
Chapter 4

Decidability and complexity of Petri net

problems

Serge Haddad1

1. Introduction

In the previous chapter we have emphasised that, on the one hand, the
efficiency of methods based on the reachability graph strongly depends on its
size and, on the other hand, that these methods are only applicable to bounded
nets. So in this chapter, we will evaluate the complexity of the reachability
graph and we will design verification methods applicable when the graph is
infinite.

We begin by a summary of the main notions of decidability and complexity
that will be used in the other sections. Then we recall negative results about
the reachability graph both w.r.t. decidability when the graph is infinite and
w.r.t. complexity in the finite case.

Afterwards we develop usual methods for the case of infinite graphs. The
first method, called the construction of covering graph, is an adaptation of the
construction of the reachability graph. This algorithm substitutes an infinite
value (denoted ω) to the marking of a place p when it detects the possibility to
reach markings greater than the current marking with arbitrary great values in
p. This finite graph is an abstraction of the reachability graph which allows to
decide some generic properties. The second method relies on the computation
of a bound of the length of shortest paths witnessing some property. Then

1LSV, ENS Cachan, 61, avenue du Président Wilson 94235 Cachan Cedex France,
(haddad@lsv.ens-cachan.fr)

2 Petri Nets

it is sufficient to look for the existence of a path with a bounded length in
order to check whether the property holds. The third method starting from a
target marking, performs backward firings from a set of markings in order to
reach the initial marking. The underlying procedure ensures the termination
of the algorithm. We illustrate both methods on the covering property (i.e. the
reachability of a marking greater or equal than a given marking).

None of the previous methods solves the reachability problem: given two
markings of a net, decide whether the second marking is reachable from the first
one. So we will informally describe an algorithm for the reachability problem.
The importance of this algorithm is twofold. First it is a very involved algorithm
and in addition it seems to be a limit result of decidability in Petri nets.

The last two sections are devoted to the expressive power of the Petri net
model. Knowing that this model is less expressive than the model of Turing
machines, it is tempting to introduce new control mechanisms and to adapt
the verification methods to these extended models. We present three relevant
extensions of Petri nets. The nets with inhibitor arcs allow to forbid the firing
of a transition if the marking of a place is greater than some value. In a
self-modifying net, a transition produces or consumes a number of tokens that
depends on the current marking. A recursive net contains abstract transitions
whose firing leads to a state consisting in a dynamical tree of marked nets. For
each model, we point out the impact of the extension on the verification of
properties.

A usual way to compare models w.r.t. their expressive power is the study
of the languages generated by firing sequences. We end the chapter by a de-
scription of properties of Petri net languages and a comparison of this family
of languages with the standard hierarchy of families of languages.

The interested reader will find in [ESP 94] a detailed panorama of decidabil-
ity and complexity results in Petri nets. He can also refer to [ESP 98] which
covers complementary features of those discussed here.

The notations of the previous chapter also apply here. For sake of readability
we recall below some results of the previous chapter that we intensively use in
the sequel.

Lemma 1 (Monotonicity lemma) Let R be a Petri net,

1. ∀m1 ≤ m′
1 m1

σ
−→m2 ⇒ m′

1
σ

−→m′
2 with m2 ≤ m′

2

2. Furthermore, let p be a place such that m1(p) < m′
1(p) then m2(p) <

m′
2(p)

Decidability and Complexity of Petri Net Problems 3

Lemma 2 (Koenig lemma) Let A be a tree with finite degree (i.e. every
vertex has a finite number of successors) and including an infinite number of
vertices; then A admits an infinite branch.

Lemma 3 (Extraction lemma) Let m0, m1, . . . be an infinite sequence of

vectors of IN{1,...,k}, this sequence admits a (largely) increasing subsequence.

Proposition 4 (Characterisation of a bounded net) Let R be a net:
(R, m0) is unbounded iff

(R, m0) admits a firing sequence m0
σ1−→m1

σ2−→m2 with m1 < m2

2. Decidability and complexity notions

The summary given here is enough to understand the remainder of the
chapter but cannot replace a deeper treatment of these topics.The interested
reader can refer to specialised books (e.g. [PAP 94]).

Definition 5 (Notion of problem) A problem is a partial function f from
A to B. The items of A and B has at least one finite representation able to be
read or written by a machine or a program.
In case where B is the boolean domain, one says that it is a decision problem.

Informally an item a of A is an instance of the problem and f(a) is the result
of this problem for this instance. Here are two simple examples:

• The construction of the reachability graph is a problem where A is the set
of Petri nets and B is the set of finite graphs. f is the partial function
which associates with a bounded net its reachability graph.

• The liveness of a net is a problem where A is the set of Petri nets and B
is the boolean domain. f is the total function which associates with a
net a boolean witnessing whether the net is live.

To be more precise, we should indicate the chosen representation for the input
and the result since in some cases this choice has an impact on the complexity of
the problem (e.g. unary representation of integers). We will not do it assuming
a reasonable and “standard” representation of the objects we study.

Our goal is to solve problems using programs. Following Church thesis,
we do not precise the programming language assuming that it has the basic
constructors: if then else, while, for, . . .

4 Petri Nets

Definition 6 (Recursive problem) A problem f from A to B is recursive
if there exists a program which takes as input an item a ∈ Domain(f) ⊆ A and
terminates and produces (or prints) f(a).
When B is the boolean domain, one says that the problem is decidable.

Once one knows that a problem is recursive, i.e. there exists an algorithm
to solve it, we need to measure the efficiency of the computation. The main
difficulty is the constructor while. Indeed even if one can prove that the program
will eventually exit the loop, it is sometimes impossible to predict the number
of times that the loop block will be executed. Let us call a primitive program,
a program that has only constructors for, if then else and the concatenation
and whose one variable is initialised with the size of the input and the other
variables are initialised with zero.

Definition 7 (Primitive recursive problem) A problem f is primitive re-
cursive if there exists a primitive program which takes as input an item a ∈
Domain(f) ⊆ A, terminates and produces (or prints) f(a).

Informally on can say that a non primitive recursive problem can be solved but
that its complexity is unknown. Thus one tries to design primitive programs or
at least programs that we can transform later in primitive programs in order
to measure their complexity. The two most often used complexity criteria
are time complexity (number of instructions performed) and space complexity
(size of the required memory). In the second case, the input and the output
are supposed to be on a secondary memory and do not count in the measure.

Definition 8 Let Comp be a function from IN to IR, f be a problem and prog
be a program that solves f . We note |a| the size of an object a, then:
prog is time (resp. space) bounded by Comp if for every a ∈ Domain(f), prog
performs (resp. uses) at most Comp(|a|) instructions (resp. memory cells).

This very precise complexity measure depends on both the choice of the
programming language and on the size of the memory cells. In fact, we rather
need to characterise complexity classes related to family of functions as for
instance:

• P , the class of polynomial functions

• EXP , the class of functions that can be written 2Comp with Comp ∈ P

• LOG, the class of functions that can be written log(Comp) with Comp ∈
P

Thus we obtain a more robust notion of complexity measure.

Decidability and Complexity of Petri Net Problems 5

Definition 9 (Complexity classes) Let C be a class of functions from IN to
IR and f be a problem:

• f belongs to Ctime or more simply to C, if there exists a program whose
execution time is bounded by Comp, a function from C.

• f belongs to Cspace, if there exists a program that solves f and whose
memory size is bounded by Comp, a function from C.

Numerous decision problems can be solved using non deterministic choices
(e.g. choice of a fireable transition) and to backtrack when the choice leads
to a dead end (i.e. negative answer). Otherwise stated, the execution can
be visualised as a tree where every branch represents an execution sequence
and where the algorithm returns true if at least one execution returns true.
Assume that one could use an imaginary machine which after every non deter-
ministic choice can simultaneously executes the different alternatives, the time
complexity would be equal to the execution time of the longest branch.

Formalising it, given a class C one denotes NCtime or more simply NC,
the set of problems decidable by a program including non deterministic choices
such that a function of C bounds the execution time of every execution. This
notion is also applicable to the space complexity.

Remarks:

• Clearly a deterministic program can occupy at most a number of mem-
ory cells proportional to the number of performed instructions. Hence
Ctime ⊂ Cspace

• Using Savitch procedure [AHO 74], every program can be transformed
into a deterministic one that uses a memory size quadratic w.r.t. the
memory size of the original program. Hence NCtime ⊂ Cspace as soon
as P ⊆ C.

• A deterministic program is a particular non deterministic program. Hence
Ctime ⊂ NCtime

We summarise below the relations between the most usual complexity classes
and that will be used in this book.

NLOGspace ⊆ P ⊆ NP ⊆ Pspace ⊆ EXP ⊆ NEXP ⊆ EXPspace

Some inclusions are strict (e.g. P 6= EXP and Pspace 6= EXPspace)
while for some others the problem remains open (e.g. P 6= NP? and NP 6=
Pspace?).

6 Petri Nets

The complexity that we have described until now is focused on upper bounds
for the complexity of a problem. The search for lower bounds is also interest-
ing, since one the one hand it avoids a useless search of (too much) efficient
algorithms, and on the other hand it allows to define a notion of optimality for
some algorithms.

In order to formalise the concept of lower bound, one first defines the notion
of reduction.

