
Chapter 3

Analysis Methods for Petri Nets

Serge Haddad , François Vernadat1

1. Introduction

One of the main advantages of formal models is the possibility to unambigu-
ously define the behaviour of a system, to develop algorithms for properties
verification and to integrate them in a dedicated software tool.

The firing rule of Petri nets associates a (finite or infinite) reachability graph
with a net. This graph constitutes a formal representation of the net behaviour.
Thus we will first define the general and more relevant properties of the net
w.r.t. this graph (like liveness or deadlock existence). When it is finite, one
can scan it in order to check these properties. The methods based on the
construction and the exploration of the whole graph or of some part of it are
called behavioural methods. In spite of their relative simplicity and their wide
applicability, these methods present some drawbacks: they are only applicable
to nets with a finite number of states, their (temporal and spatial) complexity
depends on the size of the graph (much bigger than the size of the net) and
they require the knowledge the initial marking.

In the next section, we will examine families of alternative methods that
take advantage of the net structure in order either to decrease the complexity
of the analysis or that apply on a net independently of its initial marking. We
wil deepy describe three of these methods called structural methods.
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The state change equation corresponds to the fact that the update of a
marking by a firing sequence is exactly the product of the incidence matrix
by the vector of transition occurrences in this sequence. By adapting linear
algebra techniques, one computes generative families of linear invariants over
places or transitions. In the case of places, an invariant is a weighted sum
of place markings invariant by transition firing. In the case of transitions, an
invariant is an occurrence vector of a firing sequence which do not modify the
marking. In addition to this interpretation, this computation has numerous
applications, some of them will be detailled in the book.

The reduction technique consists in substituting to a net a smaller one whose
behaviour is equivalent w.r.t. a set of relevant properties. A reduction is defined
by structural conditions and a transformation method. This technique should
be applied before any other one, thus decreasing the subsequent computational
complexity.

Since the net is a bipartite graph, its analysis provides interesting infor-
mations on the behaviour of the net. Furthermore in the framework of spe-
cific modelisations (e.g. manufacturing systems) the structure of the resulting
graph is particular and one can associate with a behavioural property a struc-
tural characterization. We will briefly describe some of these models and more
particularly the free choice Petri nets for which numerous efficient verification
algorithms have been designed.

Throughout this chapter, we do not look for an exhaustive overview of the
analysis methods. For instance, we skip the analysis by net decomposition ;
some of these methods will be illustrated in the chapters devoted to stochastic
Petri nets. We skip also the methods that take advantage of the structure of the
net in order to build smaller representations of the reachability graph : they
will be illustrated in different chapters of the book. Finally the verification
methods for unbounded nets are described in the next chapter.

We have chosen to present the proofs of the propositions whenever their size
remains reasonnable. It seems that only these descriptions will highlight the
reader on the foundations of a method. We restrict the presentation of results
without proofs to central ones. The references should enable the reader to ac-
cess more involved theories in specialized books or in research communications.

General notations

1 Sets and Numbers

• IN is the set of natural integers, ZZ is the set of relative integers, Q
est the set of rationals and IR is the set of reals.

• Let X be a set of numbers, X+ denotes the subset of X restricted
to non negative items. Max(X) denotes its smallest upper bound
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(possibly ∞) and Min(X) denotes its greatest lower bound (possibly
−∞).

• Let E be a set, |E| denotes its cardinality.

2 Vectors and Matrices

• Let E be a set, a vector v with dimension E and natural integer
coefficients is an application from E to IN. For e ∈ E, v(e) de-
notes the e-component of this vector. The set of vectors is denoted
INE . This notion can be generalized to every set of numbers (ZZE ,
(Q+)E ,. . .). This notion is also applicable to matrices. For instance,
the incidence matrice C ∈ ZZ

P×T .

• Let e ∈ E, the vecteur −→e de INE is defined by −→e (e) = 1 and
−→e (e′) = 0 for e′ 6= e.

•
−→
0 denotes the null vector whose dimension is fixed by the context.

• Let (E, <) be a totally ordered set, the (total) lexicographical order
on XE (where X is a set of numbers) is defined by:

v ≺ v′ ⇔ ∃ e ∈ E, v(e) < v′(e) and ∀ e′ < e, v(e′) = v′(e′)

• Let A be a matrix with dimension E ×F , then At is the transposed
matrix with dimension F × E defined by At(i, j) = A(j, i). When
E∩F = ∅, we denote for e ∈ E (resp. f ∈ F ), A(e) (resp. A(f)) the
row (resp. column) vector of A indexed by e (resp. f). We mainly
apply this notation to matrices Pré, Post et C.

• A vector with dimension E can also be viewed like a matrix with
dimension E × {1}. So the transposition equally applies to vectors.

• Let v be a vector with dimension E, one defines the support of v,
denoted ‖v‖ by: ‖v‖ = {e ∈ E | v(e) 6= 0}.

• Let v1, v2 be two vectors with same dimension one denotes v1 ≤ v2 iff
∀e, v1(e) ≤ v2(e) and v1 < v2 iff (v1 ≤ v2 et v1 6= v2). Sup(v1, v2)
denotes the vector defined by Sup(v1, v2)(e) = Max(v1(e), v2(e))

3 Sequences and Languages

• Let Σ be an alphabet (i.e. a finite set), Σ∗ denotes the set of finite
words of Σ and Σ∞ denotes the set of infinite words of Σ.

• Let σ ∈ Σ∗ and σ′ ∈ Σ∗∪Σ∞, σ.σ′ denotes the concatenation of the
two words.

• Let σ ∈ Σ∗, σ∞ denotes the word (infinite except if σ is the empty
word denoted λ) obtained by infinite repetition of σ.

• Let Σ′ be a subalphabet of Σ and σ be a word of Σ, the projection
of σ on Σ′ denoted σ⌊Σ′ is recursively defined by:

λ⌊Σ′ = λ and (σ.a)⌊Σ′ = If a ∈ Σ′ then σ⌊Σ′ .a else σ⌊Σ′
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• Let σ be a word, then σ̃ is the inverse word recursively defined by:

λ̃ = λ and ˜(σ.a) = a.σ̃

• We denote m σ
−→P ′m′ a firing sequence when one restricts the fire-

ability condition to the subset of places P ′. When one wants to
precise the net R of a firing sequence, one denotes it by: m σ

−→Rm′.
The notations can be combined: m σ

−→R,P ′m′.

4 Nets

• Let s be an item of P ∪ T then •s denotes the set of predecessors
of s in the net and s• denotes the set of successors of s in the net.
Otherwise stated, if s is a transition then •s = ‖Pré(s)‖ and s• =
‖Post(s)‖ and if s is a place then •s = ‖Post(s)‖ and s• = ‖Pré(s)‖.

• This notation is extended to subsets of vertices: •S = {t | ∃ s ∈
S t ∈ •s} and S• = {t | ∃ s ∈ S t ∈ s•}

• We slightly abuse the language: a Petri net denotes both the struc-
ture R and the marked net (R, m0). The context will allow to deduce
which object is denoted.

• In figures representing Petri nets, the double arrow represents su-
perimposed arcs Pré and Post.

We assume that the reader already knows some basics of graph theory [1, 12].
The main notions that we will discuss are connectivity, strong connectivity,
(initial, terminal) strongly connected components, paths, elementary circuits
and trees.

At last the theoretical complexity of methods will be discussed anticipating
the next chapter where the basics of complexity are presented. The reader can
refer to it when necessary.

2. Behavioural analysis of Petri nets

2.1. Semantics of a net

The simplest way to define the behaviour of a net is to considere the set of
markings reachable from the initial marking.

Definition 1 (Reachability set) Let (R, m0) be a Petri net, the reachabil-
ity set of the net denoted A(R, m0) is the set of markings reached by a firing
sequence:

A(R, m0) = {m | ∃σ ∈ T ∗ t.q. m0
σ

−→m}
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A more complete way consists to take into account the immediate reacha-
bility relation between markings throughout the reachability graph.

Definition 2 (Reachability graph) Let (R, m0) be a Petri net, the (directed)
reachability graph of the net denoted by G(R, m0) is defined by:

• the set of vertices A(R, m0)

• the set of arcs: an arc lebelled by t joins m to m′ iff m t
−→m′

If the observation of events is more important than the internal state of
the system (represented by the marking) then the language of firing sequences
is more appropriate. Often, different transitions model the same event or a
transition models an internal action. It is then judicious to introduce a labelling
of transitions.

Definition 3 (Language of a net) Let (R, m0) be a Petri net, Σ be an al-
phabet and l be a labelling mapping from T to Σ∪ λ (the empty word). The la-
belling is extended to sequences by l(λ) = λ and l(σ.t) = l(σ).l(t). Let Term be
a finite set of final markings. The language of the net denoted L(R, m0, l, T erm)
is defined by:

L(R, m0, l, T erm) = {w ∈ Σ∗ | ∃σ ∈ T ∗, ∃mf ∈ Term, m0
σ

−→mf ∧ w = l(σ)}

Other definitions for Petri net languages are possible. For instance, the kind
of labelling can be restricted or the final markings can be omitted.

2.2. Usual properties

2.2.1. Properties definition

The interest of a model is the possibility to formally define properties of the
modelled system and to check these properties by algorithms or heuristics. In
case of Petri nets, the usual properties are related to the activity of a parallel
system. These properties can be specific to the parallelism or simply related
to dynamicity.

We illustrate these properties on the net of figure 1. This net models two
anonymous processes initially in state Idle. Any process may choose between
two behaviours: either get the resource A (modelled by PickA), and then the
resource B and finish (PickAB is an abstraction of these two events) or get
the resources in the reverse order.
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Figure 1: Two processes sharing two resources

The first issue about such a system is whether its behaviour is finite. Oth-
erwise stated, we are looking for an infinite firing sequence.

Definition 4 (Existence of an infinite sequence)
A Petri net (R, m0) admits an infinite sequence σ ∈ T∞ if for every σ′ finite
prefix of σ, σ′ is a firing sequence of (R, m0).

Example 1 (PickA.P ickAB)∞ is an infinite sequence of the net of figure 1.

When a net has no infinite sequence, one says that it fulfills the termination
property.

An interesting issue is to determine whether the system never stops. For
instance, an operating system must never stop whatever the behaviour of its
users. Otherwise stated, from any reachable marking one can fire at least one
transition.

Definition 5 (Pseudo-liveness)
A Petri net (R, m0) is pseudo-live if:

∀m ∈ A(R, m0)∃ t ∈ T s.t. m t
−→



Analysis Methods for Petri Nets 7

When a marking has no fireable transition, one says that it is a dead marking.

Example 2 The sequence PickA.P ickB leads to the dead marking
−−−−→
WaitA+

−−−−→
WaitB.

A frequent error of modelling is to design a net with a transition which is
never fireable. It is then important to eliminate such errors.

Definition 6 (Quasi-liveness)
A Petri net (R, m0) is quasi-live if:

∀ t ∈ T ∃m ∈ A(R, m0) s.t. m t
−→

Example 3 Starting from the initial marking, one can fire the sequence:
PickA.P ickAB.P ickB.P ickBA

where every transition occurs.

