Chapter x
Verification of specific properties

Serge HADDAD , Francois VERNADAT!

1. Introduction

In the previous chapter of this book of the Petri nets [DIA 01], we studied
the checking of generic properties of Petri nets such as boundness or liveness
[HV 01]. If these properties inform the designer about the general behavior of
the net, those must be supplemented by the analysis of the specific properties
of the modelled system. Also we lean in this chapter on the expression and the
checking of specific properties of the Petri nets.

Generally, the designer of an application defines the functions and/or the
services of this one through a specification. Once its modelled application, it
wishes to check that its model conforms to the specification. In order to develop
algorithms and tools for this checking, it is necessary to formalize the concept
of specification. Two possibilities were largely studied with this goal : either
the specification is defined by a set of formulas of an adequate logic, or the
specification is defined using a model of behavior. We will thus explore these
two ways which in practice are complementaries : certain properties will be
expressed more easily using formulas and others more easily using a behavior.
To fix the ideas, let us consider a simplified example of ressource allocation
in mutual exclusion : 2 customers are in competition to reach a resource. The
access control policy is ensured by a mechanism whose we will make abstraction.

118V, Ecole Normale Supérieure de Cachan 61, avenue du Président Wilson 94235 CA-
CHAN Cedex - France (haddad@Isv.ens-cachan.fr)

LAAS-CNRS, 7, Avenue du Colonel Roche F-31077 Toulouse cedex, (fran-
cois.vernadat@laas.fr)

2 Petri Nets

Among the properties to be checked, we must express the property of mutual
exclusion : P1 "the resource is used with more by one customer”, and by analogy
with the problems of the philosophers, which one generally names the absence
of starvation : P2 A customer awaiting the resource will obtain it in a finite
time ”. One wants to also be able to specify the operation of a customer and to
express P3 “the customer sends initially a request to obtain the resource (A),
that it receives then an agreement of use (b) and that finally (c) it sends a
message of release before turning over in its initial state”.

P1 and P2 will be expressed simply using formulas of temporal logics while
P3 will be expressed in a more compact way using a behavior such as that
represented on the left of the figure 1.

A contrario, P1 will be expressed only one very indirect by the behavior
represented on the straight lines of the figure 1 : between does two consecu-
tive entries in critical section (event ? Ack), is inevitably the exit of the only

customer present in critical section (event ! Rel).

! Req ! Rely 7 Acks
~ ~ ~
‘ Wait AN Q
(? Ack; ! Rely
! Rel 7 Ack
Workl—"

Figure 1: Examples of behavioural specifications

A logic ready to reason on the behavior of dynamic systems to discrete
events must necessarily integrate the concept of sequence of states (finished
or infinite) correspondent into a possible execution. Moreover it must be able
to express properties of safety like “To more the one process in the course of
execution of a critical section, in any state of the sequence” (cf P1), of the
properties of liveness like “If in a state, a process requires to carry out a a
critical section then in a future state this process will carry out this critical
section” (cf P2) and of the properties of equity as “Any process able to be
carried out in an infinity of states will be chosen by the scheduler an infinity
of time”. The key concept is here the time seen like a discrete succession of
moments and logics which integrate this concept are called underline logical
temporal.

These logics are distinguished according to two axes. Parallelism and/or the
non-determinism imply the existence of various executions of the same system
and require their simultaneous taking into account. Then :

Chapter x 3

— the whole of the executions is represented as a tree where the various
successors of a state are obtained by the possible instances of events in
this state. One then speaks about branching logical temporal.
the whole of the executions may be also represented as a set of execution
sequences. One then speaks about linear logical temporal.

The second axis relates to the elements of the sequence.
— We can consider a sequence of states characterized by a their set of atomic
propositions. One then speaks about state-based temporal logic.
We can also consider a sequence of elementary transitions, each one la-
belled by an event. One then speaks about event-based temporal logic.

Also in the first part, we will introduce the syntax and the semantics of
a propositional branching time logic called C7L*. We will present two very
studied fragments of them C7 L and L7 £. We will show then how to carry out
the checking of formulas on finite states models.

We will complete this section by indicating the adaptations to be taken
into account within the framework of the Petri nets. The principal point is
to consider in a suitable way the various types of sequence of firing (finished,
maximum finished or infinite).

After having seen the logical approach for the checking, we will be interested
in the “behavioral” approach. The logical approach is sometimes described as
“double model” in the sense where one has a logic for to specify the properties
to be checked and of one structure which represents the behavior of the system
(the “Kripke’structure” which is defined by the reachable markings graph in
the case of a system describes by a Petri net). At the opposite, the behavioral
approach is sometimes described as “simple model” in the sense where we only
dispose of a single structure, a "labelled transitions system” (a structure close
to the the reachable markings graph for Petri Nets. This one makes it possible
to represent at the same time the behavior system and its specification.

The behavioral approach proceeds by comparison. Using various relations of
equivalences or pre-orders, two are compared behaviours : those satisfy the same
properties if and only if they are equivalent. Various behavioural equivalences
have been introduced to take in account several classes of properties or, in an
equivalent way, several points of view to consider when a system is analyzed.
Among these different point of view, we will find the taking into account of
parallelism and non-determinism. As for temporal logics, we will be brought to
distinguish two great families from relations of behavioural equivalences : the
family of the “equivalences of traces” which consider the execution of a system
through the set of its sequences of execution (cf linear temporal logics) and the
family of “bisimulations” which consider the execution of a system through its
"tree” of execution (cf branching time temporal logics). For these two families,
one can also be brought to privilege the "states” of an execution (cf state-based

4 Petri Nets

temporal logics) or the events which constitute the execution (cf event-based
temporal logics).

A first section will enable us to introduce in an unformal way various possible
points of view when the behavior of two systems is compared. The second
section will present the concept of bisimulation and simulation. The associated
procedures of decision will be presented. The third part will present “weak”
equivalences which make it possible to compare systems described at various
levels of abstraction. The last section will attempt to show the links between
the behavioral approach and the logical approach : we will present logic HML
[HM 85] which gives a modal characterization of the bisimulation. relation.
In the other direction, we will have the results of [BCG 91] which gives a
behavioural characterization of temporal logic CT L*.

In the last part, we will analyze the decidability of the evaluation of for-
mulas of temporal logic on a Petri net and the test of bisimulation of a net
marked with a labelled transitions system. More precisely, we will establish as
within the framework of a propositional temporal logic, the evaluation is un-
decidable as well for the fragment C7 L as for the fragment 1tl. This result
also holds for event-based arborescent logic. In these three cases, the formulas
used require only one number very limited temporal operators what indicates
the robustness of the result (see for example [ESP 98]). While being based on
similar arguments, one will show that the test of bisimulation of two marked
nets is also undecidable [JAN 95].

Contrary for an event-based linear logic temporal very expressive (the li-
near p-calcul), the evaluation of formulas remains decidable [ESP 97]. In the
case of maximal sequences, the procedure is based on the decidability of the
reachability [MAY 84] while for the infinite sequences, one is reduced to the
technique shorter sequences seen to chapter 4 of the first treating volume of
the Petri nets [HAD 01] or also used in [RAC 78, YEN 92|. Finally the test of
bisimulation of a marked net and a finite transitions system becomes decidable
(here still using the test of accessibility) [JAN 99]. This result is all the more
interesting as very often the specification of a service is given by such a system
and the validation consists in comparing this specification with the Petri net
who implements it.

2. Kripke’s Structures and transitions systems

The labelled Kripke’s structures describe in a sufficiently generic way the
behavior of the systems which one wishes to study. Those consist of a set of
states for which certain propositions are checked and of a set of binary relations
between states, subscripted by the events of the system.

Chapter x 5

Definition 1 A labelled Kripke’s structure LIS = (AP, %, 5,{-% }aes, V) is
defined by :
AP is a set of atomic proposals
Y. is a finite alphabet of events
- S is a set of states
- %, is a binary relation C S x S
v : S — 247 is a labelling which associates in each state, v(S) the set of
the atomic propositions holding in s.

When one studies a structure of Kripke labelled, one considers it generally
provided with an initial state so what one notes by (SKE,sg). When one
disregards event, one then has business with a structure of Kripke. Contrary, if
one disregards atomic proposal, one speaks about system to transitions labelled.
The two following definitions formalize these concepts.

Definition 2 A structure of Kripke KS = (AP, S, —,v) is defined by :
— AP is a set of atomic proposals
- S is a set of states
— 18 a binary relation C S x S
v : S — 247 js a labelling which associates in each state, v(S) the whole
of the atomic propositions holding in s.

Definition 3 A labelled transitions system LTS = (2,5, {5} aex) is defined
by :
- X is a finite alphabet of events
- S is a set of states
2, 1s a binary relation C S x S

Thereafter, we will note s % s’ to indicate that (s,a,s’) € S x ¥ x S. By
abuse notation, we will also note for ¢ € ¥* : s 5 s to indicate that s is
accessible starting from s via the sequence from actions (the word) o.

the systems which we consider being able to be not-determinists, we will note
forsc SSECSandacey @ s S EcE={secS : s>}

a
We will note finally s /4, to indicate that s does not have a successor by the
action a and s /4 to indicate that s does not have any successor (i.e., constitutes
a state of blocking).

These structures can they be also initialized.

6 Petri Nets

3. Temporal Logic

3.1. Syntax and Semantics

Since one wishes to check dynamic systems with discrete events, let us ex-
press what is common to all these systems : states and the reachability relation
between states. As example, a state of a distributed application is characterized
by the state of the processes (value of the variables, instruction counter, ...)
and the state of the environment (e.g messages of the channels). In front of
the diversity of the possible representations, one will be satisfied of a largely
sufficient abstraction in the majority of the cases to knowing a set of atomic
proposals (noted P,@Q,...). Starting from a given state, the relation of succes-
sion induces a set (generally infinite) of sequences of states begin with this
state, still called paths in the terminology of temporal logic. Also propositional
arborescent logic that we will study CTL* defines it inductively by a syntax
of formulas of state and of path [EME 96].

Definition 4 (Syntax of CTL*) Let AP be a set of atomic proposition, then
the formulas of CT L™ are defined by the following rules :

S1 Each atomic proposition P is a state formula.

S2 If f and g are state formulas then f AND g and NOT f are state
formulas.

S8 If f is a path formula then E f and A f are state formulas.
P1 Each formula of state is a path formula.

P2 If f and g are path formulas then f AND g and NOT f are path for-
mulas.

P3 If f and g are formulas of way then X f and f U g is formulas of way.

Only the rules S$3, P1 and P3 require explanations. One wishes to reason on
the sequences resulting from a state. Thus E f is checked if starting from this
state there exists a sequence which checks f. A f is checked if starting from this
state all the sequences check f. If f is a formula of state then f also interprets
as a formula of way which is evaluated on the first state of the sequence. X
f (X for “next”) consists in evaluating f on the private under-sequence of the
first state. Finally f U ¢ (U for “until”) is checked if there exists a suffix
of the sequence for which g is checked and such as all the preceding suffixes
(including the initial sequence) check f. In other words, f remains checked
until g is checked and g will be it. We formalize now the semantics of CT L* by
introducing the concept of model and satisfaction of formula by a model.

Chapter x 7

Definition 5 (Model of CTL*) A model of CT L"is a Kripke’s structure KS =
(AP, S,—,v) such as — is a total binary relation : VS € S,3T € S such as
s—1

Traditionally temporal logic reasons on infinite sequences. Indeed, this one
is interested particularly in properties of equity which have meaning only in
this context. This explains the constraint on the relation —. Also a sequence
o = (so, $1,-..) is an infinite sequence of states such as VI € IN,s; — s;41.
We will reconsider later this constraint in the context of the Petri nets. The

sequence o' indicates the suffix of o, (s, 8;41,...) from where ¢° = 0.

Let us note AP = {NOTP | P € AP}. To simplify, we will consider in the
sequel that the labelling function v takes values in 247YAP with the obvious

constraint that :
VP, s [{P,NOT P} Nv(s)| =1 (an atomic proposition is either true or false)

Definition 6 (Semantic of CTL*) Let KS be a model, s a state of SK and
o = (so, 81, - -.) a sequence of KS, then the satisfaction of a formula of CTL" on
this model is defined par :

S1 KS,s0 |E P if and only if P € v(sp).

S2 KS,s0 = FANDy if and only if KS,so = f and KS,s0 = g¢.
KS,so = NOTY if and only if there are not KS,so = f.

S3 KS,s0 = Ef if and only if 3o resulting from s¢ such as KS,o = f.
KS,so = Af if and only if Vo resulting from sg, KS,0 = f.

P1 Is f a formula of state, KS,o = f if and only if KS,s0 E f.

P2 KS,0 = FANDy if and only if KS,o0 = [and KS,0 E g.
KS,o0 = NOTY if and only if NOT(KS,o = f).

P3 KS,o = FUg if and only if Ji such as KS,o' |= g and Vj such as
pr ¢ PROM (e.,)

In practice, CT L*is enriched by abbreviations which simplify the expression
of the properties :

(OR) f OR ¢ =NOT (NOT f AND NOT g)

(true) true = NOT P OR P

(false) false = NOT true

(F) Ff = trueUf

(G) Gf =NOT F NOT f

(W) fWg = fUg OR Gf

F f means that f will be true for a suffix of the considered sequence. G f
means that f is true for all the suffixes of the sequence considered. Contrary to

8 Petri Nets

fUg, fWg(W for“weak until”) does not imply that g is true for a suffix.
In this case, f remains true for all the suffixes. As example, GF' & F W false.

CTL* is a very expressive language. In order to obtain effective algorithms
of evaluation, one is led to restrict this language. The two most significant
restrictions are CTL and LT L.

CTL is the language formed of the syntactic rules S1, S2, S3 and PO :
PO If f and g are state formulas then X f and f U g is path formulas.

CT L is focused on the concept of state. Indeed, one can entirely describe
syntax without defining the path formulas using the four operators AX f (for
any state successor of the state considered, f holds), EXf (there is a state
successor of the state considered for which f holds), AFUyg (for any sequence
resulting from the state considered, f holds until g holds and g will be true)
and EFUyg (there exist a sequence resulting from the state considered such as
f holds until g and g will be true). The interest of CT £ lies in the fact that, on
the one hand, it is sufficiently expressive for the specification of the majority of
the usual properties and that, on the other hand, the methods of checking of the
satisfaction of a formula by a model have a complexity proportional to the size
of the model and the size of the formula. However certain properties of fairness
are not expressible in C7 L. This gap led to various extensions of the model by
operators such as AGF f (for any sequence resulting from the state considered,
f holds an infinite number of states of the sequence) which make it possible
to express usual concepts of fairness. These extensions also have methods of
verification of polynomial complexity. We left the reader to the references which
follow for more precise details on this langage [EC 81, EC 82, EH 85].

Example
The formula AG (A req U serv) expresses that starting from any state which
contains a request, in any sequence the request will be present until it is served.

LT L, the language formed of the syntactic rules S1, P1, P2 and P3 is
focused on the concept of sequence. Indeed, one can entirely describe syntax
without defining the state formulas by considering that the atomic propositions
are path formulas to be checked on the first state of the sequence.

The use of such a logic is justified when you consider the point of view of an
observer which cannot interact with the system. In this case, only the sequences
are significant One of the interests of L7 L, illustrated by the following chapters
is its applicability with partial order techniques for the reduction of complexity
of the checking. Generally a model XS is initialized by a state sy and the
satisfaction of the formulas is evaluated on K8, sg. As being given a formula
LT L path f, one will note by abuse of notation KS,sy = f to indicate
ICS, S0 ': Af

Chapter x 9

Example

The formula GF p.exec OR FG p.blog expresses that during any execution
either the process p is indefinitely blocked starting from a given state, or this
process is selected an infinity of time by the scheduler.

