
Chapter xVeri�
ation of spe
i�
 propertiesSerge Haddad , François Vernadat1
1. Introdu
tionIn the previous 
hapter of this book of the Petri nets [DIA 01℄, we studiedthe 
he
king of generi
 properties of Petri nets su
h as boundness or liveness[HV 01℄. If these properties inform the designer about the general behavior ofthe net, those must be supplemented by the analysis of the spe
i�
 propertiesof the modelled system. Also we lean in this 
hapter on the expression and the
he
king of spe
i�
 properties of the Petri nets.Generally, the designer of an appli
ation de�nes the fun
tions and/or theservi
es of this one through a spe
i�
ation. On
e its modelled appli
ation, itwishes to 
he
k that its model 
onforms to the spe
i�
ation. In order to developalgorithms and tools for this 
he
king, it is ne
essary to formalize the 
on
eptof spe
i�
ation. Two possibilities were largely studied with this goal : eitherthe spe
i�
ation is de�ned by a set of formulas of an adequate logi
, or thespe
i�
ation is de�ned using a model of behavior. We will thus explore thesetwo ways whi
h in pra
ti
e are 
omplementaries : 
ertain properties will beexpressed more easily using formulas and others more easily using a behavior.To �x the ideas, let us 
onsider a simpli�ed example of ressour
e allo
ationin mutual ex
lusion : 2 
ustomers are in 
ompetition to rea
h a resour
e. Thea

ess 
ontrol poli
y is ensured by a me
hanism whose we will make abstra
tion.1LSV, É
ole Normale Supérieure de Ca
han 61, avenue du Président Wilson 94235 CA-CHAN Cedex - Fran
e (haddad�lsv.ens-
a
han.fr)LAAS-CNRS, 7, Avenue du Colonel Ro
he F-31077 Toulouse 
edex, (fran-
ois.vernadat�laas.fr)



2 Petri NetsAmong the properties to be 
he
ked, we must express the property of mutualex
lusion : P1 �the resour
e is used with more by one 
ustomer�, and by analogywith the problems of the philosophers, whi
h one generally names the absen
eof starvation : P2 �A 
ustomer awaiting the resour
e will obtain it in a �nitetime �. One wants to also be able to spe
ify the operation of a 
ustomer and toexpress P3 �the 
ustomer sends initially a request to obtain the resour
e (A),that it re
eives then an agreement of use (b) and that �nally (
) it sends amessage of release before turning over in its initial state�.P1 and P2 will be expressed simply using formulas of temporal logi
s whileP3 will be expressed in a more 
ompa
t way using a behavior su
h as thatrepresented on the left of the �gure 1.A 
ontrario, P1 will be expressed only one very indire
t by the behaviorrepresented on the straight lines of the �gure 1 : between does two 
onse
u-tive entries in 
riti
al se
tion (event ? Ack), is inevitably the exit of the only
ustomer present in 
riti
al se
tion (event ! Rel).Idle WaitWork
! Req

? A
k! Rel ? A
k1

? A
k2

! Rel2! Rel1
Figure 1: Examples of behavioural spe
i�
ationsA logi
 ready to reason on the behavior of dynami
 systems to dis
reteevents must ne
essarily integrate the 
on
ept of sequen
e of states (�nishedor in�nite) 
orrespondent into a possible exe
ution. Moreover it must be ableto express properties of safety like �To more the one pro
ess in the 
ourse ofexe
ution of a 
riti
al se
tion, in any state of the sequen
e� (
f P1), of theproperties of liveness like �If in a state, a pro
ess requires to 
arry out a a
riti
al se
tion then in a future state this pro
ess will 
arry out this 
riti
alse
tion� (
f P2) and of the properties of equity as �Any pro
ess able to be
arried out in an in�nity of states will be 
hosen by the s
heduler an in�nityof time�. The key 
on
ept is here the time seen like a dis
rete su

ession ofmoments and logi
s whi
h integrate this 
on
ept are 
alled underline logi
altemporal.These logi
s are distinguished a

ording to two axes. Parallelism and/or thenon-determinism imply the existen
e of various exe
utions of the same systemand require their simultaneous taking into a

ount. Then :



Chapter x 3� the whole of the exe
utions is represented as a tree where the varioussu

essors of a state are obtained by the possible instan
es of events inthis state. One then speaks about bran
hing logi
al temporal.� the whole of the exe
utions may be also represented as a set of exe
utionsequen
es. One then speaks about linear logi
al temporal.The se
ond axis relates to the elements of the sequen
e.� We 
an 
onsider a sequen
e of states 
hara
terized by a their set of atomi
propositions. One then speaks about state-based temporal logi
.� We 
an also 
onsider a sequen
e of elementary transitions, ea
h one la-belled by an event. One then speaks about event-based temporal logi
.Also in the �rst part, we will introdu
e the syntax and the semanti
s ofa propositional bran
hing time logi
 
alled CT L∗. We will present two verystudied fragments of them CT L and LT L. We will show then how to 
arry outthe 
he
king of formulas on �nite states models.We will 
omplete this se
tion by indi
ating the adaptations to be takeninto a

ount within the framework of the Petri nets. The prin
ipal point isto 
onsider in a suitable way the various types of sequen
e of �ring (�nished,maximum �nished or in�nite).After having seen the logi
al approa
h for the 
he
king, we will be interestedin the �behavioral� approa
h. The logi
al approa
h is sometimes des
ribed as�double model� in the sense where one has a logi
 for to spe
ify the propertiesto be 
he
ked and of one stru
ture whi
h represents the behavior of the system(the �Kripke'stru
ture� whi
h is de�ned by the rea
hable markings graph inthe 
ase of a system des
ribes by a Petri net). At the opposite, the behavioralapproa
h is sometimes des
ribed as �simple model� in the sense where we onlydispose of a single stru
ture, a "labelled transitions system� (a stru
ture 
loseto the the rea
hable markings graph for Petri Nets. This one makes it possibleto represent at the same time the behavior system and its spe
i�
ation.The behavioral approa
h pro
eeds by 
omparison. Using various relations ofequivalen
es or pre-orders, two are 
ompared behaviours : those satisfy the sameproperties if and only if they are equivalent. Various behavioural equivalen
eshave been introdu
ed to take in a

ount several 
lasses of properties or, in anequivalent way, several points of view to 
onsider when a system is analyzed.Among these di�erent point of view, we will �nd the taking into a

ount ofparallelism and non-determinism. As for temporal logi
s, we will be brought todistinguish two great families from relations of behavioural equivalen
es : thefamily of the �equivalen
es of tra
es� whi
h 
onsider the exe
ution of a systemthrough the set of its sequen
es of exe
ution (
f linear temporal logi
s) and thefamily of �bisimulations� whi
h 
onsider the exe
ution of a system through its"tree� of exe
ution (
f bran
hing time temporal logi
s). For these two families,one 
an also be brought to privilege the "states� of an exe
ution (
f state-based