The two previous properties ensure some correctness of the system but
they cannot ensure that in every reachable marking, the system keeps all its
functionalities. Otherwise stated, one wanders whether every transition can be
fired in some future of every state.

Definition 7 (Liveness)
A Petri net (R, m0) is live if for every marking m ∈ A(R, m0), the net (R, m)
is quasi-live. Otherwise stated:

∀m ∈ A(R, m0)∀ t ∈ T ∃m′ ∈ A(R, m) s.t. m′ t
−→

Example 4 From the dead marking
−−−−→
WaitA+

−−−−→
WaitB, no transition is fireable.

Hence the net is not live.

Another interesting property is the possibility to always return to some
state corresponding for instance to the reinitialisation of the system. When
this marking is the initial one, reinitialisation is identical to initialisation.

Definition 8 (Existence of a home state)
A Petri net (R, m0) admits a home state ma if:

∀m ∈ A(R, m0), ∃σ ∈ T ∗ s.t. m σ
−→ma
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Example 5 From any reachable marking, the dead marking is reachable.
Hence the net admits a home state.

Modelling open systems is somewhat different from modelling closed sys-
tems. For instance, it may require to model the arrival of a unbounded number
of clients leading to the following definition.

Definition 9 (Boundedness of a net)
A Petri net (R, m0) is unbounded if:

∀n ∈ IN, ∃m ∈ A(R, m0), ∃ p ∈ P t.q. m(p) > n

R is structurally bounded if it is bounded for every initial marking.

Example 6 Places contain either resources or processes. Hence the net is
bounded.

If the net is unbounded, at least one place may contain a number of tokens
as great as possible. Such places are said unbounded. If the net is bounded, a
bound of the net is an integer greater or equal than any possible marking of a
place. As will be seen during the study of monotonicity, it is often interesting
to modify the initial marking in order to analyze its impact on the behaviour.
This explains the interest of structural boundedness.

2.2.2. Relations between properties

We establish now simple relations between the different properties.

Proposition 10 If (R, m0) is pseudo-live or unbounded then (R, m0) admits
an infinite sequence.

Proof
If the net is pseudo-live then one builds the infinite sequence by iteratively
firing any transition (there is always at least one). The second part of the
proposition will be proved with the help of characterisations of properties by
the existence of particular sequences. ♦

Proposition 11 If (R, m0) is live then (R, m0) is quasi-live and pseudo-live.



Analysis Methods for Petri Nets 9

Proof
Assume that the net is live, m0 ∈ A(R, m0) so by definition (R, m0) is quasi-
live. Let t be a transition of T and m ∈ A(R, m0), by definition (R, m) is

quasi-live, so ∃σ ∈ T ∗ m σ.t
−→. Hence m is not dead. Consequently the net is

pseudo-live. ♦

Proposition 12 If (R, m0) is quasi-live and admits m0 as home state then
(R, m0) is live.

Proof
In order to fire a transition t from a reachable marking, one first returns to m0

(home state) and then one fires a sequence ended by t (quasi-liveness). ♦

2.2.3. Monotonicity of properties

During a modelling, once the structure of the net is defined, the designer
modifies the initial marking in order to examine different hypotheses. Often
this modification consists in adding tokens in places. So it is interesting to
determine whether a property remains fulfilled in the new marked net.

Definition 13 Let π be a property of Petri nets, π is said monotonic iff:

∀R ∀m0 ≤ m′
0, π is fulfilled by (R, m0) ⇒ π is fulfilled by (R, m′

0)

The next lemma justifies the study of monotonicity.

Lemma 14 (Lemma of monotonicity) Let R be a Petri net,

• ∀m1 ≤ m′
1 m1

σ
−→m2 ⇒ m′

1
σ

−→m′
2 with m2 ≤ m′

2

• Furthermore if there is a place p, m1(p) < m′
1(p) then m2(p) < m′

2(p)

Proof
The resultat is obtained by a straightforward recurrence, starting from the
case where the sequence σ is reduced to a single transition. In case of a single
transition, it is a simple consequence of the firing rule. ♦

Let us examine among the previously defined properties which ones are
monotonic.
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Proposition 15 Let (R, m0) be a Petri net:

• “(R, m0) admits an infinite sequence” is a monotonic property.

• “(R, m0) is pseudo-live” is not a monotonic property.

• “(R, m0) is quasi-live” is a monotonic property.

• “(R, m0) is live” is not a monotonic property.

• “(R, m0) admits a home state” is not a monotonic property.

• “(R, m0) is unbounded” is a monotonic property.

The properties which are characterized by the existence of firing sequences
starting from the initial state are monotonic. For the other ones, we can exhibit
elementary counter-examples.

Example 7 The net of figure 1 is live for the initial marking
−−→
Idle +

−→
A +

−→
B

lower than the original initial marking for which the net is not even pseudo-live.

2.2.4. Characterization of properties with the help of a finite reachability graph

The easiest way to check the properties consists in examining the reacha-
bility graph whenever it is finite. Hence our first characterizations rely on this
graph.

We will illustrate these characterizations on the net of figure 1 whose reach-
ability graph is presented in figure 2.

Proposition 16 Let (R, m0) be a Petri net, (R, m0) is bounded iff A(R, m0)
is finite.

Proof
Assume (R, m0) bounded and let n be a bound, then A(R, m0) is included in
{m |m ≤

∑
p∈P n.−→p }. Now this set is finite. Assume A(R, m0) finite, then

Max({m(p) | p ∈ P et m ∈ A(R, m0)}) is finite and constitutes a bound of the
net. ♦

In the remainder of the paragraph, we will precise whether the characteri-
zation depends on the finiteness of A(R, m0).
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Figure 2: A reachability graph

Proposition 17 Let (R, m0) be a bounded Petri net, (R, m0) admits an infi-
nite sequence iff G(R, m0) admits a circuit.

Proof
Assume that (R, m0) admits an infinite sequence σ, then this sequence goes
through some marking at least twice. Hence σ = σ′.σ′′ , σ′ = u.v with
m0

u
−→m v

−→m. So m v
−→m is a circuit of the graph. Assume that G(R, m0)

admits a circuit m v
−→m, m is reachable so there exists u such that m0

u
−→m.

Consequently, u.v∞ is an infinite sequence of (R, m0). ♦

Example 8 The reachability graph of figure 2 has two elementary circuits,
hence the Petri net admits an infinite sequence.

Proposition 18 Let (R, m0) be a Petri net, (R, m0) is pseudo-live iff every
vertex of G(R, m0) admits a successor.

Proof
(R, m0) is pseudo-live iff every reachable marking of (R, m0) enables to fire a
transition iff every vertex of G(R, m0) admits a successor. ♦

Example 9 The reachability graph has a vertex without successor, so the
Petri net is not pseudo-live (and not live).

Proposition 19 Let (R, m0) be a Petri net, (R, m0) is quasi-live iff every
transition labels an arc of G(R, m0)
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Proof
(R, m0) is quasi-live iff every transition is fireable from a reachable marking iff
every transition labels an arc of G(R, m0). ♦

Example 10 Every transition occurs on the reachability graph, so the net is
quasi-live.

The last two properties are characterized with the help of strongly connected
components (s.c.c.) of the reachability graph.

Proposition 20 Let (R, m0) be a bounded Petri net, (R, m0) is live iff for
every terminal s.c.c. C of G(R, m0), every transition labels an arc of C.

Proof
Assume (R, m0) live and let m belonging to a terminal s.c.c. C. By definition
(R, m) is quasi-live hence every transition labels an arc of G(R, m) which is
exactly C since C is terminal.

Now let m be any reachable marking there exists a path from m to m′

belonging to a terminal s.c.c. C (property of finite graphs). Since C is included
in G(R, m) every transition labels an arc de G(R, m). So (R, m) est quasi-live.

♦

Proposition 21 Let (R, m0) be a bounded Petri net, (R, m0) admits a home
state iff there exists a single terminal s.c.c. of G(R, m0).

Proof
Let m be a home state of (R, m0) and C its s.c.c. then there exists a path from
every reachable m′ to m. Let C′ the s.c.c. of m′. If C′ is different from C, then
C′ is not terminal. In addition, C is terminal since one can always return to m.

Let C be the single terminal s.c.c. of G(R, m0). For every m′ ∈ A(R, m0),
there exists a path from m′ to C. Hence every marking of C is a home state. ♦

Example 11 There are two s.c.c in the graph, one is initial (including the
initial marking) and the other is terminal reduced to the dead marking. So this
marking is a home state.



Analysis Methods for Petri Nets 13

2.2.5. Characterization of properties with the help of particular finite sequences

For at least two reasons, one wishes to obtain characterizations that do not
rely on the reachability graph. First, these characterizations are only effective
when the graph is finite and secondly even in this case the size of the graph may
forbid the verification. In this paragraph, we take advantage of some general
lemmata that we recall now.

Lemma 22 (Koenig lemma) Let A be a tree with a finite degree (i.e. every
vertex admits a finite number of successors) and with an infinite number of
vertices. Then A admits an infinite branch.

Proof
We exhibit the infinite branch as follows. Starting from the root, one selects one
successor of the root whose subtree has an infinite number of vertices. There
must be at least one since the number of successors is finite. Iterating this
process at the level of the current subtree, one builds an infinite branch. ♦

Lemma 23 (Extraction lemma) Let m0, m1, . . . be an infinite sequence of

vectors of IN{1,...,k}, then this sequence admits a largely increasing sequence.

Proof
We prove it by recurrence on k. If k = 1, then this is a sequence of natural inte-
gers. So one selects as first index of the subsequence the index of one minimal
item of the sequence. Then one iterates the process starting from the truncated
sequence starting from this item. Assume the result holds for k − 1; starting
from a sequence of IN{1,...,k}, one extracts an increasing subsequence on the first
k − 1 components. Applying the process used for k = 1 to the last component
of the intermediary subsequence, one obtains the wished subsequence. ♦

We immediately apply these lemmata for characterising two properties.

Proposition 24 (R, m0) admits an infinite sequence iff (R, m0) admits a fir-
ing sequence m0

σ1−→m1
σ2−→m2 with m1 ≤ m2.

Proof
Assume first that the net admits an infinite sequence and consider the infinite
sequence of encountered markings. Using lemma 23, one extracts an increasing
subsequence. Let us note m1 et m2 the two first items of this sequence, then
the finite sequence which reaches m2 is the one we look for.
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In the reverse direction, since m1 ≤ m2, applying the lemma about mono-
tonicity σ2 may be fired from m2 leading to a marking m3 ≥ m2. Iterating this
process, one obtains the infinite sequence σ1.σ

∞
2 . ♦

Proposition 25 (R, m0) is unbounded iff (R, m0) admits a firing sequence
m0

σ1−→m1
σ2−→m2 with m1 < m2.

Proof
Assume first that the net is unbounded and let us consider an infinite tree built
starting from the initial marking and such that one adds a son to a marking
if from this marking, one can fire a transition leading to a marking not yet
present in the tree. There can be several possible trees, but all have exactly
as set of vertices the set of reachable markings. This tree has a finite degree
since T is finite so using lemma 22, it contains an infinite branch corresponding
to an infinite firing sequence. Using lemma 23, one extracts an increasing
subsequence. Let us note m1 and m2 the two first items of this sequence; then
the finite sequence that reaches m2 is the one we look for. Indeed m2 > m1

since all the markings are different in the tree.

