
Chapter 9

Stochastic Petri Nets

Serge Haddad , Patrice Moreaux1

1. Introduction

One of the main interests of Petri nets is to combine qualitative analysis (i.e.
the property verification) and quantitative one (i.e. performance evaluation)
[FLO 78, MOL 81, REI 98a, REI 98b]. By comparison, concurrency models
like process algebra [HIL 96] have only recently been extended with stochastic
features and if first results are promising, there are still more research about
performance evaluation of stochastic Petri nets. Similarly, the usual model
for performance evaluation like queueing networds [KLE 75] do not include
synchronization mechanisms and adding them by ad hoc constructions [FDI 86,
DAL 97] do not reach the generality and the simplicity of concurrency modeling
by Petri nets.

Stochastic Petri nets have been introduced in a pragmatic way at the end of
the seventies, in order to take benefit from the evaluation methods of Markov
chains. This approach leads to immediate results but occults the semantical
features underlying the definition of stochastic Petri nets and cannot be easily
generalized to different probability distributions. So along the three chapters
devoted to stochastic Petri nets, we proceed as follows. First we tackle the
semantical level i.e. the level of the stochastic processes and we study their
properties with the aim to design analysis methods. Here we have chosen to
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emphasize the principles which characterize every method. So we omit the
programming features related to numerical computations. Indeed, these fea-
tures are not specific to stochastic Petri nets and are covered by excellent
books [STE 94, BOL 98]. Then we present models (and extensions) of stochas-
tic Petri nets which generate such stochastic processes. Thus the constraints
that appear in the definition have an intuitive explanation. At last, we develop
the analysis methods at the stochastic Petri net level, which points out the
links with the qualitative methods described in other parts of the book.

This chapter begins by the characterization of stochastic processes associ-
ated with discrete event systems. We describe the family of random variables
of these processes and interpret them w.r.t. a realization of an execution. Then
we briefly recall renewing theory which ensures under weak conditions, the ex-
istence of a stationary distribution of the discrete event system. Indeed, we
mainly cover the study of systems on the long run. Then we enumerate by
increasing complexity order typical processes for which the renewing theory
can be applied, beginning by Markov chains.

Afterwards we develop the key points of a stochastic semantic for Petri nets.
This includes the specification of a random variable associated with the firing
delay of a transition, the choice criteria between enabled transitions, the han-
dling of the firing degree in the samplings of the random variable associated with
a transition and the memorization of the previous samplings, once the firing is
performed. Then we restrict the type of distributions, which leads to stochas-
tic processes previously studied. Among the different families of stochastic
nets, Petri nets with exponential and immediate distributions, called general-
ized stochastic Petri nets, are considered as the standard model [Ajm 95]. We
indicate, for every family, how to to compute the stationary distribution based
on the reachability graph (when it is finite).

The basic algorithms have a complexity of the same magnitude order as
the reachability graph size for the simple models and greater for models with
more general distributions. Thus the more elaborated techniques split in two
families: the first one aims at obtaining a complexity smaller than the size of
the graph (e.g. by restricting the class of Petri nets) and the second one aims
at obtaining the same order of complexity than the size of the graph but for
extended models.

The last section describes some of these methods in order to cover the
diversity of the approaches. Two other methods and applicable to well formed
nets are presented in the next chapters. Those covered in this section are:

• the research of a product form: a formula that expresses the stationary
probability of a marking including the net parameters and the place mark-
ing as variables of the formula. This method illustrates the extension of
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a technique first applied in queueing networks.

• the research of bounds (e.g. on the rates) using the structure of the net.
Here one observes that linear programming eases the quantitative and
qualitative analysis of Petri nets.

• approximation methods that take advantage of a net decomposition or of
a transformation of the stochastic process.

• a resolution method for nets whose a single place is unbounded. The ap-
plication of this method show that conditions on the structure of Markov
chains can be naturally translated in terms of Petri nets.

2. A stochastic semantic for the discrete event systems

2.1. The stochastic model

We assume that the bases of probability theory are known by the reader [FEL 68,
FEL 71, TRI 82].

Notations:

• Pr(E) denotes the probability of event E and Pr(A |B) the probability
of A knowing B.

• IR (resp. IR+) denotes reals (resp. non negative reals)

• A measure on IR is given by a function F , increasing, right continuous
such that limx→−∞F (x) = 0. F (x) represents the measure of interval
]−∞, x]. The mass of the measure (finite or not) is limx→∞F (x)

• A distribution is a measure with mass 1.

• Usual integration is denoted ds where s is the integration variable. Inte-
gration w.r.t. a measure F is denoted F{ds}.

• The word almost, in expressions like almost everywhere or almost surely,
means “for a set of probability 1”.

An execution of a discrete event system (DES) is characterized by a sequence
of events {e1, . . . , en, . . . , } (sequence supposed to be infinite) occurring after
time delays. Only events can change the state of the system.

Formally, the stochastic behavior of a DES is determined by two families of
random variables:
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• X0, . . . , Xn, . . . taking their values in the (discrete) state of the system
{s1, . . . , sk, . . .}. X0 represents the initial distribution of the system and
Xn (n > 0) the distribution after the nth event. The occurrence of an
event does not necessarily modify the state of the system, consequently
Xn+1 may be equal to Xn.

• T0, ..., Tn, ... taking their values in IR+ where T0 represents the time in-
terval before the first event and Tn, (n > 0) represents the time interval
between the nth and (n+1)th event. Observe that this interval can be null
(e.g. a sequence of instructions considered as instantaneous compared to
database transactions including inputs/outputs).

A priori, no restriction should be required for these families of random
variables. However to avoid the pathologic character of some executions, we
exclude the possibility for a DES to execute an infinite number of actions in
finite time. Otherwise stated, we establish sufficient conditions in order to fulfill
the following equation:

∞
∑

n=0

Tn =∞ almost surely [1]

This restriction enables us to define the state of the system at any instant. Let
N(t), be the random variable defined by:

N(t) = inf{n such that

n
∑

k=0

Tk > t}

Using equation 1, N(t) is defined almost everywhere. As can be seen in figure 1,
N(t) presents jumps with amplitude greater than 1. The state Y (t) of the sys-
tem at time t, is XN(t). Observe that Y (t) is not equivalent to the stochastic
process, but that it allows, in most of the cases, to proceed to standard anal-
yses. The scheme of figure 1 presents a possible execution of the process and
illustrates the interpretation of the random variables previously introduced. In
this example, the process is initially in state s4 and remains in it until t0 when
it moves to state s6. At time t0 + t1, the system successively visits in a null
time, states s3 and s12 before reaching state s7 where it sojourns some time.
The observation Y (t) in continuous time occults the vanishing states s3 and
s12 of the process.

2.2. Analysis with renewing theory

The performance evaluation of a DES leads to two kinds of analysis:
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Figure 1: A realization of the stochastic process

• The study of the transient behavior, i.e. the computation of measures
for performance indices depending on elapsed time since the initial state.
This study covers the initializing stage of systems and terminating sys-
tems. Among application areas, one can cite dependability and safety
analyses [LAP 95, MEY 80, TRI 92].