3.2. Methods evaluation

The objective of a method evaluation is to check if a formula is satisfied
by a particular model. In this paragraph, we treat only finite models. The
study of the verification of the infinite models such as the reachability graphs
of unbounded Petri nets will be done at the end of the chapter.

In the sequel £S will denote the model, fy the formula to be checked and
so the initial state of the model. The problem to be solved will be to determine

if]CS, S0 ': f() holds.

3.2.1. Checking of formulas CT L™

First we show that if we dispose of an evaluation method for L7 £ one can
build a method evaluation of C7 L£*. The principle of construction is relatively
simple. First First we eliminate the operator E by replacing it by the equivalent
expression NOT A NOT. Let us consider the syntactic tree of a formula of
state fo of CT L :
— a node labelled by A which does not comprise in its sub-tree this same
operator A prefix g a formula of L7 L.
We then evaluate g for all the states of the model and we create a new
proposition [AG]. This proposition is assigned to the states of the model
according to the result of the evaluation of g.

— We substitute in fy, Ag by [AG] and we iterate the process until the
disappearance of the operator A.
the formula obtained is then a formula of propositional logic which is
evaluated locally on each state.

We call “ CT L*-checks” the method of required checking and “L£7 £-checks”
the method of checking of formulas of L7 L. The text of the method is given
below.

CT L*-checks (KS, so, fo)
While 3f = Ag subformula of fy where f € LT L Do
Introduce a new atomic proposition [f]

For each state s Do
If LT L-checks (KS,S,g) Then

10 Petri Nets

add [f] to v(s)
Else
add NOT|f] to v(s)
End if
End for
Substitute [f] to f in fo
End While
// fo is now a propositional logic formula
If so = fo Then
return(TRUE) ;
If not
return (FALSE);
End if

We apply this method to the formula A(FAG P AND G AFQ) AND R :
— AGP is a formula of the required type.
— One evaluates on each state G P and one updates in consequence [AG P].
One transforms the initial formula which becomes :
A(F[AG P] AND G AF Q) AND R.
Then the formula is transformed into A(F[AGP]ANDG[AFQ])ANDR.
— the final formula is a propositional formula
[A(F[AG P] AND G| AF Q])] AND R.

3.2.2. Verification of LT L formulas

We examine now the verification of L7 £ formulas. We will proceed into
three steps :
We “normalize” the formula so as to push back the operator NOT in
front of the atomic propositions.
— We define the automata with promises which accept infinite sequences of
a model. Then we exhibit a construction of an automaton which accepts
exactly the sequences which check a given formula.
Being given an initialized model, we show how to check that this model
comprises at least a sequence accepted by a given automaton.
The verification method then consists to build the automaton associated
with NOTf; and to check that the model (KS,sp) does not comprise a se-
quence accepted by this automaton.

Normalization of a L7 £ formula

We normalize the formula using operators OR and W (“weak until”). The
normaliization of a formula f noted norm(F') pushes back the operator NOT
in front of the atomic propositions. The following equivalences are easy to check

Chapter x 11

starting from the definitions
(e.g. NOT (f U g) & (NOT g AND f) W (NOT f AND NOT y)).

norm(P) = P, norm(NOT P) = NOT P, norm(Xf) = Xnorm(f)
— —norm(f OR g) = norm(f) OR norm(g)
— —norm(f AND g) = norm(f) AND norm(g)
— —norm(fWg) = norm(f)Wnorm(g), norm(fUg) = norm(f)Unorm(g)
norm(NOT NOT f) = norm(f)
norm(NOT (f AND g)) = norm(NOT f) OR norm(NOT g)
- —norm(NOT (f OR g)) = norm(NOT f) AND norm(NOT g)
— —norm(NOT X f) = Xnorm(NOT f)
—norm(NOT (fUg)) = (norm(NOT g) AND norm(f))
W (norm((NOT f) AND norm(NOT g))
norm(NOT (fWg)) = (norm(NOT g) AND norm(f))
U(norm(NOT f) AND norm(NOT g))

Automata and £7 £ formulas

We wish to build an automaton which recognizes exactly the infinite se-
quences which check a formula (normalized) of £7 £. This automaton tries to
establish a proof based on the propositions checked by the initial state of the
sequence o and on a formula to be checked by the suffix o'. Each state thus
corresponds to a formula to check.

Let us suppose that we have to check the formula P W Q. According to
equivalence f W G < G OR (F AND X(F W G)),
either in the initial state @ holds and o' do not have a formula to check,
— or in the initial state P holds and ¢! must check again P W Q.
We thus obtain the automat represented on the figure 2.

{P}

Figure 2: Automaton recognizing P W @

A similar equivalence may be used for the aALJuntilaAl operator
fUG& GOR (FAND X (F U G)).
However this automaton accepts the sequence where P holds indefinitely and
@ never holds. The key point is that in the case of the operator U, one cannot
indefinitely choose the second alternative of the OR.. Let us note X? an operator

12 Petri Nets

who is a promise to check later an “until” formula by the first alternative of the
OR. The automaton of the formula PUQ is depicted in figure 3. The semicolon
present on the arc on the left separates the propositions to be checked and the
promises to hold.

{p}; {XPPUQ

Figure 3: An automaton recognizing P U Q

The syntax and the semantics of the automata with promises is given below

Definition 7 An automaton with promises A = (AP, Q, qo, PROM,E) is de-
fined by :
AP a finite set of atomic propositions
Q a finite set of states
- qo € Q the initial state
— Prom a finite set of promises
- FE a finite set of arcs such as fore € E
in(E) € Q indicates the source of the arc
out(E) € @Q indicates the target of the arc
— label(E) C AP U AP indicates the propositions of the arc
- prom(E) C Prom indicates the promises associated with the arc

Definition 8 Let o = (so, $1,.--,Sn,...) be an infinite sequence of model KS.
o 1is recognized by A = (AP, Q,qo, Prom,E) if and only if there is a path
(qo,€0,q1,€1,...) sucht that :

Vn,in(en) = Gn, out(en) = gnr1, label(en) C v(sy)

Vn,Vpr € prom(ey,), 3m > n such that pr ¢ prom(ep,)

A sequence which checks the first condition known as will be recognized by
the way.

We consider the construction of an automaton equivalent to a formula f. As
we saw on the examples, one transforms a formula into a disjunction of clauses
where each clause is a conjunction of atomic propositions (and negations of

Chapter x 13

propositions) and formulas to be checked on the following under-sequence. We
note ¢r(F) the transformed formula where the formulas to be checked on the
following under-sequence are replaced by propositions (noted like previously
between hooks). The operator X? is employed for the equivalence applied to
the operator “until” : he indicates a promise to hold. Here the construction
of this formula. It will be noted that the formula obtained is not presen-
ted syntactically in the form of a disjunction of conjunctive clauses. However
this syntactic transformation is obtained by applying repeatedly equivalence
f AND (g OR h) & (f AND g) OR (f AND h). This transformation will
be carried out during the construction of the automaton.

If f =P Then tr(f)=f

If f =NOT P Then tr(f) =

If f=h OR g Then tr(f) =tr(h) OR tr(g)

If f=h AND g Then tr(f) =tr(h) AND tr(g)

If f = Xg Then tr(f) = [Xg]

If f = gUh Then tr(f) = ¢tr(h) OR (tr(g) AND [X?gUR])

If f = gWh Then tr(f) =tr(h) OR (tr(g9) AND [XgWh])

The construction of the automaton proceeds as follows :
the initial state of the automaton is created and labelled with the formula
to check.

— One applies the transformation to the formula described above. Each
clause corresponds to an outgoing arc of the state. The target of the arc is
a node labelled with the conjunction of formulas of the clause prefixed by
a “next”. The arc is labelled by the atomic propositions and the promises
of the clause.

— One reiterates the process until there is no more new formula. What
necessarily arrives since each formula is a conjunction of subformulas of
the initial formula.

For reasons of simplicity, one creates beforehand the state labelled by
true which loopes on itself without proposition nor promise. This state is
not necessarily reachable from the initial state.
One will find below a more formalized description of the algorithm. We will
note Aut(F'), the automaton associated with f.

Create the state (ggrye, true)
Create the arc egrye avec in(eirue) = Qirues OUt(Etrue) = Qrrue,
etiQ(etrue) = (Z)-, prom(etrue) =0
Create the state (qo, fo)
Insert (qo, fo) in TODO
While TODO # 0 do
Extract (g, f) from TODO
Compute tr(f)
Express tr(f) in the form of a disjunction of conjunctive clauses

14 Petri Nets

/[tr(f) = ORcecn
For each clause ¢ € Cl do
// Cc = ANDiellji ANDjEJ NOT Qj ANDkeK[)ka] AND[GL[XPQZ]
If f' = ANDycx fr AND;cpg; Alti quette un Altat Then
Let (¢, f/) that state
Else
Create (¢, f")
Insert (¢, f') in TODO
End If
Create an arc e with in(e) = ¢, out(e) = ¢
etig(e) = {F;}icr U{NOT Q;}jes, prom(e) = {X’gihicr
End For
End While

Let f = QUg with ¢ = (P OR XP)WR. Alors :
tr(f) =tr(g9) OR (Q AND [X”f])
tr(g) = R OR ((P OR [XP]) AND [Xg]) = R OR (P AND [Xg]) OR ([XP] AND [Xg])

Consequently, ¢r(F) is the disjunction of 4 clauses :
R which leads at the state labelled by ¢rue (more nothing to check)
@ AND [X? f] which loops on the initial state. It is noted that the infinite
path which follows this arc is not accepted by the automaton because the
promise X” f is never held.
P AND [X G] which leads at the state labelled by g.
[X P] AND [X @] which leads at the state labelled by P AND g¢
Using ¢r(G), the reader will check that the built automaton corresponds to
the figure 4.

;s {Xef
{Q; {xf} (P D

Figure 4: The automaton with promises of @ U ((P OR XP) W R)

Theorem 9 (Correction of the automaton) Is f a formula of LT L, then
the sequences satisfying f are exactly those accepted by Aut(F).

Proof
Let ¢l be a clause of tr(F). By definition, ¢l = ¢r(F'). We inductively define on

Chapter x 15

the size of f a set of subformulas g of f such as ¢l = tr(G). We note this set
dev(CI, F).
If f= P OR f=NOT P OR f = Xg Then
dev(cl, f) = 1/}
Elsif f =h AND g Then
dev(cl, f) = {f}Udev(cl, g) Udev(cl, h)
Elsif f =g OR h Then
If ¢l = tr(g) Then
dev(cl, f) = {f} Udev(cl, g)
Else //cl = tr(h)
dev(cl, f) = {f} Udev(cl, h)
End if
Elsif f =g U h Then
If ¢l = tr(h) Then
dev(cl, f) = {f} Udev(cl, h)
Else //cl = tr(g) AND [XPgUh]
dev(cl, f) = {f}Udev(cl, g)
End if
Elsif f =g W h Then
If ¢l = tr(h) Then
dev(cl, f) = {f} Udev(cl, h)
Else //cl = tr(g) AND [X g W h]
dev(cl, f) = {f} Udev(cl, g)
End if
End if

Let ¢ = (so,...,Si,...) be a sequence accepted by a path of Aut(F),
(go,€0y---,qi,€i,...). Let us pose f; the formula associated with ¢; and ¢l;
the clause which produces the arc e;. We show by recurrence on the size of the
formula g that VG € Dev.(cl;, f;) o' | g.

If g= P or g = NOT P then g is a term of ¢l; thus g € e; what thus
implies that g € v(s;) o' = g.

If g =X H then [X H] is a term of ¢l; thus h is a constituent term of the
conjunction f;11. By applying the assumption of recurrence, o'*! = h what
implies 0% = Xh.

If g = g1 AND g5 then VK, gi, € Dev.(cl;, fi). By applying the assumption
of recurrence, YK ol |= g, what implies o¢ |= g.

If g = g1 OR g9 then dgi € Dev.(cl;, f;). By applying the assumption of
recurrence, 3K of |= g what implies 0% = g.

If g = g1 U g then

1. Either cl; = tr(g2) and g € Dev.(cl;, f;). By applying the assumption of

16

Petri Nets

recurrence, o! = g, what implies 0% = g.

. Either ¢l; = tr(g1) AND [X?g;Ugs]. Then g1 € Dev.(cl;, fi), XPg €

PROM (e;) and g is a term of the conjunction which constitutes f;11. By
applying the assumption of recurrence, 0! = g1. Since g is a term of the
conjunction which constitutes f;11, we can apply the same reasoning to
o'l ot2 aAe until the first alternative of the reasoning applies to o7
with j > ¢. What arrives necessarily bus if not ¥.J > I,X?g € PROM (e;)
contradicting the acceptance of the sequence by the path. Thus we have
Vi <k <joFf =g and 07 |= go, then o' |= g.

If g=g1 W gy then

1.

2.

Either cl; = tr(g2) and g2 € dev(cl;, f;). By applying the assumption of

recurrence, o' = gy and o' |= g.

Either cl; = tr(g1) AND [Xg3Wgs]. then g1 € dev(cl;, f;) and g is a

term of the conjunction which constitutes f; 1. By applying the assump-

tion of recurrence, o’ = g;. Since g is a term of the conjunction which

constitutes f;y1, the same reasoning applies to o'™t, o**2 ... and :
Either the first alternative of the reasoning applies to a sequence ¢’
with j > 4. In that case, Vi < k < j o |= g1 and 07 |= go. Consequently,
o' Eg.

— Either Vj > 4,0 = g1 and consequently o° = g.

Since f = fo, o = f.

Let us suppose now that o = f. We built now a path in Aut(f) which

recognizes o. First, we recursively define a clause of tr(f) depending from o :

Cl(f, U) = ANDiEIPi ANDjeJ NOT Q] ANDkEK[ka] ANDlEL[ngl]
such that :

g ': ANDielpi ANDjEJ NOT Qj ANDkeKka AND[GLXgl.

Its definition follows :

If f =P Then c(f,0)=f

Elsif f = NOT P Then cl(f,0) = f

Elsif f = Xg Then cl(f,0) = [Xg]

Elsif f = g AND h Then cl(f,0) = cl(g,0) AN D cl(h,0)
Elsif f =g OR h Then

If 0 = g Then

c(f,o) = cl(g,0)

Else // o= h

c(f,o) =cl(h,o)

End if

Elsif f = gUh Then

If 0 = h Then

c(f,o) =cl(h,o)

Else // 0 =g AND Xf

c(f,o0) =cl(g,0) AND [XPf]

Chapter x 17

End if
Elsif f = gWh Then
If 0 = h Then
c(f,o) =cl(h,o))
Else // 0 =g AND Xf
d(f,0) = cl(g,0) AND [X/]
End if
End if

Let e be the arc associated with cl(f, o), g1 = out(e) and f; the formula
associated with ¢;. By construction, prop(e) C v(so) and o = Xfi. Then
ol = f1 and it is possible to iterate the construction leading a path recognizing
o. Let us suppose the existing of a promise XPgUh occuring on the path at the
rank i. By construction of the clause, we have o |= gUh but in that case, there
exists a rank j > k such that ¢/ = h and consequently the clause associated
with ¢7 does not does not comprise promises. Finally, this path accepts . <

LT L formulas may be represented by others models of automata. Here,
we essentially have followed the approach described in [COU 99]. The most
widespread model is certainly that of Biichi automata [BUC 62]. Their syntax
and semantics is given below, the interested reader may refer to [VAR 96] for
a detailled study between temporal logic and automatas.