4 Petri Netstemporal logi
s) or the events whi
h 
onstitute the exe
ution (
f event-basedtemporal logi
s).A �rst se
tion will enable us to introdu
e in an unformal way various possiblepoints of view when the behavior of two systems is 
ompared. The se
ondse
tion will present the 
on
ept of bisimulation and simulation. The asso
iatedpro
edures of de
ision will be presented. The third part will present �weak�equivalen
es whi
h make it possible to 
ompare systems des
ribed at variouslevels of abstra
tion. The last se
tion will attempt to show the links betweenthe behavioral approa
h and the logi
al approa
h : we will present logi
 HML[HM 85℄ whi
h gives a modal 
hara
terization of the bisimulation. relation.In the other dire
tion, we will have the results of [BCG 91℄ whi
h gives abehavioural 
hara
terization of temporal logi
 CT L∗.In the last part, we will analyze the de
idability of the evaluation of for-mulas of temporal logi
 on a Petri net and the test of bisimulation of a netmarked with a labelled transitions system. More pre
isely, we will establish aswithin the framework of a propositional temporal logi
, the evaluation is un-de
idable as well for the fragment CT L as for the fragment ltl. This resultalso holds for event-based arbores
ent logi
. In these three 
ases, the formulasused require only one number very limited temporal operators what indi
atesthe robustness of the result (see for example [ESP 98℄). While being based onsimilar arguments, one will show that the test of bisimulation of two markednets is also unde
idable [JAN 95℄.Contrary for an event-based linear logi
 temporal very expressive (the li-near µ-
al
ul), the evaluation of formulas remains de
idable [ESP 97℄. In the
ase of maximal sequen
es, the pro
edure is based on the de
idability of therea
hability [MAY 84℄ while for the in�nite sequen
es, one is redu
ed to thete
hnique shorter sequen
es seen to 
hapter 4 of the �rst treating volume ofthe Petri nets [HAD 01℄ or also used in [RAC 78, YEN 92℄. Finally the test ofbisimulation of a marked net and a �nite transitions system be
omes de
idable(here still using the test of a

essibility) [JAN 99℄. This result is all the moreinteresting as very often the spe
i�
ation of a servi
e is given by su
h a systemand the validation 
onsists in 
omparing this spe
i�
ation with the Petri netwho implements it.2. Kripke's Stru
tures and transitions systemsThe labelled Kripke's stru
tures des
ribe in a su�
iently generi
 way thebehavior of the systems whi
h one wishes to study. Those 
onsist of a set ofstates for whi
h 
ertain propositions are 
he
ked and of a set of binary relationsbetween states, subs
ripted by the events of the system.



Chapter x 5De�nition 1 A labelled Kripke's stru
ture LKS = 〈AP, Σ, S, { a
−→}a∈Σ, ν〉 isde�ned by :� AP is a set of atomi
 proposals� Σ is a �nite alphabet of events� S is a set of states� a

−→ is a binary relation ⊂ S × S� ν : S → 2AP is a labelling whi
h asso
iates in ea
h state, ν(S) the set ofthe atomi
 propositions holding in s.When one studies a stru
ture of Kripke labelled, one 
onsiders it generallyprovided with an initial state s0 what one notes by (SKE, s0). When onedisregards event, one then has business with a stru
ture of Kripke. Contrary, ifone disregards atomi
 proposal, one speaks about system to transitions labelled.The two following de�nitions formalize these 
on
epts.De�nition 2 A stru
ture of Kripke KS = 〈AP, S,→, ν〉 is de�ned by :� AP is a set of atomi
 proposals� S is a set of states� → is a binary relation ⊂ S × S� ν : S → 2AP is a labelling whi
h asso
iates in ea
h state, ν(S) the wholeof the atomi
 propositions holding in s.De�nition 3 A labelled transitions system LT S = 〈Σ, S, {
a
→}a∈Σ〉 is de�nedby :� Σ is a �nite alphabet of events� S is a set of states� a

−→ is a binary relation ⊂ S × SThereafter, we will note s
a
→ s′ to indi
ate that (s, a, s′) ∈ S × Σ × S. Byabuse notation, we will also note for σ ∈ Σ∗ : s

σ
→ s′ to indi
ate that s isa

essible starting from s via the sequen
e from a
tions (the word) σ.the systems whi
h we 
onsider being able to be not-determinists, we will notefor s ∈ S, E ⊂ S and a ∈ Σ : s

a
→ EσE = {s′ ∈ S : s

s
→ s′}We will note �nally s

a

6→, to indi
ate that s does not have a su

essor by thea
tion a and s 6→ to indi
ate that s does not have any su

essor (i.e., 
onstitutesa state of blo
king).These stru
tures 
an they be also initialized.



6 Petri Nets3. Temporal Logi
3.1. Syntax and Semanti
sSin
e one wishes to 
he
k dynami
 systems with dis
rete events, let us ex-press what is 
ommon to all these systems : states and the rea
hability relationbetween states. As example, a state of a distributed appli
ation is 
hara
terizedby the state of the pro
esses (value of the variables, instru
tion 
ounter, . . .)and the state of the environment (e.g messages of the 
hannels). In front ofthe diversity of the possible representations, one will be satis�ed of a largelysu�
ient abstra
tion in the majority of the 
ases to knowing a set of atomi
proposals (noted P, Q, . . .). Starting from a given state, the relation of su

es-sion indu
es a set (generally in�nite) of sequen
es of states begin with thisstate, still 
alled paths in the terminology of temporal logi
. Also propositionalarbores
ent logi
 that we will study CT L∗ de�nes it indu
tively by a syntaxof formulas of state and of path [EME 96℄.De�nition 4 (Syntax of CT L∗) Let AP be a set of atomi
 proposition, thenthe formulas of CT L∗are de�ned by the following rules :S1 Ea
h atomi
 proposition P is a state formula.S2 If f and g are state formulas then f AND g and NOT f are stateformulas.S3 If f is a path formula then E f and A f are state formulas.P1 Ea
h formula of state is a path formula.P2 If f and g are path formulas then f AND g and NOT f are path for-mulas.P3 If f and g are formulas of way then X f and f U g is formulas of way.Only the rules S3, P1 and P3 require explanations. One wishes to reason onthe sequen
es resulting from a state. Thus E f is 
he
ked if starting from thisstate there exists a sequen
e whi
h 
he
ks f .A f is 
he
ked if starting from thisstate all the sequen
es 
he
k f . If f is a formula of state then f also interpretsas a formula of way whi
h is evaluated on the �rst state of the sequen
e. X
f (X for �next�) 
onsists in evaluating f on the private under-sequen
e of the�rst state. Finally f U g (U for �until�) is 
he
ked if there exists a su�xof the sequen
e for whi
h g is 
he
ked and su
h as all the pre
eding su�xes(in
luding the initial sequen
e) 
he
k f . In other words, f remains 
he
keduntil g is 
he
ked and g will be it. We formalize now the semanti
s of CT L∗ byintrodu
ing the 
on
ept of model and satisfa
tion of formula by a model.



Chapter x 7De�nition 5 (Model of CT L∗) A model of CT L∗is a Kripke's stru
ture KS =
〈AP, S,→, ν〉 su
h as → is a total binary relation : ∀S ∈ S, ∃T ∈ S su
h as
s → tTraditionally temporal logi
 reasons on in�nite sequen
es. Indeed, this oneis interested parti
ularly in properties of equity whi
h have meaning only inthis 
ontext. This explains the 
onstraint on the relation →. Also a sequen
e
σ = (s0, s1, . . .) is an in�nite sequen
e of states su
h as ∀I ∈ IN, si → si+1.We will re
onsider later this 
onstraint in the 
ontext of the Petri nets. Thesequen
e σi indi
ates the su�x of σ, (si, si+1, . . .) from where σ0 = σ.Let us note AP = {NOTP | P ∈ AP}. To simplify, we will 
onsider in thesequel that the labelling fun
tion ν takes values in 2AP∪AP with the obvious
onstraint that :
∀P, s |{P,NOT P} ∩ ν(s)| = 1 (an atomi
 proposition is either true or false)De�nition 6 (Semanti
 of CT L∗) Let KS be a model, s a state of SK and
σ = (s0, s1, . . .) a sequen
e of KS, then the satisfa
tion of a formula of CT L∗ onthis model is de�ned par :S1 KS, s0 |= P if and only if P ∈ ν(s0).S2 KS, s0 |= FANDg if and only if KS, s0 |= f and KS, s0 |= g.