• The study of the stationary behavior. For numerous applications, what
interests the modeler is the behavior of the system once the initial stage
is left and that it stabilizes.

This supposes that such a stationary behavior exists. Which can be re-
sumed, denoting π(t) the distribution of Y (t), by:

lim
t→∞

π(t) = π [2]

where π is also a distribution, called stationary distribution . In this case, one
calls the process an ergodic process. A sufficient condition for this asymptotic
behavior is the existence of a repetitive phenomenon corresponding to some
event occurrences such that the process identically behaves after every such
occurrence.

Definition 1 A stochastic process is a renewing process if there exists a family
of random variables: I1, . . . , Ik, . . . (defined almost everywhere) taking values
in IN such that:
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• Ik < Ik+1

• ∀k, k′, {XIk+n, TIk+n}n∈IN and {XI
k′+n, TI

k′+n}n∈IN are probabilistic repli-
cates of a fixed process.

A renewing process is fully determined by its behavior between two renewing
instants. Let us call:

• F the distribution of time between two renewing instants

• d the mean, supposed to be finite, of this distribution

• pk(t) the probability that, t time units after a renewing instant, a new
renewing instant has not occurred and that the process is in state sk

Observe that 1 − F (t) =
∑

k pk(t). Hence family {pk}k∈IN determines the
stochastic process.

We must distinguish two cases depending on the type of distribution F since
some distributions lead to periodic behaviors. Let us pick an elementary DES
(a semi-Markovian process with deterministic delays, see later on), visiting
three states s1, s2, s3. We consider entrance in s1 as a renewing instant. The
DES sojourns 1 t.u. in state s1 then moves to state s2 where it remains during
2 t.u.. With probability 1/2, it returns in state s1 or moves to state s3 where
it remains 3 t.u., before returning to s1.

Assume that the process starts in state s1. Then every 3n t.u., the process
either in s1, or in s3 and every (3n +1) t.u. the process is either in s2 or in s3.
So there is no stationary distribution. These periodic behaviors are generated
by arithmetic distributions.

Definition 2 A distribution is arithmetic if it is concentrated on points {n.τ}n∈IN

for some τ . The period of an arithmetic distribution is the greatest τ fulfilling
this property.

Below is the main result about the existence of a stationary behavior.

Theorem 3 ([FEL 68, FEL 71]) Given a renewing process defined by {pk}k∈IN.
If F is not arithmetic then,

lim
t→∞

π(t)[sk] =
1

d
.

∫ ∞

0

pk(t)dt

If F is arithmetic with period τ and if the process starts at a renewing instant,

lim
n→∞

π(t + n.τ)[sk] =
τ

d
.

∞
∑

i=0

pk(t + i.τ)
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If these two formulas are relatively simple, their application requires to know
more about the stochastic process as will be seen in the next sections. These
formula are generalizable to every performance index independent of the be-
havior of the process before the last renewing instant (e.g. the elapsed time
since the last renewing instant).

2.3. Discrete Time Markov chain

2.3.1. Presentation

A discrete time Markov (Discrete Time Markov Chain, DTMC) has the
following characteristics:

• The time interval between instants Tn is the constant 1.

• The next state following the current state only depends on this state and
the transition probabilities are constant over the time:

Pr(Xn+1 = sj |X0 = si0 , ..., Xn = si) =

Pr(Xn+1 = sj |Xn = si) = pij = P[i, j]

We will use both notations for state transitions.

The process is characterized by its initial distribution π0 and matrix P. Let
πn the distribution de Xn, then πn = π0.P

n

2.3.2. Conditions for a stationary distribution

It is clear that every entrance in some given state constitutes a renewing
instant. However it remains two conditions to check:

• There must be almost surely an infinite number of renewing instants.

• The mean time between two renewing instants must be finite.

This leads to a classification of states:

• A state is transient if the probability of return is less than 1. Such a
state cannot constitutes a renewing process since the number of returns
is almost surely finite. For obvious reasons, its occurrence probability
goes to 0. A state is called recurrent if it is not transient.
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• A state is null recurrent if the mean time for return is infinite. This state
cannot ensure the existence of a stationary distribution. Intuitively, once
reached, this state will occur after intervals whose mean length will go
to infinity and consequently its occurrence probability goes to 0. This
intuitive reasoning is mathematically sound.

• A state is non null recurrent if the mean time for return is finite. It is
then sufficient that the state can be reached almost surely from the initial
distribution in order to ensure the existence of a stationary distribution.

Let us detail this point and consider the graph (possibly infinite) built as
follows:

• The set of vertices is the set of states.

• There is an arc from si to sj if pij > 0.

Let us study the strongly connected components (s.c.c.) of this graph. If
a s.c.c. has an exit arc, then necessarily, the states of this s.c.c. are transient.
If there exists two terminal s.c.c. (i.e. without exit arcs) then the stationary
distribution depends on the probability to reach them. Consequently, the inde-
pendence of the stationary distribution from the initial distributions requires a
single terminal s.c.c. reachable almost surely.

One calls irreducible chain, a terminal s.c.c. In a irreducible chain all states
are of the same kind. Let us examine the irreducible chain defined by:

∀i, pi i+1 = 1− ei and pi 1 = ei, with 0 < ei < 1

Then Pr(to not return in s1) =
∏∞

i=1(1 − ei). A logarithmic transformation
shows that this probability is non null iff

∑

ei is convergent. Assume that states

are recurrent; the mean time for a return in s1 is equal to 1 +
∑∞

k=1

∏k

i=1 ei.
Thus states are null recurrent if this sum is divergent and non null recurrent
otherwise.

Classification criteria exist (see below). In a finite graph, the existence and
unicity (whatever the initial distribution) of a stationary distribution is ensured
as soon as there is a single terminal s.c.c.

In a discrete time Markov chain, the distribution of return to a state is
arithmetic and its period is a multiple of 1. However since the sojourn in a
state lasts at least 1 t.u., if the period is 1 the arithmetic case of theorem 3 is
reducible to the general case and there is a stationary distribution. One calls
such states ergodic and the chain is said aperiodic. If the period (k) is greater
than 1, one can partition the states into subsets S0, S1, . . . , Sk−1 such that from
states of Si one reaches states of S(i+1) mod k. If one considers the state changes
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every k t.u. (transition matrix Pk) one obtain k independent chains over states
Si with period 1.

2.3.3. Computation of the stationary distribution

Once the existence of the stationary distribution is ensured, the computation
is relatively easy. Indeed, one has πn+1 = πn.P . Taking the limits (which is
sound here), one obtains π = π.P. Furthermore if the chain is aperiodic then
π is the single distribution of:

X = X.P [3]

and the existence of a solution which is a distribution ensures that the irre-
ducible chain is ergodic.

In the finite case, in order to solve equation [3], one can perform to a direct
computation by adding the normalization equation X.1T = 1 où 1T denotes
the column vector whose every component is 1. But iterative computations are
more interesting, the simplest consisting in iterating Xn+1 ← Xn.P[STE 94].

