa, denoted
size(a), is defined bysize(a) =

∑
c∈C a(c). A baga is de-

noted by the symbolic expression
∑

c∈C a(c).c. In this sum,
we elide scalarsa(c) = 1 and terms whena(c) = 0 whatever
c. For instance,c denotes the bag reduced to the single item
c and

∑
c∈C c denotes the bag equivalent to the whole set

C. Let C andC′ be two sets, thenBag(C)×Bag(C′) may
be viewed as a subset ofBag(C × C′) by mapping〈b, b′ 〉
onto

∑
c∈C,c′∈C′ b(c)b′(c′)〈c, c′ 〉. This embedding can be

generalised to any cartesian product of sets of bags. For
instance,〈2c + 3c′, 4c′′ 〉 ≡ 8〈c, c′′ 〉 + 12〈c′, c′′ 〉.

Definition 2 (Colour domain):A colour domain is a
cartesian product of classesand sets of bags over classes.
More precisely, a colour domainD can be writtenD =⊗

i∈1..k(Ci)
ei ×

⊗
i∈1..k Bag(Ci)

e′

i whereei is the number
of occurrences of classCi in D and e′i the number of
occurrences ofBag(Ci) in D.

An item d of a colour domainD =
⊗

i∈1..k(Ci)
ei ×⊗

i∈1..k Bag(Ci)
e′

i will be denoted by d =⊗
i∈1..k,j∈1..ei

c
j
i ×

⊗
i∈1..k,j∈1..e′

i
b
j
i with c

j
i ∈ Ci

andb
j
i ∈ Bag(Ci).

Most definitions in this section can easily be restricted to
Symmetric Nets by leaving out the Bags part.

Note that D =
⊗

i∈1..k(Ci)
ei ×

⊗
i∈1..k Bag(Ci)

e′

i is
infinite as soon as somee′i 6= 0. If D is the colour domain
of a place, this does not raise any difficulty. Indeed, in a
Petri net (resp. a CPN with finite domains)m(p) ∈ IN (resp.
m(p) ∈ Bag(C(p))) and IN (resp.Bag(C(p))) is infinite.
The key point w.r.t. effectiveness is that a marking must have
a finite representation which is also the case for bags of
tuples of bags. However ifD is the colour domain of a
transition, then the firing rule cannot be applied. Thus, with
the help of transition guards (see definition 7), we restrict
the colour domain of a transition to be a finite subset ofD.

2) Colour functions: In high-level Petri nets, arcs are
labelled by colour functions which select tokens in adjacent
places depending on the instantiation performed for the

firing.

The simplest colour functions are the projections, denoted
X

j
Ci

, i ∈ 1..k, j ∈ 1..ei, that select one component of a
colour ; the successor functions, denotedX

j
Ci

++, i ∈ 1..k,
j ∈ 1..ei, that select the successor of a component of a colour
; and the “global” selectionsCi.all =

∑
c∈Ci

c that map any
colour to the “sum” of colours in classCi.

New colour functions are defined, that operate both on the
tokens and on the “bag” part of the colour domain.

Definition 3 (Basic colour functions):Let Ci be a class
and D =

⊗
i∈1..k(Ci)

ei ×
⊗

i∈1..k Bag(Ci)
e′

i a colour
domain. Letd =

⊗
i∈1..k,j∈1..ei

c
j
i

⊗
i∈1..k,j∈1..e′

i
b
j
i . The

basic colour functions deal with colour domains and are
defined fromD to Bag(Ci) by :

i: X
j
Ci

(d) = c
j
i (for all j such that1 ≤ j ≤ ei);

ii: X
j
Ci

(d)++ = the successor ofcj
i in Ci (Ci is supposed

to be ordered andj is such that1 ≤ j ≤ ei) ;
iii: Ci.all(d) =

∑
x∈Ci

x andCi,q.all(d) =
∑

x∈Ci,q
x.

Let b
j
i =

∑
x∈Ci

αx.x. Then thebasic colour functions
for bags produce a single element which is a bag and are
defined fromD to Bag(Ci) by:

B-i: Y
j

Bag(Ci)
(d) = b

j
i (for all j such that1 ≤ j ≤ e′i)

which denotes the function thatdispatchesitems of a
bag;

B-ii: ˜ Y
j

Bag(Ci)
(d) =

∑
x∈Ci|αx=0 1.x (for all j such that

1 ≤ j ≤ e′i) which denotes the function which
produces thecomplementaryof a bag;

B-iii: (Y j

Bag(Ci)
∪Y

j′

Bag(Ci)
)(d) =

∑
x∈Ci

(αx + α′
x).x (for

all j, j′ such that1 ≤ j, j′ ≤ e′i) which denotes the
union of two bags;

B-iv: (Y j

Bag(Ci)
\Y j′

Bag(Ci)
)(d) =

∑
x∈Ci

max(0, (αx −
α′

x)).x (for all j, j′ such that1 ≤ j, j′ ≤ e′i) which
denotes thedifferencebetween two bags.