KS, s0 |= NOTf if and only if there are not KS, s0 |= f .S3 KS, s0 |= Ef if and only if ∃σ resulting from s0 su
h as KS, σ |= f .
KS, s0 |= Af if and only if ∀σ resulting from s0, KS, σ |= f .P1 Is f a formula of state, KS, σ |= f if and only if KS, s0 |= f .P2 KS, σ |= FANDg if and only if KS, σ |= f and KS, σ |= g.
KS, σ |= NOTf if and only if NOT(KS, σ |= f).P3 KS, σ |= FUg if and only if ∃i su
h as KS, σi |= g and ∀j su
h as
pr /∈ PROM(em)In pra
ti
e, CT L∗is enri
hed by abbreviations whi
h simplify the expressionof the properties :(OR) f OR g ≡ NOT (NOT f AND NOT g)(true) true ≡ NOT P OR P(false) false ≡ NOT true(F) Ff ≡ trueUf(G) Gf ≡ NOT F NOT f(W) fWg ≡ fUg OR GfF f means that f will be true for a su�x of the 
onsidered sequen
e. G fmeans that f is true for all the su�xes of the sequen
e 
onsidered. Contrary to



8 Petri Nets
f U g, f W g (W for �weak until�) does not imply that g is true for a su�x.In this 
ase, f remains true for all the su�xes. As example,GF ⇔ F W false.

CT L∗ is a very expressive language. In order to obtain e�e
tive algorithmsof evaluation, one is led to restri
t this language. The two most signi�
antrestri
tions are CT L and LT L.
CT L is the language formed of the synta
ti
 rules S1, S2, S3 and P0 :P0 If f and g are state formulas then X f and f U g is path formulas.
CT L is fo
used on the 
on
ept of state. Indeed, one 
an entirely des
ribesyntax without de�ning the path formulas using the four operators AXf (forany state su

essor of the state 
onsidered, f holds), EXf (there is a statesu

essor of the state 
onsidered for whi
h f holds), AFUg (for any sequen
eresulting from the state 
onsidered, f holds until g holds and g will be true)and EFUg (there exist a sequen
e resulting from the state 
onsidered su
h as

f holds until g and g will be true). The interest of CT L lies in the fa
t that, onthe one hand, it is su�
iently expressive for the spe
i�
ation of the majority ofthe usual properties and that, on the other hand, the methods of 
he
king of thesatisfa
tion of a formula by a model have a 
omplexity proportional to the sizeof the model and the size of the formula. However 
ertain properties of fairnessare not expressible in CT L. This gap led to various extensions of the model byoperators su
h as AGFf (for any sequen
e resulting from the state 
onsidered,
f holds an in�nite number of states of the sequen
e) whi
h make it possibleto express usual 
on
epts of fairness. These extensions also have methods ofveri�
ation of polynomial 
omplexity. We left the reader to the referen
es whi
hfollow for more pre
ise details on this langage [EC 81, EC 82, EH 85℄.ExampleThe formula AG (A req U serv) expresses that starting from any state whi
h
ontains a request, in any sequen
e the request will be present until it is served.

LT L, the language formed of the synta
ti
 rules S1, P1, P2 and P3 isfo
used on the 
on
ept of sequen
e. Indeed, one 
an entirely des
ribe syntaxwithout de�ning the state formulas by 
onsidering that the atomi
 propositionsare path formulas to be 
he
ked on the �rst state of the sequen
e.The use of su
h a logi
 is justi�ed when you 
onsider the point of view of anobserver whi
h 
annot intera
t with the system. In this 
ase, only the sequen
esare signi�
ant One of the interests of LT L, illustrated by the following 
haptersis its appli
ability with partial order te
hniques for the redu
tion of 
omplexityof the 
he
king. Generally a model KS is initialized by a state s0 and thesatisfa
tion of the formulas is evaluated on KS, s0. As being given a formula
LT L path f , one will note by abuse of notation KS, s0 |= f to indi
ate
KS, s0 |= Af .



Chapter x 9ExampleThe formula GF p.exec OR FG p.bloq expresses that during any exe
utioneither the pro
ess p is inde�nitely blo
ked starting from a given state, or thispro
ess is sele
ted an in�nity of time by the s
heduler.3.2. Methods evaluationThe obje
tive of a method evaluation is to 
he
k if a formula is satis�edby a parti
ular model. In this paragraph, we treat only �nite models. Thestudy of the veri�
ation of the in�nite models su
h as the rea
hability graphsof unbounded Petri nets will be done at the end of the 
hapter.In the sequel KS will denote the model, f0 the formula to be 
he
ked and
s0 the initial state of the model. The problem to be solved will be to determineif KS, s0 |= f0 holds.3.2.1. Che
king of formulas CT L∗First we show that if we dispose of an evaluation method for LT L one 
anbuild a method evaluation of CT L∗. The prin
iple of 
onstru
tion is relativelysimple. First First we eliminate the operator E by repla
ing it by the equivalentexpression NOT A NOT. Let us 
onsider the synta
ti
 tree of a formula ofstate f0 of CT L∗ :� a node labelled by A whi
h does not 
omprise in its sub-tree this sameoperator A pre�x g a formula of LT L.� We then evaluate g for all the states of the model and we 
reate a newproposition [AG]. This proposition is assigned to the states of the modela

ording to the result of the evaluation of g.� We substitute in f0, Ag by [AG] and we iterate the pro
ess until thedisappearan
e of the operator A.� the formula obtained is then a formula of propositional logi
 whi
h isevaluated lo
ally on ea
h state.We 
all � CT L∗-
he
ks� the method of required 
he
king and �LT L-
he
ks�the method of 
he
king of formulas of LT L. The text of the method is givenbelow.
CT L∗-
he
ks (KS, s0, f0)While ∃f = Ag subformula of f0 where f ∈ LT L DoIntrodu
e a new atomi
 proposition [f ]For ea
h state s DoIf LT L-
he
ks (KS , S, g) Then



10 Petri Netsadd [f ] to ν(s)Elseadd NOT[f ] to ν(s)End ifEnd forSubstitute [f ] to f in f0End While// f0 is now a propositional logi
 formulaIf s0 |= f0 Thenreturn(TRUE) ;If notreturn (FALSE) ;End ifWe apply this method to the formula A(FAG P AND G AFQ) AND R :� AGP is a formula of the required type.� One evaluates on ea
h stateGP and one updates in 
onsequen
e [AG P ].� One transforms the initial formula whi
h be
omes :A(F[AG P ] AND G AF Q) AND R.� Then the formula is transformed intoA(F[AGP ]ANDG[AFQ])ANDR.� the �nal formula is a propositional formula
[A(F[ AG P ] AND G[ AF Q])] AND R.3.2.2. Veri�
ation of LT L formulasWe examine now the veri�
ation of LT L formulas. We will pro
eed intothree steps :� We �normalize� the formula so as to push ba
k the operator NOT infront of the atomi
 propositions.� We de�ne the automata with promises whi
h a

ept in�nite sequen
es ofa model. Then we exhibit a 
onstru
tion of an automaton whi
h a

eptsexa
tly the sequen
es whi
h 
he
k a given formula.� Being given an initialized model, we show how to 
he
k that this model
omprises at least a sequen
e a

epted by a given automaton.The veri�
ation method then 
onsists to build the automaton asso
iatedwith NOTf0 and to 
he
k that the model (KS , s0) does not 
omprise a se-quen
e a

epted by this automaton.Normalization of a LT L formulaWe normalize the formula using operators OR and W (�weak until�). Thenormaliization of a formula f noted norm(F ) pushes ba
k the operator NOTin front of the atomi
 propositions. The following equivalen
es are easy to 
he
k