Definition 10 A Biichi automaton B = (AP,Q,Qo,—, F) is defined as fol-
lows :

AP a finite set of atomic propositions

Q a finite set of states such that for ¢ € Q, etiq(q) C AP U AP is the set

of atomic propositions which holds in that statee

- Qo C Q the subset of initial states
— 48 the transition relation C Q X Q
F C Q the subset of succes states

Definition 11 Let 0 = (S0, S1,...,8n,...) be an infinite sequence of the model
KS. o is recognized by B = (AP, Q, Qo, —, F) if and only if there exists a path
(g0, q1,--.) with go € Qo sucht that :

= Vn,qn — qn+1 and etiQ(Qn) c V(sn)

- 3f € F such that Yn 3Im > n g, = f

It will be noted that the propossitions relate on the states and either to
the transitions, that one has a set of initial states and that the condition of
acceptance is defined by a set of states of success whose at least state must be
reached an infinity of time by the path.

18 Petri Nets

The expressiveness of Biichi’s automata and automata with promises is iden-
tical. It is important to note that £7 £ has an expressiveness more restricted
than these automatas models [WOL 83]. Another language of formulas (much
less intuitive), the linear p-calcul has as for him an expressiveness equivalent to
these models [DAM 92]. We informally explain the translation of an automaton
with promises out of Biichi’s automaton :

Let us suppose that we have n promises. For each arc e of the auto-
maton with promises, one builds n + 1 states of the Biichi’s automaton
{(qe; I)}Iel...nJrl with etiq((q& I)) = etiQ(E)'

— the initial states of the automaton are the (g, 1) such as in(E) = qo.

— For i < n, there is an arc of (g, I) towards (ger, I) if out(F) = in(e’) and
if Pr; belongs to prom(e’).
For i < m, there is an arc of (g,) towards (ges,i + 1) if out(E) = in(e)
and if Pr; does not belong to prom(e’).

— There is an arc of (g.,n + 1) towards (ges, 1) if out(FE) = in(e’).

— the states of success are the states {(g.,n + 1)}.

The transformation of the arcs into states is usual and does not require par-
ticular comments. When during the recognition of a sequence, we find a state
(ge, I) with i < n, we wait until the promise Pr; is held. If it is not it in the
next state, one passes in a of the same state index 7 if not one passes in a
subscripted state by 7 + 1.

Arrived in a state of index n + 1, all the promises were held at least once
and the examination of the promises then is started again. Thus if the promises
are indefinitely held, one passes an infinity of time by the states of index n 41
whereas in the contrary case one “stagnates” in a subset of states of index
i < n. We leave to the reader the care to find a transformation of an Biichi’s
automaton into an automaton with promises. The figure 5 illustrates this
construction. To simplify, one removed the nonaccessible states. The states
“white” correspond to index 1, gray states the “dark” correspond to index 2 and
gray states the “clearly” correspond to index 3. The initial states are depicting
by an entering arc. The fatty arcs indicate transitions between of the same
states index, whereas the fine arcs are associated changes of index.

Existence of a sequence accepted by a Biichi automaton
The existence of an infinite sequence o of a model KS accepted by a

Biichi automaton is established using a standard construction the so-called
synchronized product.

Definition 12 Let KS be a model and B a Biichi automaton then KS x B =
(AP, S, =" V') is defined as follows :
AP’ = AP is a finite set of atomic propositions,

Chapter x 19

{R}; DO
{R};{Prl}

\ (P} {Pry}
{P}; {Pry, Pr,} {Q{Pry, Pry}

{S};{Pr,, Prj}

Figure 5: Transformation of an automaton with promises to a Biichi automaton

S"={(s,q)|s € S,q € Q,etig(q) C v(s)}
Nes—s andqg— ¢

|
—
v
L)
=
—~
Va)
~
Q

In an obvious way, the synchronized product generates the infinite sequences
whose first component (an infinite sequence of XLS) is recognized by the second
component (an infinite path of Q). It remains us to be checked if the synchro-
nized product contains an infinite sequence begin with (sg,qo) with ¢o € Qo
and whose second component contains an infinity of occurrences of states of F'.
Tt is the object of the following theorem. A strongly related component (s.c.c.)
of a graph is elementary if the subgraph associated with this s.c.c is a single
top without loop (in other words, it is not possible to build an infinite path in
this s.c.c).

Theorem 13 Let S be a finite model, sy a state of KS and B a Biichi’s
automaton then :

Jo = (s0,51,...) a sequence KS accepted by B < 3C a nonelementary s.c.c of
KS x B accessible from one (so,qo) € S’ with gy € Qo containing a state (s, f)
with f € F

20 Petri Nets

Proof

Let ¢ = (sg,51,-..) be a sequence of KS accepted by (qo,q1,...) a path of
B then by construction ((so,qo),(s1,491),--.) is a sequence of XS x B which
meets an infinity of time states of the form (s, f) with f € F. Since KS x B
is finite, one of these states (noted (s*, f*)) is reached an infinity of time by
the sequence. Since from (s*, f*) one again reaches this state by a non null
sequence, the s.c.c containing (s*, f*) is non elementary. Since the first state of
the sequence is (sg, qo) this s.c.c is accessible from (sg, qo).

If the left member of equivalence is checked, then there is a finite sequence
o1 of (s0, go) towards (S, F') and one non null finite sequence o4 of (S, F') worms
itself. Consequently, o = 07.05° is an infinite sequence whose second component
(a path in B) accepts the first (a sequence of KS). &

This result provides us an effective means of verification : once built the
synchronized product, one calculates the s.c.c by means of the algorithm of
Tarjan [AHO 74] and one examines them. The size of the synchronized product
is proportional to the sizes of the model and the formula. The algorithm, as for
him, operates in a polynomial time according to the size of the synchronized
product.

However this effectiveness is only apparent. On the one hand, the size of
the model of execution is very large relative with the size of the model of
specification (e.g size of the graph of accessibility versus size of the Petri net).
In addition, the size of the automaton can be an exponential function of the
size of the formula. This last point is not also critical because the formulas are
generally of very reduced size. Also to reduce these problems of complexity,
different technical were proposed. Upstream, one seeks to check the formula
on a smaller model of execution but equivalent (see the following chapters).
Downstream, one seeks to check a formula without completely developing the
product synchronized by methods “on the fly” [GOD 93, GER 95] or to reduce
the size of the representation by structures of data of the type BDD (diagrams
of binary decision) [BRY 86].

3.3. Temporal logic and Petri nets

The specification of formulas of propositional temporal logic of Petri net
implies the definition of atomic properties. Since we evaluate the formulas of
temporal logic on the graph of accessibility, a state of the model is an accessible
marking. Also, for any boolean expression whose field is the set of markings of
the net is appropriate. In practice, the expressions used are evaluated easily.
One will note p for the marking of p in the current state. Here some examples
of frequent formulas.

Chapter x 21

— Two places p1, ps2 are mutually exclusives : AG (p; - p2 = 0)
For any reachable marking, a place p will be inevitably marked :
AG AF(p>0)
For any reachable marking, one can always mark a place p :
AG EF (p>0)
— During any sequence of execution, a place p is indefinitely marked and
unmarked AG (F (p >0) AND F (p=0))
A transition ¢ is live (always firable in the future of any state)
AG EF AND,cp (p > Pré(p,y))

Like illustrates it the last example, it is possible to reason on the franchissa-
bility of a transition. However it is not the case of crossing itself because it
would require to evaluate the evolution of the marking of the places between
two successive states. Also one extends the language CT L*by considering the
operator X gy whose semantics is defined by :

o = Xy f if and only if S, ol = f and the first transition from o is labelled
by e

In this paragraph, one considers that a transition from Petri net is never
labelled by the empty word. The methods of checking described above extend
in an immediate way to this new logical which is at the same time state and
event-based. Let us suppose that the labelling of a net is the identity. We can
now express the fact that a transition ¢ is indefinitely crossed in all sequence :
AGFX gy true.

When we study the decidability of the checking of formulas of temporal
logic on Petri net, we will distinguish the following cases :
state-based logic C7 £*(and its fragments) by prohibiting these new ope-
rators.
— event-based logic C7 L£* (and its fragments) if the only atomic propositions
are true and false.

The semantics of temporal logic is based on the infinite sequences but the
designer also wishes to reason on the finite sequences. For example, one wishes
to know if a place p is always marked in a dead marking. The following formula
AG(AND;cr NOT Xyytrue = p > 0) which seems to be appropriate is
incorrect because it is actually a tautology. Indeed, an infinite sequence never
satisfies AND;e7INOTX 4y true.

To take into account these needs for checking, it is necessary to distinguish
the type of studied sequence and to introduce a semantics of adequate satis-
faction. Since we treat the sequences, we consider that the path formulas are
represented by an automaton such as the arcs of this automaton are labelled by
labels of transition from Petri net. In order not to weigh down the presentation
by an enumeration of all the possible cases, we limit ourselves to an event-based
linear logic defined by means of labelled Biichi’s automaton.

22 Petri Nets

Definition 14 A labelled Biichi’s automaton LB = (X, Q, Qo,{ - }taecs, F)
Y. an finite alphabet
Q a finite set of states
Qo C Q the subset of the initial states
has

- 2% 4s a binary relation C S x S
- F C Q a subset of success states

Definition 15 An infinite sequence o = (t1,to,...,tn,...) of a Petri net R,
o is accepted by LB = (2,0, Qo, {-}Yaex, F) if and only if there is a path
(g0, q1,-..) with go € Qo such as :

VN, QnL(tLv)Qn-l-l

JFeF st.VNIm>ngm=7Ff

The other types of sequence which interest the designer are the finite se-
quences and the finite maximal sequences (i.e which end in a dead marking).
One then seeks a path in the automaton which is completed by a state of suc-
cess. A second manner of tackling the problem of the finite maximal sequences
in the case of bounded Petri Net consist with adding a loop to all markings
died, labelled by a special action. Thus any maximal sequence of this new graph
is infinite and those which are prolonged artificially recognize by the occurrence
of the special action.

Definition 16 A finite sequence (possibly mazimal) o = (t1,t2,...,t5) of a
Petri Net R, o is recognized by LB = (X,Q, Qo,{-}aex, F) if and only if
there is a path (qo,q1,...,q5) with g0 € Qo and ¢y € F such that : Vn <

I(tn
fv qn (t—+>1)Qn+1

To authorize the labelling of a transition by the empty word (i.e a non obser-
vable transition) largely complicates the semantics of satisfaction and introdu-
ced the problem of the divergence. A divergent sequence is an infinite sequence
of which a suffix is made up exclusively of non observable transitions.This pro-
blem will be mentioned in the context of the behavioral approach.

4. Behavioral Approach

Many relations of equivalence were used or specifically proposed for the com-
parison and the analysis of concurrent systems since the equivalence of traces
or languages [AHQO 74] with the observational equivalence [MIL 89] while pas-
sing by the models of refusal and the equivalences of test [LED 90, BRI 88]. See
[DE 87, ARN 92, OH 86, GLA 90] for a panorama of the existing equivalences.

Chapter x 23

This explosion is explained on the one hand, by the difficulty in formally de-
fining a universal semantics of concurrent systems [ARN 92| and by the variety
of the specific properties of the studied systems or the points of view which one
can adopt to lead to them analyze : verification or test. In this section, we will
limit ourselves to the aspect verification.

Contrary to the logical approach, the behavioral approach privilegiates in-
formation associated with the action labels and generally forgets information
associated with the states. The structure taken into account by the behavioral
analysis is a system of transitions labelled (cf definition 3).

Before going front in formalization, we will try to illustrate various points
of view likely to be taken into account. The selected example is the simplified
operation of a coffee machine : the consumer introduces a coin into the coiner,
it chooses then his drink while pressing on the associated button.

The transition systems below, (D,0),(D’,0’) and (D",0"), represent each
one a behavior “similar” to the vending machine which we have just descri-
bed. The behavioral approach through various equivalences of behaviors which
were proposed in the literature will enable us to formalize various concepts of
“similarity”.

T
B @t @l
@ Tealt 01?1 @ Coffee
Com~1) (u]
o Coffee Coin

@Coﬂee»@ Coin\,@

Figure 6: Three vending machines : (D, 0), (D’,0') and (D", 0")

According what was presented in chapter 3 of volume on the Petri nets
[HV 01], one can associate any ILTS a language.

Definition 17 Language associated with a ILTS
Let (LTS, s0) be a ILTS with LTS = (%, 5, {5} aex),
L({LTS,s50)) =pes {0 € X* :3 €S such that so >}

Contrary to finite states automatas, the ILTS can comprise an infinity of
states, they comprise only one initial state and do not introduce the concept of
final state [AHO 74]. Any state of the ILTS is thus regarded as a final state

24 Petri Nets

and the language recognized by the ILTS is closed by prefix : any prefix of a
recognized word itself is recognized.

Definition 18 FEquivalence langage

The concept of language previously introduced enables us to define a first
concept of equivalence between two transitions systems based on the equality
from their respective languages.

Let LTS = (2,8,{%}aex) and LTS = (3,5 { %Y aesy) be two transi-
tions systems, sg and s|, their respective initial states :

(LTS, s0) = (LTS, sbh) iff LULTS, s0)) = LU(LTS', sb))

Langage : A first comparison criterion of these distributers is provided to us
by the study of their language.

Here L({D,0)) = L((D,0")) = L({D",0"”)) = {e, Part, Coin.Coffee, Coin.Tea}
and for this criterion these three LTS are equivalents. In particular, from the
point of view of the owner of the vending machine, each one of them offer a
drink only if this one has been payed.

Maximal traces : The preceding criterion disregards possibility of blocking, it
confuses these 3 LTS whereas they present different deadlocks. The concept of
maximal trace allow to take into account this aspect. The LTS are always consi-
dered as acceptors of language, but now maximal sequences are the only one
recognized : infinite sequences or sequences leading on states without successor.

Definition 19 Maxzimal Traces

For LTS = (%, 8,{%}aex) and a ILTS (LTS, o), one associates Lya.((LTS, s0))

the set of its mazximal traces defined as follows :

Lntax((LTS,50)) =pes (LLTS, s50)) NE>)
U {0 € L({LTS,s0)) :3s' €S such that s s and s’ 4}

Definition 20 Mazimal traces equivalence

Provided with this concept of maximal trace, we define the relation of asso-
ciated equivalence as follows :

Let (LTS, s0) and (LTS',s)) be two transitions systems, so and s}y their
respective initial states :

(LTS, 50) =ntax (LTS, 84) iff Lntax((LTS,50)) = Lagax((LTS', 8p))

Remark Language and Maximal Traces

Chapter x 25

The definition 19 is purely denotational, from an operational point of view
the concept of “maximal traces” can be expressed starting from the concept of
language in “supplementing” the ILTS (or the automaton) by adding : a state
L with the set of nodes (L ¢ 5), a label fail with the alphabet ¥ (fail ¢ X)
and, finally, by connecting any deadlock to the state L by a transition labelled
by fail.

Property 21 Language and Maximal Traces
For LTS = (%, 5,{%}aex), one defines Max(LTS) as follows :
Max(LTS) =pes LTS = (', 8, {5} aes)

S = U {fail},
S'=Su{l},
{i’aeg/} =pef {—aex}U{ s 19 | s €S such that 7Z>}
Linaz((LT S, 50)) = Linazs (LTS, s))o
L(maz(LTS), s0)) = L{(maz(LTS'), s4))

where :

Now we have, Lysqy((D,0)) = Larae({(D’,0")) = {Coin.Coffee, Coin.Tea}
but Lpsez({(D”,0”)) = {Coin, Coin.Coffee, Coin.Tea}.