Definition 10 (Problem reduction) Let f be a problem from A to B and g
be a problem from A′ to B. f reduces to g with complexity Ctime (resp. Cspace)
if there exists a program,

• which takes as input an object a ∈ Domain(f) and provides a result
a′ ∈ Domain(g),

• such that g(a′) = f(a),

• and is time (resp. space) bounded by a function of C.

The two main kinds of reductions are Ptime reductions (enough for classes
including Ptime) and LOGspace reductions (for smaller classes than Ptime).

Definition 11 (Hard and complete problems) Let f be a problem,

• f is C-hard if every problem of C is reducible to f .

• f is C-complete if f is C-hard and f belongs to C.

When a problem is C-hard, it is useless to look for an algorithm which belongs
to a smaller class than C. A problem C-complete is one of “the most complex
problems of the class C”. For instance, the reachability of a vertex starting
from another one in a graph is a problem NLOGspace-complete and the si-
multaneous satisfaction of a set of disjunctive propositional clauses is a problem
NP-complete.

3. Theoretical results about the reachability graph

Given two Petri nets which have the same set of places, it is interesting
to compare their reachability set. For instance, one wishes to compare the
reachability set of a safe system to the one of a system that one wants to
certify. Unfortunately, we have here the first negative results.

Decidability and Complexity of Petri Net Problems 7

Figure 1: A family of bounded nets

Proposition 12 (Comparison of reachability sets [HAC 75]) Given two
Petri nets over the same set of places, the problems of equality and inclusion
reachability sets are undecidable.

When restricting these questions to bounded nets, they obviously become
decidable. But what it is their complexity ? Before answering it let us examine
the complexity of the construction of reachability graph for bounded nets.

Proposition 13 (Complexity of the reachability graph) Given a bounded

Petri net, the problem of the construction of the reachability graph (or set) is
not primitive recursive.

Proof
We show that there exists a family of marked bounded nets indexed by IN such
that the size of a marked net is proportional to its index and the size of its
reachability graph is not a primitive recursive function of the index.

We first compute an upper bound fn(x) of the absolute value of a variable
after the execution of a primitive program including n constructors and whose
variables are initialised with absolute values less or equal than |x|. W.l.o.g.,

8 Petri Nets

we consider the case x ≥ 2. More precisely, the programming language has a
basis instruction, the affectation of a sum of variables x = y(+/−)z and three
constructors: the choice if then else with the restriction that the test does not
modify the value of variables, the concatenation and the loop for whose number
of rounds is fixed by the value of a variable. Let us show that the functions fn

defined below are appropriate:

• f0(x) = 2.x

• fi+1(x) = f
(x)
i (x) where f

(x)
i denotes the composition x times repeated

of fi

Using an immediate recurrence, one checks that the functions fi are strictly
increasing and that fi+1(x) > fi(x).

If a program does not include constructors, it has exactly a basis instruction
and the value of the affected variable cannot exceed 2.x. Assume that the upper
bound has been proved for i constructors and let us study a program with i+1
constructors. If the more external constructor is the choice then the execution
is one of its branches. Hence fi(x) bounds the content of variables. If the
more external constructor is the concatenation then the execution is the one
of a program with at most i constructors taking as inputs variables computed
by a program with at most i constructors whose variables are initially less or
equal than x w.r.t. the absolute value. Hence fi(fi(x)) bounds the content of
variables. If the more external constructor is the loop for then there are at
most x rounds and this program is equivalent to at most x − 1 concatenations

of programs with at most i constructors. Hence f
(x)
i (x) bounds the content of

variables.

Applying the usual diagonalisation technique and defining f(x) = fx(x), one
proves that f is not a primitive recursive function since it cannot be bounded
by any function fn.

Let Ri be the family of nets described figure 1. Define mi = i.−→ci +
−→
bi . One

proves that (Ri, mi) is bounded and that ci can reach any value between 0 and
f(i). Since the size of the marked net is proportional to its index, this achieves
the demonstration.

In order to obtain this result without entering the details, one establishes
(for i > 1) by recurrence the following points:

• Ri has a P -semiflow zi = bi+vi+ei+bi−1+vi−1+ei−1+· · ·+b0+v0+u0+e0

• Given an initial marking m such that zt
i · m = m(bi) = 1 the maximal

sequences of Ri have the following pattern,
σ = prepp

i .begi.σ1.repi.σ2.repi.σq.abi.transr
i .endi where:

Decidability and Complexity of Petri Net Problems 9

– p ≤ m(ci) + m(c′i),

– q ≤ p,

– σ1 is a sequence of Ri−1 beginning by marking m1 fulfilling a con-
dition like the one of m and such that:
m1(ci−1) + m1(c

′
i−1) + · · · + m1(c0) + m1(c

′
0) =

m(ci−1) + m(c′i−1) + · · · + m(c0) + m(c′0) + p

– For 1 < q′ ≤ q σ′
q is a sequence of Ri−1 beginning by a marking mq′

fulfilling a condition like the one of m and such that:
mq′(ci−1) + mq′(c′i−1) + · · · + mq′(c0) + mq′(c′0) ≤

f
(q′−1)
i−1 (m(ci−1) + m(c′i−1) + · · · + m(c0) + m(c′0) + p)

– r ≤ f
(q)
i−1(m(ci−1 + m(c′i−1) + · · · + m(c0) + m(c′0) + p)

– for every m′ reached from m during σ,
m′(ci) + m′(c′i) + · · · + mq(c0) + mq(c

′
0) ≤

fi(m(ci) + m(c′i) + · · · + m(c0) + m(c′0))

• One exhibits a sequence σ that reaches any possible value of m′(ci).

♦

This proposition means that every method based on the reachability graph
construction has an unpredictable complexity. This justifies the interest of
structural methods presented in the previous chapter. The following proposi-
tion states, that no other method can provide significantly better results.

Proposition 14 [MAY 81] Given two bounded Petri nets over the same set
of places, the problem of equality and inclusion of reachability sets are not
primitive recursive.

4. Analysis of unbounded Petri nets

Verification methods for unbounded Petri nets must either adapt or omit the
construction of the reachability graph. Since we illustrate three such methods
with the covering problem, let us recall its definition.

Definition 15 (Covering of a marking) Let (R, m0) be a Petri net and mc

be a marking. The net covers mc if there exists m ∈ A(R, m0) such that
m ≥ mc.

This problem presents (at least) two interests. First, it has numerous appli-
cations. For instance, if one wants to check whether two places are in mutual

10 Petri Nets

exclusion, one tries to cover the marking consisting of a token in every place.
Furthermore, among the decision algorithms of generic properties, those rel-
ative to the covering problem are the simplest ones and can be more easily
adapted to some extensions of Petri nets.

4.1. Construction of the covering graph

Let us look for a construction of the reachability graph that can detect (on
the fly) that the net is unbounded and stop the construction. We build a tree
whose every vertex is labelled by a marking as follows:

1. The root is labelled by the initial marking,

2. every processed vertex has for sons a set of vertices whose labels are the
markings reachable by a transition firing from the marking of that vertex,

3. the processing of a new vertex is only planned if its marking is different
from every marking which is present at the time of its creation,

4. the construction is aborted if on a branch that leads to a new vertex there
is a vertex whose marking is strictly smaller than the marking of the new
vertex,

5. if the construction terminates, one identifies the vertices with same mark-
ings which yield the reachability graph.

Lemmata 2 and 3 ensure that a unbounded will be detected by point 4 and
proposition 4 ensures that one does not abort the construction of a bounded
net.

We want to modify the previous procedure in order to check the covering
of a marking by a net. This leads to the notion of covering tree AC(R, m0),
proposed by Karp and Miller [KAR 69]. To this aim, one introduces a new set
by adding to IN a greatest element denoted ω : INω = IN∪{ω} and one extends
the order < and the operations + and − as follows:
∀n ∈ IN : n < ω, n + ω = ω + n = ω, ω − n = ω (n − ω is not defined)
One similarly extends +,−, < to (INω)P called the set of ω-markings. Given a
ω-marking one calls a place with marking ω, an ω-component and otherwise a
finite component.

The searched result is the following equivalence.

Proposition 16

(R, m0) covers mc ⇔ ∃ a vertex of AC(R, m0) labelled by mω s.t. mc ≤ mω

Decidability and Complexity of Petri Net Problems 11

If one examines an increasing repetitive sequence m0
σ1−→m1

σ2−→m2 with
m1 < m2, it is clear that repeating the sequence, the marking of every place
for which the markings m1 et m2 are different will infinitely increase. Let m2,ω

be the ω-marking, obtained by substituting in m2 the marking of such places
by ω; then every marking less than m2,ω is covered by the net. This is the
underlying idea of the algorithm.