2.4. Continuous time Markov chains

2.4.1. Presentation

A continuous time Markov chain (CMTC) has the following characteristics:

• The time interval between instants Tn is a negative exponential random
variable whose rate depends only on state Xn. Otherwise stated

Pr(Tn ≤ t |X0 = si0 , ..., Xn = si, T0 ≤ t0, ..., Tn−1 ≤ tn−1) =

Pr(Tn ≤ t |Xn = si) = 1− eλi.t

• The state following the current state depends only on this state and
transition probabilities are constant over time:

Pr(Xn+1 = sj |X0 = si0 , ..., Xn = si, T0 ≤ t0, ..., Tn−1 ≤ tn−1) =

Pr(Xn+1 = sj |Xn = si) = pij = P[i, j]
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In continuous time Markov chains, due to the lack of memory of the exponential
distribution, the evolution of the DES depends only the current state.

Contrary to discrete time chains, the stochastic process may present the
pathologic behavior discussed at the beginning of the chapter. This behavior is
excluded if, for instance, there exists a finite upper bound to the set of λi or if
the discrete chain defined by matrix P and called embedded chain, is irreducible
and recurrent.

The process is characterized by its initial distribution π(0), matrix P and
the λi’s. let us call π(t) the distribution of Yt and πk(t) = π(t)[sk]. If δ is
small, between t and t + δ the probability of occurrence of more than an event
is negligible and the probability of occurrence of a state change from k to k′ is
approximatively equal to λk.δ.pkk′

πk(t + δ) ≈ πk(t).(1 − λk.δ) +
∑

k′ 6=k

πk′ (t).λk′ .δ.pk′k

Consequently

πk(t + δ)− πk(t)

δ
≈ πk(t).(−λk) +

∑

k′ 6=k

πk′ (t).λk′ .pk′k

And finally:
dπk

dt
= πk(t).(−λk) +

∑

k′ 6=k

πk′ (t).λk′ .pk′k

Let us define matrix Q by: qkk′ = λk.pkk′ for k 6= k′ and qkk = −λk(=
−
∑

k′ 6=k qkk′ ). Then the previous equation can written:

dπ

dt
= π.Q [4]

Taking the limits, one obtains the transient behavior of the process:

π(t) = π(0).

∞
∑

n=0

tn

n!
.Qn = π(0).et.Q [5]

where the second equality is a definition. One calls Q the infinitesimal gener-
ator of the process.

2.4.2. Existence and computation of a stationary distribution

Assume that π(t) converges towards a stationary distribution. It is rea-
sonable to suppose that dπ

dt
goes to 0. Hence equation [4] becomes π.Q = 0.
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Indeed, the existence of a distribution, solution of equation:

X.Q = 0 and X.1T = 1 [6]

is a necessary and sufficient condition and here again this equation admits at
most a solution (if the embedded chain is irreducible). The computation is
performed similarly to the one for discrete time chains.

2.5. Semi-Markovian processes

2.5.1. Presentation

Here we describe a restricted notion of semi-Markovian process and this for
two reasons. First, this definition allows a simplified computation of stationary
distributions; and, the next section presents a family of processes more general
than the family of semi-Markovian processes. A semi-Markovian process is an
extension of CTMCs where sojourn time in states may have any distribution.
This process has the following characteristics:

• The time interval between instants Tn is a random variable that only
depends on state Xn. Otherwise stated:

Pr(Tn ≤ t |X0 = si0 , ..., Xn = si, T0 ≤ t0, ..., Tn−1 ≤ tn−1) =

Pr(Tn ≤ t |Xn = si) = Pr(Di ≤ t)

where Di is a random variable with a finite mean, denoted di.

• The state following the current state only depends on this state and
transition probabilities are constant over time:

Pr(Xn+1 = sj |X0 = si0 , ..., Xn = si, T0 ≤ t0, ..., Tn−1 ≤ tn−1) =

Pr(Xn+1 = sj |Xn = si) = pij = P[i, j]

Observe that here again, the sequence of states (Xn) constitutes a DTMC
embedded in the process.

2.5.2. Existence and computation of a stationary distribution

Here we only state a sufficient condition for the existence of the stationary
distribution which covers the most frequent cases. First we assume that the
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embedded chain is irreducible with a distribution solution of X.P = X and
that one of the distribution Di is not arithmetic.

Here again the entrances in a state (si) can constitute a renewing process.
Given some state ; the fact that it occurs infinitely only depends on transition
probabilities pij and is ensured by our first hypothesis. The mean return time
must be carefully examined. Indeed, every visit in si gives place to a sojourn
with mean time di. Thus although the mean number of visits before a return
is finite, the mean return time could be infinite. Let us call π

′ (π′
k = π

′[sk])
the distribution solution of equation [3]. Then the mean number of visits of

sk between two visits of si is
π′

k

π′

i

. Consequently, the mean return time to si is

equal to:

di +
∑

k 6=i

dk.
π′

k

π′
i

=
1

π′
i

.
∑

k

dk.π′
k

Otherwise stated, the existence of a stationary distribution is ensured if
∑

k dk.π′
k

is finite. Since Di is not arithmetic, one easily deduces that the distribution of
return is not arithmetic.

With the same reasoning, one concludes that the ratio πk

πi
corresponds to

the mean sojourn time in sk between two returns in si divided by the mean
sojourn time in si:

πk

πi

=
dk.

π′

k

π′

i

di

=
dk.π′

k

di.π′
i

This leads to the stationary distribution:

πk =
π′

k.dk
∑

k′ π′
k′ .dk′

[7]

Observe that the way we have proceeded allows some distributions Di to be
concentrated in 0 (see section 3.3).

2.6. Regenerative Markovian processes

2.6.1. Presentation

A regenerative Markovian process (or semi-regenerative process) includes a
subset of states, called regenerative states since entrance in any on this state
constitutes a renewing process. We call S′ this subset. Such a process is fully
determined by its behavior between two consecutive entrances in regenerative
states. Formally, one defines for every k, k′ ∈ S′ and every i ∈ S the following
quantities:
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• Fk(t) represents the distribution of time between entrance in sk and en-
trance in a new regenerative state,

• dk the mean of this distribution supposed to be finite,

• fki(t) the probability that, after t t.u. since entrance in sk, there have
been no new entrances in some regenerative state and that the process is
in state si,

• Gkk′ (t) the probability that after entrance in sk, the process has reached
a new regenerative state sk′ in time ≤ t. Gkk′ represents a measure of
mass ≤ 1.

2.6.2. Existence and computation of a stationary distribution

We simultaneously describe sufficient conditions of existence for a stationary
distribution and its computation. First we suppose that the probability to
reach in the future a new regenerative state from any regenerative state is
always equal to 1, which means that Fk is a probability distribution.