In the reverse direction, one remarks that since m1 ≤ m2, σ2 can be fired
from m2 leading to a marking m3 ≥ m2. Iterating this process, one obtains the
infinite sequence σ1.σ

∞
2 . Now, let p be a place such that m1(p) < m2(p) then

m2(p) < m3(p). Consequently the sequence infinitely increases the number of
tokens in p. ♦

These two characterisations straightforwardly establish the proof of the sec-
ond part of proposition 10. We now introduce some kinds of sequences one
meets in the analysis of nets.

Definition 26 (Repetitive sequences) Let R be a Petri net, σ be a se-
quence of transitions and let m be a marking such that m σ

−→m′, then:

• If m ≤ m′, σ is said repetitive

• If m = m′, σ is said repetitive stationary

• If m < m′, σ is said repetitive increasing

This definition does not depend on the choice of m and so it is sound.
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3. Analysis of nets by linear invariants

3.1. Definitions and first applications

The state change equation that we state below has the following interpre-
tation: the effect of a firing sequence is determined by the incidence matrix
and the vector of transition occurrences in the sequence.

Definition 27 Let σ ∈ T ∗ be a sequence of transitions, its occurrence vector
−→σ ∈ INT is defined by: −→σ (t) is the number of occurrences of t in σ.

Proposition 28 (State change equation) Let R be a Petri net and let m σ
−→m′

be a firing sequence then:
m′ = m + C.−→σ

where C, the incidence matrix, is defined by C = Post − Pré

Proof
We prove it by recurrence on the length of the sequence. In case of an empty
sequence, the result is immediate. The recurrence step is a consequence of the
firing definition. ♦

We are looking for invariant quantities with the help of this equation. So it
is related to the cancellers of matrix C.

Definition 29 (Flows of a net) The different cancellers that we consider are:

• A P -flow is a non null vector v ∈ ZZ
P which fulfils vt.C =

−→
0

• A P -semiflow is a non null vector v ∈ INP which fulfils vt.C =
−→
0

• A T -flow is a non null vector v ∈ ZZ
T which fulfils C.v =

−→
0

• A T -semiflow is a non null vector v ∈ INT which fulfils C.v =
−→
0

A P -flow (resp. a P -semiflow) is a weighted sum of places with integer
coefficients (resp. natural integers). A P -flow provides mapping from markings
to integers by weighting the place markings and summing them. A T -semiflow
could be obtained as the occurrence vector of a transition sequence while a T -
flow could be obtained as the difference of two occurrence vectors. This yields
the first results. Examples will be given later on.

Proposition 30 Let R be a Petri net,
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• let v be a P -flow and m σ
−→m′ be a firing sequence; then:

vt.m = vt.m′

• let v be a T -semiflow and σ be a firing sequence such that −→σ = v; then:

m σ
−→m′ ⇒ m = m′

otherwise stated, σ is a repetitive stationary sequence

• let v be a T -flow and σ1, σ2 two transition sequences such that −→σ1−−→σ2 = v;
then:

m σ1−→m′ et m σ2−→m′′ ⇒ m′ = m′′

Proof
These assertions are trivial consequences of the state change equation. For
instance, the proof of the first point is the following one: vt.m′ = vt.m +
vt.C.−→σ = vt.m ♦

Definition 31 (Linear invariants) Let (R, m0) be a marked net, a linear
invariant denotes the equation:

∀m ∈ A(R, m0), vt.m = vt.m0

where v is a P -flow.
In case of a P -semiflow, one says that it is a positive invariant.

The positive invariants have numerous applications. For instance, every
place belonging to the support of a P -flow v are bounded whatever the initial
marking, since m(p) ≤ v(p)−1.vt.m0. Similarly, from an invariant m(p) +
m(q) + · · · = 1, one deduces that p and q cannot be simultaneously marked.

More generally, invariants are the basis of numerous necessary and/or suf-
ficient conditions of behavioural properties. In order to develop this point, we
introduce two structural properties of a Petri net.

Definition 32 (Conservative nets, consistent nets) Let R be a Petri net,

• R is conservative if there exists a P -semiflow v such that ‖v‖ = P

• R is consistent if there exists a T -semiflow v such that ‖v‖ = T
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Figure 3: Non deterministic synchronisation of processes

We illustrate this section with the net presented in figure 3. Two processes
(A and B) repeatedly execute one of the two local procedures (H or V ) then
synchronise themselves to exchange their results. The synchronisation is only
possible if both processes have chosen the same procedure. Observe that the
net is bounded (exactly two tokens in every reachable marking) and not live
since different choices lead to a deadlock. We are going to examine information
provided by the linear invariants.

We now recall a useful lemma for the analysis of nets by techniques of linear
algebra.

Lemma 33 (Duality lemma) Let p be a place:

∃v ∈ INP , vt.C =
−→
0 ∧ v(p) > 0 ⇔ ∃/ w ∈ ZZ

T , C.w ∈ INP ∧ (C.w)(p) > 0

Proof
Assume the simultaneous existence of v and w as described in the lemma, then
∀p′ ∈ P, v(p′).(C.w)(p′) ≥ 0 et v(p).(C.w)(p) > 0. Hence vt.C.w > 0, but

vt.C.w =
−→
0

t
.w = 0, so there is a contradiction. It remains to show that one

of this vector always exists.

We prove it by recurrence on |P |.

|P | = 1. Then either C is the null matrix and v = −→p is appropriate. If C is
not null then ∃t ∈ T, C.

−→
t 6= 0. If C.

−→
t > 0 then w =

−→
t is appropriate else

w = −−→
t is appropriate.
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|P | = n + 1 and the lemma holds for |P | = n. We will try to obtain v or w
by two ways.

First attempt. Let p1 be a place different from p, P1 = P \ {p1} and C1

be the matrix obtained from C, by deleting the row indexed by p1. Using the
recurrence hypothesis:

• either ∃v1 ∈ INP1 , vt
1.C1 = 0 ∧ v1(p) > 0. In this case, v defined by

∀p′ ∈ P1, v(p′) = v1(p
′) ∧ v(p1) = 0 is appropriate.

• or ∃w ∈ ZZ
T , C1.w ∈ INP ∧ (C1.w)(p) > 0. If C.w(p1) ≥ 0 then w is

appropriate. It remains the unfavourable case where C.w(p1) < 0.

Second attempt. Let W the vectorial subspace of QP generated by the set
{C(t)}t∈T . W can be described by a linear equation v.D = 0 where the columns
of D are a basis of the orthogonal of W which is exactly the set of P -flows.
Moreover, D can be chosen with integer coefficients by some multiplication.
One applies the recurrence hypothesis to D1, the matrix obtained from D by
deleting the row D(p1). Then:

• either ∃v1 ∈ INP1 , v1.D1 = 0 ∧ v1(p) > 0. Observe that v defined by
∀p′ ∈ P1, v(p′) = v1(p

′) ∧ v(p1) = 0 fulfils v.D = 0. So v is generated
by {C(t)}t∈T , i.e. v =

∑
t∈T λt.C(t) with λt ∈ Q. Multiplying the λt

by the lest common multiple of theirr denominator, one obtains a vector
v′ = C.w ∈ INP with w ∈ ZZ

T and v′(p) > 0. Hence w is appropriate.

• or ∃w, D1.w ∈ INP1 ∧ (D1.w)(p) > 0. Define v = D.w, by construction
vt.C = 0. If v(p1) ≥ 0 then w is appropriate. It remains the unfavourable
case where v(p1) < 0.

Assume that the two unfavourable cases are simultaneously realised. This
means that:

• ∃w ∈ ZZ
T , ∀p′ /∈ {p1, p}, (C.w)(p′) ≥ 0 ∧ (C.w)(p) > 0 ∧ (C.w)(p1) < 0

and

• ∃v ∈ ZZ
P , vt.C = 0 ∧ ∀p′ /∈ {p1, p}, v(p′) ≥ 0 ∧ v(p) > 0 ∧ v(p1) < 0.

Let us compute by two ways vt.C.w. First, vt.C.w = (vt.C).w = 0. Second,
vt.C.w =

∑
p/∈{p1,p} v(p′).(C.w)(p′) + v(p1).(C.w)(p1) + v(p).(C.w)(p). This

sum is composed from non negative terms whose two last ones are positive,
hence vt.C.w > 0. This contradiction achieves the proof. ♦

Lemma 34 (Other kinds of duality) This duality has numerous features:
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1. ∃/ v ∈ INP ‖v‖ = P and vt.C =
−→
0 ⇔ ∃w ∈ ZZ

T s.t. C.w >
−→
0

2. ∃/ v ∈ INP ‖v‖ = P and vt.C ≤
−→
0 ⇔ ∃w ∈ INT s.t. C.w >

−→
0

Proof
The first equivalence is a straightforward consequence of the previous lemma.
∃w ∈ ZZ

T , t.q. C.w >
−→
0 ⇔ ∃p ∈ P, ∃w ∈ ZZ

T , t.q. C.w ≥
−→
0 ∧ (C.w)(p) > 0

⇔ ∃p ∈ P, ∃/ v ∈ INP , vt.C =
−→
0 ∧ v(p) > 0 (using lemma 33)

It remains to show the equivalence of this last assertion with the left term of
the first equivalence.

• Obviously, ∃p ∈ P, ∃/ v ∈ INP , vt.C =
−→
0 ∧v(p) > 0 ⇒ ∃/ v ∈ INP , ‖v‖ = P

and vt.C =
−→
0

• Assume ∀p ∈ P, ∃vp ∈ INP , vt
p.C =

−→
0 ∧ vp(p) > 0, then defining v =∑

p∈P vp, one has v ∈ INP , ‖v‖ = P et vt.C =
−→
0 .

We establish the second equivalence using the first one. Let us show first
that v and w cannot simultaneously exist. Assume the contrary and compute
by two ways vt.C.w.
vt.C.w = vt.(C.w) > 0 since the support of v is P and
vt.C.w = (vt.C).w ≤ 0 leading to a contradiction.

Define T ′ ⊆ T by: T ′ = {t ∈ T | ∃w ∈ INT C.w =
−→
0 ∧ w(t) > 0}.

Let us call wt the vector, that witnesses that t belongs to T ′.
Then w0 =

∑
t∈T ′ wt ∈ INT fulfils C.w0 =

−→
0 and ‖w0‖ = T ′. Let us note T ′′ =

T \ T ′ and introduce matrix CT ′′ ∈ ZZ
(P∪T ′′)×T defined by: C′(p, t) = C(p, t)

and if t′ = t then C(t′, t) = 1 else C(t′, t) = 0.

Assume now that ∃/ v ∈ (IN)P ‖v‖ = P fulfilling vt.C ≤
−→
0 .

Then, a fortiori, by construction of CT ′′ ,
∃/ v ∈ (IN)P∪T ′′

‖v‖ = P ∪ T ′′ fulfilling vt.CT ′′ =
−→
0 .