Algorithm of Karp and Miller

Every vertex of the covering tree is labelled by an ω-marking and every arc
is labelled by a transition. AC(R, m0) is initialised with a root r labelled by
m0. One manages in T OHANDLE (initialised with r) a subset of leaves of
the current tree that must be examined.
While T OHANDLE is not empty do

Extract q labelled by m from T OHANDLE ;
For every transition t fireable from m do

Create qt son of q;
Label the arc linking q to qt with t;
mt := m + C(t);
Ω(mt) := mt;
For every place p ∈ P do

If q admits an ancestor (including itself) a labelled by ma,
with ma < mt and ma(p) < mt(p) then

Ω(mt)(p) = ω
Endif

Endfor
Label qt with Ω(mt);
If q does not admit an ancestor (including itself)
with the same label as q(t) then

Insert q in T OHANDLE
Endif

Endfor
Endwhile

First we show that this construction always terminates. Assume the con-
trary. Then the covering tree is infinite. Using lemma 2, this tree has an infinite
branch. Lemma 3 holds for (INω)P . So one can extract from this branch an
increasing subsequence and even a strictly increasing one since otherwise the
branch would be finite (see the insertion condition in T OHANDLE). Ap-
plying arithmetic of INω , the ω-components cannot disappear on a branch.
Assume that two consecutive vertices of the subsequence have the same set
of ω-components. This means that in the second vertex, no ω-component has
been created. But then, Ω(m(t)) = m(t) which is impossible since then m(t)
is strictly greater than the marking of the first vertex and there should have
been a new ω-component. Otherwise stated, the number of ω-components is

12 Petri Nets

Figure 2: A day in the life of a banana planter

incremented at any marking of the subsequence. This leads to a contradiction
since this number is bounded by |P |.

We illustrate the construction of the covering tree of the net of figure 2. This
net models (in a very unrealistic way) a day in the life of a banana planter.
Initially on his field (supposed to have an infinite capacity), the planter picks
bananas, then he goes to his house with his bananas and he sits down to eat
some of them. Once his meal is finished, he stands up and throws some banana
skins in his garden before going to bed. We have indicated in parentheses
a possible labelling of transitions. The language of the labelled net will be
discussed at the end of the chapter.

The covering tree associated with this modelling is represented in figure 3.
The vertices with an asterisk are those whose ω-marking is already present on
the branch that leads to the vertex. Since there are leaves without asterisks,
here one concludes that the net is not pseudo-live (be careful, this is only a
sufficient condition). The mechanism of creation of an ω-component is triggered
at the root. When one fires transition CU , one reaches a marking greater on
place BA and identical on the other places which leads to the creation of
an ω-component for BA. The ω-marquage

−→
TA + ω.

−−→
BA + ω.

−−→
PE illustrates an

important point of the construction. One can reach a marking with an arbitrary
large number of tokens in places BA and PE but one cannot make them

Decidability and Complexity of Petri Net Problems 13

CH

TA

JA

0

CH + ω.BA

CH + ω.BA(*)TA + ω.BA

JA + ω.BA

ω.BA

TA + ω.BA + ω.PE

TA + ω.BA + ω.PE(*)JA + ω.BA + ω.PE

JA + ω.BA + ω.PE(*)ω.BA + ω.PE

RE

LE

DO

CU

MA

JE

CU

DO

DO

LE

RE

MALE

Figure 3: The covering tree of the planter net

simultaneously increase. One must first increase the marking BA, and then
decreasing it while incrementing the marking of PE. This explains why the
proof of decidability of covering is not so simple.

Proof
(of proposition 16)

Let mc be a marking covered by the net. There exists a firing sequence
m0

σ
−→m with m ≥ mc. Let us prove by recurrence that every marking of the

sequence is covered by an ω-marking of AC(R, m0). This is the case for m0. As-

sume that mi is covered by mω,i and mi
t

−→mi+1. Pick the vertex corresponding
to the first occurrence of mω,i. From this vertex, one builds a son correspond-
ing to the firing of t labelled by mω,i+1 ≥ mω,i + C(t) ≥ mi + C(t) = mi+1.
This vertex remains in the tree except if there is a vertex with marking mω,i+1

in the branch leading to this new vertex. Whatever the case, the recurrence is
established.

Let q be a vertex of AC(R, m0) labelled by mω, a ω-marking. We prove
that the markings smaller or equal than mω are covered by the net. More
precisely, we show that for every n ∈ IN, there exists a reachable marking mn

equal to mω on its finite components and greater or equal than n on the other
components.

We reason by recurrence on the number of ω-components of mω. If mω is
an ordinary marking then the sequence of transitions that labels the branch

14 Petri Nets

from r to q is a firing sequence and mω is reachable.

Suppose that the property holds for every vertex whose marking has at most
d ω-components, and that q is the first vertex on the branch whose marking
has d + 1 ω-components.

• note oldq the vertex preceeding q on the branch, whose ω-marking is oldm

• for n ∈ IN, note σ0,n the firing sequence that leads from m0 to a marking
mn equal to oldm on its finite components and greater or equal than n
on the other ones (such a sequence exists by recurrence hypothesis)

• note t the transition which labels the arc from oldq to q

• note p1, . . . , pk the places which are the new ω-components of mω

• note r1, . . . , rk the vertices, ancestors of q which justify the occurrence of
these ω-components. Their associated ω-markings are noted m1, . . . , mk

• note σi the sequence of transitions that labels the branch from ri to q

• note ∆ ∈ IN an integer such that the marking consisting of ∆ tokens in
every place enables to fire the sequences σi and transition t

Let us prove that the sequence σ = σ0,(k.n+1).∆+n.t.(σ1)
n.(σk)n fulfils the

searched property. We examine three kinds of places:

1. w.r.t. to the finite components mω, on the one hand, the sequence
σ0,(k.n+1).∆+n.t leads to marking mω equal to these places to markings
mi. On the other hand, the sequences σi are repetitive stationnary on
these places and fireable from mi.

2. w.r.t. the ω-components of oldm, the sequence
σ0,(k.n+1).∆+n leads to a marking where the marking of these places are
greater or equal than (k.n+1).∆+n. By definition of ∆, one can fire the
sequence t.(σ1)

n.(σk)n reaching a marking of these places greater or
equal than n

3. w.r.t. the new ω-components of mω, the sequence σ0,k.n.∆+n+1.t
leads to a marking greater of equal than any of mi. For these places,
every sequence σi is repetitive increasing (incrementing the marking of
pi). Hence on can fire (σ1)

n.(σk)n and obtain a marking of these
places greater or equal than n.

If q is not the first vertex of this branch whose marking has d+1 ω-components,
let q′ with associated ω-marking m′

ω be such a marking. Let σ the sequence

Decidability and Complexity of Petri Net Problems 15

that labels the branch from q′ to q. As previously done, we define ∆ in order
to enable the firing of σ and we define σ0,n for m′

ω. The reader can check that
the sequence σ0,n+∆.σ is appropriate. ♦

This tree is used in the proof of reachability (see later on). The main draw-
back of this construction is that the size of the tree is not primitive recursive.
Indeed, in the case of bounded nets, it includes at least as vertices as reachable
markings.

The covering graph

Several properties can be decided by examination of the covering tree or
the covering graph obtained by identifying the vertices labelled with the same
markings [VAL 85]. The operation consisting in “quotienting” the graphs is
a useful construction that we describe in the framework of transition systems.
We then apply this construction to obtain the covering graph from the covering
tree.

Definition 17 (Transition systems) A transition system G is defined by a
tuple < S, s0,→, L > where:
- S denotes the set of states of G,
- s0, the initial state of S,
- L, the set of transition labels and
- → the transition relation (→⊂ S × L × S).

The reachability graph and the covering tree of a Petri net are transition
systems whose labels are the transitions of the Petri net.

Definition 18 (Quotient of a transition system) Let G =< S, s0,→, L >
be a transition system and ≡ be an equivalence relation included in S × S, one
denotes G≡ =< S≡, s0 ≡,→≡, L >, the quotient of G by ≡, defined as follows:

- S≡ represents the set of equivalence classes of ≡,
- s0 ≡ the equivalence class of s0,
- →≡ the smallest set of S≡ × L × S≡ fulfilling:

[(s, l, s′) ∈→] ⇒ [(s≡, l, s′≡) ∈→≡]

The above construction handles all labels in the same way. In the other
chapters of the book, a more general construction is designed which takes into
account a partition of labels between observable labels and unobservable ones.

Let q and q′ be two vertices of the covering tree AC(R, m0) whose ω-
markings are respectively mω and m′

ω. One defines the equivalence relation
between vertices:

q ≡ q′ iff mω = m′
ω

16 Petri Nets

Definition 19 (Covering graph) The covering graph of a net, denoted GC(R, m0),
is obtained by quotienting the covering tree AC(R, m0) by the equivalence rela-
tion ≡.

The following result is immediate.

Proposition 20 If (R, m0) is bounded then its covering graph and its reacha-
bility graph are identical: i.e., GC(R, m0) = G(R, m0)

The covering graph of the planter net (figure 2) is represented in figure 4.

~CH ~CH + ω ~BA

?

CU
CU

-

?

RE

?

RE

~TA ~TA + ω ~BA ~Ta + ω ~BA + ω ~PE

?

MA
MA -

?

LE

?

LE

?

LE

~JA ~JA + ω ~BA ~JA + ω ~BA + ω ~PE

?

JE

?

DO

?

DO

?

DO

~0 ω ~BA ω ~BA + ω ~PE

Figure 4: Covering graph of the planter net

In case of an unbounded net, the covering graph represents a superset of the
real behaviour of the net. Without considering final markings, let us denote
LC(R, m0) the language associated with the covering graph, then one has:
L(R, m0) ⊆ LC(R, m0).