Chapter x 11starting from the de�nitions(e.g. NOT (f U g) ⇔ (NOT g AND f) W (NOT f AND NOT g)).� � norm(P ) = P , norm(NOT P ) = NOT P , norm(Xf) = Xnorm(f)� � norm(f OR g) = norm(f) OR norm(g)� � norm(f AND g) = norm(f) AND norm(g)� � norm(fWg) = norm(f)Wnorm(g), norm(fUg) = norm(f)Unorm(g)� � norm(NOT NOT f) = norm(f)� � norm(NOT (f AND g)) = norm(NOT f) OR norm(NOT g)� � norm(NOT (f OR g)) = norm(NOT f) AND norm(NOT g)� � norm(NOT Xf) = Xnorm(NOT f)� � norm(NOT (fUg)) = (norm(NOT g) AND norm(f))W(norm((NOT f) AND norm(NOT g))� � norm(NOT (fWg)) = (norm(NOT g) AND norm(f))U(norm(NOT f) AND norm(NOT g))Automata and LT L formulasWe wish to build an automaton whi
h re
ognizes exa
tly the in�nite se-quen
es whi
h 
he
k a formula (normalized) of LT L. This automaton tries toestablish a proof based on the propositions 
he
ked by the initial state of thesequen
e σ and on a formula to be 
he
ked by the su�x σ1. Ea
h state thus
orresponds to a formula to 
he
k.Let us suppose that we have to 
he
k the formula P W Q. A

ording toequivalen
e f W G ⇔ G OR (F AND X(F W G)),� either in the initial state Q holds and σ1 do not have a formula to 
he
k,� or in the initial state P holds and σ1 must 
he
k again P W Q.We thus obtain the automat represented on the �gure 2.
PWQ true

{P}

{Q}

Figure 2: Automaton re
ognizing P W QA similar equivalen
e may be used for the â��untilâ�� operator
f U G ⇔ G OR (F AND X (F U G)).However this automaton a

epts the sequen
e where P holds inde�nitely and

Q never holds. The key point is that in the 
ase of the operator U, one 
annotinde�nitely 
hoose the se
ond alternative of theOR. Let us noteXp an operator



12 Petri Netswho is a promise to 
he
k later an �until� formula by the �rst alternative of theOR. The automaton of the formula PUQ is depi
ted in �gure 3. The semi
olonpresent on the ar
 on the left separates the propositions to be 
he
ked and thepromises to hold.
PUQ true

{p};{XpPUQ}

Q

Figure 3: An automaton re
ognizing P U QThe syntax and the semanti
s of the automata with promises is given belowDe�nition 7 An automaton with promises A = 〈AP, Q, q0, PROM, E〉 is de-�ned by :� AP a �nite set of atomi
 propositions� Q a �nite set of states� q0 ∈ Q the initial state� Prom a �nite set of promises� E a �nite set of ar
s su
h as for e ∈ E� in(E) ∈ Q indi
ates the sour
e of the ar
� out(E) ∈ Q indi
ates the target of the ar
� label(E) ⊂ AP ∪ AP indi
ates the propositions of the ar
� prom(E) ⊂ Prom indi
ates the promises asso
iated with the ar
De�nition 8 Let σ = (s0, s1, . . . , sn, . . .) be an in�nite sequen
e of model KS.
σ is re
ognized by A = 〈AP, Q, q0, P rom, E〉 if and only if there is a path
(q0, e0, q1, e1, . . .) su
ht that :� ∀n, in(en) = qn, out(en) = qn+1, label(en) ⊂ ν(sn)� ∀n, ∀pr ∈ prom(en), ∃m > n su
h that pr /∈ prom(em)A sequen
e whi
h 
he
ks the �rst 
ondition known as will be re
ognized bythe way.We 
onsider the 
onstru
tion of an automaton equivalent to a formula f . Aswe saw on the examples, one transforms a formula into a disjun
tion of 
lauseswhere ea
h 
lause is a 
onjun
tion of atomi
 propositions (and negations of



Chapter x 13propositions) and formulas to be 
he
ked on the following under-sequen
e. Wenote tr(F ) the transformed formula where the formulas to be 
he
ked on thefollowing under-sequen
e are repla
ed by propositions (noted like previouslybetween hooks). The operator Xp is employed for the equivalen
e applied tothe operator �until� : he indi
ates a promise to hold. Here the 
onstru
tionof this formula. It will be noted that the formula obtained is not presen-ted synta
ti
ally in the form of a disjun
tion of 
onjun
tive 
lauses. Howeverthis synta
ti
 transformation is obtained by applying repeatedly equivalen
e
f AND (g OR h) ⇔ (f AND g) OR (f AND h). This transformation willbe 
arried out during the 
onstru
tion of the automaton.If f = P Then tr(f) = fIf f = NOT P Then tr(f) = fIf f = h OR g Then tr(f) = tr(h) OR tr(g)If f = h AND g Then tr(f) = tr(h) AND tr(g)If f = Xg Then tr(f) = [Xg]If f = gUh Then tr(f) = tr(h) OR (tr(g) AND [XpgUh])If f = gWh Then tr(f) = tr(h) OR (tr(g) AND [XgWh])The 
onstru
tion of the automaton pro
eeds as follows :� the initial state of the automaton is 
reated and labelled with the formulato 
he
k.� One applies the transformation to the formula des
ribed above. Ea
h
lause 
orresponds to an outgoing ar
 of the state. The target of the ar
 isa node labelled with the 
onjun
tion of formulas of the 
lause pre�xed bya �next�. The ar
 is labelled by the atomi
 propositions and the promisesof the 
lause.� One reiterates the pro
ess until there is no more new formula. Whatne
essarily arrives sin
e ea
h formula is a 
onjun
tion of subformulas ofthe initial formula.� For reasons of simpli
ity, one 
reates beforehand the state labelled by

true whi
h loopes on itself without proposition nor promise. This state isnot ne
essarily rea
hable from the initial state.One will �nd below a more formalized des
ription of the algorithm. We willnote Aut(F ), the automaton asso
iated with f .Create the state (qtrue, true)Create the ar
 etrue ave
 in(etrue) = qtrue, out(etrue) = qtrue,
etiq(etrue) = ∅, prom(etrue) = ∅Create the state (q0, f0)Insert (q0, f0) in TODOWhile TODO 6= ∅ doExtra
t (q, f) from TODOCompute tr(f)Express tr(f) in the form of a disjun
tion of 
onjun
tive 
lauses



14 Petri Nets// tr(f) = ORc∈ClFor ea
h 
lause c ∈ Cl do// c = ANDi∈IPi ANDj∈J NOT Qj ANDk∈K [Xfk] ANDl∈L[Xpgl]If f ′ = ANDk∈Kfk ANDl∈Lgl �©ti quette un �©tat ThenLet (q′, f ′) that stateElseCreate (q′, f ′)Insert (q′, f ′) in TODOEnd IfCreate an ar
 e with in(e) = q, out(e) = q′

etiq(e) = {Pi}i∈I ∪ {NOT Qj}j∈J , prom(e) = {Xpgl}l∈LEnd ForEnd WhileLet f = QUg with g = (P OR XP )WR. Alors :
tr(f) = tr(g) OR (Q AND [Xpf ])
tr(g) = R OR ((P OR [XP ]) AND [Xg]) = R OR (P AND [Xg]) OR ([XP ] AND [Xg])Consequently, tr(F ) is the disjun
tion of 4 
lauses :� R whi
h leads at the state labelled by true (more nothing to 
he
k)� Q AND [Xpf ] whi
h loops on the initial state. It is noted that the in�nitepath whi
h follows this ar
 is not a

epted by the automaton be
ause thepromise Xpf is never held.� P AND [X G] whi
h leads at the state labelled by g.� [X P ] AND [X G] whi
h leads at the state labelled by P AND gUsing tr(G), the reader will 
he
k that the built automaton 
orresponds tothe �gure 4.