Note that theall function (iii) is a constant function. It can
thus be viewed as a constant bag and used to define (initial)
markings.

Basic colour functions are those of SN. The colour func-
tions ranging over a class are obtained by linear combinations
of basic colour functions (note that some constraints are
required to ensure that the colour functions select apositive
number of tokens). Functions labelled by B are those of SNB.

In order to manipulatebags we also use the operator
whole which, applied to a bag, produces a single bag
containing it.

Definition 4 (Whole mapping):Let C be a finite set,
wholeC(c) is the mapping fromC to Bag(C) defined by:
given c in C, wholeC(c) = 1.{1.c} ∈ Bag(C). We extend
whole to a mapping fromBag(C) to Bag(Bag(C)) by:
given b ∈ Bag(C), wholeC(b) = 1.b ∈ Bag(Bag(C)).

Remark 1:As for SN, when no confusion is possible,
the co-domain of colour functions may be omitted ; for
instance, the mappingsY j

Bag(Ci)
will frequently be denoted

Yi or <Y> as in figure 6, and the mappingsXj
Ci

will
be denotedXj

i , Xi, <X> or by any name (different from
all) as in the model of figure 5 wherej is used instead

of X1
Jobs andk instead ofX2

Count. Furthermore, thewhole
colour function will frequently be used in colour functions
composition likewhole ◦ Y

j

Bag(Ci)
, and in this case will be

denotedwhole(Y j

Bag(Ci)
).

The effect of these functions is illustrated in the net of
figure 1 and one example of firing for transitiont shown in
figure 2. PlacesPx and Pa are typed byC while places
Ps and Pw are typed byBag(C) and thus hold tokens
containing a bag. We also provide a comparison between
functions<C.all> and<whole(C)>.

Figure 3 also illustrates a simple net using the∪ and \
functions on bags. A possible transition firing is shown in
Figure 4, after whichp1 is unmarked.

Definition 5 (Class colour functions):Let Ci be a class
and D =

⊗
i∈1..k(Ci)

ei ×
⊗

i∈1..k Bag(Ci)
e′

i a colour
domain.

A class colour functionf : D −→ Bag(Ci) is a linear
combination of basic colour functions and colour functions
for bags such that∀d ∈ D, ∀c ∈ Ci, f(d)(c) ≥ 0.

We now define thetuple colour functions of a SNB. To
do so, we denoteC(x), wherex is either a transition or a
place, the color domain associated with it (see definition 9).

Definition 6 (Tuple colour functions):A colour function
labelling an arc between a transitiont and a placep is:

i: either a natural numbern whenC(p) = {•} with ∀c ∈
C(t), n(c) = n.•;

ii: or a tuplef ≡ 〈f1, . . . , fk 〉, whenC(p) = Cα1
× . . . ×

Cαk
where everyfi is a colour function fromC(t) to

Bag(Cαi
). Then∀c ∈ C(t), f(c) = 〈f1(c), . . . , fk(c)〉

iii: or a tuple f ≡ 〈f1, . . . , fk, f ′
1, . . . , f

′
k′ 〉, whenC(p) =

Cα1
×. . .×Cαk

×Bag(Cα′

1
) . . .×Bag(Cα′

k′
) where ev-

ery fi is a class colour function fromC(t) to Bag(Cαi
)

and f ′
i is the composition of a class colour function

from C(t) to Bag(Cαi
) and thewholeCα′

i

mapping. Let
c ∈ C(t): f(c) = 〈f1(c), . . . , fk(c), f ′

1(c), . . . , f
′
k′(c)〉.

3) Guards: Guards are predicates defined over a colour
domain. When applied to a transition, they restrict the cor-
responding colour domain. They can also be combined with
a tuple colour function as follows. Either the instantiating
colour fulfils the guard and the new colour function behaves
as the tuple function whilst in the other case, the new
function returns the empty bag. For instance the colour
function 〈X, Y 〉 produces a token with two components but
we cannot require thatX should be different fromY (see
definition 7.i). Similarly, the colour functionX selects an
item in a class but we cannot require this item to be selected
in a given static subclass (see definition 7.iii). We also want
to restrict the instantiation of a bag variable to be an ordinary
set (see definition 7.B.i) or to constrain the size of the bag
instantiation (see definition 7.B.ii).