This inclusion is often strict. In the example, the sequence CU.RE.MA.MA
of the covering graph is not a firing sequence: the planter cannot eat more
bananas than the ones he has picked.

Decidability and Complexity of Petri Net Problems 17

4.2. Shortest sequences

The principle of this method relies on the following result: if a marking can
be covered by the net, then it can be covered using a firing sequence whose
length is bounded by a computable function of the size of the net and of the
marking to be covered [RAC 78]. Observe that the bound does not depend
on the initial marking.

The algorithm consists in computing the bound and proceeding to a non
deterministic search among the paths with length bounded by this bound.

We focus on the computation of the bound. Let us denote k the number
of places, P = {p1, . . . , pk} and n the size of the covering problem (i.e. of its
representation). Observe that k ≤ n and that every valuation of an arc and the
marking mc of every place are smaller or equal then 2n (binary representation
of an integer).

We reason on pseudo-firing sequences, i.e. such that the fireability condition
is only partially fulfilled.

Definition 21 Let s = m1.t1.m2.t2 . . . ty−1.my be an alternated sequence of

items of ZZ
k called pseudo-markings and transitions, let i be a place index be-

tween 0 and k:

• s is a i-firing sequence if

∀x ≤ y−1, mx+1 = mx+C(tx) et ∀j ≤ i, mx(pj) ≥ Pre(pj , tx) et m1(pj) ≥ 0

• s is a i-firing sequence r-bounded if moreover:

∀x ≤ y, ∀j ≤ i, mx(pj) < r

• s is a covering i-firing sequence if moreover:

∀j ≤ i, my(pj) ≥ mc(pj)

Otherwise stated, to produce an i-firing sequence the test of fireability is
only performed for the i first places but one consumes and produces tokens
as usual which leads to negative values. Similarly, an i-firing sequence is r-
bounded if every pseudo-marking of the sequence is bounded by r on the i first
places. At last a covering i-firing sequence only covers the i first places. We
say that (R, m) i-covers mc if there exists a covering i-firing sequence whose
initial marking is m.

Without taking into account m0, let us call lg(i, m) the length of the shortest
covering i-firing sequence starting from a pseudo-marking m counted as the

18 Petri Nets

number of pseudo-markings. This quantity is only defined for m such that
(R, m) i-covers mc. Let us note f(i) the maximum of lg(i, m) for every such
m. A priori, f(i) could be infinite. We remark that f(k) is the bound we are
looking for since in this case the sequence are real firing and covering sequences.

Since every (R, m) 0-covers mc by the pseudo-firing sequence reduced to m,
f(0) = 1. Our goal is to upper bound f(i + 1) by an expression involving f(i).

Proposition 22

∀ 0 ≤ i < k, f(i + 1) ≤ (2n.f(i))i+1 + f(i)

Proof
Let m be any pseudo-marking such that (R, m) (i + 1)-covers mc and let s be
a shortest covering (i + 1)-firing sequence.

Case n˚1 s is a (i + 1)-firing sequence which is 2n.f(i)-bounded. For every
shortest (i+1)-sequence, the pseudo-markings restricted to the i+1 first
places must be different otherwise the sequence could be shortened by
deleting a subsequence. The number of different restricted markings is
equal to (2n.f(i))i+1 which yields the bound.

Case n˚2 s is not a (i + 1)-firing sequence which is 2n.f(i)-bounded. So
s = s1.t.s2 with s1 which is 2n.f(i)-bounded and s2 which begins by a
pseudo-marking m2 with the marking of one of the (i+1) first components
which is at least equal to 2n.f(i). W.l.o.g., one supposes that it is pi+1.
Using the proof of the case n˚1, the length of s1 is ≤ (2n.f(i))i+1.

(R, m2) i+1-covers mc hence it i-covers mc. This means that there exists
an i-covering sequence s′2 with length at most f(i) which starts from m2.
This sequence has at most f(i) − 1 transitions. The marking of pi+1

cannot decrease more than 2n.(f(i)− 1) and so the final marking of pi+1

is ≥ 2n ≥ mc(pi+1). Consequently s′2 is a covering (i + 1)-firing sequence
and the length of s1.t.s

′
2 fulfils the condition.

♦

By a straightforward recurrence, one obtains that f(k) ≤ 2(3n)k

≤ 22c.n.log(n)

for a constant c independent of all parameters of the problem.

In order to non deterministically search a path, it is enough to only keep
the last marking of the current path and a counter of its length. The marking

cannot exceed 22c.n.log(n)

.2n tokens in a place. This algorithm uses a memory
size of 2d.n.log(n) for another constant d.

Decidability and Complexity of Petri Net Problems 19

By Savitch procedure [AHO 74], every algorithm can be determinised with a
quadratic expense of the memory size. One obtains an algorithm in EXPspace.

The unboundedness of a net can be similarly solved (using a more elaborate
proof) with the characterisation of proposition 4. These two problems are
EXPspace-hard [LIP 76], so we obtain:

Theorem 23 (Complexity of covering and boundedness)
The covering and boundedness problems for a Petri net are EXPspace-complete.

In [YEN 92], this method is extended to a formula language for sequences,
for which as soon as a formula is satisfiable, it is satisfiable by a sequence whose
length is bounded by a computable value.

4.3. Backward analysis

The principle of backward analysis consists in building a finite representa-
tion of the set of initial markings that satisfy the covering property. It has
first been designed in [ARN 76] and then rediscovered by [ABD 96] and at last
generalised in [FIN 98].

Definition 24 Let R be a Petri net and mc be a marking,

• Couv(R, mc) is the set of markings m such that (R, m) covers mc

• ∀n ∈ IN, Couvn(R, mc) is the set of markings m such that (R, m) covers
mc by a sequence whose length is at most n.

Before describing the algorithm, we gather some elementary facts.

• Couv(R, mc) = ∪
n∈INCouvn(R, mc)

• Couvn(R, mc) ⊂ Couvn+1(R, mc)

• Couvn(R, mc) is upper closed: m ∈ Couvn(R, mc) and m′ ≥ m ⇒ m′ ∈
Couvn(R, mc)

Given a set of markings E, let us note E↑ the set of markings greater or
equal than a marking of E. The upper closed sets are characterised by the
property E = E↑.

We want to obtain Couv(R, mc) by iteratively computing Couvn(R, mc).
This requires that this sequence of sets stabilises, i.e. that after some index,
all sets are equal and thus equal to Couv(R, mc).

20 Petri Nets

Lemma 25 Let {En}n∈IN be a sequence of upper closed increasing sets of
markings; then this sequence stabilises.

Proof
Assume the contrary, as soon as a set is not equal to the previous one, this
means that there is a marking of this set which is not greater or equal than
any of the marking of the previous set. We select such a marking. Iterating
the process, one obtains an infinite sequence such that every marking is not
greater or equal than any of the previous markings of the sequence. But this
contradicts lemma 3. ♦

To obtain a finite representation of an upper closed set, it is sufficient to pick
the minimal items of this set. Indeed, since they are all not comparable, there
cannot be an infinite number of minimal items since again it would contradict
lemma 3. Let us call Min(E) the set of minimal items of E. Since E is
upper closed, E = Min(E)↑ which shows that an upper closed set is wholly
determined by its minimal items.

Couv0(R, mc) represents the set of initial markings that cover mc by a
sequence with null length. Otherwise stated, they are the markings greater or
equal than mc. Hence Min(Couv0(R, mc)) = {mc}.

We now show how to compute Min(Couvn+1(R, mc)) starting from
Min(Couvn(R, mc)).

Let m′ ∈ Couvn+1(R, mc). By definition, m′ covers mc by a sequence of
length at most n or equal to n+1. In the first case, m′ is greater or equal than
one of the markings of Min(Couvn(R, mc)). In the second case, it enables to
fire a transition that leads to a marking greater or equal than a marking of
Min(Couvn(R, mc)).

Let m be a marking of Min(Couvn(R, mc)). A marking obtained by fir-
ing of t greater or equal than m must necessarily be greater or equal than
Sup(Post(t), m) and the marking preceding the firing is greater or equal than
Sup(Post(t), m) − C(t). Summarising:

Min(Couvn+1(R, mc)) =
Min(Min(Couvn(R, mc)) ∪t∈T ∪m∈Min(Couvn(R,mc))Sup(Post(t), m) − C(t))

Every step multiplies by at most |T |+1 the number of minimal items. The
previous method gives a bound on the number of stages before stabilisation.
So one deduces that the method is primitive recursive.

A priori, the shortest sequence method seems more efficient. However the
interest of backward analysis will be illustrated during the presentation of ex-
tensions of Petri nets.

Decidability and Complexity of Petri Net Problems 21

5. The reachability problem

The reachability problem consists in deciding whether, given a net R and
two markings mi and mf , there exists a firing sequence: mi

σ
−→mf . The deci-

sion algorithm has been independently established by E. Mayr [MAY 84] and
S.R. Kosaraju [KOS 82]. Here we will not fully describe this proof whose some
features are very technical and to which a book is devoted [REU 89]. We
present the scheme of the proof and we only develop its main feature, i.e. the
sufficient condition for reachability.