One studies the embedded Markov chain representing the visits to regener-
ative states whose matrix is P. This matrix can be computed by:

pkk′ = Gkk′ (∞) =

∫ ∞

0

Gkk′{dt}

We assume that this chain is ergodic and we note the distribution solution
π

′. We need to compute the mean sojourn time in a state si between the
entrance in sk and the entrance in a new regenerative state (noté dki) :

dki =

∫ ∞

0

fki(t)dt

The stationary distribution (π) is now deduced by weighting these sojourn
times by the visit probabilities to the regenerative states.

πi =

∑

k∈S′ π′
k.dki

∑

k∈S′ π′
k.dk

The main difficulty is related to the determination of the fki’s and the
Gkk′ ’s. In some cases, this can be performed by the transient analysis of a
Markov chain (see section 3.4).
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3. Stochastic Petri nets

3.1. Stochastic Petri nets with general distributions

The stochastic feature of Petri nets is introduced by considering that a tran-
sition has a random firing delay (taking values in IR+). The different families
of stochastic Petri nets are defined by restricting the type of distributions. For
the moment, we do not make any hypothesis on distributions. The definition
of distributions is not sufficient to characterize the stochastic process. We are
going to successively study the problems related to this characterization.

Remark: Most of the parameters of the process can depend on the current
marking. For sake of simplicity, we will not mention it in the sequel.

3.1.1. Choice policy

Given the initial marking, we need to determine the next transition to fire
among the fireable ones. There are two possible strategies:

• a probabilistic choice w.r.t. a distribution associated with the subset of
fireable transitions. This is a preselection since the choice takes place
before the sampling of the delay.

• an independent sampling for every delay followed by the choice of the
shortest delay. In case of equal delays, one also performs a probabilistic
choice called post-selection.

The second solution is always chosen since on the one hand it corresponds
to a more natural modeling and on the other hand since with the help of
immediate transitions (see section3.3) preselection can be simulated by post-
selection. Observe that except if the distributions are continuous, one needs to
specify the distributions of selections.

3.1.2. Service policy

If a transition has an enabling degree e > 1, one can consider that the
marking provides e clients to the transition viewed like a server. So when
sampling the delay, three options are possible depending on the event modeled
by the transition:

• a single sampling is performed, the transition offers only one service at a
time (single-server policy)
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• e samplings are performed, the transition is a “parallel” server (infinite-
server policy)

• Min(e, deg(t)) samplings are performed, the transition can offer at most
deg(t) simultaneous services; this case generalizes the other ones (with
deg(t) = 1 or ∞) (multiple-server policy). The modeller must specify
deg(t) for every transition.

3.1.3. Memory policy

Once transition t is fired, what is the effect of a sampling that has not be
chosen for another transition t′ for the next firings?

The first possibility consists in forgetting the sampling that has been per-
formed. If transition t′ remains fireable, this takes place to a new sampling
(resampling memory). With such a semantic, t could model the failure of a
service specified by t′.

The second possibility consists in memorizing the sampling decremented
by the sampling of t, but only if t′ remains fireable (enabling memory PRD
(Preemptive Repeat Different)). If t′ is disabled, this mechanism models a
time-out (t′) disarmed by t.

The third possibility is as the previous one for a transition still fireable
but let the sampling unchanged if t′ is disabled. This sampling will be used
again when t′ will be fireable (mode enabling memory PRI (Preemptive Repeat
Identical)). A disabled transition t′ could model a job aborted by t that should
be restarted.

The forth possibility consists in memorizing the sampling decremented by
the sampling of t. A disabled transition t′ could model a job suspended by t
(age memory also called PRS (Preemptive ReSume)).

To complete this policy, we must take into account the case of multiple-
server transitions, which requires to choose which samplings should be mem-
orized, decremented or forgotten. The simplest solution is a FIFO policy for
samplings. The last performed sampling is the first forgotten. Other poli-
cies (like suspend or forget the client the least engaged) are not necessarily
compatible with some analysis methods.

It is clear that once these three policies are defined, the stochastic process
is fully détermined. So we now focus on the distributions for transition delays.
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3.2. Stochastic Petri nets with exponential distributions

In the basic model [FLO 85, MOL 81] every transition (t) has an exponential
distribution with rate w[t] (that will be denoted wk = w[tk]).

Let us examine the stochastic process generated by a stochastic Petri net
with policy single-server. Let m be some marking, t1, . . . , tk the fireable tran-
sitions from m. One fulfills that:

• the sojourn time is an exponential with rate w1 + . . . + wk

• the probability to pick ti as the next firing is equal to wi

w1+...+wk

and it is
independent from the sojourn time in the marking.

• the distribution of the remaining firing delay of ti if tj is fired is equal to
the initial distribution (absence of memory)

Otherwise stated, only the new marking determines the future behavior of the
stochastic process. Thus it is a continuous time Markov chain, isomorphic to
the reachability graph of the Petri net, whose all parameters are given by states
(i.e. the markings). This reasoning is also valid for other service policies.

If the graph is finite the formula [5] gives the transient behavior of the
net and if furthermore it has a single terminal s.c.c. then the resolution of
equation [6] provides the stationary distribution of the net.

Using the stationary distribution, other performance indices can be com-
puted as the mean throughput (number of firings per time units) of transitions
given by:

χk =
∑

m reachable

πm.services(m, tk).wk [8]

where services(m, tk) indicates the number of clients in state m served by tran-
sition tk; this number depends on the enabling degree and the service policy of
the transition.

3.3. Generalized stochastic Petri nets

Modeling an algorithm or a protocol requires to represent choices, loops
and other control structures. These actions are logical operations and have a
negligible duration w.r.t. a data transmission for instance. Modeling them by
an exponential distribution with a high rate is unsatisfactory since, on the one
hand the choice of the rate is arbitrary and on the other hand numerical com-
putations suffer from values with very different magnitude order. To overcome
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this difficulty, immediates transitions (i.e. with a distribution concentrated in
0) have been introduced. In this new model [Ajm 84], called GSPN for Gen-
eralized Stochastic Petri Net, the markings are partitioned in two categories:
the tangible markings from which no immediate transition is fireable and the
vanishing markings.

Let us examine the stochastic process generated by a GSPN from a given
marking m. If m is tangible then the process is identical to the one of a Marko-
vian SPN. Let us examine the case of a vanishing marking; there is at least
one fireable immediate transition. Almost surely the sampling of exponential
transitions is > 0. Thus the choice of the transition is done by a post-selection
between immediate transitions. Since the delay of immediate transitions is null
and the distributions of other transitions are without memory, the remaining
delay are identical to the initial delays and the state of the process only depends
on the new marking.

So this is a semi-Markovian process whose sojourn times in tangible mark-
ings follow an exponential distribution and sojourn times in vanishing markings
are null. The transition probabilities (matrix P) are obtained either from the
rates, or from parameters of post-selection.