According to this new criterion, only D and D’ remain equivalent. If one
takes into account now the point of view of the customer, it is indeed important,
to isolate the distributor D” which can to accept a coin without delivering
drink. Always according to the point of view of the customer, not to be able
to distinguish D and D’ is not acceptable : D leaves the choice of drink to the
customer while D’ chooses drink in its place.

Refual & Acceptance : The equivalence of maximal traces takes into ac-
count “total blockings”, the equivalences based on the concept of refusal or of
acceptance, allow to take into account the concept of partial blockings and in
particular the possibility “of refusing” to carry out an action. Thus, one can
consider, in addition to the allowed sequences, the possibility of refusing or of
accepting an action.

Definition 22 Basic elements of refusal semantics [GLA 90, LED 90]
Let (LTS, s9) be a ILTS, for s € S,0 € xX and A C X, we note :

a
1. sref AopesVa€ A s/~
2. sk after o ©pep{s'€S : s>}
3. sk= after o ref A< pey s’ € “s after 0" such that s’ ref A

26 Petri Nets

4. LTS = after o ref A pey so = after o ref A

(1) allows to define partial blockings partial through the refusal set which
one can associate a node. (2) denotes the subset of the nodes accessible starting
from node s via the sequence o (3) stipulates that “starting from node s, it is
possible, via the sequence o, to reach a node which will refuse all the actions of

A

Definition 23 Relation of Conformance [BRI 88, LED 90] Let (LTS, s¢)
and (LTS’ s)) be two ILTS and L the unionset of their respective alphabets
(L=xUY)

Vo € L((LTS,s0)),VACL:

!
LTS conf LTS < pey { If LTS after o ref A then LTS after o ref A

In an informal way, an implementation £7 S conforms to a specification
LTS’ if for any sequence ¢, if the implementation can evolve by o then the
set of actions A which it can refuse constitutes a subset of those which the
specification can refuse after o [DRI 92].

Definition 24 Testing equivalence [BRI 88]

L({LTS,s0)) = LU{LTS, si,))

!
LTS te LTS pey { LTS conf LTS and LTS conf LTS

For this last point of view, which melts the semantics based on refusal, the
LTS D and Of are not “testing-equivalent” (not D te Of). Indeed D’ can refuse
Tea or Coffee actions after having carried out the Coin action while D after
Coin will always make it possible to obtain Tea or Coffee. By taking again
the elements of terminology of the definition 22, one obtains for example :

0" after Coin ref {Tea, Coin} et 0" after Coin ref {Coffee, Coin} while the
only action refused from 0 is Coin, i.e., 0 after Coin ref {Coin}.

We will not develop more before these semantics (failure semantics), but we
invite the interested reader to refer to [ARN 92| where chapter 8 is devoted to
various equivalences of traces.

4.1. Relations of Bisimulation

The three equivalences which we have just evoked adopt a “linear” point of
view and focusses on the sequences of executions of the LTS and disregard its
tree structure. To illustrate our matter, now let us consider a coffee machine

Chapter x 27

where the only drink available is the coffee sweetened : the customer introduces
a coin and must obtain the coffee then sugar.

Coin Coin Coin
jo
Co{fee Co{fee Coffee Coffee
Sugar Sugar
Y

®

Figure 7: Two coffee machines : (M, 0) and (Me,0')

The machines represented figure 7 are indistinguishable for the semantic
based on refusal or for testing equivalences [BRI 88]. The two machines can
refuse sugar after having delivered drink. For s € {0,0'} we have :

s after Coin ref {Coin, Sugar} and s a fter CoinCoffee re f {Coin, Coffee, Sugar}

From the point of view of the customer these two machines are thus as
much imperfect. A customer who can test, as a long time as he wants it these
two machines, is unable to distinguish them. For each one of those, certain
experiments will result in obtaining a sweetened coffee and others with a coffee
without sugar.

From the point of view of the analysis and in particular if one seeks to
understand why one cannot guarantee to the customer whom it will obtain a
sweetened drink it is however interesting of distinguish them. in the first case,
the absence of sugar will be consecutive of the non-determinism associated with
the Coin action while in the second it will result from the non-determinism
associated with the Coffee action. The concept of bisimulation which takes
into account the tree structure of the LTS, and not only its linear structure,
will enable us to distinguish these two machines.

The concept of Bisimulation, introduced by Park [PARK 81] is at the base
many relations of equivalences used for the checking of communicating systems.

Definition 25 Relation of Bisimulation

Let LTS = (%,8,{%}4ex) be a LTS, B a binary relation (B C S x S) is a

relation of bisimulation if it verifies :

28 Petri Nets

V(p,p') € B andVt € X :
Vg € S If pLqgthendgd eSS : p5q and (q,¢') € B
and [Vq' € S If p L thendgesS : pbyg and (¢',q) € B

Two states s1,s2 € S are in bisimulation if there is a relation of bisimulation
B such as (s1,82) € B.

Definition 26 Bisimulation between transitions systems

Let LTS = (X,8,{%}aes) and LTS = (X', 5", { S} aesy) be two LTS such
as SN =0 and for which we let S =S U S’

A binary relation B, (B C § x8) is a relation of bisimulation between LTS
and LTS’ if it verifies :

V(p,p') € B andVt e XUY :

Vg e S If pLgthendgd eSS : pLyq and (¢,q') € B]
and V¢ € S If P L thenIgesS : plyg and (¢',q) € B]

Definition 27 Bisimilar transitions systems

The preceding definition extends in a canonical way to initialized transitions
systems while posing that two ILTS (LTS, so) and (LTS, s}) are in bisimula-
tion (or are bisimilar) if a bisimulation relation connects their initial respective
states. i.e.

(LTS, s0) and (LTS, s) are in bisimulation if 3 a bisimulation B C S x S
between LTS and LTS’ such as (so,s)) € B

Example 1

Figure 8: Two bisimilar LTS : (E,0), (E’,0")

(E,0),(E’,0), represented 8, are in bisimulation by relation
B ={(0,0")(1,1"),(2,2")(3,3")(4,2')}.

Chapter x 29

(D,0),(D’,0') and (D”,0"”), associated the drink distributers represented
6 are not bisimilar. Let us show for example that (D,0) and (D’,0) are not
in bisimulation. Let us proceed by the absurb and suppose the existence of a

bisimulation B between D and D’ with (0,0') € B. Like 0 Coin 1, one must
have (1,1') € B or (1,3') € B. (1,1') € B is impossible because 1 Tea nd
ITea , . .. Coffee
1" 4 . In the same way (1,3’) € B involves a contradiction because 1 =~ —
Coffee
and 3’ A .

The ILTS (M, 0), (M’,0"), associated the coffee machines represented 7, are
not bisimilar. Even if these ILTS are small, it quickly becomes difficult to show
“with the hand”, starting from the denotational definition of the bisimulation
(cf def 25), the existence or the nonexistence of a bisimulation.
the section 4.1.1 gives an algorithm making it possible to decide bisimulation
which will enable us to rule on these two systems.
the section 4.3.4, by introducing the logic of Hennesy-Milner, will give us the
elements of language making it possible to distinguish without ambiguity these
two systems and to show that they are not bisimilar.

Property 28 Properties of the bisimulations : [ARN 92]

- The converse relation of a bisimulation is also a bisimulation.
- the composition of 2 bisimulations is a bisimulation.
- the union of 2 bisimulations is a bisimulation.

The properties above make it possible to define a specific relation of bisi-
mulation, the strong equivalence which is the largest bisimulation.

Definition 29 Strong Equivalence Strong equivalence, noted ~, is defined by
D~ q S pey there exists a bisimulationB such as(p,q) € B

~ is reflexive because the identity is a bisimulation. Symmetry and transi-
tivity come respectively owing to the fact that the set of the bisimulations is
stable respectively by inversion and composition.

4.1.1. Algorithm of Decision of Bisimulation

This section shows how to build, if it exists, a relation of bisimulation star-
ting from any system of transition finitary. The property 32 melts the algorithm
of decision. We present also some elementary concepts and properties which
make it possible “to compact” computation.

30 Petri Nets

Definition 30 Finitary LTS

A LTS LTS = (2,8, {%}aex) is called finitary, or in an equivalent way,
has a “finite image” relation of accessibility :

VS € S and Va € %, the set {Q € S such that S % Q} is finite.

Definition 31 ~y equivalences

For a LTS LTS = (%,8,{%}acx), one considers the following sequence of
relations indexed by i, noted ~; : Vp,q € S

p~ogq

D ~nt1 q ssiVa € X
VpeS pSp =30 €cQ : q5¢ suchthatp~y, p
V¢ €S q5qd =W e€qQ : p>p suchthat g~y

Intuitively, one tests the ~,-equivalence between two systems as follows. For
each system, one builds the tree of the sequences lower length or equal with
n (obtained by regarding various occurrences of the same state as different
states). Then it is checked that these two trees are bisimilar. The following
property specifies the relations between ~,-equivalence and bisimulation.

Property 32 ~y-equivalences and bisimulation
1. For any LTS, LTS = (%, 5, {%}sex), the following property holds :
VNEN,N C ~pp1 C vy
2. If moreover, LTS = (%, 5,{5}aex) is finitary then :
N>0

. If moreover, LTS = (X, 5, { %) sex) is finite then :
~ =~ where ny =S|

Co

—_

. By recurrence on n

N

. Let us call R = Nn>o ~n.

According to the first point of the proposal, ~ C R. To show that R C ~,
knowing that ~ are the union of the bisimulations, it is enough to prove
that R is a bisimulation. Let s R s’ and s = t/. Then by definition of
R,Vn,3t, such that s = t,

and t’ ~,, t, Since the system of transitions is finitary, 3¢ such that t =
ty for an infinity of n. What means that Vn,3n’ > n such that t' ~, t.
What implies according to the first point that ¢ ~y ¢ thus ¢’ R t. The
second part of the proof is similar to the first.

Chapter x 31

3. According to the first point from the proposal, ~, 1 C~y. Moreover if
for a system of transitions (finite or infinite) ~, 1=~y then ~, 1=~
since it comes while replacing in the definition ~x by ~,, 41, that ~, 41
is a relation of bisimulation. Finally let us suppose that for S, all the
relations ~y per 0 < I < n, are different, then the number of classes
of equivalence grows strictly according to 4, which is absurd since this
number must be lower or equal to ns. There thus exists n < ng such that
~p=n~ and consequently ~,, =~.

The last characterization (cf prop 32.3) is particularly important since it
provides us an algorithm to decide the bisimulation in the case of finite LTS.

Property 33 Application, Equivalence and Quotient set
Let f be an application of A— B :

1. Let =y, the binary relation C A x A, defined by a1 =5 ago f(has) = f(b).
= is an equivalence relation

2. Is 1 (A) =pey Usera) 7).
7 (A) define a partition of A.

8. nl(A) = A/=;

1) is obvious since AALT=aAI is itself an equivalence relation. 2) T4 is a

covering of A of whose dALIblocksaAl are disjoined since f~1 is injective. 3)
is assured because Vr € w1 (A) :ay and ay € T = ay =fas

Definition 34 OQutput of a state

For LTS = (%,5,{%}acx), one consider the application Output,rs
S +— P(X) which associates with each state ¢ € S, the subset of ¥ defined in
the following way : Outputs(s) =pes {a € % such that s -5}

When there is no ambiguity on the LTS, one will note simply Output(S)
in the place of Output,rs(S)

By taking again the notations introduced into the property 33, one considers
also the relation of equivalence = output-

For any LTS, LTS = (%, 5,{%}aex), we have : ~1== output

Two states are equivalent with order 1 if they allow to carry out the same
actions. It is emough to notice that ~1 is defined starting from ~q for which
two states are always equivalent (i.e ~o= S x S)

32 Petri Nets

The property 35 thus makes it possible to directly compute the set of the
classes of equivalence of S for ~; (in other words, the quotient of S by ~1),
by using the partition of S defined by the application OQutput~'. One second
obvious property which can be made profitable to limit computation consists in
noticing that the relation of bisimulation (and more generally any equivalence
of behavior) cannot distinguish two deadlock states.

Property 36 Bisimulation and Deadlock

For any LTS, LTS = (%, 5,{%}aex), and any pair of states p,q € S
[Output(p) = Output(q) = 0] = p ~, ¢,¥n € IN

Example 2 Application to the coffee machines (D, 0) and (D', 0’) represented
7

We want to know if (D, 0) and (D’,0’) are bisimilar.

As the sets of respective states of these machines (S and S’) are disjoined,
we pose S = SUS’ and we will seek the largest bisimulation (i.e ~) contained in
S.(D,0) and (D’,0’) will be bisimilar if 0 ~ 0’. We calculate ~ by considering
the sequence of the ~ g-equivalences (cf def 31 and prop 32).

Computation of ~;

The table below represents the graph of the application OQutput=! (def 34),
by using the property 35, one obtains

S/Nl = {{07 Ol}v {{ll}v {3I}’ {27 217 3, 4/}}

P(X) PE)— S| PXE)— | PX)— SU
by 0 0 0
{Tea, Coffee} {1} 0 {1}
{Tea, Coin} 0 0 0
{Coffee, Coin} 0 0 0
{Coin} {0} {07} {0,07}
{Coffee} 0 {1} {1}
{Tea} 0 {3'} {3'}
{2,3} {2/,4'} | {2,2,3,4'}
Calcul of ~

0 %5 0" : Indeed 0 Cg}n 1 and none the successors of 0 > by Coin (i.e 1’

and 3 ') is equivalent to order 1 to 1 (i.e 1’ %41 1 and 3’ 1 1). One can thus
directly deduce that (D,0) and (Of,0’) are not bisimilar.

The property 36, ensures that {2,2/,3,4’} € §/~ Except the class {2,2',3,4'},
the other classes are reduced to a singleton and thus minimal. One can thus
deduce from it that S/~ = S/~o = {{0},{0'}, {{1'}, {3}, {2,2/,3,4'}}

Chapter x 33

Operational characterization

The process describes in the definition 4.1.1 makes it possible to obtain the
largest bisimulation included in a given binary relation R like the limit of the
decreasing sequence of relations <~py>n>p. Each term of the sequence can
be described in an equivalent way in the form of a partition of the set of the
states. The computation of the terms of this decreasing sequence returns to
the problem of refinement of a partition (Multi Relational Coarset Problem
Partition) [PT 87] used initially within the framework of automata minimiza-
tion [AHO 74]. One thus obtains the most powerful algorithms in O(A.log(S))
where A denotes the number of transitions and S the number of states of the
graph [FER 89].

II-Bisimulation

We saw in this section, the standard relation of bisimulation such as that
presented by [PARK 81, MIL 89]. This one takes into account only the labels
of events and does not allow to take into account the states of the system. The
concept, of II-Bisimulation [CLE 89| generalizes the concept of bisimulation
while imposing that the relation of bisimulation is contained in a relation of
equivalence given a priori. One thus can, by the means of this relation, take
into account certain characteristics of the states in the computation of the
bisimulation. We will use this concept of bisimulation in section 4.3.1 to be
able to consider an extension of Hennessy-Milner logic taking into account
atomic propositions and also in section 4.2.5 to make sensitive observational
equivalence to the divergence.