First, the reachability problem is solved for a more general model than the
one of Petri nets, called chain of vector addition systems (CVAS). The main
motivation of this generalisation is intimately linked to the proof. This proof
can be described as follows:

• A size is defined for the reachability problem. This size is an item of
a well founded set (i.e. such that there does not exist an infinite
sequence of strictly decreasing sizes).

• One establishes a sufficient condition for reachability with the help of the
covering graph.

• If the condition is not fulfilled, one builds a finite (possibly empty) set
of problems with smaller sizes such that there exists a solution for the
initial problem iff there exists a solution for any of the reduced problems.

• Taking the initial problem as root, one builds a tree of problems defining
for the sons of a problem, its reduced problems. If the tree was infinite,
there would be an infinite branch which is impossible due to the first
point.

• The initial problem has a solution iff some leaf has a solution (checked
by the sufficient condition).

This procedure deserves some comments. Since it is based on the covering
graph, it is not primitive recursive. On the other hand, one only knows that the
problem of reachability is EXPspace-hard [LIP 76]. Otherwise, an open issue
is to determine whether this problem is primitive recursive. The reduction of
the problem in smaller problems of the same kind explains the choice of the
model CVAS. As we will see later on, in Petri nets when the sufficient condition
is not fulfilled, one reduces the problem to different kinds of problems.

The decision problem of several properties can be reduced more or less di-
rectly to the reachability problem. For instance, the liveness problem [HAC 75],

22 Petri Nets

the pseudo-liveness problem and, given a marking, the home state problem are
decidable [FRU 86, FRU 89].

We begin the presentation of the sufficient condition by a decision procedure
for a necessary condition that is part of the sufficient condition.

5.1. A necessary condition for reachability

If there exists a sequence σ such that mi
σ

−→mf then, due to the equation
of state change, one has: C.−→σ = mf − mi. Let us show how to decide the

existence of a solution x ∈ INT of equation C.x = b with b ∈ ZZ
P . In case where

|T | = 1, the equation can be trivially solved. So we assume that |T | > 1.

First we apply the computation of T -flows. If no T -flow is found, then the
column vectors {C(t)}t∈T form a linearly independent family and there exists
at most one solution in QT to this problem. The existence and the computation
of this solution is performed by the main variation of Gauss elimination. If a
solution is obtained, one checks that it belongs to INT .

In the other case, let us call a the T -flow computed (C.a =
−→
0), and let us

note T ′ = {t | a(t) > 0}. W.l.o.g. we assume that T ′ is not empty. Assume
that there exists a solution x to the equation such that ∀ t ∈ T ′, x(t) > a(t)
then x − a is also a solution. Iterating this process, one obtains y a solution
fulfilling ∃ t ∈ T ′ t.q. y(t) ≤ a(t). One can substitute to the original equation a
family of equations, one per pair t ∈ T ′ and 0 ≤ i ≤ a(t) where one substitutes
variable x(t) by i. The existence of a solution for some equation is equivalent
to the existence of a solution for the initial equation. In every new equation
a variable has disappeared. By iteration, this leads (in the worst case), to
equations with a single variable whose resolution is straightforward.

5.2. A sufficient condition for reachability

We introduce the reverse net R̃ which fires transition of R backwards. Places
and transitions of this net are the ones of R and the incidence matrices are
defined by: ∀ t ∈ T, P̃ re(t) = Post(t) and ˜Post(t) = Pre(t)

An elementary check gives:

∀σ ∈ T ∗ m σ
−→Rm′ ⇔ m′ σ̃

−→R̃
m , C̃ = −C and

−→
σ̃ = −→σ

Our goal is to transform the previous condition into a sufficient condition.
Reusing the vocabulary of section 4.2, we call pseudo-marking an item of ZZ

P .
Given two pseudo-markings m, m′ and a sequence of transitions σ, we call a

Decidability and Complexity of Petri Net Problems 23

pseudo-firing sequence (denoted m(σ〉m′), a sequence which fulfils the state
change equation m′ = m + C.−→σ .

We first establish a preliminary result about conditions which ensure that
a pseudo-firing sequence is a firing sequence.

Lemma 26 Let R be a Petri net and m0(σ〉m1(σ〉m2 . . .mk−1(σ〉mk be a pseudo-
firing sequence then:

m0(σ〉m1 and mk−1(σ〉mk are firing sequences
⇔ The whole sequence is a firing sequence

Proof
We prove the implication since the reverse implication is trivial. We partition P
in two subsets P ′ = {p ∈ P | −→p t.C.−→σ ≥ 0} and P ′′ = {p ∈ P | −→p t.C.−→σ < 0}.
The sequence σ restricted to P ′ is repetitive for net R, thus since m0

σ
−→Rm1

one has m0
σk

−→R,P ′mk.

Applying the elementary results about R and R̃, the sequence σ̃ restricted

to P ′′ is repetitive increasing for net R̃. Thus since mk
σ̃

−→R̃
mk−1 one has

mk
σ̃k

−→R̃,P ′′
m0 which is equivalent to m0

σk

−→R,P ′′mk.

Since P = P ′ ∪ P ′′, we obtain: m0
σk

−→Rmk. ♦

To obtain a sufficient condition, one would show that the fireability con-
ditions are somewhat irrelevant. Roughly speaking, the main idea consists to
increase the initial marking by a firing sequence (σk

1 in the proof) such that
the pseudo-firing sequence (σ2) becomes a firing sequence, and then decrease
the marking by another firing sequence (σk

4). However before this last firing
sequence, one inserts an intermediate sequence (σk

3) in order to cancel the cu-
mulated effects of the first and last sequence.

Proposition 27 (Sufficient condition) Let R be a Petri net, mi and mf

two markings, if:

1. R is consistent

2. ∃ v ∈ INT t.q. C.v = mf − mi

3.
∑

p∈P ω.−→p belongs to the covering trees AC(R, mi) and AC(R̃, mf)

Then mf is reachable from mi in the net R.

24 Petri Nets

Proof
We build step by step the firing sequence.

First condition 3 implies the existence of an increasing repetitive sequence
σ1 (for every place) from mi dans R and an increasing repetitive sequence σ̃4

(for every place) from mf in R̃.

Since R is consistent there exists a positive vector w with support T such
that C.w = 0. Since its support is T , there exists an integer n enough great
such that w′ = n.w − −→σ1 − −→σ4 ≥

−→
0 . Let us denote σ3 an arbitrary sequence

which fulfils −→σ3 = w′.

Finally, let us denote σ2 an arbitrary sequence fulfilling −→σ2 = v. Observe
that σ2 is a pseudo-firing sequence from mi to mf . Let k ≥ 2 an integer such
that the marking of all places with k tokens makes the following sequences
fireable:

• the sequence σ2.σ3 in R

• and the sequence σ̃3 in R̃

We claim that mi
σk
1−→m1

σ2−→m2
σ3−→m3

σ
k−2
3−→m4

σ3−→m5
σk
4−→mf is a firing sequence

(we introduce intermediate markings to ease the proof).

Let us compute the incidence of this sequence:

C.(k.−→σ1 + −→σ2 + k.−→σ3 + k.−→σ4) = C.(v + k.(w′ + −→σ1 + −→σ4))

= C.(v + k.n.w) = C.v = mf − mi

So this sequence is a pseudo-firing sequence. Let us show that the fireability
conditions are met (we implicitely use the relations between R et R̃):

• by definition of σ1 and σ4, we have mi
σk
1−→m1 and m5

σk
4−→mf ,

• by the choice of k, we have m1
σ2−→m2

σ3−→m3 and m4
σ3−→m5,

• which implies due to the previous lemma m2
σ3−→m3

σ
k−2
3−→m4

σ3−→m5.

♦

Let us examine how to carry on with the decision procedure if one point
of the sufficient condition is not fulfilled. If point 2 is not fulfilled (i.e the
necessairy condition) then mf is not reachable. If point 3 is not fulfilled then it
means that during the possible firing sequence, the marking of a place remain
bounded by its greatest finite value occurring on the covering trees (in fact the

Decidability and Complexity of Petri Net Problems 25

minimum of its greatest finite values on each tree). Hence one substitutes to
the initial problem, |P | reachability problems with a bounded place by a known
value.

For the case of inconsistency, we introduce particular subsets of vectors with
positive integer coefficients.

Definition 28 (Semi-linear sets) A linear set of positive integer vectors E
is defined by a vector u and a family of vectors V = {v1, . . . , vm} :

E = {w | ∃λ1, . . . , λm ∈ IN, t.q. w = u +
∑m

i=1 λi.vi}

A semi-linear set of positive integer vectors E is a finite union of linear
sets.

Semi-linear sets are finite representations of infinite sets which have numer-
ous interesting properties. One can compute the union and the intersection
of two semi-linear sets and the complementary of a semi-linear set; all these
sets are semi-linear. Furthemore one can decide whether a vector belongs to a
semi-linear set. If the reachability set was an effective semi-linear set of INP

the reachability problem would be solved. Unfortunately, the reachability sets
of some nets are not semi-linear [HOP 79] and one can decide whether it is the
case [HAU 90].