The analysis of section 2.5.2 is applicable here. However, in this particular
case, an improvement is possible. Observe that in the stationary distribution
(see equation [7]), the vanishing markings have a null occurrence probability.
Thus one wants to eliminate them before the resolution of the embedded chain.
To this aim, one considers the process as a Markovian regenerative process
whose regenerative states are the tangible markings. We need to compute the
transition probabilities between regenerative states. So we decompose matrix
P in sub-matrices:

• PV V , transitions between vanishing markings

• PTT , transitions between tangible markings

• PV T , transitions from vanishing markings to tangible markings

• PTV , transitions from tangible markings to vanishing markings

Reasoning on the number of encountered vanishing markings, when going from
a tangible marking to another tangible marking, one checks that the new tran-
sition matrix (P′) is given by:

P′ = PTT +

∞
∑

n=0

PTV .(PV V )n.PV T = PTT + PTV .(IdV V −PV V )−1.PV T

where IdV V is the identity matrix on vanishing markings.
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If IdV V −PV V is not invertible, it means a pathological behaviour (i.e. a
non null probability to infinitely remain in the vanishing states). Otherwise
the two expressions can be used to compute P′.

This kind of elimination of vanishing states is applicable to more general
models (e.g. deterministic SPNs) under some hypotheses.

The GSPN model is the one that has yielded the greater number of speci-
fications and analyses of systems [Ajm 95]. Tool GreatSPN [CHI 95] has con-
tributed to its expansion. Observing that these analyses are based on a finite
reachability graph, several extensions have been introduced: inhibitor arcs,
guards on transitions, rates depending on the current marking (called func-
tional dependencies), etc. When we will mention the consequences of these
extensions on the more elaborated methods.

3.4. Deterministic stochastic Petri nets

If the exponential distributions are appropriate for modeling events whose
temporal distribution is unknown, some operations have a duration included
in a time interval or even assimilable to a constant. In this case, the choice
of an exponential distribution leads to very approximative results. So an ex-
tension of the GSPN model including deterministic transitions has been intro-
duced [Ajm 87, LIN 98].

These nets are usually called Deterministic stochastic Petri nets (DSPN) .
Several variations have been successively proposed for covering different situa-
tions. Here we only describe a basic version in order to more easily explain the
stochastic process. We exclude immediate transitions since their handling is
performed by the technique of the previous section. We also forbid functional
dependencies: in particular rates of exponential transitions and delays of deter-
ministic transitions are independent of the current marking. The net executes
with single-server and enabling-memory PRD policies. The main hypothesis is
that at any time at most one deterministic transition is fireable. which restricts
the application area of this model. Recent works do not rely on this hypothesis
at the price of increasing complexity.

Different methods have been proposed for the analysis of these nets [GER 99,
LIN 98, LIN 99]. We present such a method whose efficiency has been experi-
mentally proved. Let us examine the stochastic process generated by the net.
Wa can characterize regenerative points:

• Every time that the process reaches a marking where no deterministic
transition is fireable, the future of the process only depends on the mark-
ing.
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• Every time that the process fires a deterministic transition and that a
deterministic transition tk is then fireable, the future of the process only
depends on the marking since the firing delay of tk is the initial delay,
denoted dk.

• Every time that the process fires a exponential transition and that a
deterministic transition tk is then fireable, the future of the process only
depends on the marking since the firing delay of tk is the initial delay,
denoted dk.

Be careful: in the last two cases, the regenerative point is characterized both
by the reached marking and by the conditions of the firing since the same
making can be reached by a firing that does not lead to a regenerative point.
To distinguish regenerative points from markings, we note mr, the regenerative
point associated with a marking m and mc a state reached with marking m
and which is not a regenerative point.

Let us compute the parameters of the process behavior between two regen-
erative points in order to apply the results of section 2.5. Observe that when
on enters a regenerative point, one fires a sequence of exponential transitions
possibly ended by a firing of the active deterministic transition. For the first
kind of regenerative point, every firing leads to a new point. The parameters
of the behavior are thus given by the rates of the fireable transitions.

For the other kinds of regenerative points (mr), the firing of exponential
transitions corresponds to the evolution of a Markov chain whose states are
some mc

i and which ends by:

• either the firing of the deterministic transition dk t.u. later,

• either the firing of an exponential transition at most dk t.u. later that
leads to mr

j .

Let us call Cmr the Markov chain composed by mc (considered as initial state)
and these mc

i and mr
j (these last ones being without successors in the chain).

Let us note Qmr its infinitesimal generator which is directly obtained by the
rates of exponential transitions. One says that this is a subordinated chain. π

mr

t

is the distribution at instant t of this chain knowing that the initial distribution
π

mr

0 is concentrated in mc. Let us recall that π
mr

t = π
mr

0 .et.Qmr

The transition probabilities between regenerative points (matrix P) are de-
duced from the state of this chain at instant dk :

P[mr, mr
1] = π

mr

dk
[mr

1] +
∑

m2[tk>m1

π
mr

dk
[mc

2]
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which means that mr
1 has been the first regenerative point reached no later

than dk or that no regenerative point has been reached before dk and then that
the firing of the deterministic transition has led to m1. The mean sojourn time
in a marking before reaching the new regenerative point is given by:

sojournmr (m1) =

∫ dk

0

π
mr

t [mc
1]dt

To efficiently perform these computations, different techniques are possi-
ble [JEN 53, GRO 84]. However this resolution is most time and space expen-
sive than the one of GSPNs.

3.5. Phase-type stochastic Petri nets

A phase-type distribution [NEU 81] is defined by a Markov chain with an
absorbing state (i.e. without successor) and an initial distribution. If F denotes
the distribution then F (t) is the probability to be in the absorbing state at time
t. Using 2.3.2, F is a probability distribution iff the absorbing state is the single
terminal s.c.c. of the graph associated with the chain. In this case, F is defined
by equation [5]. The states of the chaine (except the last one) are called stages.

It has been established that in some sense, every distribution is a limit of
phase-type distributions [COX 55]. For instance, an exponential distribution
is a phase-type distribution with a single stage and an immediate distribution
is a phase-type distribution without stage. A deterministic distribution with
duration d is approximated by a distribution with n consecutive stages whose
rate is n

d
.

So the phase-type stochastic Petri nets (PH-SPN) have a great expressive
power. However, such a net generates a stochastic processus of the same kind
as the one of GSPN. Indeed, the sampling of a phase-type distribution can be
seen as a random sampling of the choice of the first stage, a sampling of the
exponential distribution of the stage, a new random sampling of the choice of
the next stage, etc. until one reaches the absorbing state. So, rather than
considering transition firings as the events of the SED, one selects a more ele-
mentary step: the stage change of the distributions. This requires to complete
the state of the SED. A state is defined by:

• a marking,

• for every transition, a descriptor which includes a sequence of samplings
not yet used to fire the transition. For every sampling, one memorizes its
current stage. If the transition works with the enabling memory policy,
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the number of firings is exactly the number of services offered by the
transition. If it works with the age memory policy, this number can be
greater since one takes into account the suspended services.

Every step that reaches an absorbing state is an external transition since it
updates the marking. The new descriptor is computed w.r.t. the different
policies of the net. The internal transitions let the marking unchanged and in
the descriptor a single sampling is updated.