Using the first equivalence:
∃w1 ∈ ZZ

T fulfilling CT ′′ .w1 >
−→
0 which can be expressed by C.w1 ≥

−→
0 ,

∀t ∈ T ′′, w1(t
′′) ≥ 0 and:

• either C.w1 >
−→
0 . Then for some λ ∈ IN enough great, w = w1 + λ.w0 ∈

INT and also C.w = C.w1 + λ(C.w0) >
−→
0 . Hence w is an appropriate

vector.

• or ∃t ∈ T ′′, w1(t) > 0. Then for some λ ∈ IN enough great, w = w1 +
λ.w0 ∈ INT and also C.w = C.w1 + λ(C.w0) ≥

−→
0 . Since t ∈ ‖w‖,

C.w 6=
−→
0 . Hence C.w >

−→
0 and w is an appropriate vector.



20 Petri Nets

This achieves the proof. ♦

The next proposition points out the relations between behavioural prop-
erties (liveness and boundedness) and structural properties (conservation and
consistency).

Proposition 35 Let R be a Petri net,

• ∃ v ∈ INP ‖v‖ = P and vt.C ≤
−→
0 ⇔ R structurally bounded

In particular, R conservative ⇒ R structurally bounded

• (R, m0) bounded and live ⇒ R consistent

The net of figure 3 illustrates that the second implication is not an equiva-
lence. It is conservative (see below the invariant computation) and consistent
(sequence ACH.BCH.RV H.ACV.ACV.RCV ) but it is not live (and this what-
ever the initial marking as we will see later).

Proof
If v fulfils the hypothesis of the first assertion then ∀m ∈ A(R, m0), vt.m ≤
vt.m0 and consequently for every place p, m(p) ≤ v(p)−1.vt.m0. R is struc-
turally bounded.

If there does not exist such v fulfilling this hypothesis then this is equivalent
to ∃w ∈ INT s.t. C.w >

−→
0 (lemma 34). w is then the occurrence vector of

increasing repetitive sequence σ. Let m0 be a marking such that m0
σ

−→; then
(R, m0) is bounded so R is not structurally bounded.

Let (R, m0) be a live net. One builds an infinite sequence as follows: one
fires a sequence ending by the first transition (liveness) then one applies the
same process with every transition and one starts again with the first transi-
tion. Consider the sequence of markings obtained after every iteration. Using
lemma 23, one can extract two markings of this sequence such that the sec-
ond is greater or equal than the first. Hence one has m0

σ0−→m1
σ1−→m2 with

m1 ≤ m2 and ‖−→σ1‖ = T . If m1 6= m2 then the net is unbounded using proposi-
tion 25. Consequently m1 = m2, σ1 is a stationary repetitive sequence and −→σ1

is a T -semiflow which establishes the consistency. ♦

Let us note that the test of the second assertion stated in the duality lemma
is reduced to |P | problems of linear programming Pb(p) : ∃w ∈ INT t.q. C.w ≥
−→
0 ∧ (C.w)(p) ≥ 1. Hence the structural boundedness of a net is a problem
which can be solved in polynomial time [19].
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3.2. Flow computations

We only present the flow computation for P -flows since it is enough to
consider the transpose of the incidence matrix to obtain T -flows. Observe first
that if the net has a flow, then it has an infinity of them (by multiplying the
flow by any scalar). Thus we focus on the computation of a generative family
of flows.

Definition 36 Let R be a Petri net, {v1, . . . , vn} a family of flows; this family
is generative if:

∀ v flow ∃ {λ1, . . . , λn} ∈ Qn s.t. v =

n∑

i=1

λi.vi

It is a smallest family if it is minimal w.r.t. the number of items among the
generative families.

As the coefficients are in Q, we are looking for a basis of the vectorial
subspace of left cancellers of C. Thus we can compute this family by some
variant of Gauss elimination.

Gauss elimination

The algorithm proceeds transition by transition: it starts from a generative
family of flows for the matrix reduced to the k first transitions and builds a
generative family for the matrix reduced to the k + 1 first transitions.

Initially (k = 0); there is no condition and the generative family is defined
by {−→p }p∈P .

Let t be the next transition to be examined and {v1, . . . , vn} the current
family.

Case n˚1 ∀ vi vt
i .C(t) = 0

In this case, the family of flows is unchanged.

Case n˚2 ∃ vi0 vt
i0.C(t) 6= 0

In this case the flow vi0 will play the role of pivot to constitute the new
generative family {v′i}i6=i0 with:

v′i = (vt
i0.C(t)).vi − (vt

i .C(t)).vi0

So during each transition elimination, either the generative family is un-
changed, or its cardinality is decremented by one unit. In practice at each
iteration, matrix C is transformed to represent the incidence matrix of the
current family of flows on the remaining transitions. The number of arithmeti-
cal operations is polynomial since there are |T | eliminations and during each
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elimination the number of operations is bounded by 3.|P |.(|P | + |T |). Never-
theless the coefficients of flows could exponentially increase in theory. So one
divides the coefficients of a new flow by their greatest common divisor. With
this simplification one can prove the memory size of the coefficients remains
polynomial since every coefficient is a fraction of determinants of submatrices
of C (the memory size of a determinant is polynomial w.r.t. the memory size
of the matrix).

Example 12 We apply Gauss elimination to the incidence matrix of the net
of figure 3.

ACH BCH ACV BCV RVH RVV

C =




-1 0 -1 0 1 1
1 0 0 0 -1 0
0 0 1 0 0 -1
0 -1 0 -1 1 1
0 1 0 0 -1 0
0 0 0 1 0 -1




−→
A
−−−→
AAH
−−−→
AAV
−→
B
−−−→
BAH
−−−→
BAV

In the first column, two items are non null: those of
−→
A and

−−−→
AAH . We choose

−→
A as pivot. This row is deleted and the row indexed by

−−−→
AAH is combined with

the row of the pivot to produce a new row. Other rows are unchanged. The
second column is similarly handled with the rows indexed by

−→
B and

−−−→
BAH .

We obtained the matrix presented below. Let us note that the current family
indices the rows of this matrix (on the right of the matrix).

ACV BCV RVH RVV




-1 0 0 1
1 0 0 -1
0 -1 0 1
0 1 0 -1




−→
A +

−−−→
AAH

−−−→
AAV
−→
B +

−−−→
BAH

−−−→
BAV

We proceed now to the elimination of the first and second columns of the
above matrix. In the first column, only two components are non null: those of
−→
A +

−−−→
AAH and

−−−→
AAV . As previously, we combine the rows. The second row is

similarly handled and leads to the matrix presented below.
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RVH RVV

(
0 0
0 0

) −→
A +

−−−→
AAH +

−−−→
AAV

−→
B +

−−−→
BAH +

−−−→
BAV

This matrix is null. Thus the current family is a generative family of flows.
The associated invariants express the state of processes A and B.

3.3. Semiflow computation

We define the notion of smallest generative family of semiflows w.r.t. linear
combinations with non negative rational coefficients.

Definition 37 Let R be a Petri net, {v1, . . . , vn} be a family of semiflows, this
family is generative if:
∀ v semiflow ∃ {λ1, . . . , λn} ∈ (Q+)n t.q. v =

∑n
i=1 λi.vi

It is a smallest generative family if it is minimal w.r.t. the number of items
of the family.

Farkas algorithm

In order to compute a generative family, we want again to proceed by transition
elimination. The initial family is the same as the one of the flow computation.
Let us examine the way to produce a new generative family during the elimi-
nation of t. We split the semiflows into three categories:

• F+ = {v | vt.C(t) > 0}

• F− = {v | vt.C(t) < 0}

• F 0 = {v | vt.C(t) = 0}

Every vector of F 0 belongs to the new generative family. In order to obtain
new semiflows, we must cancel the incidence w.r.t. t by positive combinations.
So it is obvious that every combination must include at least a vector of F+

and a vector of F−. Thus we take every such pair to produce new items of the
family noted F ′:
F ′ = F 0 ∪ {w | ∃v+ ∈ F+, ∃v− ∈ F−w = (vt

+.C(t)).v− − (vt
−.C(t)).v+}

We admit that the minimality of the family is ensured by keeping only
one semiflow per minimal support [6]. It is more efficient to minimise the
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family after each elimination since the combinatory explosion of the number
of semiflows often occurs. In the worst case, the size of a minimal generative
family (independent of the family) is exponential w.r.t. the number of places.

The reader can consult the same paper for a deep discussion about efficient
implementations of this algorithm, called Farkas algorithm.

Example 13 We apply Farkas algorithm to the incidence matrix of the net of
figure 3. In order to illustrate the different steps of the computation, we have
modified the order of columns.

RVH ACH BCH ACV BCV RVV

C =




1 -1 0 -1 0 1
-1 1 0 0 0 0
0 0 0 1 0 -1
1 0 -1 0 -1 1

-1 0 1 0 0 0
0 0 0 0 1 -1




−→
A
−−−→
AAH
−−−→
AAV
−→
B
−−−→
BAH
−−−→
BAV

The column indexed by RV H has two positive components and two negative
components. We combine the corresponding rows in pairs, cancelling their
component relative to RV H . The other rows are unchanged. Thus we obtain
the matrix presented below.

ACH BCH ACV BCV RVV




0 0 -1 0 1
-1 1 -1 0 1
0 0 1 0 -1
1 -1 0 -1 1
0 0 0 -1 1
0 0 0 1 -1




−→
A +

−−−→
AAH

−→
A +

−−−→
BAH

−−−→
AAV
−→
B +

−−−→
AAH

−→
B +

−−−→
BAH

−−−→
BAV

The column indexed by ACH includes a negative component and a positive
component. Combining the corresponding rows, we obtain the vector:

−→
A +

−−−→
BAH +

−→
B +

−−−→
AAH . Its support is not minimal. For instance, it strictly includes

the support of
−→
A +

−−−→
AAH . This new vector is thus deleted. Then the algorithm

goes on (in this particular case) as Gauss elimination and the family of
semiflows is identical to the family of flows.



Analysis Methods for Petri Nets 25

3.4. Application of invariants to the analysis of a net

Here we apply the previous techniques to the problem of readers/writers in
a database. We consider an abstraction of this problem and we focus on the
synchronisation constraints between the operations “read” and “write” described
in table 1. As said in chapter 1, the capacity of the reading room is limited to
k readers (C1), at any time at most one write is possible on the database (C2)
and the operations read and write are mutually exclusive (C3).

C1 : At most k simultaneous read
C2 : At most one write
C3 : No simultaneous read and write

Table 1: Synchronisation conditions between readers and writers

In the real world, one must additionally maintain the consistency of data
and for instance ensure that if a value is read, it corresponds to the last written
value.

3.4.1. Modelling of the readers/writers problem

Figure 4 presents a modelling of this problem by a Petri net. This modelling
is somewhat parameterised since the capacity of the lecture room is represented
by a variable, the positive integer k. It appears both in the initial marking of
the net (place M) and as a valuation of arcs between place M and transitions
EnE and SoE. The database system includes two waiting rooms: one for the
readers (AL) and the other for the writers (AE), one reading room (L) and one
writing room (E). The left part of the net describes the management of readers
while the right part is relative to the management of writers. The central part
(place M) ensures the synchronisation between readers and writers.