However the set E of solutions of C.x = mf −mi is a semi-linear set whose
representation is computable (see for instance [REU 89]) and more precisely
equal to {u+

∑
λk.vk | u is a minimal solution of C.x = mf −mi , λk ∈ IN and

{vk} is the set of minimal solutions of C.x =
−→
0 }; the number of these minimal

solutions being finite due to lemma 3. Consequently, the net is not consistent
iff there exists t such that v(t) = 0 for every solution v of C.x =

−→
0 . Otherwise

stated, every reachability sequence would have a number of occurrences of t
equal to some value u(t) of a minimal solution of C.x = mf−mi. We replace the
reachability problem by a set of problems for which the reachability sequence
has a fixed number of occurrences of some transition.

Intuitively in both transformations, the infinite character of the problem
has been reduced since in one case the marking of a place is bounded and
in the other case the number of occurrences of a transition is bounded. The
formalisation of this argument yields the model of CVAS.

26 Petri Nets

6. Extensions of Petri nets

6.1. Nets with inhibitor arcs

The expressive power of Petri nets is close to the one of a programming
langage working on integers. However the nets miss the capability to test
equality between the marking of a place and some constant. To this aim, nets
with inhibitor arcs have been introduced. In this model, the incidence matrices
are completed by an inhibition matrix which enforces an upper bound on the
marking of some place in order to fire a transition.

Definition 29 (Petri nets with inhibitor arcs) A Petri net with inhibitor
arcs is defined by a tuple R = 〈P, T, Pre, Post, Inh〉 where:

• P is a finite set of places, T is a finite set of transitions.

• Pre and Post are the backward and forward incidence matrices defined
in INP×T .

• Inh is the inhibition matrix defined in (INω \ 0)P×T

Definition 30 (Firing rule with inhibitor arcs)
Let m be a marking of a Petri net with inhibitor arcs and t be a transition:

• t is fireable from m iff
m ≥ Pre(t) and m < Inh(t) (component per component)

• The firing of t from m leads to marking m′ defined by:
m′ = m + C(t)

Only the fireability condition is modified. An inhibitor arc is represented
by a line ended with a small circle. The valuations different from 1 label the
arcs and valuation ω is not represented (since it does not restrict the behaviour
of the net).

Figure 5 explains the main difference between nets with inhibitor arcs and
ordinary nets. If one adds to the initial marking a tokens in pa and b tokens in
pb, then the single maximal sequence (t1.t

b
2.t3.t

b
4.t5)

a leads to a marking where
pc has a.b tokens. If the inhibitor arcs are omitted, there are several maximal
sequences, all leading to a number of tokens pc less or equal than a.b and one
of them fulfilling the equality. Otherwise stated, a Petri net weakly computes
(in the sense described above) any computable increasing arithmetical function
while a net with inhibitor arcs exactly computes any comptable arithmetical

Decidability and Complexity of Petri Net Problems 27

pa

pb pc

t1

t2

t3

t4

t5

Figure 5: Product of two numbers using a net with inhibitor arcs

function The net of figure 2 also illustrates the difference of expressive power.
In this net (and in every net modelling the actions of the planter), it is
impossible to garantee that the planter eats all his bananas before going to the
garden while adding a single inhibitor arc is enough to obtain this behaviour.

The extended expressive power leads to the undecidability of all interesting
properties (reachability, liveness, boundedness, covering, termination, . . .). In-
deed, the stop of a program is an undecidable problem and it is not difficult
to reduce this problem to the decision problem of one of these properties even
with two inhibitor arcs.

However, it has been proved that the reachability remains decidable with a
single inhibitor arc or with an “ordered” structure of inhibitor arcs w.r.t. the
places (Inh(pi, t) 6= ω and j < i ⇒ Inh(pj , t) 6= ω), (all these arcs are valuated
by 1) [REI 95].

6.2. Self-modifying nets

Another interesting extension consists in making the number of tokens to
consume or produce depend on the current marking. In the initial model of self-
modifying nets, the valuation of an arc is a linear combination of place markings
plus some constant [VAL 78]. In the generalised model called G-nets, the val-
uation is a polynomial with non negative coefficients on places [DUF 98b].

Notation

• IN[P] denotes the set of polynomial with non negative coefficients whose
variables are places.

• Let m be a marking and Q be such a polynomial, then Q[m] denotes the
value of the polynomial when the value of every variable p equals m(p).

28 Petri Nets

Definition 31 (G-net)
A G-net is defined by a tuple R = 〈P, T, Pre, Post〉 where:

• P is a finite set of places, T is a finite set of transitions.

• Pre and Post are backward and forward incidence matrices defined in
IN[P]P×T .

Definition 32 (Firing rule in G-nets) Let m be a marking of a G-net and
t be a transition:

• t is fireable from m iff :
m ≥ Pre(t)[m]

• The firing of t from m leads to marking m′ defined by:
m′ = m − Pre(t)[m] + Post(t)[m]

Without important restrictions, G-nets easily simulate the inhibitor arcs
and consequently the main properties are undecidable. The easiest way to
simulate an inhibitor arc from p to t is to define Pre(p, t) = 2.p since m(p) ≥
2.m(p) ⇔ m(p) = 0.

This simulation gives hints about restrictions to apply in order that some
properties remain decidable. We indicate three restrictions and recommend
the thesis of C. Dufourd [DUF 98a] for a detailed study about the hierarchy of
restrictions.

• In G-Post-nets the valuations of preconditions are integers. From the
definition of the firing rule, the two assertions of monotonicity lemma 1
hold. Thus the construction of the covering tree is still possible (with
some adaptation). Hence one can decide the covering, the boudedness of
a net, the boundedness of a place and the termination.

• In G-post-nets with reset the valuation of an arc from p to t is either an
integer, or the polynomial p. In this last case, firing t empties place p. In
these nets, only the first assertion of lemma 1 hold:

∀m1 ≤ m′
1 m1

σ
−→m2 ⇒ m′

1
σ

−→m′
2 avec m2 ≤ m′

2

One can still decide termination by a construction which detects the
repetitive sequences. The covering is also decidable but then with the
backward analysis of section 4.3 which only relies on the first asser-
tion of lemma 1. An important and difficult result is the undecidability
of boundedness.

• The G-post-nets with transfer is a restriction of the previous model where
the presence of an arc from p to t labelled by p implies the presence of an

Decidability and Complexity of Petri Net Problems 29

arc from t to some place p′ labelled by p+Q where Q ∈ IN[P]. Otherwise
stated, when one empties the content of a place, it is moved in another
place (with possibly additional tokens). Here, the construction of the
covering tree correctly detect that the net is unbounded when the first
ω occurs. It is amazing to observe that the place boundedness problem
is undecidable. Indeed, one reduces the boundedness problem for a net
with reset to the problem of boundedness of a subset of places by a
straightforward transformation. One adds to the net with reset a place
sink and for every transition t, an arc from t to sink labelled by

∑
p∈P ′ p

where P ′ is the set of places with a reset arc to t. It is immediate that
the net with reset is bounded iff every place of P \ {sink} is bounded in
the new net.

We end the overview of these models by showing that reachability is unde-
cidable in presence of:

• either output arcs labelled by the destination place called double arcs (for
obvious reasons)

• or reset arcs.

Proposition 33 The reachability problem in Petri nets with inhibitor arcs is
reducible to:

• The reachability problem in G-nets with only ordinary arcs and double
arcs,

• The reachability problem in G-nets with only ordinary and reset arcs.

Proof
For every place p of the net with inhibitor arcs, we add a place p+ with the
same incidences as p. Let m be a marking of the first net, then m+ in the
second net is defined by m+(p) = m+(p+) = m(p). The inhibitor arcs of the
first net are transformed as indicated in figure 6 either with a double arc, or
with a reset arc. The reader can check that whatever the construction:

m′ is reachable from m in the first net
⇔ m′+ is reachable from m+ in the second net

Indication: p+ contains the same number of tokens as p iff there have been no
firing of transition with an inhibitor arc from p (in the initial net) while p was
marked. ♦

30 Petri Nets

Figure 6: “Simulation” of an inhibitor arc

6.3. Recursive nets

A recursive net [HAD 99b, HAD 07] has the same structure as the one of a
Petri net, except that in recursive nets, transitions are partitioned in two cate-
gories: abstract transitions and elementary ones. Furthermore, a start marking
is associated with every abstract transition and a semi-linear set of final mark-
ings is defined. The semantic of such a net can be informally explained as
follows. In a Petri net, a process plays with tokens, firing a transition and
updating the current marking. In a recursive net, there is a dynamical tree of
processes corresponding to fatherhood relation; every process playing its own
token game. A step of a recursive net is then an execution step of any process.
If the process fires an elementary transition, it udpdates its current marking
using the ordinary firing rule. If the process fires an abstract transition, it
consumes the tokens of preconditions of the transition and generates a new son
which starts its token play with the start marking of the transition. If the pro-
cess has reached a terminal marking, it can terminate killing all its descendants
and producing in the marking of its father, the tokens of postconditions of the
transition whose firing has triggered its creation. If it is the root process, one
obtains an empty tree. We formalise this behaviour in the following definitions.

Decidability and Complexity of Petri Net Problems 31

Definition 34 (Recursive net) A recursive net is defined by a tuple R =
〈P, T, Pre, Post, Ω, Υ〉 where:

• P is a finite set of places, T is a finite set of transitions.

• A transition of T is either elementary or abstract. The subsets of ele-
mentary and abstract transitions are respectively denoted by Tel and Tab.