One builds the semi-Markovian process as a reachability graph starting from
the initial state and firing the internal and external transitions. More elaborate
constructions are possible by noting that, for instance, some markings lead to
the same set of descriptors.

However the problem is the number of states of this process which has the
same magnitude order as the product of the size of the reachability space and of
the number of descriptors. We will see in the following chapters how to obtain
the stationary probabilities of the net without building the process.

4. Some standard analysis methods

4.1. Research of a product form

We describe this method in the framework of exponential SPNs through an
example in order to illustrate its principles without entering the algorithmic
details.

pt1 ,  w1 t2 ,  w2

Figure 2: Modeling of a queue by a Petri net

Let us look at the net of figure 2, which models a queue. The steady-state
distribution of this (unbounded) net is given by (for w1 < w2) :

π[n.p] =

(

1−
w1

w2

)

.

(

w1

w2

)n

In this equation, we observe that the marking n of the place appears as exponent
in the distribution.
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p1

p4

p2

p5

p3

t1 ,  w1 t2 ,  w2

t4 ,  w4

t3 ,  w3

t5 ,  w5

Figure 3: A Petri net with a product form

So the first idea is to generalize this formula as a product whose terms are
expressions obtained from the rates of k′ transitions and whose exponents are
markings of k places.

π[

k
∑

i=1

ni.pi] =
1

G
.

k
∏

i=1

(fi(w1, ..., wk′ ))ni

G, the normalizing constant, is defined as the sum over the set of reachable
markings, of products occurring in the right hand term of the equation.

Let us examine the net of figure 3. One observes that the transitions can
be partitioned in two subsets Ta = {t1, t2, t3} and Tb = {t4, t5}. Inside every
subset, preconditions of a transition are postconditions of another one and vice
versa. For instance, from marking m one can fire t1, iff m is obtained by firing
t3 from another marking. Let us note Qa (resp. Qb ) matrix Q where all rates
are cancelled except those of Ta (resp. Tb), Q = Qa + Qb.

The second idea is to substitute equation X.Q = 0 by two equations X.Qa =
0 and X.Qb = 0. Solving these two systems is not equivalent but a solution
of the second system provides a solution of the first system. In this context,
the first system is called global balance equations and the second one is called
local balance equations.

Combining these two ideas, we look for a product form as follows:

π(m) =
1

G
.f1(m).f2(m)

where f1 (which depends on w1, w2, w3) is unchanged by a firing in Tb and f2

(which depends on w4, w5) is unchanged by a firing in Ta. Assume that this
form exists and detail a local balance equation.

∑

m′[t′>m, t′∈Ta

1

G
.f1(m

′).f2(m
′).w[t′] =

∑

m[t′′>m′′, t′′∈Ta

1

G
.f1(m).f2(m).w[t′′]
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Since f2(m) = f2(m
′), the equation is equivalent to:

∑

m′[t′>m, t′∈Ta

f1(m
′).w[t′] =

∑

m[t′′>m′′, t′′∈Ta

f1(m).w[t′′] [9]

The main difficulty to obtain a solution is the constraint that f1 is un-
changed by a firing in Tb. In the example, markings of p2 and p3 are unchanged
by a firing in Tb and those of p4 and p5 are unchanged by a firing in Ta.

So we write:

f1(m) = (w1)
a1.m(p2)+b1.m(p3).(w2)

a2.m(p2)+b2.m(p3).(w3)
a3.m(p2)+b3.m(p3)

Let us recall that from m:

• one fires t1 iff m is reached by a firing of t3

• one fires t2 iff m is reached by a firing of t1

• one fires t3 iff m is reached by a firing of t2

Equalizing these terms in equation [9], leads to (after simplification):

(w1)
b1 .(w2)

b2 .(w3)
b3+1 = w1

(w1)
−a1+1.(w2)

−a2 .(w3)
−a3 = w2

(w1)
a1−b1 .(w2)

a2−b2+1.(w3)
a3−b3 = w3

The only solution (for any possible value of rates) is then:

f1(m) =

(

w1

w2

)m(p2)

.

(

w1

w3

)m(p3)

Similarly:

f2(m) =

(

w4

w5

)m(p4)

In the general case, conditions for the existence of this decomposition are ful-
filled by a subclass of nets called Product Form Stochastic Petri Net, PF-
SPN) [HEN 90]. Furthermore, [HAD 01, HAD 05] establish a necessary and
sufficient condition fully structural that such a net admits a product form what-
ever its stochastic parameters. It remains a last difficulty. If the computation
of the normalizing constant is naively performed, this requires to enumerate
reachable states. So it reduces the interest of the method. Fortunately, the
presence of invariants characterizing the reachability space greatly simplifies
this computation [SER 93].

To conclude, methods based on product form have a weak computational
complexity but they are applicable on models whose components have simple
synchronizations.



24 Petri Nets

4.2. Bound computations

The stochastic bounds that we state here are valid for every distribution
(with finite mean) of transition delays [CHI 93]. They only rely on the exis-
tence of a steady-state distribution of markings and on steady-state throughput
of transitions. Hence these bounds are valid for all nets presented in this chap-
ter including the nets with an infinite state space. On the other hand, these
bounds will be accurate when the performance measures are insensible (i.e.
only depend on the mean of distributions) or weakly sensible. This analy-
sis is extended in [LIU 95] where the author inserts constraints related to the
variance of distributions.

The general idea is:

• to represent the performance indices by variables,

• to establish linear constraints between variables,

• to maximize or minimize, with linear programming, a linear function of
variables (that represents performance index to be evaluated) submitted
to the previous constraints.

Numerous algorithms are possible for this last step among them the more ef-
ficient ones perform in polynomial time w.r.t. the size of constraints [NEM 89].
So we only describe the first two points.

For every place p, variable mp denotes the mean marking of p. For every
transition t, variable χt denotes the mean throughput of t. At last, variable σt

is the number of occurrences of t in a pseudo firing sequence since this number
is not necessarily an integer. These variables occur in the constraint but not
in the function to be optimized.

The first constraint is defined by:

∀p, ∀t, mp ≥ 0, χt ≥ 0, σt ≥ 0

The mean marking m is a mean, weighted par π, of reachable markings m,
every marking being reached by a sequence σm (with occurrence vector −→σ m)
from m0. Consequently:

m = m0 +
∑

m reachable

πm.(Post[p, t]−Pre[p, t]).−→σ m

The second term is the product of the incidence matrix by a weighted mean
of sequences that can be substituted by variables σt. This leads to the following
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constraint:
mp = m0(p) +

∑

t

(Post[p, t]−Pre[p, t]).σt

There are two other kinds of constraints: the first ones are obtained by
an analysis of the steady-state situation and the second ones by establishing
a relation related to the behavior of the process until a arbitrary instant and
studying the asymptotic behavior of this relation when time goes to infinity.
This last technique is called operational analysis .