Guardsexpress such requirements.
Definition 7 (Guards):A (basic) guard for bags is a

boolean mapping defined on a colour domainD =⊗
i=1..k(Ci)

ei×
⊗

i=1..k′ Bag(Ci)
e′

i with b
j
i =

∑
c∈Ci

αc.c.
Let ⊲⊳ be either the= or the < relation. SNB guards are
syntactically built with:

Class C is [a, b, c];

Var X in C;

•
Pw Bag(C)

Ps Bag(C)

Pa C

Px C

t

p

<X>

<C.all>

<{X}>

<whole(C)>

Fig. 1. Model illustrating functions

p: •

Px:

Pa:

Ps:

Pw:
a b

c

a b c
t: X=a

a

a

Fig. 2. Result of firing for transitiont with X = a in the model of
figure 1

Class C is [a, b, c, d]; Var Y1, Y2 in Bag(C);

a

c

b

d
b

p1

C

t

Pu C

Pd C

p2

C

<Y1>

<Y2>

<Y1\Y2>

<Y1 U Y2>

Fig. 3. Model illustrating functions

Pu:t: Y1=

Y2=

a

p1:

p2:

ba

b c d

ba

b c

b b c

a

d

Pd:

p2:

Fig. 4. Result of firing for transitiont with Y 1 = 1.a + 1.b andY 2 =

1.b + 1.c in the model of figure 3

i [X i1
Ci

⊲⊳ X i2
Ci

](c) equalstrue iff ci1
i ⊲⊳ ci2

i ;
ii [X i1

Ci
= X i2

Ci
++](c) equalstrue iff ci1

i is the successor
of ci2

i in Ci;
iii [X i1

Ci
∈ Ci,q](c) equalstrue iff ci1

i belongs to the static
sub-classCi,q.

B.i [Unique(Y j

Bag(Ci)
)](c)equalstrue iff ∀c ∈ Ci, αc ≤

1;
B.ii [card(Y j

Bag(Ci)
) ⊲⊳ n](c) equals true iff

size(Y j

Bag(Ci)
(c)) ⊲⊳ n;

B.iii [Y j

Bag(Ci)
⊲⊳ Y

j′

Bag(Ci)
](c) equals true iff

Y
j

Bag(Ci)
(c) ⊲⊳ Y

j′

Bag(Ci)
.

More generally a guard is inductively defined by:

• Let g be a basic guard, theng is a guard;
• Let g1, g2 be guards, theng1 ∨ g2, g1 ∧ g2 and¬g1 are

guards.
Remark 2:When a colour functionXCi

has been denoted
by another symbol, then this name must be used for the
guards.

Definition 8 (General colour function):Let {fi}1≤i≤n

be a family of tuple colour functions,{gi}1≤i≤n a family
of guards, and{αi}1≤i≤n a family of positive integers.

A general colour functionf ≡
∑

1≤i≤n[gi]αi.fi is defined
by

f(c) ≡
∑

i|gi(c)=true

αi.fi(c)

Some abbreviations of colour expressions are useful for
modelling such as theord function. LetD = Ce1

1 ×. . .×Cek

k

andf be a tuple function fromD to someBag(D). Then:
ord(Xj

i).f ≡
∑

1≤q≤si
[Xj

i ∈ Ci,q]q.f . This function allows
the modeller to specify a dynamic multiplicative factor
corresponding to the index of the static subclass to which the
colour associated with a variable by the instantiation process
belongs. Its use will be illustrated in the example of figure 6.

Definition 9 (Symmetric net with Bags):A SNB is a 7-
tuple SNB = 〈P, T, Pre, Post, Cl, C, Φ〉 where2:

• P is a finite non-empty set of places;
• T is a finite non-empty set of transitions,T ∩ P = ∅;

2When bags are omitted, the definition holds for SN.

• Cl = {C1, . . . , Ck} is the set of classes, each being par-
titioned into si static sub-classes (Ci = ⊎q=1..si

Ci,q);
we denoteni = |Ci| andni,q = |Ci,q|;

• C defines for each place and each transition its colour
domain, denotedC(s), which is a finite cartesian prod-
uct of classes and of bags of classes;

• Post (resp.Pre) is the forward (resp. backward) inci-
dence mapping which associates with each pair(p, t) ∈
P × T a general colour function for bags defined from
C(t) to Bag(C(p));

• Φ is a mapping that associates a guard with each
transition.

Remark 3:By default, the guardΦ(t) is the constant
true .

Definition 10 (Marking): A markingof a SNB is a map-
ping that associates with each placep a bag m(p) ∈
Bag(C(p)). The initial marking of a net is denoted bym0.