• Pre and Post are backward and forward incidence matrices defined in
INP×T .

• Ω is a function which associates with every abstract transition an ordinary
marking (i.e. an item of INP) called the start marking of t.

• Υ is an effective semi-linear set of terminal markings

An effective representation of a semi-linear set is a representation which can
(by an algorithm) be transformed as the one of definition 28. For instance, a
linear (in)equation over markings is an effective representation.

Definition 35 (Extended marking) An extended marking tr of a recursive
net R is a labelled tree tr = 〈V, M, E, A〉 where:

• V is the set of vertices, M is a function V 7→ INP ,

• E ⊆ V × V is the set of arcs and A is a function E 7→ Tab.

A marked recursive net (R, tr0) is a recursive equipped with an initial extended
marking.

Let v be a vertex of an extended marking, pred(v) denotes its father in the
tree (defined if v is not the root) and Succ(v) the set of direct and indirect
successors (including v). An elementary step of a recursive net is, either a
transition firing, or the deletion of a subtree (named termination step and
denoted by τ).

Definition 36 A transition t is fireable in a vertex v of an extended marking

tr (denoted by tr t,v
−→) if M(v) ≥ Pre(t) and a termination step is fireable in v

(denoted by tr τ,v
−→) if M(v) ∈ Υ

Definition 37 The firing of a fireable elementary step t in a vertex v of an
extended marking tr leads to marking tr′ defined w.r.t. the type of t.

• t ∈ Tel

32 Petri Nets

Figure 7: A fault-tolerant system

– V ′ = V , E′ = E , ∀e ∈ E, A′(e) = A(e), ∀v′ ∈ V \ {v}, M ′(v′) =
M(v′)

– M ′(v) = M(v) − Pre(t) + Post(t)

• t ∈ Tab, (v′ is a new identifier thus not present V)

– V ′ = V ∪ {v′} , E′ = E ∪ {(v, v′)}, ∀e ∈ E, A′(e) = A(e) ,
A′((v, v′)) = t

– ∀v′′ ∈ V \ {v}, M ′(v′′) = M(v′′), M ′(v) = M(v) − Pre(p)

– M(v′) = Ω(t)

• t = τ

– V ′ = V \ Succ(v) , E′ = E ∩ (V ′ × V ′) , ∀e ∈ E′, A′(e) = A(e)

– ∀v′ ∈ V ′ \ {pred(v)}, M ′(v′) = M(v′)

– M ′(pred(v)) = M(pred(v)) + Post(A(pred(v), v))

If v is the root of the tree then the firing of τ leads to the empty tree
denoted ⊥.

At first sight, it seems that associating the same net with every abstract
transition is somewhat restrictive. En reality, it is easy to simulate a net with
the activation of a net depending on the abstract transition. Using a single
net alleviates the notations and eases the proofs. Most of usual conditions
can be described by a semi-linear set. For instance, one can specify the set
of dead markings, the fireability of a transition, mutual constraints on some
place markings, . . . We illustrate now the expressive power of this model using a
simple modelling. Some other relevant examples are described in [HAD 00]. We
represent an abstract transition by a rectangle with a double border equipped
with its start marking inside a frame.

Decidability and Complexity of Petri Net Problems 33

In order to study fault-tolerant systems, the engineer starts with a descrip-
tion of the functional system and then introduces the faulty behaviours and
the mechanisms of repair. Here the functional system periodically records a
measure from the environment (elementary transition tcount). The number of
measures is stored in place pcount. The complete system is obtained by adding
the left part of figure 7. The behaviour of this recursive net is the following
one. Initially and immediately after the occurrence of a fault, the extended
marking is reduced to a single vertex. A token in place prepair indicates that
the system is repairing while a token in place pinit means that the system is
ready. When abstract transition tbegin is fired, the correct behaviour of the
du system is executed by the new process. The termination of this process
represents an occurrence of a fault. As place pfault is always marked in this
second vertex and due to the definition of Υ, the occurrence of a fault is always
possible. Adding some places and updating Υ, we could model more complex
fault patterns (e.g. faults triggered by software execution).

The state of the net is, either a tree with a single vertex, or a tree with
a root and a leaf. However the number of reachable markings in this leaf is
infinite. This means that the faulty state can be reached by an infinite number
of states. This modelling is impossible with a Petri net since a state can only
reached from at most |T | transitions. The self-modifying nets also have this
capability but not nets with inhibitor arcs.

Contrary to other extensions, the two main decidable properties of Petri nets
are also decidable for recursive nets: reachability and boundedness [HAD 99a].

7. Languages of Petri nets

The introduction of “extended” Petri nets aims to increase the expressive
power of nets while preserving decidability of some properties. The families
of languages generated by nets are one of the means to determine this ex-
pressive power. Initially, formal languages have been studied in relation with
grammars [HOP 69]. Let us briefly recall that a grammar includes non terminal
symbols (with an initial symbol) and terminal ones (the characters of the alpha-
bet). A grammar is composed of transformation rules {S1 . . . Sm → T1 . . . Tn}.
To compose a word of the language associated with a grammar, one starts with
the initial symbol and one applies any transformation rule to a subword of the
current word until the word has only terminal symbols.

Depending on the structure of grammars, one defines families of languages
and one studies problems like:

• the membership of a word to the language,

34 Petri Nets

• the emptyness of the language,

• the closure of a family of languages under operations like union, intersec-
tion and complementary.

Each problem has an interpretation w.r.t. the behaviour of systems mod-
elled for instance by Petri nets. The membership problem is related to the
test: whether expected behavioural sequences really occur. The emptyness
problem is related (with an appropriate choice of final markings) to the exis-
tence of at least a faulty sequence. The closure of a family by operations offers
the possibility to the designer to modularly build systems using specifications
given by such operations. For instance, the intersection of languages very often
corresponds to a synchronisation between subsystems.

Usually, one distinguishes four families of languages strictly nested. Regular
languages are generated by grammars whose rule patterns are: S → λ, S →
a.T , S → a with S,T non terminal and a terminal. Algebraic languages are
generated by grammars whose rule patterns are: S → T1 . . . Tn with n possibly
null. Context-sensitive languages are are generated by grammars whose rule
patterns are: Sinit → λ, S1 . . . Sm → T1 . . . Tn with n ≥ m and where Sinit is
the initial symbol. At last, type 0-langages have no restriction on rule patterns.

Example 1 A regular and an algebraic grammar
The following grammar denotes the behaviour of a process iterating an action
until it succeeds:
S → try.T , T → fail.S , T → success
The associated language L is defined by:
L = {try.(fail.try)n.success}

n∈IN also noted in a compact way
L = try.(fail.try)∗.success

The following algebraic grammar generates the language L′ of palindromes on
alphabet Σ = {a, b}, L′ = {σ ∈ Σ∗ | σ̃ = σ}
S → λ , S → a , S → b , S → a.S.a , S → b.S.b

One can decide the membership problem for the three first families and this
problem is undecidable for type 0-languages. One can decide the emptyness
problem for regular and algebraic languages but this problem is undecidable for
context-sensitive languages. At last, regular languages are closed by the stan-
dard operations while for instance, the intersection of two algebraic languages
is not necessarily an algebraic language [AUT 87].

The theory of languages of Petri nets consists in analysing the same kind
of problems and in positioning the languages of Petri nets w.r.t. the standard
families [PET 81]. For sake of readability, we recall here the definition of a
Petri net language. Then we indicate the main results.

Decidability and Complexity of Petri Net Problems 35

t1 (λ)

R1

m0
(1)

R2

m0
(2)

t2 (λ)

Term = Term1 ∪ Term2

Figure 8: Construction of a net for the union of languages

Figure 9: Construction of a net for the intersection of languages

Definition 38 (Language of a net) Let (R, m0) be a Petri net, Σ be an al-
phabet and l be a labelling mapping from T to Σ ∪ λ (the empty word). The
labelling mapping extends to sequences by l(λ) = λ and l(σ.t) = l(σ).l(t). Let
Term be a finite set of terminal markings. The language of the net denoted
L(R, m0, l, T erm) is defined by:

L(R, m0, l, T erm) = {w ∈ Σ∗ | ∃σ ∈ T ∗, ∃mf ∈ Term, m0
σ

−→mf and w = l(σ)}

Proposition 39 (Closure properties for Petri nets) Languages of Petri

36 Petri Nets

nets are closed by union and intersection.

Proof
The construction of a net that accepts the union of Petri net languages is
presented figure 8. One inserts the two nets (we assume there are disjoint)
without initial marking. One adds to the net a place initially marked input of
two new (initially fireable) transitions labelled by the empty word and whose
outputs are the initial markings of the two nets. The set of terminal markings is
the union of the two sets of terminal markings (or more precisely their mappings
in the new vector space of place markings). This net non deterministically
chooses to trigger one of the two nets that will produce a word of its language.

The construction of a net that accepts the intersection of Petri net languages is
presented figure 9. One inserts the places of the two nets (we assume there are
disjoint) with their initial marking. For every pair of transitions (one per net)
labelled by the same character, one creates a transition with this label whose
incidences are the sum of incidences of each transition. The transitions labelled
by the empty word are added without any change. A terminal marking is the
sum of a terminal marking of the first net and a terminal marking of the second
net. So a word is simultaneously accepted in both nets, since every character is
produced by the simultaneous firing of a pair of transitions. Transitions labelled
by the empty word need to be fired independently in order to generated every
possible subsequence that produces the empty word in any of the two nets. ♦

Proposition 40 (Analysis of Petri net languages) The membership prob-
lem and the emptyness problem are decidable for Petri net languages.