f true

g

P∧g

{Q};{Xpf}

∅;∅

∅;∅

∅;∅

{P};∅

{R};∅

{R};∅

{R};∅

{P};∅

{P};∅Figure 4: The automaton with promises of Q U ((P OR XP ) W R)Theorem 9 (Corre
tion of the automaton) Is f a formula of LT L, thenthe sequen
es satisfying f are exa
tly those a

epted by Aut(F ).ProofLet cl be a 
lause of tr(F ). By de�nition, cl ⇒ tr(F ). We indu
tively de�ne on



Chapter x 15the size of f a set of subformulas g of f su
h as cl ⇒ tr(G). We note this set
dev(Cl, F ).If f = P OR f = NOT P OR f = Xg Then

dev(cl, f) = {f}Elsif f = h AND g Then
dev(cl, f) = {f} ∪ dev(cl, g) ∪ dev(cl, h)Elsif f = g OR h ThenIf cl ⇒ tr(g) Then

dev(cl, f) = {f} ∪ dev(cl, g)Else //cl ⇒ tr(h)
dev(cl, f) = {f} ∪ dev(cl, h)End ifElsif f = g U h ThenIf cl ⇒ tr(h) Then
dev(cl, f) = {f} ∪ dev(cl, h)Else //cl ⇒ tr(g) AND [XpgUh]
dev(cl, f) = {f} ∪ dev(cl, g)End ifElsif f = g W h ThenIf cl ⇒ tr(h) Then
dev(cl, f) = {f} ∪ dev(cl, h)Else //cl ⇒ tr(g) AND [X g W h]
dev(cl, f) = {f} ∪ dev(cl, g)End ifEnd ifLet σ = (s0, . . . , si, . . .) be a sequen
e a

epted by a path of Aut(F ),

(q0, e0, . . . , qi, ei, . . .). Let us pose fi the formula asso
iated with qi and clithe 
lause whi
h produ
es the ar
 ei. We show by re
urren
e on the size of theformula g that ∀G ∈ Dev.(cli, fi) σi |= g.If g = P or g = NOT P then g is a term of cli thus g ∈ ei what thusimplies that g ∈ ν(si) σi |= g.If g = X H then [X H ] is a term of cli thus h is a 
onstituent term of the
onjun
tion fi+1. By applying the assumption of re
urren
e, σi+1 |= h whatimplies σi |= Xh.If g = g1 AND g2 then ∀K, gk ∈ Dev.(cli, fi). By applying the assumptionof re
urren
e, ∀K σI |= gk what implies σi |= g.If g = g1 OR g2 then ∃gk ∈ Dev.(cli, fi). By applying the assumption ofre
urren
e, ∃K σI |= gk what implies σi |= g.If g = g1 U g2 then1. Either cli ⇒ tr(g2) and g2 ∈ Dev.(cli, fi). By applying the assumption of



16 Petri Netsre
urren
e, σI |= g2 what implies σi |= g.2. Either cli ⇒ tr(g1) AND [Xpg1Ug2]. Then g1 ∈ Dev.(cli, fi), Xpg ∈
PROM(ei) and g is a term of the 
onjun
tion whi
h 
onstitutes fi+1. Byapplying the assumption of re
urren
e, σI |= g1. Sin
e g is a term of the
onjun
tion whi
h 
onstitutes fi+1, we 
an apply the same reasoning to
σi+1, σi+2, â�� until the �rst alternative of the reasoning applies to σjwith j > i. What arrives ne
essarily bus if not ∀J ≥ I,Xpg ∈ PROM(ej)
ontradi
ting the a

eptan
e of the sequen
e by the path. Thus we have
∀i ≤ k < j σk |= g1 and σj |= g2, then σi |= g.If g = g1 W g2 then1. Either cli ⇒ tr(g2) and g2 ∈ dev(cli, fi). By applying the assumption ofre
urren
e, σi |= g2 and σi |= g.2. Either cli ⇒ tr(g1) AND [Xg1Wg2]. then g1 ∈ dev(cli, fi) and g is aterm of the 
onjun
tion whi
h 
onstitutes fi+1. By applying the assump-tion of re
urren
e, σi |= g1. Sin
e g is a term of the 
onjun
tion whi
h
onstitutes fi+1, the same reasoning applies to σi+1, σi+2,... and :� Either the �rst alternative of the reasoning applies to a sequen
e σjwith j > i. In that 
ase, ∀i ≤ k < j σk |= g1 and σj |= g2. Consequently,

σi |= g.� Either ∀j ≥ i, σi |= g1 and 
onsequently σi |= g.Sin
e f = f0, σ |= f .Let us suppose now that σ |= f . We built now a path in Aut(f) whi
hre
ognizes σ. First, we re
ursively de�ne a 
lause of tr(f) depending from σ :
cl(f, σ) = ANDi∈IPi ANDj∈J NOT Qj ANDk∈K [Xfk] ANDl∈L[Xpgl]su
h that :

σ |= ANDi∈IPi ANDj∈J NOT Qj ANDk∈KXfk ANDl∈LXgl.Its de�nition follows :If f = P Then cl(f, σ) = fElsif f = NOT P Then cl(f, σ) = fElsif f = Xg Then cl(f, σ) = [Xg]Elsif f = g AND h Then cl(f, σ) = cl(g, σ) AN D cl(h, σ)Elsif f = g OR h ThenIf σ |= g Then
cl(f, σ) = cl(g, σ)Else // σ |= h
cl(f, σ) = cl(h, σ)End ifElsif f = gUh ThenIf σ |= h Then
cl(f, σ) = cl(h, σ)Else // σ |= g AND Xf
cl(f, σ) = cl(g, σ) AND [Xpf ]



Chapter x 17End ifElsif f = gWh ThenIf σ |= h Then
cl(f, σ) = cl(h, σ))Else // σ |= g AND Xf
cl(f, σ) = cl(g, σ) AND [Xf ]End ifEnd ifLet e be the ar
 asso
iated with cl(f, σ), q1 = out(e) and f1 the formulaasso
iated with q1. By 
onstru
tion, prop(e) ⊂ ν(s0) and σ |= Xf1. Then