Definition 11 (Firing rule): Let m be a marking,t a
transition andct ∈ C(t). (t, ct) is firable at m (denoted
m[(t, ct)〉) iff:

1) the guard associated witht evaluates totrue for ct

(i.e. Φ(t)(ct) = true)
2) ∀p ∈ P , m(p) ≥ Pre(p, t)(ct).
When m[(t, ct)〉, the firing of t instantiated by ct

leads to markingm′ defined by: ∀p ∈ P , m′(p) =
m(p) − Pre(p, t)(ct) + Post(p, t)(ct). Given a SNB,
Reach(SNB, m0) denotes the set of all reachable markings
from markingm0.

B. The multi-thread example

The growing market of multi-core processors generates an
increased need for the analysis of parallel systems that are
much more difficult to design than sequential ones. Since
such systems are usually very regular, a formal notation
capturing symmetries is of interest because it can cope with
larger specifications.

So, we consider the example of a multi-core processor that
is based on the following assumptions:

• a job may be multi-threaded;
• a job is assigned to a subset of cores;
• among the cores a master one is associated with the job

itself while the other cores are slave ones;

class

 Count is 1..3;

 Jobs is 1..4;

 Cores is 1..4;

domain

 JK is <Jobs, Count>;

 JKC is <Jobs, Count, Cores>;

 CJKC is <Cores, Jobs, Count, Cores>;

var

 j in Jobs;

 x, x1, x2, x3, z in Cores;

 k in Count;

M

M'

K'K Conf2
Cores

Conf1
Cores

TermThreads
JKC

JobsGen
JK

JobsWait

JKC

GenJobs

lb2TC1 lb2TC2 lb3TC1 lb3TC2

FreeCores
Cores

AllocatedCores
CJKC

JobEnds

TEnds

<z>

<z>

<j,k,z>

<x,j,k,z>
<x>

<x1>+<x2>

<x1>+<x2>+<x3> <x1>+<x2>
<x1>+
<x2>+
<x3>

<x1,j,3,z>+ <x2,j,3,z>+<x3,j,3,z>

<x1>+
<x2>+
<x3>

<x1,j,3,z>+ <x2,j,3,z>+<x3,j,3,z>

<x1>+
<x2>+
<x3><x1,j,2,z>+

<x2,j,2,z>

<x1>+
<x2><x1,j,2,z>+

<x2,j,2,z>

<x1>+<x2>

<j,3,z>
<j,3,z><j,2,z>

<j,2,z>

<j,k,z>

<j,k>

ord(k).<j,k,z>

<j,k>

Fig. 5. The multi-thread system modelled with a SN

class

 Count is 1..3;

 Jobs is 1..4;

 Cores is 1..4;

domain

 JK is <Jobs, Count>;

 JKC is <Jobs, Count, Cores>;

 CJKC is <Cores, Jobs, Count, Cores>;

M

M'

K''
Configs

Bag(Cores)

JobEnds

TermThread
JKC

AllocatedCores
CJKC

TEnds

FreeCores
Cores

LbThreads

[card(Y1)=ord(k) and
Y1 <= Y2]

JobsWait
JKC GenJobs

JobsGen
JK

<j,k><j,k,z>

<j,k,z>

<Y1,j,k,z>

<x,j,k,z>

<j,k,z>

ord(k).<j,k,z>

<j,k><Y1>

<x>

<whole(Y2)>

<z>

<z>

var

 j in Jobs;

 x, z in Cores;

 k in Count;

 Y1, Y2 in bag(Cores);

Fig. 6. The multi-thread system modelled with a SNB

• the set of cores is partitioned according to some hard-
ware configuration;

• all threads associated with one job are assigned to slave
cores simultaneously;

• every core can manage simultaneously a fixed maximal
number of threads (denoted in the sequel byMax-
ThreadsPerCore).

1) The SN model:In figure 5, a job is initially generated
by transitionGenJobs. A triple containing the job number,
the number of corresponding threads and the master core
is put to wait for being handled in placeJobsWait. This
corresponds to the execution of an initialisation phase. Note
that place JobsGencontains the different configurations
that can occur in the system (markingM – for example
<1,2>+<2,3> means that job1 has two threads and job
2 has three threads).

Then, depending on the number of threads required, one
of the four transitionslbkTCi assignsk cores with config-
uration i to the k threads. These cores, having the same
configuration as described inConf1 and Conf2 (the initial
markings of these places are respectivelyK and K

′), are
removed from the set ofFreeCores(with initial marking
M’ = MaxThreadsPerCore × <Cores.all>).

Markings K and K
′ is expressed in a symbolic way:

K = Z1 + Z2 andK
′ = Z2 + Z3. Zi are called “dynamic

subclasses” (see definition in section III-B) whatever their
values.Z2 is the part that is duplicated in placesConf1and
Conf2, Z1 the part located inConf1 only andZ3 the part
located inConf2only.