We detail below the dynamic features of the modelling.

Readers: Transition ArL represents the arrival of new readers in the sys-
tem. They wait in place AL. Transition EnL represents the beginning of a
read operation. Place L counts the number of active read operations. Finally
transition SoL corresponds to the end of a read operation.

Writers: Without taking into account the synchronisation the management
of writers is similar to the one of the readers. Geometrically, this analogy is
materialised by a vertical symmetry axis through place M .
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Figure 4: Problem of readers/writers (k ≥ 1)

Synchronisation: Place M , shared precondition of transitions EnL and
EnE, performs the synchronisation between read and write operations:
- The capacity of the reading room is materialised by the marking of place
M : activation of a new read is only possible where there are still at least one
token in M (m(M) ≥ 1). At the end of a read operation (transition SoL), the
marking of M is incremented.
- To activate a write operation the reading room must be empty (m(M) =
Pre(M, EnE) = k). This activation consumes the k tokens of place M and
produces a token in place E. The end of a write operation (transition SoE)
increments by k the marking of place M .

3.4.2. Verification synchronisation constraints

Expression of properties

The first step consists in translating the properties of table 1 formulae about
the modelling net. More precisely, these properties are relative to the mark-
ing of places L and E. Table 2 presents the corresponding formulae. These
formulae are (non linear) invariants that must be fulfilled by every reachable
marking.

P -flows computation
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∀m ∈ A(R, m0),

C1 : m(L) ≤ k At most k simultaneous read
C2 : m(E) ≤ 1 At most one write
C3 : m(E).m(L) = 0 No simultaneous read and write

Table 2: Translation of synchronisation conditions of table 1

We apply the computation of flows to the incidence matrix described be-
low. Introduction of parameters like k does not rise serious difficulties for Gauss
elimination. Instead of operating in the rational field, it operates on a poly-
nomial ring whose variables are the parameters of the net. The single relevant
modification consists in maintaining a polynomial “condition” (product of the
successive pivots) which ensures that whenever the values of the parameters do
not cancel the polynomial, the family of flows is a generative family.

ArL EnL SoL ArE EnE SoE

C =




1 -1 0 0 0 0
0 1 -1 0 0 0
0 -1 1 0 -k k
0 0 0 1 -1 0
0 0 0 0 1 -1




−→
AL
−→
L
−→
M
−→
AE
−→
E

The elimination of columns ArL and ArE respectively deletes the vectors
−→
AL and

−→
AE. The elimination of column SoL combines

−→
M and

−→
L in a partial

flow
−→
L +

−→
M . The elimination of column SoE combines it

−→
E to produce the

flow:
−→
L +

−→
M + k.

−→
E

The remaining columns are null and this flow constitutes the generative
family. In this particular case, the polynomial condition is the constant 1,
which means that the family is valid for every value of the parameter. Applying
this flow to the initial marking, one obtains:

∀m ∈ A(R, m0), m(L) + m(M) + k.m(E) = k

Proof of synchronisation constraints

Using the computed invariant, let us prove that conditions of table 2 are
fulfilled.

C1 : Isolating m(L) in the invariant, one obtains:

m(L) = k − (m(M) + k.m(E)) ≤ k
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C2 : Isolating m(E) in the invariant, one obtains:

k.m(E) = k − (m(M) + m(L)) ≤ k

k 6= 0 ⇒ m(E) ≤ 1

C3 : C3 can be rewritten m(L) 6= 0 ⇒ m(E) = 0.
Assume m(L) 6= 0, then:

k.m(E) = k − (m(M) + m(L)) < k

k 6= 0 ⇒ m(E) < 1 ⇒ m(E) = 0

3.4.3. Discussion

Observe that the computation of flows has operated on a parameterised
net (this not the case of most of the other analysis methods). So we have
established the property for a family (indexed by k > 0) of marked nets. For
instance, an exhaustive approach based on the construction of the reachability
graph or here of the covering tree of Karp and Miller (see the next chapter)
since places AL and AE are unbounded would prove it for a fixed value of the
parameter k.

Computation of invariants is an efficient approach for verification of safe-
ness properties. This class of properties can be informally described by the
statement “Nothing bad will happen”. In the example, the bad event is the
violation of synchronisation conditions.

In practice, model validation requires the satisfaction of liveness properties.
This class of properties can be informally described by the statement “Some-
thing good must happen”. In the example, we could check whether a reader
will not infinitely wait. The net does not fulfill this property: staring from
the reachable marking

−→
AL + k.

−→
M (one waiting reader) sequence σ1 = (ArE

. InE . SoE)∞ is possible and leads to an infinity of write operations while
the reader is waiting. The infinite sequence σ2 = ArE∞ is also possible from
this marking. T -semiflows may provide partial hints about such behaviours.
For instance, the support of σ1 is the T -semiflow

−−→
ArE +

−−−→
EnE +

−−→
SoE. Unfor-

tunately the support of σ2 is not a T -semiflow. However it is an increasing
repetitive sequence and its support could be computed by an adaptation of the
T -semiflow computation.
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4. Net reductions

A reduction is a net transformation which reduces its size and such that,
for a set of properties, the reduced net is equivalent to the initial net [4]. A
reduction is characterised by:

• its application conditions,

• the net transformation,

• the preserved properties (i.e. those whose verification can be performed
on the reduced net).

From a theoretical point of view, definition of a reduction raises some method-
ological problems:

• In order to be often satisfied, the application conditions must correspond
to a behavioural pattern frequently used in modellings. So one must
find structural conditions that ensure that the behaviour of the net fulfils
the pattern. For instance, we forbid the case when checking a condition
requires the construction of the reachability graph.

• The effect of the transformation must be really efficient. Otherwise
stated, what is relevant is the potential reduction of the reachability graph
rather than the reduction of the net.

• At last, among the properties one wishes to include the boundedness and
the liveness which are the more relevant w.r.t. the behaviour.

In [3] a set of ten reductions is proposed. We only present three of them
since, on one side, their application conditions are fully structural and on the
other side they cover useful patterns. Other sets of reductions have been defined
in [5, 15, 20]. Two of these reductions are related to transitions, the pre-
agglomeration and the post-agglomeration and the last one is the deletion of
redundant places.

In this paragraph, we note Prop the following set of properties: existence of
infinite sequence, pseudo-liveness, quasi-liveness, liveness, existence of a home
state, boundedness.

4.1. Pre-agglomeration of transitions

This reduction is related to a transition h whose firing is necessary to the
firing of a set of F via a place p. The principle of the pre-agglomeration
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consists in the reduced net to only consider sequences in which a firing of h is
immediately followed by the firing of a transition f ∈ F . In the reduced net,
h and F are deleted and a set of transitions h.f (one per transition of F ) is
added. The structural conditions of the next definition ensure that:

• in a firing sequence where an occurrence of h is later followed by an
occurrence of f , one can postpone the occurrence of h until the one of
f ;

• in a firing sequence where an occurrence of h is not later followed by an
occurrence of f , one can delete the occurrence of h.

These two proprerties (and some additional ones) ensure the equivalence of the
two nets w.r.t. Prop.

Definition 38 (Pre-agglomerable transitions) Let (R, m0) be a Petri net;
a set of transitions F is pre-agglomerable with a transition h /∈ F iff the fol-
lowing conditions are fulfilled:

1. There exists a place p modelling an intermediate state between the firing
of h and the one of a transition of F :
m0(p) = 0 , Post(p) =

−→
h and Pre(p) =

∑
f∈F

−→
f

2. h only produces a token in p: Post(h) = −→p

3. h does not share its inputs with any other transition:
∀ t′ 6= t, •t′ ∩ •t = ∅

4. h has at least one input: •h 6= ∅

The first hypothesis synchronises the firings of the transitions de F with
those of h. In a marking, m(p) represents the difference between the number of
firings of h and the number of firings of transitions of F . The second hypothesis
ensures that the firing of h is only useful for the firing of transitions of F . The
next hypothesis implies that if h is fireable then it cannot be disabled. The
last hypothesis is required for the equivalence of boundedness of the original
net and the one of the reduced net.

Definition 39 (Pre-agglomeration of net) Let (R, m0) be a pre-agglomerable
Petri net, then (R′, m′

0) the reduced net is defined by:

• P ′ = P \ {p} and T ′ = T \ (F ∪ {h}) ∪ {h.f | f ∈ F}

• ∀ t ∈ T ′ ∩ T, Pre′(t) = Pre(t) and Post′(t) = Post(t)
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Figure 5: Pre-agglomeration of transitions

• ∀ f ∈ F, Pre′(h.f) = Pre(h) + Pre(f) −−→p and Post′(h.f) = Post(f)

• ∀ p′ ∈ P ′, m′
0(p

′) = m0(p
′)

Figure 5 shows the conditions of pre-agglomeration and the transformation
of the net.

The theory of reductions establishes that the reachability set of the new net
is isomorphic to the reachability set of the original net such that p is unmarked.
One empirically observes that this reduction divides the size of the reachability
set approximatively by 2. So n consecutive reductions approximatively divide
this size by 2n. This remarks equally applies to the next reduction. Using the
application conditions, we obtain:

Proposition 40 (Preservation of properties) Let (R, m0) be a pre-agglomerable
net and π be a property of Prop: (R, m0) fulfils π iff (R′, m′

0) fulfils π.

4.2. Post-agglomeration of transitions

This reduction is related to a set of transitions H whose firing of any of these
transitions is necessary and sufficient for the firing of any of transitions of a
set F and this via a place p. The principle of the post-agglomeration consists
to only consider in the reduced net sequences in which a firing of a transition
h ∈ H is immediately followed by the firing of any f ∈ F . In the reduced net,
H and F are deleted and a set of transitions h.f (one per pair of transitions of
H × F ) is added. The structural conditions of the next definition ensure that:
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• in a firing sequence where an occurrence of h is later followed by an
occurrence of f , one can anticipate the occurrence of f immediately
after the one of h,

• in a firing sequence where an occurrence of h is not later followed by an
occurrence of f , one can add an occurrence of f

These two properties about sequences (and some additional properties) ensure
the equivalence of the two nets w.r.t. Prop.

Definition 41 (Transitions post-agglomerables) Let (R, m0) be a Petri
net, a set of transitions F is post-agglomerable with a set of transitions H
disjoint from F iff the following conditions are fulfilled:

1. There exists a place p modelling an intermediate state between the firing
of h and the one of a transition of F :
m0(p) = 0 , Post(p) =

∑
h∈H

−→
h et Pre(p) =

∑
f∈F

−→
f

2. Transitions of F have no other input than p: ∀ f ∈ F, Pre(f) = −→p

3. There exists a transition f of F with at least one output:
∃f ∈ F, f• 6= ∅.

As for pre-agglomeration, the first hypothesis synchronises the firing of tran-
sitions of H and those of F . The second hypothesis ensures that every transition
f ∈ F is fireable as soon as p is marked. The last hypothesis is required for the
equivalence of the boundedness of the reduced net and the one of the original
net.