Definition 37 II-Bisimulation

Let LTS = (%,5,{%)sex) be a LTS and 11 a relation of equivalence on S
(i.e m C S xS), a binary relation B on S is a relation of U-bisimulation if it
verifies : B C I and

V(p,p') € BandvT € ¥ :

Vg € S If pLgthenid eSS : pLq and (q,q') € B
and V¢ € S If p L thendge S : pbyg and (¢',q) € B]

Let us note that if 71 = § x .S, one find the standard concept of bisimu-
lation. The procedure of general decision given in section 4.1.1 adapts to the
II-bisimulations. It is enough to initialize the sequence of equivalence relations
while taking ~o= 1II.

34 Petri Nets

4.1.2. Simulation and Co-simulation

As much the concept of bisimulation induces an equivalence relation on the
LTS, as much the concept of simulation makes it possible to define an pre-
order (a reflexive and transitive binary relation) on the LTS. the concept of
simulation is defined by breaking the symmetry of the bisimulation definition.

Definition 38 Simulation

Let LTS = (X,8,{%}aes) and LTS = (3,8 { %Y aesr), a binary re-
lation R, (R C Sx) is a simulation between LTS and LTS if it verifies :
V(p,p') € RandvT € X :

Vge S If p-Lqalors3ges : p’—t>q’et(q,q’)€R

Extension to the ILTS : As for the relation of bisimulation, the relation
of simulation can be extended to the initialized labeled transition systems as
follows : (LTS, so) simulates (LTS',sl) if there is a relation of simulation
connecting their respective initial states : i.e., there exists a relation of simula-
tion R containing (so, s()

The Co-simulation makes it possible to obtain a relation of equivalence from
the simulation pre-order.

Definition 39 Co-simulation

LTS Co-simulates LTS’ S pef LTS simulates LTS and LTS’ simulate
LTS.

Example 3

Jo)

A

0y @,
QORTO)

Figure 9: Two LTS co-similar and not bisimilar

Let us consider R = {(0,0), (1,1'),(2,2'), (3,1’)} and check that it is indeed
a simulation between (S, 0) and (S’,0').

Chapter x 35

03 {1,3}and 0’ 3 1’ with (1,1') € Ry and (3,1') € Ry
12 2and 1722 with (2,2) e By
Like 2 and 3 are deadlocks, it has anything more to check.
R; is thus a simulation containing (0,0’), therefore (S, 0) simulates (S’,0").

In the other direction, one shows just as the relation Re = {(0/,0), (1’,1), (2/,2)}
is a relation of simulation between (S’,0") and (S,0). Indeed, we have : 0’ A
1’and 031 with (1,1) € R & 1/ 22 and 125 2 with (2,2) € R

Theen (S,0) simulates (S’,0’) and finally and (S,0) and (S’,0’) are thus

Co-similar.
On the other hand, (S, 0) and (S’,0’) are not bisimilar.

It is enough to reason by the absurb and to consider B a relation of bi-
simulation. This one has minimum would contain (0’,0). Consequently, like

02 {1,3}and 0’ A 1", B should also also contain the pairs (1,1),(3,1). As

B
2 2and3 +» one cannot have (1’,3) € B from where contradiction appears.
nb : The relation B’ = {(3,2'),(2,2')} is the largest bisimulation between S
and S’

Remark the preceding example shows that Co-simulation is weaker than the
bisimulation. The bisimulation can however be defined in terms of simulation
in the following way : a relation of simulation R of which the symmetrical
relation R~ is itself a relation of simulation is one bisimulation. The section
?7? modalcarac presenting characterization modal equivalences of behavior will
enable us to specify the relations between concepts of simulation, Co-simulation
and bisimulation.

4.1.3. Procedure of decision for simulation

Construction presented is very close to that presented in 4.1.1 to decide
bisimulation. Instead of using a succession of relations (the ~ g-equivalences of
the definition 31), one introduces a function E which by successive iterations
will make it possible to obtain its smaller fixed point which corresponds, in
fact, with the relation of sought simulation. The interested reader will find a
talk complete of this construction and associated proofs in [ARN 92].

We present the more general form here allowing to compute one II-Simulation
similar to the concept of II-bisimulation introduced in definition 37). This com-
putation built starting from an arbitary binary relation R, the greatest simu-
lation (if it exists) contained in R.

36 Petri Nets

Definition 40 Simulation generated by a relation
Let LTS = (2,8, {%}aex) and LTS = (X', 5", { % aexy) be two LTS

We consider the mapping E : P(SX) — P(Sx) which associates with any
binary relation R C S x S', the relation E(R) on S x S’ defined as follows :

(s,5") € E(R) < pey (1) A (2) where

(1) (s,s') €R

(2)Vte X, Vqe S : sSqg=30 €S : §-5q such that (¢,¢') € R

Property 41 Characterization of a simulation

Let LTS = (X,5,{%}aes) and LTS = (2,8, {%}aesy) be two LTS
1. the following property holds :
VN € N,E"Y(R) Cc EN(R) CR
2. If moreover, S and S’ are finitaries then :
The sequence of relations n>o admits for limit R with
RY = ﬂNZO EN(R).
RY is the greatest fized point of the function E
i.e B(R®) = R® and E(A)= A= ACR¥
3. If moreover, S and S’ are finite then :
R = EX(R) where k = max(|S|,|5"|)

The preceding property is similar to the characterization of the bisimulations
(cf prop 32). Item 2) shows that R“ is the greatest simulation between ¥ and
Y’ included in R. As E is a decreasing application of a powerset in itself,
the convergence of the sequence is assured [ARN 92]. By construction, R is
included in R and constitutes the greatest solution of the equation E(R) = E,
R¥ is thus the largest simulation included in R. Ttem 3) provides a means to
decide simulation between two finite LTS.

4.2. Weak Equivalences

The relations of equivalence which we considered until now supposed that
the transitions systems that we compare admitted the same sets of transitions
labels.

At this point, this constraint of identity of the alphabets of action strongly
limits the possibilities of us of equivalences or the pre-orders of behaviour :
it is not possible, for example to compare systems described at various levels
of abstraction. Thus the various drink distributers encountered in this section
only represent in an abstract way the “service” rendered by a drink distributer ;

Chapter x 37

obviously a true distributer would be more complex. In practice, the behavioral
approach thus requires to be able to compare systems described at various
levels of abstraction. Concretely, one wants to compare systems by making
“abstraction” of certain events (actions) which are not relevant with respect
to the analysis that one wants to lead. The first step consists in defining the
criterion of observation of the system : the observed events and those whose
one makes abstraction.

A simple solution consists in considering a subset O, observable actions, of
the set of the labels 3. Once this defined criterion, it is necessary to clarify
what one understands by disregarding inobservable event. A first alternative
is provided to us by re-using the concept of projection already defined in the
language theory.

Definition 42 Projection of a language

Let O be a subset of 3, 0 a word of ¥*, the projection of o out of O, noted
oo 18 recursively defined by :

op-a ifacO

)\LO =Def A and (U.a) O =Def { JL(’) sinon

Projection operates as a “gum” which erases all the letters of the word not
belonging to O. This operator of projection extends in a canonical way to a set
of words : L C ¥* : Lo =pes {0|0 :0 € L}

The comparison between the systems is defined with respect to a common
criterion of observation commun : these systems will be equivalent if projections
of their languages compared to this observation criterion are equal.

Let LTS = (%,8,{%}aes) and LTS = (¥, 8" { % aesy) two transitions
systems, so and s, their respective initial states and O a common criterion of
observation i.e., O C X NY'

(LTS, s0) =0 (LTS, s4)o L(LTS, s0)) 0 = L{LTS', sp)) |0

nb : This equivalence gemeralizes equivalence language presented definition
18. Indeed, by taking O = S UYY, then (LTS, s0) =0 (LTS, s4)0 (LTS, s0) =
(LTS, sp)

Example 4 Application of weak equivalence language

38 Petri Nets

Coin

cun-.__ @{?fé gg

Tea+ Coffee Coffee C 17 () g

Figure 10: Three other coffee machines

Let us consider the three coffee machines (M, 0), (M’,0") and (M",0”) re-
presented Figure 2 10 and compare by observing only the alphabet © made up
of the actions Coin, Tea and Coffee.

These three systems admit after projection the same language describes
by the following rational expression : (Coin.(Tea + Coffee))*, they are thus
equivalent language for O : (M,0) =0 (M',0") =0 (M",0").

For as much from the point of view of a customer, (M”,0"”) is distingui-
shed from both others since this machine “chooses in an autonomous way” the
drink delivered with the customer. In state 17, M ” is ready to offer Tea or
of Coffee but the actions i} and i#§ whose one had a priori wanted to make
abstraction have an influence on the service offered by these machines since
according to their occurrences, Tea or Coffeewill be delivered.

The actions whose one had decided a priori to make abstraction ({], 5,1/, })
disappear under the effect of the “gum” which operated during projection. For
some of between they, i} and i), the abstraction carried out is legitimate in the
sense that those do not modify the “observable” behavior of the system, for
others if and ¢}, the abstraction carried out is not founded since these actions
have an obqervable influence on the behavior of the system.

All the difficulty is to know a priori if it is “reasonable” to hide an action.
The observational equivalence, introduced by R. Milner into his calculation
for communicating systems CCS [MIL 89], introduces a concept of “abstract
experiment” which offers a solution to this problem.

4.2.1. Experiment, Saturation

The concept of abstract experiment allows an abstraction less radical than
the concept of projection which erases purely and simply any inobservable
action. Here, the inobservable actions are initially renammed by a common

2label “Tea+ Coffee” connecting states 1 to 0 means simply that one can go from state 0
to state 1 either by the Tea action or by the action Coffee

Chapter x 39

symbol 7. Moreover, one new relation of transition, known as “abstract exprei-
mentation” and noted =, is defined by taking of account the relation of original
transition (—) and the inobservable sequences of actions. We give the defini-
tion now and will give the intuition of this one of it by studying the example
of saturation presented Figure 5.

Definition 44 Abstract experiment : =

Let LTS = (%,5,{%}aex) be a LTS, O a subset of ¥ and T a symbol not
belonging to X

= C SxXU{r} xS can be defined as follows : ==pc; = JUpco|[=]
where

e = the relation of transition relating to the inobservable experiments, is
obtained by taking the reflexive and transitive closure of the union of transition
inobservable relations :
T 7
= =pef [Uieso I
nb : = renames all the inobservable labels with a common label T.

The transitivity of = makes it possible to consider a sequence of inobser-
vable actions as an “atomic” action inobservable. Finally the reflezivity of =
ensures that of any state of the LTS it is possible to make an action inobser-
vable : it only consists to add an inobservable “neutral” transition buckling on
any state of the LTS.

e = the relation relating to the observable experiments is defined as the
double composition (on the right and on the left) of the inobservable relation of
experiment = with the original relation observable transition .

2 =ps =0 B0 = foracO

nb : = makes it possible to extend concept of observable transition by
integrating the sequences of inobservable transitions. As = is reflezive, =
includes the original relation observable transition : . The double composi-
tion on the right and on the left makes it possible to regard as one observable
action “atomic” any preceded observable action and followed by a sequence of
inobservable actions.

Definition 45 Saturation of a labelled transition system

The LTS obtained by substituting the experiment relation (=) to the original
transition relation (—) is called LTS saturated.

Let LTS = (%,8,{%}acx) be a LTS and O a subset of ¥ and T a symbol
not belonging to X

40 Petri Nets

Sat[@ ('CTS) =Def <E U {T}a Sa {:(I}}GGEU{T}>

nb : If X = O, saturation simply consists in adding to the initial system a
aALJloopd Al labelled by T on each state.

Sat|x(LTS) = (S U{7}, S, {StaexU{p > p :peS})

Example 5 Example of Saturation

The figure 11 presents the output of the saturation applied to the systems
M’ and M ” represented Figure 10 when O = {Coin, Tea, Coffee}.

Not to overload the figure, the loops of 7 resulting from closure reflexive of
the relation =, normally associated with each state, are not not represented.

Coffee Coin Tea
Coi . %

Figure 11: Sat|o(M') et Sat|o(M")

The inobservable labels of actions (i}, 15,4}, 44) were renamed in the satura-
ted systems. This renaming and the action of the double composition of inob-

servable actions, led to a non deterministic relation of observable experiment
Q

=,

The saturation may furnishe a non-deterministic LTS from a deterministic
LTS. Thus from 1’ in Sat|o(M’), the experiment Coffee will lead into 3’
or 1’ according to whether only the action Coffee occurred or that this one
was followed by the inobservable action i}. In the same way from state 0"
in Sat|o(M"), the experiment Coin can lead in state 17 where the actions
Tea and Coffee are possible, in state 2” where only the action Tea is possible
or in state 3” where only the action Coffee is possible.

The abstraction carried out while choosing not to observe the actions #{, I}
does not occult the fact that the machine M" can choose drink in the place of
the customer.

Chapter x 41

4.2.2. Weak bisimulation, Observational Equivalence

The observational equivalence of two systems [MIL 89| can be defined di-
rectly starting from the bisimulation (def 25) by considering the relation of
bisimulation between the saturated systems.

Definition 46 Weak bisimulation

Let LTS = (%, 5,{%}aex) and LTS = (X', 8", { %} aesr) be two LTS and
O CXnY, a set of common labels of actions.

A binary relation B C Sx S is a | Bisimulation between LTS and LTS’
if B is a bisimulation between Sat|o(LTS) and Sat|o(LTS')

This bisimulation parameterized by a set of observable actions is often des-
cribed as aALTweaka Al bisimulation in opposition to the standard bisimulation,
called aALJstrongaAl, which takes into account all the labels of actions. The
observational equivalence introduced into CCS [MIL 89] is the largest weak
bisimulation.

The concepts of strong and weak bisimulation coincide when all the labels
of actions are observed (i.e O = X UY') : B is a bisimulation (strong) bet-
ween LTS and LTS’ if Bis a |(zus)Bisimulation between Sat|s,(LTS) and
Sat|s/ (LTS

4.2.3. Decision of the weak bisimulation

As the weak bisimulation is finally defined like a strong bisimulation on
saturated systems, the procedure of decision which we gave for the strong bisi-
mulation applies to decide weak bisimulation.

When the saturated system is considered, the property 35 remains valid (it
can be simplified by noticing that any state of the saturated system has 7 in its
Output). Tt is the same for the property 36 but this one becomes inoperative
in the saturated system, any state has at least one 7-successor (itself). In the
case of the weak bisimulation, the property 36 is reformulated in terms of weak
blocking (def 47).

Property 47 Weak bisimulation and weak blocking

For any LTS LTS = (%,8,{%}aex), any subset O of ¥ and any pair of
states p,q € S

[Outputsat o (c75)(P) = Outpulsat ,c1s)(q) = {7} = p~0q

42 Petri Nets

Example 6 Example (continued) 5

One considers again the ILTS (M’,0’) and (M",0”) of the example 5. One
seeks a bisimulation between (M’,0’) and (M”,0”). Let S=SU S’

The property 36 enables us to obtain equivalence at order 1 :
S/Nl = {{Ola 2la 31; OH}? {1/7]-N}a {2”}a {BH}}

T

At order 2, it is easy to see that 1’ 45 1”. Indeed, there are 1”7 = 2 whereas
1’ admits only one 7-successor, 1’ itself, which is not equivalent at order 1 to
2”. While thus continuing, one would show, with order 3, that 1’ and 1” are not
equivalent. Thus (M’,0") and (M",0”) are not observationnaly equivalent.

4.2.4. Abstract/Quotient model

Equivalences or the pre-orders which we saw up to now allow to compare
a system and its specification, both expressed in the form of graph. The beha-
vioral approach, proceeding by comparison, allows to be sure that the system
and its specification have the same properties (the same behavior) modulo the
criterion of abstraction selected to perform the comparison.