We exhibit few examples of these two kinds of constraints. Assume that
two transitions t and t′ are simultaneously fireable or not and that the choice
probabilities between t and t′ are constant. This is the case for instance with
exponential transitions whose rates are constant and that follow a single-server
policy. Let us note rt and rt′ these probabilities. Obviously:

χt

rt

=
χt′

rt′

Since the steady-state distribution of the marking exists, the input flows of
a place must be equal to the output flows. Consequently:

∀p,
∑

t

Pre[p, t].χt =
∑

t

Post[p, t].χt

Let t be a transition with mean delay 1
wt

, working with infinite-server policy
and having only a single input arc labelled by 1 and connected to place p which
has only t as output. Observe the process between 0 and θ. Let mp(s) denote
the number of tokens at time s, let mp(θ) the mean number of tokens between
0 and θ :

mp(θ) =
1

θ

∫ θ

0

mp(s)ds

Let us introduce V (θ) the sum of sojourn time of tokens in p that are consumed
before θ and U(θ) the sum of sojourn time of tokens in p that are produced
before θ or present in the initial marking.

To establish a relation between these quantities, assume that the tokens
client of the transition pay a uniform cost with rate 1: otherwise stated a token
present in an interval with length ds pays ds euros. If tokens arrived before θ

pay their presence until time θ,
∫ θ

0
mp(s)ds is the amount that the transition

has won between 0 et θ. If the tokens arrived before θ pay their presence when
they leave, V (θ) is the amount that the transition has won between 0 et θ. If
the tokens arrived before θ pay their presence when they arrive, U(θ) is the
amount that the transition has won between 0 et θ. Consequently:

V (θ) ≤ θ.mp(θ) ≤ U(θ) ⇔
V (θ)

θ
≤ mp(θ) ≤

U(θ)

θ
[10]
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Let us analyze the asymptotic behavior. Let N(θ) be the number of tokens
arrived between 0 et θ. Since the net has a steady-state distribution, the input
flow of p is equal to the output flow.

lim
θ→∞

N(θ)

θ
= χt

Since there is a steady-state distribution of the marking,

lim
θ→∞

mp(θ) = mp

Furthermore every token has a sojourn time equal to the firing delay of the
transition. Let us call dn the sojourn time of the nth token. Using the law of
great numbers:

lim
n→∞

∑n

i=1 di

n
=

1

wt

Let us establish a relation between these quantities.

χt

wt

= lim
θ→∞

(

N(θ)

θ

)

.

(

∑N(θ)
i=1 di

N(θ)

)

= lim
θ→∞

U(θ)

θ

Using an analytical reasoning [STI 74] one proves that:

lim
θ→∞

U(θ)

θ
= lim

θ→∞

V (θ)

θ

Passing to the limit, equation [10] provides another constraint:

χt

wt

= mp

This constraint is a variation of Little formula. Let us remark that the
bound computation has also been applied to stochastic well-formed nets, since
symmetries of the model ease specification of constraints.

4.3. Approximation methods

4.3.1. Approximation by decomposition

Here we are interested in a subclass of SPNs called Stochastic Marked Graph,
SMG whose underlying net is an event graph (c.f. chapter 3). This class
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is often used for modeling product flows like for instance in manufacturing
systems [SIL 97, VAL 97].

In these nets, every place is output of a single transition and input of a
single transition. Moreover the net, viewed like a graph, is strongly connected.
We assume that the net works with an infinite-server policy. There are similar
methods for the other policies.

All throughputs of transitions in steady-state behavior (i.e. the number of
firings per time unit) are equal. Indeed, a path links every pair of transitions
(t1, t2) and the (new) tokens in this path are produced by t1 and consumed by
t2. If the throughput of t1 would be greater than the one of t2, the number of
tokens would infinitely grow which is impossible since this number is bounded
by the initial number of tokens of a circuit including this path. By symmetry,
one deduces that the throughput of t1 is equal to the one of t2. So we can say
that the net has a throughput. To compute the throughput of the net, one can
establish the steady-state distribution of the net, pick a transition and apply
formula [8].

The goal of the approximation by decomposition is to substitute to the
construction of the reachability graph of the net, the construction of graphs
for subnets obtained by decomposition [CAM 94]. Indeed, for appropriate de-
compositions, the size of the whole graph has the same magnitude order as the
product of sizes of the graphs of the subnets. The algorithm includes two steps:

• the decomposition in subnets,

• the approximate computation of the throughput.

In order to obtain a decomposition, one chooses a set of places called a cut
which partitions the net in two connected components. This choice must be
guided by the behaviour of the system. As a general rule, one wants to minimize
the size of the cut. In the figure 4, the cut is the set of places pa, pb et pc.
Let R1 and R2 the two subnets; each one consists in a connected component,
the cut and transitions connected to the cut. To complete these nets, places
p61, p62 and p43 are added to the subnets. Every such place corresponds to a
pair of transitions at the boundary of a subnet. For instance, p61 corresponds
to pair (t6, t1).

Places p61, p62 (resp. p43) represent an abstraction of the first (resp. second)
component. The initial marking of p61 is defined as the minimum of the marking
of a path from t6 to t1 in this component. We apply the same process for the
other places.

Net R12 constitutes a full abstraction of the initial net. Due to the struc-
tural properties of event graphs, all these abstractions do not modify languages
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R 12
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Figure 4: Décomposition and abstraction of a stochastic event graph
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(omitting the transitions that do not occur in the abstraction) and the set of
reachable markings (omitting the places that do not occur in the abstraction).

The computation of the throughput of the net is performed iteratively. We
explain it on the example. The rate of t3 in net R1 will be updated at the
beginning of each stage in order to express the activity of the other component.
We do it similarly for rates of t1 and t2 in R2. One initially selects a rate for
t3 in R1, for instance its value in R. Then each stage includes four steps:

• using the steady-state distribution, one computes the throughput of net
R1, denoted χ1, and the mean marking of p61 and p62. Observe that
these mean markings are proportional to the service time of t1 and t2 for
these places (i.e. the mean time to consume a token of p61 et p62) since
the production is simultaneous and that we have chosen an infinite-server
policy.

• the ratio of rates of t1 and t2 in R2 is now determined by the previous step.
It remains to compute the scaling factor. This is done in R12 where for
different values of this factor, one computes the steady state distribution
and the throughput of the net in order to be as close as possible as χ1.
The graph of R12 has a very small size. Hence this step has a reasonnable
complexity.

• the third step is symmetrical w.r.t. the first step. One computes the
throughput χ2 of R2 with rates of t1 and t2 obtained by the previous
step. In this example, since t3 is the single transition which leads from
R2 to R1, the computation of ratios is useless.

• one examines again net R12 to compute the rate of t3 to be used in R1.
One tries different values in order that the throughput of R12 is as close
as possible of χ2.

One finishes the iterations when values χ1 are χ2 enough close that one can
assume that they correspond to the throughput of net R. There is no theoreti-
cal guarantee for convergence, neither for the precision of the result. This lack
of guarantee usually holds for almost all approximation methods. However,
experimentations show a very fast convergence (less than 10 iterations) and an
error less than 1%. These good results are surely due to the fact that the quan-
titative approximation is based on an appropriate functionnal decomposition.