σ1 |= f1 and it is possible to iterate the 
onstru
tion leading a path re
ognizing
σ. Let us suppose the existing of a promise XpgUh o

uring on the path at therank i. By 
onstru
tion of the 
lause, we have σi |= gUh but in that 
ase, thereexists a rank j ≥ k su
h that σj |= h and 
onsequently the 
lause asso
iatedwith σj does not does not 
omprise promises. Finally, this path a

epts σ. ♦

LT L formulas may be represented by others models of automata. Here,we essentially have followed the approa
h des
ribed in [COU 99℄. The mostwidespread model is 
ertainly that of Bü
hi automata [BUC 62℄. Their syntaxand semanti
s is given below, the interested reader may refer to [VAR 96℄ fora detailled study between temporal logi
 and automatas.De�nition 10 A Bü
hi automaton B = 〈AP, Q, Q0,→, F 〉 is de�ned as fol-lows :� AP a �nite set of atomi
 propositions� Q a �nite set of states su
h that for q ∈ Q, etiq(q) ⊂ AP ∪AP is the setof atomi
 propositions whi
h holds in that statee� Q0 ⊂ Q the subset of initial states� → is the transition relation ⊂ Q × Q� F ⊂ Q the subset of su

es statesDe�nition 11 Let σ = (s0, s1, . . . , sn, . . .) be an in�nite sequen
e of the model
KS. σ is re
ognized by B = 〈AP, Q, Q0,→, F 〉 if and only if there exists a path
(q0, q1, . . .) with q0 ∈ Q0 su
ht that :� ∀n, qn → qn+1 and etiq(qn) ⊂ ν(sn)� ∃f ∈ F su
h that ∀n ∃m > n qm = fIt will be noted that the propossitions relate on the states and either tothe transitions, that one has a set of initial states and that the 
ondition ofa

eptan
e is de�ned by a set of states of su

ess whose at least state must berea
hed an in�nity of time by the path.



18 Petri NetsThe expressiveness of Bü
hi's automata and automata with promises is iden-ti
al. It is important to note that LT L has an expressiveness more restri
tedthan these automatas models [WOL 83℄. Another language of formulas (mu
hless intuitive), the linear µ-
al
ul has as for him an expressiveness equivalent tothese models [DAM 92℄. We informally explain the translation of an automatonwith promises out of Bü
hi's automaton :� Let us suppose that we have n promises. For ea
h ar
 e of the auto-maton with promises, one builds n + 1 states of the Bü
hi's automaton
{(qe, I)}I∈1...n+1 with etiq((qe, I)) = etiq(E).� the initial states of the automaton are the (qe, 1) su
h as in(E) = q0.� For i ≤ n, there is an ar
 of (qe, I) towards (qe′ , I) if out(E) = in(e′) andif Pri belongs to prom(e′).� For i ≤ n, there is an ar
 of (qe, I) towards (qe′ , i + 1) if out(E) = in(e′)and if Pri does not belong to prom(e′).� There is an ar
 of (qe, n + 1) towards (qe′ , 1) if out(E) = in(e′).� the states of su

ess are the states {(qe, n + 1)}.The transformation of the ar
s into states is usual and does not require par-ti
ular 
omments. When during the re
ognition of a sequen
e, we �nd a state

(qe, I) with i ≤ n, we wait until the promise Pri is held. If it is not it in thenext state, one passes in a of the same state index i if not one passes in asubs
ripted state by i + 1.Arrived in a state of index n + 1, all the promises were held at least on
eand the examination of the promises then is started again. Thus if the promisesare inde�nitely held, one passes an in�nity of time by the states of index n + 1whereas in the 
ontrary 
ase one �stagnates� in a subset of states of index
i ≤ n. We leave to the reader the 
are to �nd a transformation of an Bü
hi'sautomaton into an automaton with promises. The �gure 5 illustrates this
onstru
tion. To simplify, one removed the nona

essible states. The states�white� 
orrespond to index 1, gray states the �dark� 
orrespond to index 2 andgray states the �
learly� 
orrespond to index 3. The initial states are depi
tingby an entering ar
. The fatty ar
s indi
ate transitions between of the samestates index, whereas the �ne ar
s are asso
iated 
hanges of index.Existen
e of a sequen
e a

epted by a Bü
hi automatonThe existen
e of an in�nite sequen
e σ of a model KS a

epted by aBü
hi automaton is established using a standard 
onstru
tion the so-
alledsyn
hronized produ
t.De�nition 12 Let KS be a model and B a Bü
hi automaton then KS × B =
(AP ′, S′,→′, ν′) is de�ned as follows :� AP ′ = AP is a �nite set of atomi
 propositions,
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{P};{Pr1,Pr2} {Q};{Pr1,Pr2}

{S};{Pr1,Pr2}
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Figure 5: Transformation of an automaton with promises to a Bü
hi automaton� S′ = {(s, q)|s ∈ S, q ∈ Q, etiq(q) ⊂ ν(s)}� (s, q) →′ (s′, q′) ⇔ s → s′ and q → q′� ν′(s, q) = ν(s)In an obvious way, the syn
hronized produ
t generates the in�nite sequen
eswhose �rst 
omponent (an in�nite sequen
e of KS) is re
ognized by the se
ond
omponent (an in�nite path of Q). It remains us to be 
he
ked if the syn
hro-nized produ
t 
ontains an in�nite sequen
e begin with (s0, q0) with q0 ∈ Q0and whose se
ond 
omponent 
ontains an in�nity of o

urren
es of states of F .It is the obje
t of the following theorem. A strongly related 
omponent (s.
.
.)of a graph is elementary if the subgraph asso
iated with this s.
.
 is a singletop without loop (in other words, it is not possible to build an in�nite path inthis s.
.
).Theorem 13 Let KS be a �nite model, s0 a state of KS and B a Bü
hi'sautomaton then :
∃σ = (s0, s1, . . .) a sequen
e KS a

epted by B ⇔ ∃C a nonelementary s.
.
 of
KS ×B a

essible from one (s0, q0) ∈ S′ with q0 ∈ Q0 
ontaining a state (s, f)with f ∈ F



20 Petri NetsProofLet σ = (s0, s1, . . .) be a sequen
e of KS a

epted by (q0, q1, . . .) a path of
B then by 
onstru
tion ((s0, q0), (s1, q1), . . .) is a sequen
e of KS × B whi
hmeets an in�nity of time states of the form (s, f) with f ∈ F . Sin
e KS × Bis �nite, one of these states (noted (s∗, f∗)) is rea
hed an in�nity of time bythe sequen
e. Sin
e from (s∗, f∗) one again rea
hes this state by a non nullsequen
e, the s.
.
 
ontaining (s∗, f∗) is non elementary. Sin
e the �rst state ofthe sequen
e is (s0, q0) this s.
.
 is a

essible from (s0, q0).If the left member of equivalen
e is 
he
ked, then there is a �nite sequen
e
σ1 of (s0, q0) towards (S, F ) and one non null �nite sequen
e σ2 of (S, F ) wormsitself. Consequently, σ = σ1.σ

∞
2 is an in�nite sequen
e whose se
ond 
omponent(a path in B) a

epts the �rst (a sequen
e of KS). ♦This result provides us an e�e
tive means of veri�
ation : on
e built thesyn
hronized produ
t, one 
al
ulates the s.
.
 by means of the algorithm ofTarjan [AHO 74℄ and one examines them. The size of the syn
hronized produ
tis proportional to the sizes of the model and the formula. The algorithm, as forhim, operates in a polynomial time a

ording to the size of the syn
hronizedprodu
t.However this e�e
tiveness is only apparent. On the one hand, the size ofthe model of exe
ution is very large relative with the size of the model ofspe
i�
ation (e.g size of the graph of a

essibility versus size of the Petri net).In addition, the size of the automaton 
an be an exponential fun
tion of thesize of the formula. This last point is not also 
riti
al be
ause the formulas aregenerally of very redu
ed size. Also to redu
e these problems of 
omplexity,di�erent te
hni
al were proposed. Upstream, one seeks to 
he
k the formulaon a smaller model of exe
ution but equivalent (see the following 
hapters).Downstream, one seeks to 
he
k a formula without 
ompletely developing theprodu
t syn
hronized by methods �on the �y� [GOD 93, GER 95℄ or to redu
ethe size of the representation by stru
tures of data of the type BDD (diagramsof binary de
ision) [BRY 86℄.3.3. Temporal logi
 and Petri netsThe spe
i�
ation of formulas of propositional temporal logi
 of Petri netimplies the de�nition of atomi
 properties. Sin
e we evaluate the formulas oftemporal logi
 on the graph of a

essibility, a state of the model is an a

essiblemarking. Also, for any boolean expression whose �eld is the set of markings ofthe net is appropriate. In pra
ti
e, the expressions used are evaluated easily.One will note p for the marking of p in the 
urrent state. Here some examplesof frequent formulas.