The information logged with theAllocatedCoresis a 4-

tuple with the slave core, the job identifier, the number
of threads for this job, and the master core. This allows
for ensuring a clean termination at a later stage. When a
thread execution is finished (transitionTEnds), the slave
core becomes free again. When all threads have finished,
a final phase takes place: the terminated threads (place
TermThreads) are discarded by transitionJobEndsand the
master core is released, terminating the job execution.

One can note that there is a possible deadlock in this
model when master threads consume cores that cannot then
be allocated to slave threads. In the net, this case corresponds
to too many occurrences ofGenJobspreventing the firing of
any lbkTCi transition.

This example reveals a major drawback of Symmetric
Nets, represented by the U-shape in the upper part of figure 5.
We must duplicate the transitions in order to capture the
consumption of a variable number of tokens. It means that,
if we change theCountcolour domain (denoting the number
of threads to associate with a given job), we must adapt the
series of transitionslbkTCi . This is not very convenient for
modellers. Furthermore, the system cannot be parameterised
easily, which is a problem.

2) The SNB model:A new version for the multi-threads
example is shown in figure 6. The modified part is framed.

One can note that the numerous transitionslbkTCi in the
net of figure 5 are now expressed using a single transition:
LbThreads. Configurations are now stored in one place:
Configs that containsBag(Cores)tokens. Let us note that
the marking ofConfigs, K

′′ is defined fromK and K
′ by

K
′′ = {K} ∪ {K′} = whole(Z1 ∪ Z2)∪whole(Z2 ∪ Z3).
A bag of coresY1 is selected among the free cores, with

the same cardinality as the number of threads to execute
(this is specified in the guard of transitionLbThreadswith
formulacard(Y1)=ord(k)). For the transition to be fired,
an available configuration whereY1 <= Y2 (i.e. ‖Y 1‖ ⊆
‖Y 2‖) must be found (this is expressed by the second term
of the guard).

The job ends when all corresponding threads are ter-
minated, and they are removed simultaneously from place
TermThreadas in the Symmetric Net version of the example.

III. SYMBOLIC REACHABILITY GRAPH FOR SNB

The symbolic reachability graph aims at reducing the
reachability graph size (thus rendering verification amenable)
by regrouping some “equivalent” markings intosymbolic
markingsand using a symbolic firing rule compatible w.r.t.
the normal firing rule. Thus, many properties of the model,
like accessibility, boundness or liveness can directly be
checked on the symbolic reachability graph, allowing for the
analysis of larger specifications.

A. Symbolic markings

Symbolic markings are based on the notion ofadmissible
permutationsin the set of colour classes. An admissible
permutation is a familyσ = {σi}i∈I such that a permutation
σi of Ci fulfils: 1) ∀Ci,q , σi(Ci,q) = Ci,q i.e., any item
of a static subclassCi,q of Ci is mapped to an item of
the same subclass and 2) ifCi is an ordered class then
admissible permutations are restricted to rotation (the order
of an ordered class cannot be modified).

Given these restrictions, the action of a permutationσ

on a colour c of a place p, c =
⊗

i∈I,j∈1..ei(p) c
j
i ∈

C(p), is defined byσ(c) =
⊗

i∈I,j∈1..ei(p) σi(c
j
i). We can

define the action ofσ on a markingm by ∀p ∈ P, ∀c ∈
C(p), σ.m(p)(σ(c)) = m(p)(c). Note that the enabling rule
for a transition is preserved when applying an admissible
permutation on a marking and on a transition occurrence:

m[(t, c)〉m′ ⇐⇒ σ.m[(t, σ(c))〉σ.m′

Thus, markings obtained with the application of a permu-
tation for a given markingm are “equivalent” in terms of
behaviour. Therefore an equivalence class of markings can be
defined:m ∼ m′ ⇐⇒ ∃σ|σ.m = m′, yielding equivalence
classes namedsymbolic markingand denotedM.

The first problem is the representation of a symbolic
marking. Describing an equivalence class of a set with its
own elements is obviously very expensive in terms of storage
and brings no advantage w.r.t. the explicit reachability graph.
To tackle this problem, a first approach [12], [13] represents
an equivalence class with one of its elements (i.e. a marking).
This method reduces the storage requirement for markings
but does not provide any saving w.r.t. the state transitions
issued from these markings.

An alternative approach [7] consists in a symbolic repre-
sentation of both the markings (inside an equivalence class)
and the transitions issued from these markings. Observe that
the number of transitions issued from a marking of a SN
may be exponential w.r.t. the size of the SN and thus, the

symbolic firing rule is mandatory in order to manage large
models.