Definition 42 (Post-agglomeration of net) Let (R, m0) be a post-agglomerable
Petri net, then (R′, m′

0) the reduced net is defined by:

• P ′ = P \ {p} and T ′ = T \ (F ∪ H) ∪ {h.f | f ∈ F , h ∈ H}

• ∀ t ∈ T ′ ∩ T, Pre′(t) = Pre(t) et Post′(t) = Post(t)

• ∀ f ∈ F, ∀h ∈ H, Pre′(h.f) = Pre(h) and
Post′(h.f) = Post(h) + Post(f) −−→p

• ∀ p′ ∈ P ′, m′
0(p

′) = m0(p
′)

Figure 6 shows the condition of post-agglomeration and the transformation
of the net.

Here again we have:
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Figure 6: Post-agglomeration of transitions

Proposition 43 (Preservation of properties) Let (R, m0) be a post-agglomerable
net and π be a property of Prop: (R, m0) fulfils π iff (R′, m′

0) fulfils π.

4.3. Deletion of redundant places

The deletion of redundant places consists in deleting in the net a place which
never alone disables the firing of transitions. Usually, this place is a witness of
some activities without perturbation on the behaviour of the net. The existence
of a redundant place is characterised by the existence of some particular linear
invariant. This reduction let unchanged the size of the reachability set but very
often other reductions become applicable which decrease this size.

Definition 44 (Redundant place) Let (R, m0) be a Petri net. A place p0

is redundant if:

1. There exists a P-flow v =
∑

p∈P λp.−→p with λp0
> 0 and ∀p 6= p0, λp ≤ 0

2. ∀t ∈ T, vt.m0 ≥ vt.P re(t)

The second hypothesis ensures that initially a redundant place cannot dis-
able alone the firing of a transition. The first condition ensures that this hy-
pothesis is valid for every reachable marking.

Definition 45 (Deletion of a redundant place) Let (R, m0) be a Petri net
where p0 is a redundant place; then (R′, m′

0) the reduced net is defined by delet-
ing p and the adjacent arcs.
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p

q

r

Figure 7: Deletion of a redundant place

Figure 7 shows a case of a redundant place and the transformation of the
net. The P -flow of the definition is here: −→p −−→q −−→r

Again, one obtains:

Proposition 46 (Preservation of properties) Let (R, m0) be a Petri net
with a redundant place and π be a property of Prop: (R, m0) fulfils π iff (R′, m′

0)
fulfils π

A complete analysis of a net with the help of reductions will be developed
in the chapter about high level nets.

5. The graph of a Petri net

A Petri net can be viewed as a bipartite graph whose arcs are labelled by
integers. In this section, we take advantage of the graph analysis in order
to obtain hints about the behaviour of the net. We begin by general results
applicable to every net. Then we restrict our attention to subclasses of nets for
which a structural analysis gives deeper results.

5.1. General results

Let us first examine the influence of the (strong) connectivity on the be-
haviour of the net. If the net is not connected, every connected component is
an independent net. So without loss of generality we restrict our attention to
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connected nets. Before the presentation of the classical result on the strong
connectivity, let us examine the two following nets:

• A net constituted by a place input of a transition. This net (not strongly
connected) is bounded and not live.

• A net constituted by a transition input of a place. This net (not strongly
connected) is not bounded and live.

These two elementary examples suggest the following proposition.

Proposition 47 Let (R, m0) be a Petri net, live and bounded; then R is a
strongly connected graph.

Proof
Assume that R is not a strongly connected graph; then there exists an initial
s.c.c. C which has (at least) an arc leading to another s.c.c. C′. Assume
additionally that (R, m0) is live. The proof depends on the kind of this arc.

This arc is an arc t → p. Since C is initial, the net restricted to C is
live. So there exists a firing sequence of C with an infinity of occurrences of t.
By definition, place p is the not the input of any transition of C. Its marking
infinitely increases during this firing sequence thus (R, m0) is unbounded.

This arc is an arc p → t. There exists a firing sequence of (R, m0)
including an infinity of occurrences of t. If we project this sequence on tran-
sitions of C, then again since C is initial this projected sequence is a firing
sequence. By definition, no transition other than the ones of C provides tokens
to p. Let us note σn a finite subsequence of the initial sequence including n
firings of t, mn the reached marking, σ′

n the projection of σn on transitions of
C and m′

n the reached marking. Then since t consumes at least one token of p,
m′

n(p) ≥ mn(p) + n ≥ n. So the net is unbounded. ♦

Example 14 Again the non live net of figure 3 fulfils the condition of strong
connectivity.

The next result is another necessary condition for boundednes and liveness
of a net. The interest of this proposition is twofold. First, it is obtained by
combining graph analysis and linear algebra techniques. Moreover, it points
out the reason why numerous results have been obtained for the subclasses we
present later. We follow [22] for the development of the proof.

Let us recall some elementary notions of linear algebra.
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Definition 48 (Independent family , rank of a matrix)
Let {v1, . . . , vn} be a family of vectors of QE, this family is linearly independent
if:

∀{λ1, . . . , λn} ∈ Qn

(
n∑

i=1

λi.vi = 0 ⇒ ∀i λi = 0

)

Let A be a matrix. The rank of A, denoted rank(A), is defined as the size of
the greatest family of its column vectors linearly independent.

One proves that it is equivalent to define the rank w.r.t. to row vectors.

Observe that if the net is consistent, then rank(C) < |T |. Using proposi-
tion 35, one deduces that if a net is bounded and live then this condition is
fulfilled. We improve this upper bound with the help of an equivalence relation
between transitions.

Definition 49 (Relation of equal conflict) Let R be a Petri net. Two tran-
sitions t and t′ are in relation of equal conflit if: Pre(t) = Pre(t′)

This relation is an equivalence relation. We denote Θ the set of equivalence
classes.

The key point of this relation is that the transitions of an equivalence class
are always simultaneously fireable. We will transform the net in such a way
that the equivalence classes are singletons. We proceed iteratively.

Definition 50 Let R be a Petri net, let E = {t0, . . . , tk−1} be an equivalence
class of Θ with k > 1. The net RE is defined by:

• PE = P ∪ {p0, . . . , pk−1} where pi are new places,

• TE = T

• ∀p ∈ P PreE(p) = Pre(p) , PostE(p) = Post(p)

• ∀0 ≤ i < k PostE(pi) =
−−−−−−−→
t(i−1)mod k , P reE(pi) =

−→
ti

Informally, one superimposes to the initial net, a circuit constituted alter-
natively by transitions ti and places pi. The next lemma justifies the transfor-
mation.

Lemma 51 If (R, m0) is live and bounded then:

• ∃ m′
0 such that (RE , m′

0) is live and bounded
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• rank(CE) = rank(C) + |E| − 1

Proof
Let m be a reachable marking of (R, m0) and t be a transition. Since (R, m0) is

live, there exists a sequence σ such that m σ.t
−→. Define ∆(m, t) as the number

of occurrences of transitions of E in σ and ∆ as the maximum of ∆(m, t) for
every reachable m and t ∈ T (a finite enumeration since the net is bounded).
We define m′

0 by:

∀p ∈ P m′
0(p) = m0(p) et ∀0 ≤ i < k m′

0(pi) = ∆

Let m′ a reachable marking of (RE , m′
0) with the corresponding sequence

m′
0

σ
−→m′. We show first that we can reach a marking where places pi have

their initial marking. Let us call s(), the mapping which associates with the
transition ti the sequence of transitions in E: t(i+1)mod k . . . t(i−1)mod k. The
effect of this sequence is to put again in pi a token “moved” by a firing of ti.
Otherwise stated, on the set of places {pj}, sequence s(ti) cancels the effect
of ti. This mapping can be extended to sequences by the usual way. Let σ⌊E

be the projection of σ on transitions of E. Define σ1 = s(σ̃⌊E). Obviously,

m′ σ1−→{pj}0≤j<k
since one cancels the effect of every transition firing in E be-

ginning by the last transition fired. m′ restricted to P is a reachable marking
of (R, m0). So there exists a shortest sequence σ2 in this net in order to fire
a transition of E. σ2 does not include transitions of E and can be fired in
(RE , m′) leading to a marking where the first transition of σ1 is fireable. One
fires it and one iterates this process until one fires all transitions of σ1. The
reached marking m′′ is identical to the initial marking on places {pj}0≤j<k

and corresponds on P to a reachable marking m∗ of (R, m0). Pick now any
transition t; one can fire in (RE , m′′) the sequence ended by t corresponding to
∆(m∗, t) occurrences of transitions of E. So (RE , m′

0) is live.

(RE , m′
0) is bounded since, on the one side the projection on P of a reachable

marking is a reachable marking of (R, m0) (bounded net) and, on the other side,
places {pj} are bounded due to the semiflows −→p0 + · · · + −−→pk−1.

Let us study the rank of CE . We reason on the row vectors (i.e. the incidence
of places) of CE . Observe first that CE has |E| additional rows corresponding
to {pj}0≤j<k but the associated vectors are not linearly independent due to the
semiflow −→p0 + · · ·+−−→pk−1. We conclude that rank(CE) ≤ rank(C)+ |E|−1. We
can delete any such row and keep the same rank. Let us delete the one indexed
by p0. In order to have a strict inequality, a row vector indexed by some pi

should be a linear combination of the other row vectors. Otherwise stated:

CE(pi) =
∑

p∈P

λp.C(p) +
∑

pj 6=pi,p0

λj .CE(pj)
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Since (R, m0) is live, there exists a shortest sequence in order to fire any tran-
sition of E; we fire it followed by t0 then we do it again with t1 and again util
ti−1 where we start again with t0. Let σn be the sequence including n steps of
this process and −→σn be its occurrence vector then:

• CE(pi)
t.−→σn =

∑
p∈P λp.C(p)t.−→σn +

∑
pj 6=pi,p0

λj .CE(pj)
t.−→σn

• CE(pi)
t.−→σn = n

• ∀pj 6= pi, p0 CE(pj)
t.−→σn = 0

• ∀p ∈ P, −m0(p) ≤ C(p)t.−→σn ≤ B − m0(p) where B is a bound of net
(R, m0)

However if n goes to infinity, the left hand of the first equality goes to infinity
while the right hand remains bounded. So the equation between ranks is ful-
filled. ♦

We can now state a new necessary condition for simultaneous boundedness
and liveness.

Proposition 52 If (R, m0) is live and bounded then rank(C) < |Θ|

Proof
We apply the previous construction on all equivalence classes with size greater
than 1. Let (R′, m′

0) be the obtained net, due to the necessary condition
of consistency stated in proposition 35: rank(C′) < |T ′| = |T | and also
rank(C′) = rank(C) +

∑
E∈Θ(|E| − 1) = rank(C) + |T | − |Θ|. Substitut-

ing rank(C′) in the inequality by its expression, one obtains the result. ♦

Example 15 This condition is more discriminating. For instance the bounded
and non live net of figure 3 does not fulfil this condition. In fact the rank of
matrix C is 4 (a generative famille of 2 P -flows for 6 transitions) and |Θ| = 4
({ACH, ACV }, {BCH, BCV }, {RV H} et {RV V } are the different equiva-
lence classes). Since this condition is independent from the initial marking and
since the net is structurally bounded, one deduces that there does not exist an
initial marking such that the net would be live.