Chapter x 21� Two pla
es p1, p2 are mutually ex
lusives : AG (p1 · p2 = 0)� For any rea
hable marking, a pla
e p will be inevitably marked :AG AF(p > 0)� For any rea
hable marking, one 
an always mark a pla
e p :AG EF (p > 0)� During any sequen
e of exe
ution, a pla
e p is inde�nitely marked andunmarked AG (F (p > 0) AND F (p = 0))� A transition t is live (always �rable in the future of any state) :AG EF ANDp∈P (p ≥ Pré(p, y))Like illustrates it the last example, it is possible to reason on the fran
hissa-bility of a transition. However it is not the 
ase of 
rossing itself be
ause itwould require to evaluate the evolution of the marking of the pla
es betweentwo su

essive states. Also one extends the language CT L∗by 
onsidering theoperator X{E} whose semanti
s is de�ned by :
σ |= X{e}f if and only if KS, σ1 |= f and the �rst transition from σ is labelledby eIn this paragraph, one 
onsiders that a transition from Petri net is neverlabelled by the empty word. The methods of 
he
king des
ribed above extendin an immediate way to this new logi
al whi
h is at the same time state andevent-based. Let us suppose that the labelling of a net is the identity. We 
annow express the fa
t that a transition t is inde�nitely 
rossed in all sequen
e :AGFX{t}true.When we study the de
idability of the 
he
king of formulas of temporallogi
 on Petri net, we will distinguish the following 
ases :� state-based logi
 CT L∗(and its fragments) by prohibiting these new ope-rators.� event-based logi
 CT L∗(and its fragments) if the only atomi
 propositionsare true and false.The semanti
s of temporal logi
 is based on the in�nite sequen
es but thedesigner also wishes to reason on the �nite sequen
es. For example, one wishesto know if a pla
e p is always marked in a dead marking. The following formulaAG( ANDt∈T NOT X{t}true ⇒ p > 0) whi
h seems to be appropriate isin
orre
t be
ause it is a
tually a tautology. Indeed, an in�nite sequen
e neversatis�es ANDt∈TNOTX{t}true.To take into a

ount these needs for 
he
king, it is ne
essary to distinguishthe type of studied sequen
e and to introdu
e a semanti
s of adequate satis-fa
tion. Sin
e we treat the sequen
es, we 
onsider that the path formulas arerepresented by an automaton su
h as the ar
s of this automaton are labelled bylabels of transition from Petri net. In order not to weigh down the presentationby an enumeration of all the possible 
ases, we limit ourselves to an event-basedlinear logi
 de�ned by means of labelled Bü
hi's automaton.



22 Petri NetsDe�nition 14 A labelled Bü
hi's automaton LB = 〈Σ, Q, Q0, {
a

−→}a∈Σ, F 〉� Σ an �nite alphabet� Q a �nite set of states� Q0 ⊂ Q the subset of the initial states� has
−→ is a binary relation ⊂ S × S� F ⊂ Q a subset of su

ess statesDe�nition 15 An in�nite sequen
e σ = (t1, t2, . . . , tn, . . .) of a Petri net R,

σ is a

epted by LB = 〈Σ, Q, Q0, {
a

−→}a∈Σ, F 〉 if and only if there is a path
(q0, q1, . . .) with q0 ∈ Q0 su
h as :� ∀N, qn

L(tn+1)
−→ qn+1� ∃F ∈ F s.t. ∀N ∃m > n qm = fThe other types of sequen
e whi
h interest the designer are the �nite se-quen
es and the �nite maximal sequen
es (i.e whi
h end in a dead marking).One then seeks a path in the automaton whi
h is 
ompleted by a state of su
-
ess. A se
ond manner of ta
kling the problem of the �nite maximal sequen
esin the 
ase of bounded Petri Net 
onsist with adding a loop to all markingsdied, labelled by a spe
ial a
tion. Thus any maximal sequen
e of this new graphis in�nite and those whi
h are prolonged arti�
ially re
ognize by the o

urren
eof the spe
ial a
tion.De�nition 16 A �nite sequen
e (possibly maximal) σ = (t1, t2, . . . , tf ) of aPetri Net R, σ is re
ognized by LB = 〈Σ, Q, Q0, {

a
−→}a∈Σ, F 〉 if and only ifthere is a path (q0, q1, . . . , qf ) with q0 ∈ Q0 and qf ∈ F su
h that : ∀n <

f, qn
l(tn+1)
−→ qn+1To authorize the labelling of a transition by the empty word (i.e a non obser-vable transition) largely 
ompli
ates the semanti
s of satisfa
tion and introdu-
ed the problem of the divergen
e. A divergent sequen
e is an in�nite sequen
eof whi
h a su�x is made up ex
lusively of non observable transitions.This pro-blem will be mentioned in the 
ontext of the behavioral approa
h.4. Behavioral Approa
hMany relations of equivalen
e were used or spe
i�
ally proposed for the 
om-parison and the analysis of 
on
urrent systems sin
e the equivalen
e of tra
esor languages [AHO 74℄ with the observational equivalen
e [MIL 89℄ while pas-sing by the models of refusal and the equivalen
es of test [LED 90, BRI 88℄. See[DE 87, ARN 92, OH 86, GLA 90℄ for a panorama of the existing equivalen
es.



Chapter x 23This explosion is explained on the one hand, by the di�
ulty in formally de-�ning a universal semanti
s of 
on
urrent systems [ARN 92℄ and by the varietyof the spe
i�
 properties of the studied systems or the points of view whi
h one
an adopt to lead to them analyze : veri�
ation or test. In this se
tion, we willlimit ourselves to the aspe
t veri�
ation.Contrary to the logi
al approa
h, the behavioral approa
h privilegiates in-formation asso
iated with the a
tion labels and generally forgets informationasso
iated with the states. The stru
ture taken into a

ount by the behavioralanalysis is a system of transitions labelled (
f de�nition 3).Before going front in formalization, we will try to illustrate various pointsof view likely to be taken into a

ount. The sele
ted example is the simpli�edoperation of a 
o�ee ma
hine : the 
onsumer introdu
es a 
oin into the 
oiner,it 
hooses then his drink while pressing on the asso
iated button.The transition systems below, 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉, represent ea
hone a behavior �similar� to the vending ma
hine whi
h we have just des
ri-bed. The behavioral approa
h through various equivalen
es of behaviors whi
hwere proposed in the literature will enable us to formalize various 
on
epts of�similarity�.
0 1 32Coin TeaCo�ee 0' 1'3' 4'2'CoinCoin TeaCo�ee 0" 2" 4"3"1"Coin TeaCo�eeCoinFigure 6: Three vending ma
hines : 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉A

ording what was presented in 
hapter 3 of volume on the Petri nets[HV 01℄, one 
an asso
iate any ILTS a language.De�nition 17 Language asso
iated with a ILTSLet 〈LT S, s0〉 be a ILTS with LT S = 〈Σ, S, {

a
→}a∈Σ〉,

L(〈LT S, s0〉) =Def {σ ∈ Σ∗ : ∃ ∈ S su
h that sO
σ
→}Contrary to �nite states automatas, the ILTS 
an 
omprise an in�nity ofstates, they 
omprise only one initial state and do not introdu
e the 
on
ept of�nal state [AHO 74℄. Any state of the ILTS is thus regarded as a �nal state