B. Symbolic marking representation

Let m be an explicit marking. Roughly speaking, we first
partition every static subclass(Ci,q) such that inside the
partition, two colours have the same distribution of token
components corresponding to the classCi for m. Then,
forgetting the identities of colours inside any partition but
memorizing the size of this partition leads to our symbolic
marking representation.

More formally, we define for every classCi a set of
dynamic subclasses{Zj

i }1≤j≤mi
such that everyZj

i has two
attributes: its cardinality(card(Zj

i)) and the index of the
static subclass it belongs to(d(Zj

i)). Given these partitions,
the symbolic marking (mark) is represented as an ordinary
marking where the dynamic subclasses are substituted to
colours. The following definition formalises the character-
istics of a symbolic marking representation.

Definition 12 (Symbolic marking representation):
A symbolic marking representation of a SNB,
M = 〈m, card, d, mark 〉 is defined by:

• m : I 7→ IN∗ defines the number of dynamic subclasses
for every classCi. m(i) is also denotedmi and Ĉi =
{Zj

i | 0 < j ≤ mi} denotes the set of dynamic
subclasses ofCi.

• card :
⋃

i∈I Ĉi 7→ IN∗ denotes the size of every
dynamic subclass.

• d :
⋃

i∈I Ĉi 7→ IN∗ denotes the index of the correspond-
ing static subclass to which every dynamic subclass be-
longs. Henced andcard fulfil the following constraints:

1) d(Zj
i) ∈ {1, . . . , si} i.e. d(Zj

i) is the index of a static
subclass ofCi.

2)
∑

d(Zj

i)=q
card(Zj

i) = ni,q: the size of a static
subclass is the sum of the sizes of the dynamic
subclasses that belong to it.

3) ∀i ∈ I, ∀1 ≤ j < j′ ≤ mi, d(Zj
i) ≤ d(Zj′

i): the
dynamic subclasses are ordered w.r.t. the order of
static subclasses.

• mark associates with every placep a symbolic content:
mark(p) ∈ Bag(

⊗
i∈I(Ĉi)

ei(p)
⊗

i∈I Bag(Ĉi)
e′

i(p)).
Then, dynamic subclasses act as colours for ordinary
markings.

The semantics of a symbolic marking representation is a
set of equivalent ordinary markings.

Definition 13 (Symbolic representation semantics):Let
M be a symbolic marking representation. Then the setJMK
of associated ordinary markings is defined bym ∈ JMK iff:

• ∀i ∈ I, ∃αi : Ci 7→ Ĉi ; αi distributes the colours
among the dynamic subclasses. As usual, we linearly
extendαi to a mapping fromBag(Ci) to Bag(Ĉi).

• ∀Z
j
i ∈ Ĉi, |α

−1
i (Zj

i)| = card(Zj
i) ; these mappings

must preserve the size constraints.
• ∀C

j
i , α−1

i (Zj
i) ⊆ C

i,d(Zj

i
) ; these mappings must pre-

serve the static subclass constraints.

+ ... +

1
1 Z1

1Cp

q1 C Cq2

t

<C.All>

<Y> <~Y>

[Unique(Y)]

= C = n1

Z1
2Z1

1

Z1
1 =

<C.All>

<~Y><Y>

[Unique(Y)]
t k < n1

=1
2Z n1−k

Z1
1

+ ... + n1
Z1Z1

1

Z1
1t()

Z1
2Z1

1+t()

+ ... +Z1
1 k

Z1t()

Z1
1 Z1

n1+ ... +t()

Z1
1 = =Z1

2 = = 1... Z1
n1

Z1
n1Zk

1Z1
1 Z1

k+1

splitting

Class C is 1..N;

canonization

t

<C.All>

<Y> <~Y>

[Unique(Y)]

= =Z1
2 = = 1... Z1

n1

symbolic firings
....

<C.All>

<Y> <~Y>

[Unique(Y)]
t

+ ... +

Z

Fig. 7. Example of symbolic firing

• ∀p ∈ P , ∀c ∈ C(p) with
c =

⊗
i∈I,j∈1..ei(p) ci,j

⊗
i∈I,j∈1..e′

i
(p) bi,j :

m(p)(c) = mark(p)(
⊗

i∈I,j∈1..ei(p) αi(ci,j)⊗
i∈I,j∈1..e′

i
(p) αi(bi,j))

the marking of a place must be preserved by the
symbolic transformation.

• When Ci is ordered,∀Z
j
i ∃c ∈ α−1

i (Zj
i) such that

αi(!c) ∈ Z
(j mod mi)+1
i and ∀c′ ∈ α−1

i (Zj
i), c′ 6=

c, αi(c
′) ∈ Z

j
i ; the instantiation viaαi of dynamic

subclasses must preserve the order ofCi.
It must be emphasized that different representations yield

the same set of explicit markings. However, it is possible to
define and compute a canonical representation as developed
in the appendix [18]. Roughly speaking, a symbolic repre-
sentation is canonical if the number of dynamic subclasses is
minimal and the numbering of dynamic subclasses ensures
that the representation is minimal w.r.t. some lexicographic
ordering.