5.2. State machine

We present three subclasses by increasing order of complexity: state ma-
chines, event graphs and free choice nets. For these classes, several behavioural
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Figure 8: Constraints of state machines

properties are characterized by structural conditions. The verification of these
characterisations is performed by efficient algorithms compared to the state
based algorithms like those that rely on the reachability graph. As previously,
we assume that the net is connected.

A state machine can be viewed as a finite automaton shared by several
anonymous processes. Places describe states, transitions represent state changes
and the marking of a place indicates the number of processes in the correspond-
ing state (see figure 8).

Definition 53 (State machine) R, a Petri net, is a state machine if: ∀ t ∈
T, ∃ pin, pout with Pre(t) = −→pin and Post(t) = −−→pout

The flow of tokens is extremely simple since consuming of a token is followed
the production of another token. So we obtain:

Proposition 54 Let R be a state machine; then
∑

p∈P
−→p is a P-semiflow. In

particular R is conservative thus structurally bounded.

Verification of liveness is also easy and is performed in linear tine w.r.t. the
size of the net with the help of Tarjan algorithm [1].

Proposition 55 (Liveness of a state machine) If R is a state machine then:
(R, m0) is live iff R is strongly connected and m0 6=

−→
0

Proof
Assume the net is live. So some transition is initially fireable, hence m0 6=

−→
0 .

Furthermore, since the net is bounded applying proposition 47, one deduces
that the net is strongly connected.
Assume the net is initially marked and strongly connected, since the net is
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Figure 9: Constraints of event graphs

conservative every marking m has at least one token in place p. Let t be any
transition, there exists a path from p to t (strong connectivity). One fires
successively the transitions of this path ending by t. ♦

5.3. Event graph

An event graph [8] is a net when transitions never conflict, since a place is
input (and output) of a single transition. Otherwise stated, there are no real
choices in these nets, but rather different schedulings. When one precondition
of a transition firing is fulfilled, it remains fulfilled until its firing (see figure 9).

Definition 56 (Event graph) R, a Petri net, is an event graph if: ∀ p ∈
P, ∃ tin, tout with Pre(p) =

−−→
tout and Post(p) =

−→
tin

Recall that an elementary circuit is a path in a graph such that only the
first and last vertices are identical. Observe first that the number of tokens
of an elementary circuit in an event graph is invariant since there are neither
input transitions nor output transitions. So places of an elementary circuit
constitute a P -semiflow. This fact is the starting point of the theory of event
graphs.

Proposition 57 (Liveness of an event graph) If R is an event graph, then:
(R, m0) is live iff

Every elementary circuit of R includes an initially marked place

Proof
Assume that an elementary circuit is initially unmarked. Then no transition
of the circuit will never be fired. Hence the net is not live.
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Assume that every elementary circuits are initially marked. then for every
reachable marking m, they are still marked (see the previous remark). Pick such
a marking m, we define the relation t helps t′ iff there exists an unmarked place
output of t and input of t′ and define the relation t preceeds t′ as the reflexive
and transitive closure of helps. Let us prove that preceeds is a (partial) order.
Assume the contrary, then we have two transitions t and t′ such that t preceeds
t′ and t′ preceeds t. By definition of preceeds, it means that there exist paths
from t to t′ and from t′ to t where all places are unmarked. Combining them,
one obtains a circuit from which one extracts an elementary circuit unmarked,
which is impossible. This partial order can be extended in a total order. Let
t1, . . . , tn the ordered sequence of transitions. We claim that mt1.....tn−→ . In fact
t1 is fireable since all the input places are marked and if mt1.....ti−→ m′ then all
input places of ti+1 are marked in m′. Hence the net is live. ♦

To check the liveness, we delete the marked places and check the existence
of a circuit in the obtained graph. The time complexity of this search is linear
w.r.t. the size of the graph. Also observe that during the proof, we have shown
that liveness is equivalent to the existence of a firing sequence starting from the
initial marking including exactly an occurrence of every transition. Moreover
this sequence is repetitive stationnary, since by definition of an event graph∑

t∈T
−→
t is a T -semiflow. Let us study the structural boundedness.

Proposition 58 (Structurally bounded event graph) If R is an event graph
then:

R is structurally bounded iff R is strongly connected

Proof
If R is strongly connected, every place is covered by a circuit. So the sum of the
associated P -semiflows ensure that the net is conservative hence structurally
bounded.

Assume that R is not strongly connected. There exists an initial s.c.c. C
with a s.c.c successor C′. Otherwise stated, there exists a vertex x ∈ C and a
vertex x′ ∈ C′ such that the arc (x, x′) belongs to R. If C est reduced to x,
then x is a transition (since every place has an input) without input and with
an output x′, so R is unbounded. Otherwise every vertex of C belongs to an
elementary circuit. So x, has at least two outputs and it is a transition; x′ is a
place.

Let us pick the net restricted to C. This subnet is an event graph (since every
place belongs to a circuit). Let us choose an initial marking of the subnet with
every circuit marked. This subnet is live; so one can fire an infinite sequence
including an infinity of occurrences of x. This sequence is also a firing sequence
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of the initial net which infinitely increases the number of tokens in x′. So R is
not structurally bounded. ♦

We achieve the analysis of event graphs by a characterisation of simultane-
ous liveness and boundedness (we have already established necessary conditions
for ordinary nets).

Proposition 59 (Live and bounded event graph)
If R is an event graph, then the following assertions are equivalent:

1 (R, m0) is live and bounded.

2 R is strongly connected and every elementary circuit is initially marked by
m0.

3 R is strongly connected and there exists a firing sequence including exactly
an occurrence of every transition.

Proof
We have already obtain the equivalence of points 2 and 3 and the implication
2 ⇒ 1. For the implication 1 ⇒ 2, it is enough to modify the last part of the
previous proof, choosing for initial marking of C, the restriction of m0 to this
component. ♦

5.4. Free choice net

In a free choice net, when a place is the input of several transitions all these
transitions have the same inputs reduced to this place and thus are always si-
multaneous fireable justifying the name of the subclass (see figure 10). Observe
that the net of figure 3 is also a free choice net.

Definition 60 (Free choice net) R, a Petri net, is a free choice net if:
∀ t ∈ T ,

• ∃Pin, Pout ⊂ P with Pre(t) =
∑

p∈Pin

−→p and Post(t) =
∑

p∈Pout

−→p

• ∀ t′ ∈ T, •t ∩ •t′ 6= ∅ ⇒ |Pin| = 1 et Pre(t) = Pre(t′)

We first give a characterisation of liveness of free choice nets. To this aim,
we define two properties of a set of places.
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Figure 10: Constraints of a free choice net

Definition 61 Let R be a Petri net and P ′ a non empty subset of places then:

• P ′ is a deadlock if its inputs are included in its outputs,
∪p∈P ′

•p ⊂ ∪p∈P ′p•

• P ′ is a trap if its outputs are included in its inputs,
∪p∈P ′p• ⊂ ∪p∈P ′

•p

When a deadlock is unmarked, it will always remain unmarked and every
transition output of the deadlock will never fire. When a trap is marked, it will
always remain marked. Otherwise stated, a unmarked deadlock is a sufficient
condition for non liveness and this cannot happen if the deadlock contains
a trap initially marked. This is the starting point of the characterisation of
liveness. To this aim, we first define a device to empty places.

Let p be a place of a (non necessarily free choice) Petri net which does not
belong to any trap of the net. Then, there exists a sequence of disjoint non
empty subsets of places, P1, . . . , Ph (determined in a single way by the following
construction) such that: Ph = {p} and ∀ p′ ∈ Pi , ∃ t ∈ p′• s.t. t• ⊂ ∪j<iPj

The construction proceeds as follows. Let us note Succ(p), the set of places
reachable from p by a path in the net (observe that p ∈ Succ(p)). Since
Succ(p) is not a trap, the subset of places which have an output transition
without output is not empty. If p is such a place, one defines P0 = {p} and
one stops. Otherwise P0 is this subset of places and one considers the subset
Succ(p)\P0. This set is not a trap, so the subset of places which have an output
transition whose all outputs are in P0 is not empty. If p is such a place, one
defines P1 = {p} and one stops. Otherwise P1 is this subset and one iterates
the process with Succ(p)\(P0∪P1). Since the set of places is finite, the process
must stop.

By construction, every place p ∈ Pk does not belong to any trap. Given a
place p which does not belong to any trap, one denotes by h(p), the number
h of the construction. We also define vide(p) as one output transition of p
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which has all its outputs ∪j<h(p)Pj . Observe that for a place p′ ∈ ∪j<h(p)Pj

h(p′) < h(p). We now establish the characterisation of live free choice nets.

Theorem 62 (Commoner condition [14, 7])
Let R be a free choice net; then (R, m0) is live iff every deadlock of R includes
a trap initially marked.

Example 16 The net of figure 3 has a deadlock which does not include a
trap: {A, B, AAH, BAV }. So it is a new proof that it cannot be live whatever
its initial marking.

Proof
Assume (R, m0) is not live, and let t be the transition that can never be fired
from a reachable marking m. Necessarily from a marking m′ reachable from
m, one of the input places of t, p will always remains unmarked. Indeed, either
t has a single input and the fireability of t is equivalent to the fact that p
is marked, or t has several outputs but does not share it (free choice) which
implies that the number of marked places input of t can only increase and then
one picks a marking m′ for which this value is maximal. We build a set of
unmarked places, initialised to {p}. Since from m′, p is never marked all its
input transitions are never fireable. One iterates the previous process and one
obtains for all these transitions an input place (possibly p) such that p and
these places will remain unmarked from a reachable marking m′′. One iterates
the process for the new places. Again this process must stop and when it stops
all the selected input places are already present in the current (and final) set of
places. By construction, this set is unmarked in a reachable marking and it is
a deadlock. Using a previous observation on traps, we conclude that it cannot
include a trap initially marked.

Assume now that (R, m0) is live and that there exists a deadlock V not
containing a marked trap. We will obtain a contradiction. First, V must be
initially marked. Let E be the set of places of V which do not belong to any
trap included in V (this set includes the marked places of V ). We consider the
subnet generated by the places of V and we order places of V , beginning by
the places of V \ E and ending by places of E, such a place say p is ordered
by increasing order of h(p) where h is relative to the subnet. Observe that
different orders are possible. Once this order is chosen, we order the vectors
of INV by the lexicographic order. We are going to prove that one can always
decrease the marking restricted to places of V w.r.t. the lexicographic order by
a firing sequence. In particular, places of V \ E will always remain unmarked
during the proces.