For equivalences relations, one can also proceed by projection or aALJintros-
pectiondAl. Instead of comparing two LTS, one can build the smallest equiva-
lent LTS ?.0ne speaks then of projection or of abstract model.

Definition 48 Observational projection

For a LTS LTS = (%,8,{%}uex), a subset O C ¥ from observable labels
and ~@, the associated observational equivalence relation, one note LTS /~o
the quotient of LTS by ~o

,CTS/N(Q =Def <S/NO; ou {7}7 {f\"a\>}ae(’)U{T}> where :
1. §/~p is the quotient of S by ~o

9. ~> is the smallest relation verifying :
(0) (a €0 and g2 ') = g/~o ~> ¢'/~o

-
(b) (a ¢ O and q= ¢ and q #0 q') = q/~o0 ~>d'[/~o
(2.a) means that any observable transition remains in projection. (2.b) means

that only the inobservable transitions connecting two non equivalent states re-
main in projection.

3with respect to the number of states

Chapter x 43

Example 7 Example of projection

One considers (X, 0) the ILTS represen- >
ted opposite. One chooses to observe @A’ B’@
O ={A, B}. In this case, A

X/~o = {{O}a{1}7{2a374}} @

the ILTS (X/~p, C0) obtained by pro-
jection is represented opposite. It com-
prises 3 states :

C0={0},C1={1},C2={2,3,4} One

can note that certain inobservable tran-

sitions remain (1 54 which mate- A\ B+ 7,
rialized the possibility of blocking af- @ @ @
ter A appear in the form C1 > C2)

while others disappear. The transition /

1 22 1 watch which the system can have A

an inobservable infinite execution, one
will speak thereafter (cf section 4.2.5)
about divergence. This possibility of di-
vergence of the system is absorbed in
the class C1).

By construction, the ILTS obtained by

projection ((X/~eo,C0)) is equivalent

to the ILTS projected (X, 0). Projection A B+ 7
is minimal with respect to the number @§ Y

of states. On the other hand it is not

minimal with respect to the number of

transitions. Consider (Y, @), the ILTS

represented opposite. There are again

(Y,Q) ~o (X,0) but (Y,Q) comprises

less transitions than (X/~eo, C0).

Example 8 Continuation of the example 5

By taking again the results obtained in the example 5, we have :

S/N = {{0,7 2/5 31}) {0,/}5 {1,}7 {2/1}7 {3/1}}

44 Petri Nets

One can by simple projection * to deduce the relation ~ from each ILTS :
S/~={{0",2",3'},{1'}} and &'/~ = {{0"}, {1"},{2"},{3"}}

The figure below shows the various steps of the computation : on the left
the initial system, in the medium the saturated system and, on the right, the
projected system.

Coin\
q o

Tea+ Coffee

Figure 12: (M’,0'), Sat o (M') and (M’ /~0,0"/~0)

For (M",0"), classes of equivalence, S /~@, are reduced to singletons, and
the LTS projected is identical (isomorph except for the renaming of the inob-
servable actions i} and I) by 7) with the initial LTS.

Figure 13: (M",0"), Sat|o(M") and (M" /~0,0"/~0)

The projection of (M’/O,0'/O) give again the machine (M, 0) (cf 6) ; these
two LTS are indeed observationaly equivalent.

For (M’;0'), the fact of obtaining only one class gathering states 0 ’, 2’
and 3 7 allows to 4AlJinteriorizeaAl the two transitions (i] and i)) whose one
had decided to make abstraction. The computation of observational equivalence

4projection here in the usual sense : projection of the partition on the sets of states
respectively associated with each one of the LTS

Chapter x 45

allows to legitimate a posteriori this choice : occurrence of these events do not
modify the behavior ‘observed” of the system.

For (M",0"), ignore the actions ¢{ and I does not have sense since accor-
ding to their occurrences the customer will have or will not have the choice of
its drink.

4.2.5. Observational equivalence and divergence

The example precedent has shown that observational equivalence performs
an abstraction relatively reasoned with respect to the hidden events. Contrarily
with the weak language equivalence which a priori gums all hidden events,
observational equivalence can preserve “visible” events that one did not want
to a priori observe ; typically the case of the events inobservable which remains
present on the LTS quotient (unobservable events connecting not equivalent
states)

Among the important concepts which “are masked” by observational equi-
valence, we find the concept of divergence, already met in our example of pro-
jection 7. In the case of finite LTS, the divergence is directly related to the
existence of cyclic paths labelled by inobservable labels, which we will call of
the 7-cycles.

The fact of observing only certain events leads us to refine the standard
concept of state of blocking. Indeed, we want distinguish the states for which
the system (without being blocked) may perform only inobservable actions
(weak blocking states) and of the states where the system can carry out an
infinite number of inobservable actions (divergent states).

Definition 49 Weak blocking, divergence
For a ITS LTS = (%,8,{%}aex), O a subset of ¥ and s a state of S

1. s is a weak blocking for O if Outpulsat ,(c7s)(s) = {7}
2. s is a state of divergence for O if 3o € L((S,s))N(X\ O)>

A weak blocking corresponds in a state where the system cannot evolve in
an observable manner (the only actions carried out are not observable) an
observer cannot thus make the difference between a state of weak blocking and
a state of blocking. Contrary to a weak blocking, from a state of divergence the
system can evolve in an observable way but it can also evolve indefinitely in an
inobservable way.

Example 9

46 Petri Nets

One considers (L, 0) represented opposite. Only the 11 11
action A is observed (O = {4}). ¢ ¢
5 and 6 is states of blocking,

2,4, 5, and 6 are states of weak blocking, $;
0, 1, 2, 3 and 4 are states of divergence. @ @

Definition 50 7-cycles

Let LTS = (2,8, {%}uex) be a LTS and O C X a subset of observable
labels.

Two states s1,82 € S are connected by one T-cycle if
Joi € (B\O)*, 3oz € (B\O)* such that s; 5 sy and 53 22 51

Property 51 7-cycle and weak bisimulation
Two states s1,s2 € S belonging to same a T-cycle are obviously bisimilar.

It is enough to notice that states s1 and so admit exactly the same derived states

e:Vte OU{r},Vse S 281=t>8<:>82:t>5.

In terms quotient of LTS, a corollary of this property is that if a pair of
states s1 and so is connected by a T-cycle then all the elementary transitions
constituting this T-cycle are “hidden” inside the class of equivalence of s1 (i.e
that of s3). In other words, an observational projection disregards all T-cycle.

Example 10 Observational equivalence and divergence

(zﬂee gf Tei -
(d3\ Com /d2 @
T 7 Tea+ Coffee

12 Z4

Figure 14: (Div,0) and its quotient

Let us consider the coffee machine (Div, C) represented Figure 14. As until
now O = {Coin, Tea, Coffee}. The states d1,d2 and d3 are connected by one

Chapter x 47

7-cycle and by applying property 51, it comes that d1 ~o d2 ~o d3. Conse-
quently, ~o= {{d0}, {d1,d2,d3}}. By noting Dy = {d0} et D; = {d1,d2,d3},
we obtain the LTS quotient. All the inobservable transitions belong to 7-cycles
and dissapear into equivalence classes.

Tt was already shown (cf section 13) that the LTS (D,0) and (D’,0’) re-
presented below were weak bisimilar. One would show in the same way that
(D,0) ~o (Div,0). By transitivity, these 3 LTS are in weak bisimulation. For
as much, their behaviors are strongly differents :

(D,0) and (D’,0") deliver “inevitably” one drink after it was paid, while for
(Div,0), the delivery of a drink is only 4AIlJpotentialaAl

Coin\

Tea+ Coffee CoﬁwTea

Figure 15: (D,0) and (D’,0) : 2 LTS bisimilar with (Div, do)

4.3. Modal characterizations of behavioural equivalences

The logical verification is based on properties expressed in a specific lan-
guage (temporal logic for instance). Checking the system satisfies these proper-
ties is equivalent to show that the system is a model of these properties. The
behavioral approach handles only behaviors. One studies equivalence between
the behaviours of the system and of the specification and deduces, from this
equivalence, that the system satisfies its specifications : however we have never
explicitly stated the properties associated with the specification and never have
specified the nature of the properties preserved by the used equivalence.

The work of M. Hennessy and R.Milner [HM 85] permits to understand the
links between these two approaches of verification. It provides in particular a
“logical” definition of the behavioral equivalences which specifies the type of
properties that they allow to check.

48 Petri Nets

4.3.1. Definition of HML

In an intuitive way, a logic can be associated with a given behavioural
equivalence (a logic in adequacy with an equivalence) so that the equivalent
behaviors are the behaviors satisfying the same properties expressed in the
adequate logic.

Definition 52 HML : Logic of Hennessy-Milner

Syntax : HMJL is the smallest set verifying :
true € HML, f,g € HML = fANg,~g € HML
fEHML,a €Y =<a> f € HML

Semantics : The semantics of the formulas HMUL is defined with respect to
a LTS LTS. As for modal logics, one will note for s € S and f € HML
LTS,s | f to indicate that the formula f is satisfied in the state s of the
structure (here of the LTS) LTS. As usually, the semantics of a formula of
HML is defined by induction on the structure of the terms. In what follows :
fand g€ HML and a € 3.

E, the relation of satisfaction, is the smallest relation verifying :
LTS, s =true Vse S
LTS, sEfANgiff LTS,sl=fand LTS,sl=g
LTS, s = —f iff Not (LTS,s = —f)
LTS, s =<a> f iff 3s' € S such that s = s' et LTS, s = f

Abbreviations : false = ~true, fVg=-(=f A—g), df = - <a> ~f
<o> f =<a;><a> ... <ap> f pouUr o = a1.as. ...a,

The semantics of a formula of HML (i.e |=, the relation of satisfaisability)
is defined as for modal logics by regarding the LTS as structure of Kripke. Two
differences may be noticed : HML do not utilize of atomic propositions. More
exactly, the set of propositional variables only contains the variable true which
is true in any state. By taking again the notations introduced into the section
2 : P = {true} and v(s) = {¢true} :Vs € S. On the other hand, the relation of
accessibility between the “worlds” of the structure is now labelled.

Example 11 Examples of properties expressed into HML

LTS, S =<a> true An a-experiment is possible starting from s.

LTS, s =<a> (trueA <c> true)
From s, an a-experiment is possible driving in a state where a b-experiment and
a c-experiment are both possible.

LTS, s = [dfalse From s, no a-experiment is possible.

Chapter x 49

One again considers the LTS (D, 0), (D’,0') and (D”,0"”) represented figure
6 and the properties F; : I € [1,4] below. The table below gives the results of
the evaluation of the formulas F; for each one of the LTS.

F1 =<a> HF ': F1 F2 F3 F4
Fy=<a> (TA<e>T) D,0 F |V |V |F
Fs=0d(<>TA<e>T) Do |V |F |F |V
Fy=<a> ((T ANQF)V (<> T ABF)) D'0 |V |V |F |F

4.3.2. Modal Characterization of the bisimulation

Theory of a state : For a logic £, one notes TH : S +— L, the mapping which
associates with a state s S the set of the properties f of £ that it satisfies (its
theory). TH-(S) =pef {F €L : S F}

Property 53 Hennessy-Milner’s theorem [HM 85]

HML characterizes modally the bisimulation. Two states are bisimilar if
they satisfy the same properties of logic HML.
s ~ qiffT Hyame(s) = THyme(q)

Example 12 Return on the examples 6, 7 and 5

The LTS of the figure 6 are not bisimilar. By taking again the formulas of
the table 11, one can conclude that these CO are 2 to 2 not equivalent :
- F3 only holds for D thus D is equivalent neither to D’ nor with D”.
- F, only holds for D’ thus D’ is equivalent neither to D nor with D”.

The LTS of the figure 7 are not bisimilar. Let us consider the following for-
mula of HML : - G =<Coin> ((<Coffee> <Sugar> T')A (<Coffee> [SugaydF)).
M,0 £ G while M0 =G

The LTS of the figure 5 are not bisimilar. Let f = [Coin(<Coffee> trueA <
Tea> true). f can be formulated as follows : after any occurence of the action
Coin there is always the possibility of carrying out the actions Coffee and Tea.

M',0" = f while M”,0" |~ f.

4.3.3. HML and atomic propositions

As we saw logic HML, in its original statement, is based only on the events,
the relation of m-bisimulation (cf definition 37) can be used to allow to explicitly
take into account the concept of states.

50 Petri Nets

Instead of considering only one labelled transitions system, we consider a
labelled Kripke’s structure
LKS = (AP, %, S,{-%}sex, V) where in each state of S, the valuation v asso-
ciates a set of propositional variables € 247 (cf definition 1).

Definition 54 HML(AP)

One notes HML(AP) the extension of HML to a set of atomic propositions
AP as follows :

Syntax : HML(AP) is the smallest set verifying :
AP C HML(AP), f,g € HML(AP) = fAg € HML(AP),~f € HML(AP)
fEHML(AP),a € ¥ =<a> f € HML(AP)

Semantics : The semantics of the formulas HML(AP) is defined with respect
to a labelled Kripke’s structure LKS = (AP, X, S, { L }aes, V)

k=, the relation of satisfaction, is the smallest relation verifying :
LKS,s = P iff P v(P)
LKS,sl=fANgssi LKS,sE=f et LKS,sEg
LKS,s|=—f ssi Non (LKS,s = —f)
LKS, s |=<a> f ssis s et LKS,s = f

Property 55 Modal characterization of the m-bisimulation

By taking again the notations introduced into the definition 33, one considers
the partition w(S) of S defined by the application v and one considers the
associated T-bismulation (cf def 37).

HML(AP) gives a modal chatacterization for the w(S)-bisimulation : two
states are w” (S)- bisimilar if they satisfy the same formulas of logic HML(AP).

Vp,q €S :p~gv q s8i THypmeap) (@) = THyacar)(q)

Example 13 HMJL and divergence

We saw that observational equivalence masked the divergent evolutions (cf
4.2.5) : it follows that the concept of event inevitable is not exprimable in

HML.

By taking again notations of section 3.3, one notes (M, S) = AF X true
to mean that execution of event ¢ is inevitable from the state s. The adequacy
property of adequacy (prop 53) provides us a simple means for to show that
AFX rytrue can not be expressed in HML.

Chapter x 51

Let us consider the LTS represented figure 16. 1 = AFXyytrue, 0 [~
AFX 4 true, obviously we have 1 ~ 0 and consequently T Hyaqc(1) = T Hyaac(0).
Then AFXr)true cannot be expressed into HML.

C e
Figure 16: Divergence and inevitablility

Let us consider again the three coffee machines represented 10, all the states
of those satisfy the property AFX{Tea Coﬂ“ee}tr“e" and in particular states 1,
1’ and 1” who correspond to states where a drink was paid and not yet delivered.
Let us consider the LTS (Div, d0) presented figure 14, none the states of the
LTS satisfies AFX{Tea,Coffee}true and in particular the state d1. The fact of

having paid drink does not guarantee that one obtains it in a finite time.

The extension of HML to the atomic propositions (cf 4.3.3), provides us a
simple means, in the case of finite LTS, to extend HML to take into account
the concept of divergence.

Let LTS = (X,5,{%}aex) be a LTS, O C ¥ a subset of observable labels.
Let Div(S) be the subset of S defined as follows : Div(S) =per {S € S :
Jw € ¥\ O and s %}. Thus, for the LTS of the figure 10 we have Div =
{d1,d2,d3}.

One considers APp;, =pes {true, Div} and the valuation v defined by
true € v(S) VS € S and Div € v(s)os € Div(S). By construction logic
HML(APpiy) and ~p,,, the associated m—bisimulation, are sensitive to the
divergence.