C. Symbolic firing rule

The second step in the symbolic reachability graph con-
struction is the design of a symbolic firing rule for symbolic
markings. Our goal is to “produce” and “consume” dynamic
subclasses instead of colours. A dynamic subclass is selected
for each occurrence of a class in the colour domain. However,
assume that we instantiate variableX

j
Ci

with the dynamic
subclassZk

i . Such an instantiation is sound iffcard(Zk
i) = 1

(meaning that this subclass is reduced to a single colour).
Furthermore, the instantiation ofY j

Bag(Ci)
should require

to select 1) only a subset of colours in someZk
i and 2)

to select colours from differentZk
i . Thus in order for the

symbolic rule to correspond to the explicit firing rule, we
need to preprocess a symbolic representationM. The goal
of this preprocessing, called splitting, is to produceM′ such
that JMK = JM′K and the cardinality of every dynamic
subclass ofM′ is 1.

Once this splitting has been performed, the transition is
fired as in definition 11 with dynamic subclasses instead of
colours; this leads to a new symbolic marking. However, this
firing includes an optimisation step that reduces the number
of possible instantiations.

Rather than formally define the optimisation, we illustrate
it on figure 7. It first shows the symbolic marking obtained
after the splitting. Applying usual instantiation, variable Y

could be associated with any bag
∑

j∈J Z
j
1 for any J ⊆

{1, ..., n1}, n1 being the maximal cardinality of dynamic
subclasses inY j

Bag(Ci)
. This would lead to2n1 different

firings.
However, we require that if a dynamic subclassZ

j
1 occurs

in Y then anyZ
j′

i with j′ < j also occurs inY . This re-
striction does not eliminate any associated explicit firingdue
to the semantics of symbolic markings. Now, the number of
different firings is onlyn1. This constraint can be generalised
to any number of variables occurring in a transition by an
arbitrary order over these variables.

In this case, letZj
i , Z

j′

i obtained by the splitting of
the same dynamic subclass withj′ < j. We require that
if Z

j
i occurs in the instantiation of a variable, thenZj′

i

occurs either in the instantiation of the same variable or
of a previous variable. We emphasize that this reduction is
impossible with the approach in [12], [13].

The last step is the canonisation of the representation. The
whole process is formally described in [18].

Example: Our approach preserves the use of symbolic
states together with bag functions. For example, let us
consider the model of figure 5 withM ′ containing 4 available
cores, andM containing 4 configurations (two requiring two
additional cores and two requiring three additional cores).
If there is at least 3 occurrences ofGenJobsprior to any
occurrence oflbiTCj , the system will inevitably become
deadlocked in the following configuration: there is no token
in eitherAllocatedCoresor FreeCore— one symbolic state.
In the SNB of figure 6, the same configuration is the single
symbolic state representing a deadlock.

Thus, the introduction of bags can only reduce the size of
the symbolic reachability graph.

Moreover, it may also reduce the number of symbolic
firings (those that are expensive in terms of CPU usage). For
example, the firing of bothlb2TC1andlb2TC2 in the model
of figure 5 corresponds to only a single firing ofLbThreads
in the model of figure 6.

IV. CONCLUSION

In this paper, we have extended the symbolic reachability
graph and its related symbolic firing to Symmetric Nets with
bags in tokens (SNB) as introduced in [13].

SNB have two main advantages. First, the use of bags in
Symmetric nets allows for easier and more readable mod-
elling. The Petri net specification can thus be parameterised
without changes in its structure (e.g. adding places or transi-
tions). Hence, the specifier does not have to concentrate on
choosing tricks or duplicating large parts of nets. Moreover,
these could lead to bad choices that would hamper the
analysis capabilities.

Second, it enables the use of the symbolic reachability
graph technique, thus allowing for analysing large Petri nets.
Our approach maintains a low complexity on the symbolic
reachability graph constructions, contrary to previous works
like [12], [13].

To achieve this goal, we provide a new consistent set of
definitions for SNB. We show on an example in figure 6
the advantages of SNB for a more concise modelling : a
single transition corresponds to several similar ones in the
SN model of figure 5. Then, we define for SNB the symbolic
reachability graph structure and the associated optimised
firing rule.

We plan to soon develop within the CPN-AMI Petri
net environment (http://move.lip6.fr/software/
CPNAMI/) [19] both the extended formalism, the adaptation
of the symbolic reachability graph and the game-based
algorithms for control synthesis.