Starting from m0, one fires every possible transition vide(p) for p ∈ E. Any
firing consumes (at least) a token of p and produces token in places p′ ∈ E with
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Figure 11: From satisfiability of a formula to non liveness of a free choice net

h(p′) < h(p) or in places p′ ∈ P \ V . The submarking w.r.t. V decreases after
every firing until it reaches a marking m1 where no transition vide(p) is fireable.
Let σ be the shortest sequence which enables the firing of a transition vide(p)
(m1

σ
−→m2). This sequence cannot provide tokens to V . Indeed by definition

of a deadlock, it requires to consume tokens of the deadlock. But all tokens of
the deadlock are in places inputs of transitions vide(p) which are not fireable
and so these transitions have several inputs. The free choice hypothesis implies
that these places are not input of another transition. Thus the submarking of
V is unchanged during the firing of σ. From m2 one fires the transition vide(p)
which is become fireable decreasing the submarking of V and one iterates the
process. But there are no infinite strictly decreasing sequences in INV with
lexicographic order pointing out the contradiction. ♦
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Using the theorem, one straightforwardly designs a test algorithm for non
liveness in NP . One chooses non deterministically a subset of places, then one
checks that it is a deadlock and one computes in polynomial time its maximal
trap [18] (union of traps included in the deadlock) and one verifies that it is
unmarked. Using a (quite simple) reduction of the satisfiability problem for a
formula in conjunctive normal form, one proves that the problem of non liveness
is NP-complete [16]. We let the reader prove that the net of figure 11 is not
live iff the formula stated under the net is satisfiable. Intuitively, the formula
is satisfiable if the three negations of its clauses can be simultaneously false. In
this case, one can fire three transitions among {x1, notx1, x2, notx2, x3, notx3}
without enabling any of the three transitions notc1, notc2, notc3}.

We end this study by establishing a characterisation of live and bounded free
choice nets. First, the boundedness ensures the equivalence of some behavioural
properties.

Proposition 63 Let (R, m0) be free choice net strongly connected and bounded
then:

(R, m0) is live iff (R, m0) is pseudo-live

Proof
We have to prove that pseudo-liveness implies liveness. Assume that (R, m0) is
not live; then there exists a reachable marking m and a transition t such that t
is never fireable in (R, m). Let p be an input place of t; the marking of p cannot
decrease since if p is an input of another transition, these transitions never fire
also. Necessarily, the input transitions of p can only occur a finite number of
times in an infinite sequence (otherwise p would be unbounded). Starting from
m, one can reach a marking m′ where these transitions never fire. Iterating
this process, one obtains a marking where all transitions with a path to t never
fire. Since R is strongly connected, this set of transitions is T and this marking
is dead. ♦

The necessary condition of simultaneous liveness and boundedness about
the rank of C in Petri nets can be refined for free choice nets.

Proposition 64 Let R be a free choice net, then:
(R, m0) is live and bounded ⇒ rank(C) = |Θ| − 1

Proof
We reason about the live and bounded (R′, m′

0) of proposition 52 obtained
after superimposing to (R, m0) a circuit for every equivalence class of Θ dif-
ferent from a singleton. In this net, we already know that rank(C′) ≤ |T | − 1
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and additionally that there exists a T -semiflow v such that ‖v‖ = T (proposi-
tion 35). In order to prove the proposition, we must show that the inequality is
an equality. If the inequality is strict, there exists a second T -flow v′ (with v, v′

linearly independent). W.l.o.g. we assume that there is at least one transition
t such that v(t) > 0. Among such transitions, let t0 be a transition that fulfils:
v′(t0)
v(t0) = Max({ v′(t′)

v(t′) | t′ ∈ T ′, v′(t′) > 0}). Then v′′ = v′(t0).v − v(t0).v
′ is a

T -semiflow whose support is strictly included in T .

Let t be a transition belonging to the support of a T -semiflow of R′. Due to
the additional circuits, every transition of the equivalence class of t′ in R also
belongs to the support of the T -semiflow. Indeed if this class is not reduced
to t, then t produces a token in a place of the circuit only consumed by the
next transition of the circuit. Thus this transition must appear in the support
of the T -semiflow. By iteration, every transition of the circuit must appear in
the support.

Since (R, m0) is live and bounded, R is strongly connected. Let t be a
transition of the support of v′′, t′ be any transition and consider a path in R
from t to t′. We claim that every transition on the path belong to the support
of v′′. By hypothesis, t belongs to the support. Let t1 6= t′ be a transition of
the path that belongs to the support, let p be the place which follows t′ on the
path and t2 the next transition. One of the output transition of p, say t3, must
belong to the support of v′′ and so every transition of its equivalence class must
also belong to the support. But t2 belong to this class (here we have used the
hypothesis of the free choice) so it also belongs to the support. Hence any t′

belongs to the support of v′′ which contradicts the fact that the support of v′′

does not contain every transition. ♦

We establish another necessary condition of simultaneous boundedness and
liveness of a free choice net starting from the characterisation of liveness. To
this aim, we introduce the notion of subnet and of covering of a net.

Definition 65 Let (R, m0) be a Petri net,

• let P ′ be a subset of places; then (R[P ′], m0[P
′]) is the subnet defined

by the subset of places P ′, the subset of transitions •P ′ ∪ P ′• and the
incidence matrices and the initial marking of (R, m0) restricted to these
subsets.

• R is covered by marked state machines if every place belongs to a subset
P ′ such that (R[P ′], m0[P

′]) is a marked state machine.

One says that a deadlock is minimal if it does not contain a strictly smaller
deadlock.
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Lemma 66 (Characterisation of a minimal deadlock) Let (R, m0) be a
free choice net and let V be a deadlock then:

V is minimal iff
∀ p, p′ ∈ V there exists a path from p to p′ in R[V ]

and ∀ t transition of R[V ] , |•t| = 1

Proof
Let V be a minimal deadlock and let C be an initial s.c.c. of R[V ]; C is not
reduced to a transition otherwise V would not be a deadlock. By construction,
places of C constitutes a deadlock thus this set is V which establishes the first
condition. Assume that t a transition of R[V ] has two inputs. These two places
are only inputs of t and deleting any such place one obtains a new deadlock.
Any t of R[V ] has an input since V is a deadlock.

Assume that V fulfils the characterization of minimality but that there
exists V ′ a deadlock strictly included in V . Let p be a place of V \ V ′ and p′

be a place of V ′. There exists a path in R[V ] from p to p′. Let p′′ be the last
place belonging to V \ V ′ on the path. The transition which follows p′′ is an
input of V ′ and its single input in V , p′′, does not belong to V ′. Hence V ′ is
not a deadlock. ♦

Lemma 67 (Minimal deadlock of a live and bounded net) Let (R, m0)
be a live and bounded free choice net and let V be a minimal deadlock then:

R[V ] is a marked state machine

Proof
Since the net is live, V contains a marked trap Tr. Assume that Tr is different
from V , then since Tr cannot be a deadlock, there exists a transition t of R[Tr]
which has no input. Let us examine the sum of place markings of Tr, this sum
cannot decrease since every transition of R[Tr] has at least one output and at
most one input. Furthermore the firing of t increases this sum. Since (R, m0)
is live, one can build an infinite sequence including an infinity of occurrences of
t contradicting the boundedness of the net. Hence Tr = V , V is marked and
every transition of R[V ] has at least one output and exactly an input. Using
the same reasonning as the one for the trap, one establishes that no transition
has two outputs and so R[V ] is a state machine. ♦

Lemma 68 (Minimal deadlock of a strongly connected net) Let R be
a strongly connected free choice and let p be a place of P then:

p is contained in a minimal deadlock
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Proof
Let p be a place; if P = {p} the result is obvious. Otherwise, let t ∈ •p.
This set is non empty since the net is strongly connected. There exists an
elementary path from p to t whose length is minimal. We build the minimal
deadlock starting from the places of circuit that we have obtained. We note
the current subset of places P ′. R′ the net restricted to P ′ and P ′•. P ′ fulfils
at each step the minimality conditions of a deadlock (without necessarily be a
deadlock). Initially, the circuit ensures the strong connectivity between places.
Furthermore, no transition cannot have two places of the circuit as input due to
the minimality of the path. Suppose that the current subset is not a deadlock
of R. Then there exists a transition t′ ∈ •P ′ \ P ′•. Let p′ ∈ •t′; since the net
is strongly connected, there exists an elementary path from any vertex of R′

to p′. Let us a choose a path with minimal length, every vertex excepted
the first one does not belong to R′ and (due to the minimality of the path) no
place of the path shares its output transitions neither with the other places of
the path nor with the places of P ′. P ′ is updated with these new places. One
iterates this process which must stop since T is finite. By construction, the
final subset P ′ is a minimal deadlock. ♦

Proposition 69 Let R be free choice net, then:
(R, m0) is live and bounded implies

(R, m0) is covered by marked state machines

Proof
Using proposition 47 the net is strongly connected. Using the previous lemma,
every place p belongs to a minimal deadlock. This deadlock is a marked state
machine due to lemma 67. ♦

It turns out that the conjunction of the necessary conditions previously
established is a sufficient condition yielding the fundamental theorem about
the behaviour of the free choice net called the rank theorem.

Theorem 70 (Rank theorem [11]) Let R be a free choice net; then (R, m0)
is live and bounded iff the following conditions are met:

• R is strongly connected

• R is covered by state machines

• rank(C) = |Θ| − 1

• Every deadlock of R is initially marked
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Proof
Using the previous results, we have only to prove that the condition is sufficient.
Since the net is covered by state machines, it is conservative and so structurally
bounded.

Let m1 be a marking that marks every trap of the net; we show that (R, m1)
is live. Suppose the contrary. Using proposition 63 (R, m1) is not pseudo-live.
Let m2 be a dead marking; every equivalence class of Θ has (at least) one input
place unmarked in m2. We choose such a place per class and we note P ′, this
subset of places.

Since |P ′| = |Θ| and rank(C) < |Θ|, there exists a flow v whose support is
included in P ′. Let us note v = v1 + v2 where v1 is constituted by the positive
coefficients of v and v2 = v − v1. W.l.o.g., one supposes that v1 6=

−→
0 . The

choice of P ′ implies that every transition t admits a single input in P ′. If this
input is not in ‖v1‖ then vt

1.C(t) ≥ 0. Otherwise this input is not in ‖v2‖, but
then vt

1.C(t) = −vt
2.C(t) ≥ 0. In conclusion, vt

1.C ≥
−→
0 . But this is possible

only if ‖v1‖ is a trap. Due to the choice of m1 every trap is marked which is
contradictory.

Since (R, m1) is live and bounded, every minimal deadlock de R is a trap
(lemma 67). Since in (R, m0) every deadlock is marked, every deadlock contains
a marked trap (i.e. one of its minimal deadlock). Using Commoner condition,
(R, m0) is live. ♦

This result has two outstanding features.

On the one hand, it only relies on the graph structure, the incidence matrix
and the initial marking.

On the other hand, one deduces an algorithm which checks the simultaneous
boundedness and liveness in polynomial time. The strong connectivity can be
checked with the algorithm of Tarjan. The rank of the matrix is computed
by a variation of the Gauss elimination. In order to test the covering by state
machines, one builds a minimal deadlock containing every place following the
proof of lemma 68 and then checks that it is a state machine. At last to check
that there does not exist an unmarked deadlock, one restricts the net to the
unmarked places and one tests whether the maximal deadlock exists (union of
all deadlocks).

Numerous works are relative to generalisations of characterisations to exten-
sions of free choice nets [13, 21, 22, 2]. Similarly, other behavioural properties
of free choice nets have been analysed [17, 10]. The reader interested by this
class can refer to a book that is devoted to it [9].
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