Proof
To check the (non) emptyness of the language, one decides whether one of the
terminal marking is reachable. To check wether a word belongs to the language
of a Petri net, one builds a second net that only accepts this word and then
the net that accepts the intersection of net languages. Last one checks the
emptyness of its language. ♦

Proposition 41 (Position of Petri net languages) The family of Petri net
languages contain the regular languages and is incomparable with the family of
algebraic languages [JAN 79].

Proof
To simulate regular grammar by a net, one associates with every non terminal

Decidability and Complexity of Petri Net Problems 37

Figure 10: Simulation of a regular grammar

symbol a place and with every rule, a transition labelled by the terminal symbol
of the rule, whose precondition is the symbol of the lefthand member of the
rule et and postcondition is the symbol of the righthand member of the rule
if it exists. The place of the initial symbol initially contains a token (and it is
the only one) and the terminal marking is the null marking. A simulation of
the grammar of example 1 is represented figure 10.

Observe that the language of net of figure 2 (the planter net) whose final
marking is the null marking ({an.bn.cn |n ≥ 0}) is not an algebraic language
(due to Ogden lemma [AUT 87]). On the other hand, one proves that the
language of palindromes is not a language of Petri nets (but the proof is rather
technical). ♦

Proposition 42 (Position of a language) Given a Petri net language,

• If the labelling function is the identity and every marking is a terminal
marking, one can decide whether it is regular [VAL 81] and whether it is
algebraic [SCH 92].

• If furthermore a set of terminal markings is specified, one can still decide
whether it is regular [LAM 92].

From the point of view of position of Petri net languages, the model of recursive
nets unifies Petri nets and algebraic grammars. Indeed, the family of languages
of recursive nets strictly includes the union of Petri net and algebraic languages
and as for these families one can decide the membership and the emptyness
problem. However unlike these families, the intersection of a recursive net
language and a regular language is not necessarily a recursive net language.

38 Petri Nets

Decidability and Complexity of Petri Net Problems 39

References

[ABD 96] P.A. Abdulla, K. Ĉerāns, Jonsson B. and Yih-Kuen T. General

decidability theorems for infinite-state systems. In Proc. 11
th IEEE Symp. Logic

In Computer Science (LICS’96), LNCS, pages 313–321, New Brunswick, NJ,
USA, Juillet 1996.

[AHO 74] Alfred V. Aho, John E. Hopcroft and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading, 1974.

[ARN 76] A. Arnold and M. Latteux. Vector addition systems and semi-Dick
language. Rapport de Recherche 78, Laboratoire de Calcul, Université des Sci-
ences et Techniques de Lille, Décembre 1976.

[AUT 87] J.M. Autebert. Langages algébriques. Etudes et recherches en informa-
tique. Masson, 1987.

[DUF 98a] C. Dufourd. Réseaux de Petri avec reset/transfert : Décidabilité et
indécidabilité. Thèse d’Université de l’ENS de Cachan. Laboratoire Spécification
et Vérification, Octobre 1998.

[DUF 98b] C. Dufourd, A. Finkel and P. Schnoebelen. Reset nets between de-
cidability and undecidability. (ICALP’98) L.N.C.S, 1443:103–115, Juillet 1998.

[ESP 94] J. Esparza and M. Nielsen. Decidability issues for Petri nets - A survey.
Bulletin of the EATCS, 52:245–262, 1994.

[ESP 98] J. Esparza. Decidability and complexity of Petri net problems - an intro-
duction. In Lectures on Petri Nets I: Basic Models, volume 1491 of LNCS, pages
374–428. Springer Verlag, 1998.

[FIN 98] A. Finkel and P. Schnoebelen. Fundamental structures in well-
structured infinite transition. In Proc. 3

rd Latin American Theoretical Informat-
ics Symposium (LATIN’98), volume 1380 of LNCS, pages 102–118, Campinas,
Brésil, Avril 1998.

[FRU 86] D. Frutos Escrig. Decidability of home states in place transition sys-
tems. Rapport interne, Dpto. Informatica y Automatica., Univ. Complutense de
Madrid, 1986.

[FRU 89] D. Frutos Escrig and C. Johnen. Decidability of home space property.
Rapport LRI-503, Laboratoire de Recherche en Informatique, Univ. de Paris-Sud,
Orsay, 1989.

[HAC 75] M. Hack. Decidability Questions for Petri Nets. PhD thesis, M.I.T.,
Cambridge, MA, Décembre 1975. publié comme rapport technique 161, Lab. for
Computer Science, Juin 1976.

[HAD 99a] S. Haddad and D. Poitrenaud. Decidability and undecidability results
for recursive Petri nets. Rapport de Recherche 019, LIP6, Paris VI University,
Paris, France, Septembre 1999.

[HAD 99b] S. Haddad and D. Poitrenaud. Theoretical aspects of recursive Petri
nets. In Proc. 20

t
h Int. Conf. on Applications and Theory of Petri nets, volume

1639 of Lecture Notes in Computer Science, pages 228–247, Williamsburg, VA,
USA, Juin 1999. Springer Verlag.

40 Petri Nets

[HAD 00] S. Haddad and D. Poitrenaud. Modelling and analyzing systems with
recursive Petri nets. In Proc. of the Workshop on Discrete Event Systems - Analy-
sis and Control, pages 449–458, Gand, Belgique, August 2000. Kluwer Academics
Publishers.

[HAD 07] S. Haddad and D. Poitrenaud. Recursive Petri nets – Theory and ap-
plication to discrete event systems. Acta Informatica, 44(7-8):463–508, December
2007.

[HAU 90] D. Hauschildt. Semilinearity of the reachability set is decidable for Petri
nets. Rapport FBI-HH-B-146/90, Université de Hambourg, 1990.

[HOP 69] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Rela-
tion to Automata. Addison-Wesley, Reading, 1969.

[HOP 79] J. Hopcroft and J-J. Pansiot. On the reachability problem for 5-
dimensional vector addition systems. Theoretical Computer Science, 5:135–159,
1979.

[JAN 79] M. Jantzen. On the hierarchy of Petri net languages. R.A.I.R.O. Infor-
matique Theorique, 13:19–30, 1979.

[KAR 69] R.M. Karp and R.E. Miller. Parallel program schemata. Journal of
Computer and System Sciences, 3(2):147–195, 1969.

[KOS 82] S.R. Kosaraju. Decidability of reachability in vector addition systems.
In Proc. 14

th ACM Symp. Theory of Computing (STOC’82), pages 267–281, San
Francisco, CA, Mai 1982.

[LAM 92] J.L. Lambert. A structure to decide reachability in Petri nets. Theoretical
Computer Science, 99:79–104, 1992.

[LIP 76] R. Lipton. The reachability problem requires exponential space. Technical
Report 62, Department of Computer Science, Yale University, January 1976.

[MAY 81] E. Mayr and A. Meyer. The complexity of the finite containment
problem for Petri nets. Journ. Assoc. Comput. Mach., 28:561–576, 1981.

[MAY 84] E.W. Mayr. An algorithm for the general Petri net reachability problem.
SIAM Journal of Computing, 13:441–460, 1984.

[PAP 94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Read-
ing, Mass., 1994.

[PET 81] J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice
Hall, 1981.

[RAC 78] C. Rackoff. The covering and boudedness problems for vector addition
systems. Theoretical Computer Science, 6(2):223–231, 1978.

[REI 95] K. Reinhardt. Reachability in Petri nets with inhibitor arcs. Unpublished
manuscript reachable via www-fs.informatik.uni-tuebingen.de/∼reinhard, 1995.

[REU 89] C. Reutenauer. Aspects mathématiques des réseaux de Petri. Etudes et
recherches en informatique. Masson, 1989.

[SCH 92] S. Schwer. The context-freeness of the languages associated with vector
addition systems is decidable. Theoretical Computer Science, 98:199–247, 1992.

[VAL 78] R. Valk. Self-modifying nets, a natural extension of Petri nets.
(ICALP’78) L.N.C.S, 62:464–476, Juillet 1978.

[VAL 81] R. Valk and G. Vidal-Naquet. Petri nets and regular languages. Jour-
nal of Computer and System Sciences, 3(23):299–325, 1981.

[VAL 85] R. Valk and M. Jantzen. The residue of vectors sets with applications
to decidability problems in Petri nets. Acta Informatica, 21:643–674, 1985.

[YEN 92] H-C. Yen. A unified approach for deciding the existence of certain Petri
net paths. Information and Computation, 96:119–137, 1992.

Index

Haddad, S., 1

Algorithm of Karp and Miller, 11

Covering graph, 10

Extensions
Nets with inhibitor arcs, 26
Recursive nets, 30
Self-modifying nets, 27

Languages
closure properties, 35
emptyness problem, 36
expressiveness, 36
language membership problem,

37
word membership problem, 36

Net properties
boundedness, 19
covering, 19
reachability, 21

Reachability graph, 6