REFERENCES

[1] K. Jensen, “Coloured Petri nets and the invariant-method,” Theor.
Comput. Sci., vol. 14, pp. 317–336, 1981.

[2] M. Beaudouin-Lafon, W. Mackay, M. Jensen, P. Andersen, P. Janecek,
H. Lassen, K. Lund, K. Mortensen, S. Munck, A. Ratzer, K. Ravn,
S. Christensen, and K. Jensen, “CPN/Tools: A Tool for Editing and
Simulating Coloured Petri Nets ETAPS Tool Demonstration Related to
TACAS,” in Tools and Algorithms for the Construction and Analysis of
Systems, 7th International Conference, TACAS 2001, L. Springer Ver-
lag, Ed., vol. 2031, 2001, pp. 574–577.

[3] K. Jensen, L. Kristensen, and L. Wells, “Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems,” STTT,
vol. 9, no. 3-4, pp. 213–254, 2007.

[4] W. Reisig, “Petri nets and algebraic specifications.”Theoretical Com-
puter Science, vol. 80, pp. 1–34, 1991, newsletterInfo: 38,39.

[5] H. Genrich and K. Lautenbach, “System modeling with high-level
Petri-nets,” inTheoretical Computer Science, no. 13, 1981, pp. 103–
136.

[6] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves, “PN standardisa-
tion : a survey,” inInternational Conference on Formal Methods for
Networked and Distributed Systems (FORTE’06), vol. 4229. Paris,
France: Springer Verlag, LNCS, September 2006, pp. 307–322.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, “Stochastic
well-formed colored nets and symmetric modeling applications,” IEEE
Transactions on Computers, vol. 42, no. 11, pp. 1343–1360, 1993.
[Online]. Available: citeseer.ist.psu.edu/chiola93stochastic.html

[8] ——, “A symbolic reachability graph for coloured Petri nets,” Theo-
retical Computer Science, vol. 176, no. 1–2, pp. 39–65, 1997.

[9] H. Klauck, “Algorithms for parity games,” inAutomata, Logics, and
Infinite Games, ser. LNCS, vol. 2500. Springer, 2002, pp. 107–129.

[10] A. de Groot, J. Hooman, F. Kordon, E. Paviot-Adet, I. Vernier-
Mounier, M. Lemoine, G. Gaudiere, V. Winter, and D. Kapur, “A
survey: Applying formal methods to a software intensive system,” in
6th International Symposium on High-Assurance Systems Engineering.
IEEE Computer Society, 2001, pp. 55–64.

[11] F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont, “An approach to
model variations of a scenario: Application to IntelligentTransport
Systems,” inWorkshop on Modelling of Objects, Components, and
Agents (MOCA’06), Turku, Finland, June 2006.

[12] P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen, “Reachability
trees for high-level petri nets.”Theoretical Computer Science, Vol 45,
no. 3, pp. 261–292, 1986, newsletterInfo: 27.

[13] T. Junttila, “On the symmetry reduction method for petri nets and
similar formalisms,” Ph.D. dissertation, Helsinki University of Tech-
nology, Espoo, Finland, 2003.

[14] F. A. Emerson and A. P. Sistla, “Symmetry and model checking,”
Formal Methods in System Design: An International Journal,
vol. 9, no. 1/2, pp. 105–131, August 1996. [Online]. Available:
citeseer.ist.psu.edu/emerson94symmetry.html

[15] K. Schmidt, “How to calculate symmetries of petri nets,” Acta Inf.,
vol. 36, no. 7, pp. 545–590, 2000.

[16] E. A. Emerson and R. J. Trefler, “From asymmetry to full symme-
try: New techniques for symmetry reduction in model checking,”
in CHARME, ser. Lecture Notes in Computer Science, vol. 1703.
Springer, 1999, pp. 142–156.

[17] S. Baarir, C. Dutheillet, S. Haddad, and J.-M. Ilié, “On the use of
exact lumpability in partially symmetricalwell-formed nets,” in QEST.
IEEE Computer Society, 2005, pp. 23–32.

[18] S. Haddad, F. Kordon, L. Petrucci, J.-F. Pradat-Peyre,and N. Trèves,
“Efficient State-Based Analysis by Introducing Bags in Petri Nets
Color Domains,” LSV,École Normal Supérieure de Cachan, Tech.
Rep. RR LSV 09-07, March 2009.

[19] A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet, X. Renault,
and Y. Thierry-Mieg, “New features in CPN-AMI 3 : focusing onthe
analysis of complex distributed systems,” in6th International Con-
ference on Application of Concurrency to System Design (ACSD’06).
Turku, Finland: IEEE Computer Society, June 2006, pp. 273–275.