4.3.2. Approximation by mean values

This analysis is applicable a priori on any kind of Petri nets although the
tools are limited to uniform, exponential, deterministic distributions and some
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of their combinations. We present it for transitions working with single-server
and enabled memory PRD policies.

The method is based on the construction of a graph called
probabilistic state graph [JUA 91]. Every vertex of the graph includes a marking
and distributions associated with every transition. the initial vertex includes
the initial marking and the specified distributions.

One determines the fireable transitions {tk}k∈K and one computes the prob-
ability to fire every transition. In the sequel, we assume that the distributions
are continuous. It is equivalent to compute the probability that the sampling
of every transition is the smallest one and this is expressed by the following
formula:

Pr(tk fired) =

∫ ∞

0

∏

k′ 6=k

(1− Fk′ (s))Fk{ds}

where Fk is the distribution associated with tk. In the general case of discon-
tinuous distributions, one must include the parameters of post-selection which
complicates the expressions but does not change the principle of the method.

The mean sojourn time in the vertex is similarly expressed by the formula:
∫ ∞

0

∏

k∈K

(1− Fk(s))ds

One builds a successor per possible transition firing. Her is the approxima-
tion since one considers that the transition is fired after a deterministic time
that is computed by:

θk =
1

Pr(tk fired)

∫ ∞

0

s.
∏

k′ 6=k

(1− Fk′ (s))Fk{ds}

The random variable has been substituted by its mean. The new distribu-
tion of a transition still fireable is:

F ′
k′ (t) =

Fk′ (t + θk)− Fk′ (θk)

1− Fk′(θk)

The other distributions are the initial distributions. If the reachability graph
and the intermediate distributions are finite, then the probabilistic state graph
is finite. There exist sufficient conditions on the Petri net for this property.
In case the graph is infinite, a stopping mechanism for cutting branches is in-
troduced which takes into account branching probabilities to eliminate vertices
supposed to be reached with a weak probability.

This graph is now viewed like a regenerative process specified by the branch-
ing probabilities and the sojourn times. The resolution is performed as indi-
cated in section 2.5.1.
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Unfortunately it is difficult to establish criteria which ensure a good approx-
imation. For instance, numerous uniform distributions diminish the accurate-
ness of the approximation. Furthermore, some reachable states can be missed
by the construction even without the stopping mechanism.

4.4. Unbounded Petri nets

Until now, most of the methods that we have presented apply to bounded
nets. We end this chapter by an exact method applicable to infinite state
systems [FLO 89, HAV 95]. Here we only study SPNs but this analysis is also
applicable (with some adaptations) to GSPNs and even to PH-SPNs. When
the nets have a single unbounded place p, it is possible to compute the steady-
state distribution with additional weak constraints (other conditions are also
possible):

• Arcs connected to place p are labelled by 1.

• Two arbitrary values of m(p) greater than some threshold k0 yield the
same transition rates and the same firing conditions in the possible func-
tional dependencies.

In that case, reachable markings are partitioned depending on the marking
of p in a family {Sk}

∞
k=0 where Sk is the subset of reachable markings such

m(p) = k. The constraints imply that from Sk, either one reaches Sk−1, Sk+1

or one remains in Sk. Also, if m(p) > k0, place p has no more effect on the
behavior of the net. So matrix Q of the infinitesimal generator of the net
presents beyond k0 regularities that are expressed by the existence of three
matrices:

• A0 is the transition submatrix from Sk to Sk+1

• A1 is the transition submatrix from Sk to Sk

• A2 is the transition submatrix from Sk vers Sk−1

Assume that the chain is irreducible and ergodic with a steady-state distri-
bution π and note πk the distribution over states Sk. The equilibrium equation
can be rewritten for k > k0:

πk.A0 + πk+1.A1 + πk+2.A2 = 0

We want to establish a recurrence between πk and πk+1. Using the structure
of Q, A1 is invertible and −A−1

1 is a positive matrix. Consequently :

πk+1 + πk.A0.A
−1
1 = −πk+2.A2A

−1
1 ≥ 0
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One improves this relation by defining a sequence of increasing matrices:

R0 = −A0.A
−1
1 et Rn+1 = −(A0 + (Rn)2.A2).A

−1
1

One shows by recurrence that the left hand term below remain positive (and
decreases since the Rn are increasing). Indeed:

πk+1 −πk.Rn+1 = πk+1 + πk.A0.A
−1
1 + πk.(Rn)2.A2.A

−1
1

= −(πk+2 −πk.(Rn)2).A2A
−1
1

= −(πk+2 −πk+1.Rn + (πk+1 −πk.Rn).Rn).A2A
−1
1 ≥ 0

Since every component of πk is non null, matrices Rn are bounded and the
sequence converges to a matrix R which fulfills (by passing to the limit) :

πk+1 −πk.R ≥ 0 pour k > k0 [11]

R = −(A0 + R2.A2).A
−1
1 [12]

Let us define a vector π
′ by:

∀ k ≤ k0, π
′
k = πk et ∀ k > k0, π

′
k = πk0+1.R

(k−k0−1)

Then, using equation [12], this vector is solution of equation X.Q = 0 and
using equation [11], it is smaller or equal than π component per component.
Hence the sum of its components is finite. Normalizing it (i.e. dividing it by
this sum), one obtains π

′′ a distribution solution. But the distribution solution
is unique. So π = π

′′ = π
′.

The normalizing equation can be written as:

k0
∑

k=0

πk.1T +
∞
∑

k=k0+1

πk0+1.R
(k−k0−1).1T =

k0
∑

k=0

πk.1T +πk0+1.(Id−R)−1.1T = 1

Once matrix R (e.g. by approximating it with Rn for large n) and (Id −
R)−1 are computed, we proceed to a linear resolution in a finite space. The
system to be solved is X.Q = 0, reduced to states of {Sk}k≤k0+1 and completed
by the normalisazing equation [HAV 98].

This procedure has also been successfully employed to approximate finite
systems where a place reaches huge values. The threshold k0 is often much
smaller than the bound of the place. If furthermore the system fulfills a set
of conditions for quasi-reversibility [KEL 79], this approximation becomes an
exact result [HAV 93].
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5. Conclusion

Stochastic Petri nets have been initially introduced as another formalism
to represent stochastic DES with exponential distributions. Along the thirty
last years, the modeling needs have led to extend this model to more gen-
eral distributions (deterministic, phase type, arbitrary) including null delay.
These extensions generate families of SPNs whose properties depend on multi-
ple choices, sometimes subtle, related to the stochastic semantic of the model.
Most of these nets generate stochastic processes that are renewing processes.
Furthermore research has also developed appropriate analysis methods for these
processes. Some of them adapt results obtained in the queuing network theory.
However most of them, are partly based on structural properties related to the
ordinary nets. The two next chapters present two characteristic examples of
such approaches: the stochastic well formed nets and the tensorial methods for
SPNs.
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