As example we can compare the LTS (M’ 0') and (Div, d0) presented res-
pectively figures 10 and 14.

~piv 0 = {{d1,d2,d3},{d0,0,1’,2,3'}}

~piv 1 = {{d1,d2,d3},{d0,0/,2',3'},{1'}}

~piv 2 = {{d1,d2,d3},{d0}{0’,2",3'},{1'}}

~Div 3 = ~Diy 2 and consequently ~p;, = ~piy 2

The respective initial states of the two LTS (0,d0) are not in the relation
of bisimulation (0 % p;, d0) and consequently (M’ 0" and (Div,d0) are not
“Div”-bisimilar.

52 Petri Nets

4.3.4. Modal characterizations of other equivalence relations

One considers the subsets of HML defined below :
M =pes {F € HML, F does not contain A} and
N =pef {F € M, F does not contain —}

[HM 85] show that which M is a modal characterization of Co-simulation
while N is a modal characterization of language equivalence.

Strict inclusion between N and HML shows the fact that language equiva-
lence is strictly coarser than observational equivalence. Thus, A/ do not make
it possible any more to express [4 or false which is essential to define proper-
ties of deadlock : observational equivalence preserves deadlocks what is not the
case for equivalence language. Observational equivalence does not preserve the
divergence but can be reinforced to this end [NV 90].

On the other side, the work of [BCG 91] attempts to give a behavioural cha-
racterization of logic CT L*. The relation of equivalence now operates between
Kripke’s structures presented definition 1. Its presentation is very close to the
one of ~x equivalences given definition 31.

Definition 56 FEquivalences of Kripke’s structures

Let KS = (AP, S, —,v) and KS = (AP, S’,—',V') two Kripke’s structures

sharing the same set of propositional variables AP

One defines a sequence of equivalence relations Fx, , Er, , ...sur S xS’
as follows :

s Ex, s iff v(s) =v'(s)

s Fg, ., s iff

1. v(s) =1'(¢)

2.V51€8 :(s—s1)=>3s1 €85 s -8 and s Eg, &

3. Vsh eS8 (s —s))=3s1€8:5—s1 and s1 Ex, $1

Finally, equivalence between Kripke’s is defined as follows :
s Ex s iff s Ex, s :¥Vi>0

The behavioral characterization of logic C7 L*is given by the following pro-
perty :

Chapter x 53

Property 57 behavioral Characterization of CT L™
sExg s =VfeCTL sE fe s Ef]

[BCG 91] also introduced the stuttering equivalence which gives a behavio-
ral characterization of logical temporal CT£L* X, namely C7 L*without next-
time operator.

5. Decidability of the bisimulation and the evaluation of formulas

We now will expose the fundamental results concerning the decidability
of the bisimulation of Petri nets and the evaluation of formulas of temporal
logic for a Petri net. In chapter 4 of the treating volume of the Petri nets
[HAD 01], we saw that the generic properties all were decidables (boundness,
accessibility, . ..). Moreover the complexity of the checking of certain properties
is completely characterized (the boundness property is EXPspace-complete)
while for others, the problem remains open (accessibility is £XPspace-hard
but the algorithm of decision is not primitive recursive). As shown by the
preceding sections, temporal logic and the bisimulation allows to characterize
the behavior of a labelled Kripke’s structure in a way finer than through the
generic properties. Also one can expect that the procedures of decision are more
difficult to obtain. For example, the problem of accessibility is expressed easily

in LTL and CTL.

Example

in LTL,

m not accessible from (R, mg) < (R,mo) E G OR ,cp p # m(p)
—inCTL,

m nonaccessible since (R, mg) < (R,mo) = AG OR pcp p # m(p)

According to the adopted alternative, certain problems are indecidable while,
for the decidable alternatives, the majority of the decision methods rely on the
decidability of accessibility implying a great complexity consequently. The ways
to obtain results of undecidability or of decidability are of very different nature.
We will thus follow this cutting in the continuation.

5.1. Undecidability results

The usual technique to show that a problem is indAlcidable consists in
reducing another problem indATlcidable to the initial problem. This technique
supposes that one beforehand determined in another manner the indecidability

54 Petri Nets

of a problem. The problem more general than we study is that of the stop of a
program.

Theorem 58 (Stop of a program with parameters) the problem of the stop
of a program prog, parameterized by an integer x is undecidable.

Proof

We will show this result by absurb. Let us suppose that there is program
teststop with two integers parameters : a representation (by an integer) of a
program prog and a value of entry of this program. The choice of the represen-
tation of the program is here of no importance ; for example, one could choose
like representation the integer corresponding to the sequence of bits of the pro-
gram. One will note prog this representation. teststop returns true if prog stops
with the provided value and if not returns false. The behavior of teststop is
unspecified if the first parameter is not the representation of a program.

We build then a program foo with a single parameter which functions thus.
foo checks that its parameter x is well the representation of a program
prog (like a compiler does it). If it is not the case, it stops.

— foo calls teststop(X, X). In other words, it tests if the program prog stops

by taking as entry its representation.
If teststop(X, X) returns true, then foo runs without end if not it stops.

Let us examine the behavior of foo(foo).

If foo(foo) stops teststopthen(foo, foo) returns true and consequently foo(foo)

does not stop what is absurd.

In the contrary case, teststop(foo, foo) returns false and consequently foo(foo)

stops what is absurd. There is not thus program teststop. &

The fact that the program has a single parameter in entry is not impor-
tant as indicates it the following corollary. In addition, this one illustrates the
principle of reduction.

Corollary 59 (Stop of a program without parameter) the problem of the
stop of a program prog without parameter is undecidable.

Proof

Let us show that the problem of the stop of a program with a single parameter
is reducible with the problem of the stop of a program without parameter. We
thus suppose that there is a program teststopbis for the problem of the corollary
and we describe how to build a program teststop. Let prog be a program with
a parameter and x an integer value. Then teststop behaves as follows :

Chapter x 55

— teststop builds the representation of the program prog’ without parameter
which consists in calling prog(X).
Then teststop calls teststopbis(prog’) and returns the corresponding re-

sult.
Then teststopbis cannot exist. &
etiq etiq etiq etiq etiq
X X X
inc dec goto fin zero nzero
etig’ etiq' etiq' halt x.etiql etig2
etig:x+1 etig:x-1 etigsOTO etiq' etigiALT
etig'... etiq"...
etiql

etigk=UHEIGOT@tiq1
ELSEOT®tig2

Figure 17: Weak simulation of a program with counter

The choice of the programming language (or the model of computation)
is indifferent, as from the moment when this one has the minimal constructors
conferring to him a expressiveness equivalent to the Turing’s machines. To reuse
the previous results, one seeks languages adapted to the studied problems. In
our case, we will choose the model of the programs with counter. The variables of
such a program are the counters that are positive integers, initialized by 0. The
program is a sequence of instructions ; each instruction is preceded by a label
(with the manner of the language Basic). The different kinds of instructions
are :

— the incrementation etiq: X :=x + 1

the decrementation etiq: X :=x — 1
When the decrementation is applied to a null counter, it causes an abort
of the program considered as different from the stop.

— the unconditional jump etiq : GOTO etiq

— the conditional jump

etig: IF x =0 THEN GOTO etigl ELSE GOTO etig2
the termination etiq : HALT
This instruction is necessarily the last instruction of the program.

This program prog has only one execution (starting with the first instruction)
which can either be infinite, or to abort or to stop when the program reaches the

56 Petri Nets

last instruction. We will propose a weak simulation of a program with counters
by a Petri net noted R4 (this name will also apply to the various variants of
simulation). One associates with each label, a place which when it is marked
indicates that the instruction is the next instruction to be carried out ; initially
only the place of the label of the first instruction contains a token. Each counter
is translated by a place initially not marked. The translation of the instructions
introduces the transitions as indicated in the figure ?? : X. Each transition is
labelled by the type of instruction (inc, dec, goto, fin, zero, nzero). Simulation
is weak in the sense where a labelled transition zero can be fired although the
place x is marked. An exact simulation would require an inhibiting arc from
the place = towards the labelled transition zero. In other words, among the
maximum sequences (finite or infinite), only one of them corresponds to an
exact simulation of the program while the other sequences “cheat” by firing in a
ill-considered way at least a labelled transition zero whereas the corresponding
counter is not null. Tt is then obvious that :
prog terminates
=
All maximal runs of Rpo4 “cheat” or mark place halt

This leads us to the first results of indecidability.

Theorem 60 (Evaluation of a propositional formula L7L or CTL) In
a Petri net, the problem of the evaluation of a propositional formula LTL or

CT L is undecidable.

Proof
It is enough for us to express the second term of equivalence.
In LTL : F (ORy etigep (x.etig =1 AND z > 0) OR halt = 1)
And in CTL : AF (ORg ctigep (z.etig =1 AND z > 0) OR halt = 1)
¢

Let us notice that this result is presented within the framework of a seman-
tics on the maximum sequences finite or infinite. One can easily restrict oneself
with the infinite sequences by adding a transition who buckles around the place
halt. This remark is true for the following result.

By modifying the translation of the conditional jump as indicated on the
figure 18, we obtain a complementary result.

Theorem 61 (Evaluation of an event-based formula C7 L) In a Petri net,
the problem of the evaluation of an event-based formula CT L is undecidable.

Proof

Chapter x 57

lab : IF x=0 THEN GOTO labl ELSE GOTO lab2

Figure 18: Another weak simulation of the conditional jump

The equivalence previously mentionned is still valid and it is sufficient to
express the second term of equivalence in event-based logic C7 L :
AF (EX{crreury true OR EX gy true) &

Let us notice that the operator of branching logic EX allows to test the
firability what is not possible with an event-based linear logic. We now will
transform our weak simulation once again to treat the case of the bisimula-
tion.We add to our network two new “complementary” places y and ¥’ so that
that a token either present or in y or in ¢’ but never simultaneously in the two
places.

For a marking m of this nature, one will note ™ the marking obtained by
reversing the contents of y and y’. One modifies once again the conditional
jump but also the last instruction as indicated on the figure 19.

lab T lab
y X
O tl >
erd zero y ; nzero

halt 12 ‘/QV\E' t3 l a2

zero Zero

| adl <

Figure 19: A third weak simulation

58 Petri Nets

Initial marking mg is defined by a token in the label of the first instruction
and a token in the place y. Here still, one of the maximal sequences of exe-
cution corresponds to the simulation of the program with counters. When one
“deviates” of exact simulation by firing a labelled transition zero whereas the
corresponding counter is marked, one can, either swap the contents of y and 3’
(by to or t3), or to leave it unchanged (by ¢1). The transitions of the 5 type
and t3 are not used by exact simulation.

Theorem 62 (Bisimulation of Petri nets) the problem of the bisimulation
of two marked nets (R, mo) and (R',my) is undecidable.

Proof
We will show that a program with counters prog stops if and only if (Rprg, m0o)
and (Rprog, o) are not bisimilar

1. prog stops

Let suppose us that mg and m(are not bisimilar. Let mg, mq, ..., m, the se-
quence of markings corrsponding to the exact simulation of prog. We show by
recurrence that for i < n, m; and m; are bisimilar. Since m; corresponds to a
step of the exact simulation of prog, it is possible to speak about the next ins-
truction to execute. If this instruction is an incrementation, a decrementation,
an unconditional jumb or the non zero branch of a conditional jump then a
single transition labelled with the corresponding action is firable from m; and
m; leading to respectively m;y; and m;41. If this instruction corresponds to
the zero branch zero of a conditional jump connection, then here also only one
transition (¢1) is firable from m; and m,; since the tested () counter is not
marked ; the firing of ¢; leads to m;+1 and ™m;11. Let us now examine m,,_1
and 7, _1. The transition labelled by fin is firable from m,_; but is not fi-
rable from 7,1 since y is not marked. The markings m,, 1 and T, _1 are not
bisimilar and consequently mg are mg are not bisimilar.

2. prog does not stop

We define the relation R containing (mg,) and show that R is a bisimulation.
R ={(m,m’) | m =m’ where m is a marking reached by the exact simulation
of prog and m’ =m}. Of course, it is enough to prove that R is a bisimulation
only for the second type of pair of markings. Let m be a reached marking by
the exact simulation of prog. Since Puisque prog does not stop,the transition
labelled by fin is not firable from m. In a case of abort, no more transition
is firable both from m and m. If the next transition to execute is not the
zero branch of a conditional jump then a single transition (corresponding to
the simulation) is firable from m and 7. This transition corresponds to the

Chapter x 59

simulation of prog and consequently the pair of reached markings belongs to
R. If the next transition is a non zero branch then two choices occur from of
a conditional jump m (respectively), to continue the simulation by firing
the transition labelled by nzero or to “diverge” from the simulation by firing
a transition labelled by zero t; or to (respectively t1 or t3). We show that m
simulates m (the converse is symetric).
If transition nzero is fired from m, the same is fired from 77 and the pair
of reached markings corresponds to the next step of the simulation of
prog.
— If transition ¢; is fired from m, t3 is fired from 77 and the reached markings
are the same.
— If transition ¢ is fired from m, ¢; is fired from 77 and the reached markings
are the same.

¢

The attentive reader will have noticed that the proof applies to any equiva-
lence - from language equivalence to bisimulation - since if prog stop then two
nets then are not language equivalent.

In the same way, for the marked nets of the proof, two transitions ¢ and
t' are never firable in a concurrent way (i.e m > Pre(T) + Pre(t')), then the
result remains valid for equivalences which take into account concurrent firing.

5.2. Decidability results

During this paragraph, we will call upon various concepts introduced in
chapter 4 of the volume of the Petri nets [HAD 01] (together semi-linear, tech-
nique of shorter sequences, ...). We strongly advise with reader to defer to it
for better appreciating what follows.

5.2.1. LTL Formulas

We first study the verification of an event-based temporal logic formula
(for instance from linear p-calcul), formulas which can be represented by an
automaton [DAM 92]. Terminal states are interpreted as usual in the case of a
finite sequence semantics or as those of a Biichi’s automaton when the semantics

is expressed in terms of infinite sequence.

The verification procedure for finite systems consists in :
building the automaton associated with the negation of the formula,

60 Petri Nets

— building the synchronized product between the labelled transition system
of the model (i.e. the reachability graph) and the automaton,
finding a finite sequence (respectively infinite) reaching (respectively a
infinite times) a terminal state.

This procedure is obviously not possible in the case of infinite transition
systems, but the key of the method that we will expose consists in building a
Petri net who generates the labelled transitions system product and then to
test in this net the existence of an adequate sequence.

@)
o R _~]] e
o/,\b;‘o—@ -> @W
o) sm

Aut

— P\ /4
® ©

t @
Pu===LPN © N
o & ®

I nitN\et Prod\et

Figure 20: Synchonized product betwen a Petri Net and a automaton

The construction on a Petri Net “product” has been viewed during the chap-

ter treating the study of languages and we recall it briefly here (see figure 20).

— The automaton (Aut) is translated in a Petri net (in fact a one-safe state
machine) (SMA),

The product net (ProdNet) is obtained, from the net associated with the

model (InitNet) and from the state machine, as follows :

— The set of places of the product net is defined as the (disjoint) union
of the sets of places and the initial marking as the sum of the initial
markings,

For each pair of transitions sharing the same label we associate a tran-
sition ; the input and output arcs of that transition are obtained by
union of corresponding arcs in the initial nets. Transition of the initial
net labelled by the empty word remain unchanged.

It obviously follows that the observable traces of this net are exactly the

Chapter x 61

words generated by the initial net and recognized by the automaton (without
taking into account the terminal states). This is the departure point of the
evaluation method.

Theorem 63 (Evaluation of an event based L7 L formula) In a Petri
net, the evaluation of an event based LT L formula is a decidable problem (and
more generally any formula whose negation is representable as an automaton)

Proof

This result is valid for any kind of sequences : finite, finite maximal, infinite,
divergent. We limit us to the third first kinds since we dont have defined in a
precise way a semantics for the divergent sequences.

1. Case of the finite sequences

We search the existence of a finite sequence in the net which marks a place
associated with a terminal state of the automaton. In other words, for each of
those place, we search to cover the marking defined by the presence of a token
in that place. The covering problem has been addressed in and the method of
the shorter sequences furnishes a procedure whose complexity is EXPspace.

2. Case of the finite maximal sequences

We search the existence of a finite maximal sequence in the product net which
marks a place associated with a terminal state of the automaton. Let Term be
the subset of that places. In other words, the net has to stop him in a marking
where one of the places of T'erm is marked. The set of these markings is a com-
putable semi-linear set (Nier{m | NOT m > Pre(t)} NUpererm{m | m > 7'}.
We have to know if one of the markings of a semi-linear set is reachable. Since
a semi-linear set is a finite union of linear sets, we have successively to test the
accessibility of each linear set. Finally, to each linear set £ = {w | 3A1,..., Ay
inIN,t.q.w = u+ Y ;" \i.v;}, we add to the net a transition ¢; for ¢ from 1
to m such that Pré(t;) = v; and Post(t;) = 0. Then, we have to test, in the
modified net, if u is reachable; unfortunately, the corresponding algorithm is
not recursive primitive.

3. Case of the infinite sequences

We search the existence of an infinite sequence in the product net which marks
infinitely often a place associated with a terminal state of the automaton;
in other words one of the transitions, having one of the places as an input
place, is fired infinitely often. We find again the problem to search an infinite
sequence in which a given transition ¢ admits an infinity of occurrences. That
is, such a sequence have the form o = g7.05. 0;.... where t appears in each
o;. With the help of extraction lemma of the chapter 3 of [HV 01] applied to
the intermediate markings reached by the sequences o1.05..... o;, we deduce
that the existence of such infinite sequence is equivalent to the existence of

62 Petri Nets

a sequence of the form mg[o;)my[oa)ms where m; < mg and ¢ having an
occurrence in gy. Finally, by adding an output place p; to ¢, the initial problem
is equivalent in this modified net to search a sequence mg[o1)m1[o2)me with
my < mgo and mq(p:) < ma(p:). This last problem is also solved using the
techniques of the shorter sequences (see [RAC 78, YEN 92| for more details)
and leads again to a procedure with a EXPspace complexity. &

An interesting question is to known is the decidability is preserved when you
consider extensions of Petri Nets. In fact, this evaluation becomes undecidable
for almost the totality of the extensions of Petri nets. It is for instance the case
for recursive Petri nets and even for restricted models [BOU 96]. However,
when you consider only a sequential semantics of the firing of an abstract
transition, the problem remains decidable [HAD 00].

5.2.2. Bisimulation

We now study the bisimulation of a marked net and a finite transition sys-
tem. We will use the ~ y-equivalences, introduced by the definition 31, allowing
to characterize in the case of finite STE the bisimulation (cf prop 32).

To avoid the ambiguity in our notations, in particular with respect to the
origin of the states which we will consider, we will mention the name of the
STE explicitly. Thus we will note (LTS, S) to clarify the fact that the state s
is a state of the STE L7 S.

We introduce two useful notations for the next developments. Let L7S =
(2, 8,{%}acx) be a labelled transition system,
IncflTS denotes the set of initialized systems incompatible with £L7'S for
~on t IncETS = {(LTS',s') | Vs € SNOT (LTS, s") ~, (LTS, 5))}
— %, denotes the transitive and reflexive closure of the union of the —%,.
In other words, (LTS, s)-2+(LTS,s') iff s’ is reachable from s.

Lemma 64 Let LTS = (%,5,{%}uex) be a finite labelled transition system
(ns = |S|) and LTS = (¥, 8", {%}aes) a labelled transition system, then :
Vse S, Vs e 5,

(LTS, s) ~n, (LTS',s)
(LTS,s) ~(LTS',s') & ¢ AND

A (LTS, s") € IncyTF st (LTS, s') (LTS, s7)

Proof

For the implication from left to right, if (CTS,S) ~ (LT S’,) then according to
property ?? bisimdecis (L7 S, S) ~,, (L7S’,). In addition, by an obvious re-
currence on the number of transitions -2, which lead of (L7 S',) to (LTS, S7)

Chapter x 63

by using the definition of ~, one establishes that there exists s; accessible since
s (with the same number of transitions) such that (£7S’,S”) ~ (LTS, s1))
and consequently (LTS',S”) ~,. (LTS, s1).

For the implication from right to left, we define the relation R as follows :

(LTS, 81) ~n, (LTS, sh)
(LTS,51)R(LTS',s}) ssi{ AND
A(LTS' ") € IncETS t.q. (LTS,) 25(LT S, s7)

We show that R is a relation of bisimulation.

Let us suppose that (LTS, s1)-2+(LTS, s2) ; then there exists (LTS, s5) such
that

(LTS, 8)) 2 (LTS, sh) and (LTS, s2) ~n,—1 (LTS, sh).

Since (LT S', sb) is accessible from (LT S’, s}), we have :

B(LTS s7) € IncETSt.q. (LTS, s4) (LTS’ s”). In particular,

(LTS',sh) & IncETS. Thus there exists (LTS, s3) ~n, (LTS, sb).

By transitivity and the fact that ~,Cr~p,_1, (LTS, 83) ~n.—1 (LTS, s2)
and under the terms of the property ?? bisimdecis, (LTS, s3) ~n. (LTS, s2).
Again by transitivity, one thus obtains (LTS, s3) ~p, (LTS, sb).

The case (LTS, s}) -2 (LTS, s4) is similar. O

This characterization is at the base of the following result.

Theorem 65 (Bisimulation between a net and a finite system) The pro-
blem of the bisimulation beween a marked net (R, mg), without transition la-
belled by the empty word, and a finite labelled transition system (LTS, sg) is
decidable.

Proof
Like previously n, = |S]. To decide if (R, mg) ~n. (LTS, so), it is enough to
verify that, :
— for each transition labelled by a firable from mg and leading to mi, there
exists s1 such that (LTS, so) (LTS, s1) and (LTS, $1) ~n,—1 (R, m1),
— Forall s; such that (LTS, s0)—25(LTS, s1), ther exists a transition label-
led by a firable from mg and leading to m; such that
<£T8, 81> ~ngo—1 <R, m1>.
This obviously leads to a recursive procedure whose depth is limited to ns.

It remains us to be tested if there is an accessible marking m; since mg such as
my € Incﬁ?s. Let us study initially markings belonging to IncﬁST‘S. According
to the preceding recursive procedure, to test ~,,6 one examines only firing
sequences of length > ng. Let us pose v the maximal valuation of an arc of R

64 Petri Nets

and B = v.ns. Let us take two markings m and m’ such as Vp € P, m(p) #
me(p) = m(p) > B AND me(p) > B. These two markings are equivalent for
~n.. That is to say thus a marking m bounded by B, let us pose Sup®(m) =
{me|me >m AND ¥p € P, m(p)}.

Obviously all the markings in Sup®(m) are equivalent for ~,, .. We have to
note that a marking necessarily belongs to Sup®(m) for a m bounded by B.

The decision procedure operates in two steps First for each marking m bounded
by B, she tests - using the previous procedure - if m € IncﬁSTS. Then for each
of these m, it search if there exists m’ € Sup®(m) with m’ reachable from
myg. This research consists in testing the accessibility of m in a net augmented
with a transition ¢, for each place p such that m(p) = B, transition defined by
Pre(t,) = P and Post(t,) = 0. O

In [JAN 99|, one will be able to find results more techniques like the exis-
tence test of a finite labelled transition system in bisimulation with a Petri
net.

Chapter x 65

Références

[ARN 92] A. ArNOLD Systémes de transitions finis et sémantique des processus
communicants Masson Paris, 1992.

[AHO 74] ALFRED V. AHo, JOHN E. HOPCROFT ET J. D. ULLMAN. The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading, 1974.

[BCG 91] M.C. BrowNE, E.M. CrLARKE, O. GRUMBERG Characterizing finite
Kripke structures in propositional temporal logic Theoretical Computer Science,
59 :115-131, 1988

[BOU 96] A. Bouaisant ET HABERMEHL P. Constraint properties, semi-linear sys-
tems and Petri nets. In CONCUR’96, volume 1119 of LNCS, 1996.

[BRI 88] E. BRINKSMA A theory for the derivation of tests In PSTV’88, Elsevier
Science Publishers B.V., North Holland, 1988

[BRY 86] R. BRYANT. Graph based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8) :677 691, 1986.

[BUC 62] J.R. BucHl. On a decision method in restricted second order arithmetic. In
Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1 12, Stanford,
USA, 1962. Stanford University Press.

[CLE 89] R. CLEAVELAND. Testing equivalence as a bisimulation equivalence. In
Proc. of CAV ’89, volume 407 of LNCS, pages 24-37. Springer-Verlag, 1989.

[COU 99] J-M. CouvREUR. On-the-fly verification of linear temporal logic. In Proc.
of the Formal Methods’99, volume 1708 of LNCS, pages 253 271. Springer-Verlag,
1999.

[DAM 92] M. DamM. Fixed points of Biichi automata. In Foundations of Software
Technology and Theoretical Computer Science, 12th Conference, volume 652 of
LNCS, pages 39-50, New Delhi, India, Décembre 1992.

[DE 87] R. DE Nicora Extensional Equivalences for Transitions Systems Acta
Informatica 24 1987

[DIA 01] M. Diaz Les Réseaux de Petri. Modéles fondamentaux Hermes
Science, Traité IC2 Information-Commande-Communication, N¥ISBN 2-7462-
0250-6, 2001, 384p.

[NV 90] R. DE NicorA, F. VAANDRAGER Three Logics for branching bissimulation
In Proc of 5th IEEE Symp. on Logic in Computer Science, 1990

[DI 86] A. Dicky An algebraic and algorithmic method for analyzing transition s
ystems Theoretical Computer Science, Vol n° 46, 1986

[DRI 92] K. DrIRA Transformation et composition des graphes de refus : analyse de
la testabilité These de I'Université P. Sabatier, Toulouse 1992 Rapport LAAS :
92435

[EC 81] EmERSON, E. A. AND CLARKE, E. M. Characterizing Correctness Pro-
perties of Parallel Programs as Fixpoints In Proc. of ICALP’81, volume 85 of
LNCS, Springer-Verlag, 1981.

[EC 82] EMERsON, E. A. AND CLARKE, E. M. Using Branching Time Temporal Lo-

gic to Synthesize Synchronisation Skeletons Science of Computer Programming,
volume 2, pages 241 266, 1982

[EH 85] EMERSON, E. A. AND HALPERN, J. Y. Decision Procedures and Expres-
siveness in the Temporal Logic of Branching Time Journal of Computer and
System Sciences, volume 30 :1, pages 1 24, 1985.

66 Petri Nets

[EME 96] E.A. EMERSON. Automated temporal reasonning about reactive systems.
In Logics for Concurrency : Structure versus Automata, volume 1043 of LNCS,
pages 41-101. Springer Verlag, 1996.

[ESP 97] J. EsparzA. Decidability of model-checking for infinite-state concurrent
systems. Acta Informatica, 34 :85-107, 1997.

[ESP 98] J. EsparzA. Decidability and complexity of Petri net problems - an in-
troduction. In Lectures on Petri Nets I : Basic Models, volume 1491 of LNCS,
pages 374-428. Springer Verlag, 1998.

[FER 89] J. C FERNANDEZ An Implementation of an efficient algorithm for bissi-
mulation e quivalence Science Computer Programming, 13 :219-236, 1989

[GER 95| R. GErTH, D. PELED, M.Y. VARDI ET P. WOLPER. Simple on-the-
fly automatic verification of linear temporal logic. In Proc. 15" Workshop on
Protocol Specification, Testing and Verification (PSTV’95), Varsovie, Pologne,
Juin 1995. North-Holland.

[GOD 93] P. GoperroID ET G.J. HOLZMANN. On the verification of temporal

properties. In Proc. 13" Workshop on Protocol Specification, Testing and Veri-
fication (PSTV’93), pages 109 124, Liege, Belgique, Mai 1993.

[HAD 00] S. HADDAD ET D. POITRENAUD. A model checking decision procedure for
sequential recursive Petri nets. Technical Report 2000/024, LIP6 - Université P.
et M. Curie, septembre 2000.

[HM 85] M. HENNEssy, R. MILNER Algebraic Laws for Nondeterminism and
Concurrency Journal of the A.C.M, Volume 32(1) :137-161, 1985

[HEN 85] M. HENNESSY Acceptance trees Journal of the A.C.M, Volume 32(4) :896—
928, 1985

[HV 01] S.HappaDp, F.VERNADAT Méthodes d’analyse des réseaux de Petri In
Les Réseaux de Petri. Modeéles fondamentaux, Hermes Science, Traité 1C2
Information-Commande-Communication, ISBN 2-7462-0250-6, 2001, Chapitre 3,
pp.69-117

[HAD 01] S.Happap Décidabilité et complexité de problémes de réseaux de Petri
In Les Réseaux de Petri. Modeéles fondamentaux, Hermes Science, Traité 1C2
Information-Commande-Communication, ISBN 2-7462-0250-6, 2001, Chapitre 3,
pp.69-117

[JAN 95] P. JANCAR. Undecidability of bisimilarity for Petri nets and some related
problems. Theoretical Computer Science, 148 :281 301, 1995.

[JAN 99] P. JANCAR, J. EsPARZA ET F. MOLLER. Petri nets and regular processes.
Journal of Computer and System Sciences, 59(3) :476 503, 1999.

[LED 90] G. LeEpuc. Comformance relation, associated equivalence and new canoni-
cal tester in Lotos In PST'V’91, Elsevier Science Publishers B.V., North Holland,
1991

[MAY 84] E.W. MAYR. An algorithm for the general Petri net reachability problem.
SIAM Journal of Computing, 13 :441 460, 1984.

[MIL 89] R. MILNER Communication and Concurrency Prentice Hall, 1989

[OH 86] E.R. OLbEROG, C.A. HOARE Specification-Oriented Semantics for Com-
municating Processes Acta Informatica 23 :9 66 , 1986,

[PARK 81] D. PArRk Concurrency and automata on infinite sequences 5th Conf.
On theoretical Computer Sciences pages 167-183 volume 104 of LNCS, pages
167 183. Springer Verlag, 1981

Chapter x 67

[PT 87] R. PaiGe, R.E. TARJAN Three partition refinement algorithms SIAM J.
Comput, 1987

[RAC 78] C. RackoFrF. The covering and boudedness problems for vector addition
systems. Theoretical Computer Science, 6(2) :223 231, 1978.

[GLA 90] RoB J. vAN GLABBEEK The Linear Time-Branching Time Spectrum.
CONCUR 1990 : 278-297

[VAR 96] M.Y. VARDI. An automata-theoretic approach to linear temporal logic.

In Logics for Concurrency : Structure versus Automata, volume 1043 of LNCS,
pages 238 266. Springer Verlag, 1996.

[WOL 83] P. WoLPER. Temporal logic can be more expressive. Information and
Control, 56(1-2) :72-93, 1983.

[YEN 92] H-C. YEN. A unified approach for deciding the existence of certain Petri
net paths. Information and Computation, 96 :119 137, 1992.