24 Petri Netsand the language re
ognized by the ILTS is 
losed by pre�x : any pre�x of are
ognized word itself is re
ognized.De�nition 18 Equivalen
e langageThe 
on
ept of language previously introdu
ed enables us to de�ne a �rst
on
ept of equivalen
e between two transitions systems based on the equalityfrom their respe
tive languages.Let LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S ′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two transi-tions systems, s0 and s′0 their respe
tive initial states :

〈LT S, s0〉 ≡ 〈LT S′, s′0〉 i� L(〈LT S, s0〉) = L(〈LT S′, s′0〉)Langage : A �rst 
omparison 
riterion of these distributers is provided to usby the study of their language.Here L(〈D, 0〉) = L(〈D, 0′〉) = L(〈D′′, 0′′〉) = {ǫ,Part, Coin.Co�ee, Coin.Tea}and for this 
riterion these three LTS are equivalents. In parti
ular, from thepoint of view of the owner of the vending ma
hine, ea
h one of them o�er adrink only if this one has been payed.Maximal tra
es : The pre
eding 
riterion disregards possibility of blo
king, it
onfuses these 3 LTS whereas they present di�erent deadlo
ks. The 
on
ept ofmaximal tra
e allow to take into a

ount this aspe
t. The LTS are always 
onsi-dered as a

eptors of language, but now maximal sequen
es are the only onere
ognized : in�nite sequen
es or sequen
es leading on states without su

essor.De�nition 19 Maximal Tra
esFor LT S = 〈Σ, S, {
a
→}a∈Σ〉 and a ILTS 〈LT S, s0〉, one asso
iates Lmax(〈LT S, s0〉)the set of its maximal tra
es de�ned as follows :

LMax(〈LT S, s0〉) =Def (L(〈LT S, s0〉) ∩ Σ∞)

∪ {σ ∈ L(〈LT S, s0〉) : ∃s′ ∈ S su
h that s
σ
→ s′ and s′ 6→}De�nition 20 Maximal tra
es equivalen
eProvided with this 
on
ept of maximal tra
e, we de�ne the relation of asso-
iated equivalen
e as follows :Let 〈LT S, s0〉 and 〈LT S′, s′0〉 be two transitions systems, s0 and s′0 theirrespe
tive initial states :

〈LT S, s0〉 ≡Max 〈LT S ′, s′0〉 i� LMax(〈LT S, s0〉) = LMax(〈LT S′, s′0〉)Remark Language and Maximal Tra
es



Chapter x 25The de�nition 19 is purely denotational, from an operational point of viewthe 
on
ept of �maximal tra
es� 
an be expressed starting from the 
on
ept oflanguage in �supplementing� the ILTS (or the automaton) by adding : a state
⊥ with the set of nodes (⊥ 6∈ S), a label fail with the alphabet Σ (fail 6∈ Σ)and, �nally, by 
onne
ting any deadlo
k to the state ⊥ by a transition labelledby fail.Property 21 Language and Maximal Tra
esFor LT S = 〈Σ, S, {

a
→}a∈Σ〉, one de�nes Max(LT S) as follows :

Max(LT S) =Def LT S′ = 〈Σ′, S′, {
a
→}a∈Σ′〉where :





Σ′ = Σ ∪ {fail},
S′ = S ∪ {⊥},

{
a′

→′
a∈Σ′} =Def {

a
→a∈Σ} ∪ { s

fail
→ ⊥ : s ∈ S su
h that s

6→}

Lmax(〈LT S, s0〉) = Lmax(〈LT S′, s′0〉)σ
L(〈max(LT S), s0〉) = L(〈max(LT S′), s′0〉)Now we have, LMax(〈D, 0〉) = LMax(〈D′, 0′〉) = {Coin.Co�ee, Coin.Tea}but LMax(〈D′′, 0′′〉) = {Coin, Coin.Co�ee, Coin.Tea}.A

ording to this new 
riterion, only D and D′ remain equivalent. If onetakes into a

ount now the point of view of the 
ustomer, it is indeed importantto isolate the distributor D′′ whi
h 
an to a

ept a 
oin without deliveringdrink. Always a

ording to the point of view of the 
ustomer, not to be ableto distinguish D and D′ is not a

eptable : D leaves the 
hoi
e of drink to the
ustomer while D′ 
hooses drink in its pla
e.Refual & A

eptan
e : The equivalen
e of maximal tra
es takes into a
-
ount �total blo
kings�, the equivalen
es based on the 
on
ept of refusal or ofa

eptan
e, allow to take into a

ount the 
on
ept of partial blo
kings and inparti
ular the possibility �of refusing� to 
arry out an a
tion. Thus, one 
an
onsider, in addition to the allowed sequen
es, the possibility of refusing or ofa

epting an a
tion.De�nition 22 Basi
 elements of refusal semanti
s [GLA 90, LED 90℄Let 〈LT S, s0〉 be a ILTS, for s ∈ S, σ ∈ ⋆Σ and A ⊂ Σ, we note :1. s ref A ⇔Def ∀a ∈ A, s

a

6→2. s |= after σ ⇔Def {s′ ∈ S : s
σ
→ s′}3. s |= after σ ref A ⇔Def ∃s′ ∈ “s after σ′′ su
h that s′ ref A



26 Petri Nets4. LT S |= after σ ref A ⇔Def s0 |= after σ ref A(1) allows to de�ne partial blo
kings partial through the refusal set whi
hone 
an asso
iate a node. (2) denotes the subset of the nodes a

essible startingfrom node s via the sequen
e σ (3) stipulates that �starting from node s, it ispossible, via the sequen
e σ, to rea
h a node whi
h will refuse all the a
tions of
ADe�nition 23 Relation of Conforman
e [BRI 88, LED 90℄ Let 〈LT S, s0〉and 〈LT S ′, s′0〉 be two ILTS and L the unionset of their respe
tive alphabets(L = Σ ∪ Σ′)

LT S conf LT S ′ ⇔Def

{

∀σ ∈ L(〈LT S, s0〉), ∀A ⊂ L :If LT S after σ ref A then LT S ′ after σ ref AIn an informal way, an implementation LT S 
onforms to a spe
i�
ation
LT S′ if for any sequen
e σ, if the implementation 
an evolve by σ then theset of a
tions A whi
h it 
an refuse 
onstitutes a subset of those whi
h thespe
i�
ation 
an refuse after σ [DRI 92℄.De�nition 24 Testing equivalen
e [BRI 88℄

LT S te LT S ′ ⇔Def

{

L(〈LT S, s0〉) = L(〈LT S′, s′0〉)
LT S conf LT S ′ and LT S ′ conf LT SFor this last point of view, whi
h melts the semanti
s based on refusal, theLTS D and Of are not �testing-equivalent� (not D te Of). Indeed D′ 
an refuseTea or Co�ee a
tions after having 
arried out the Coin a
tion while D afterCoin will always make it possible to obtain Tea or Co�ee. By taking againthe elements of terminology of the de�nition 22, one obtains for example :

0′ after Coin ref {Tea,Coin} et 0′ after Coin ref {Co�ee,Coin} while theonly a
tion refused from 0 is Coin, i.e., 0 after Coin ref {Coin}.We will not develop more before these semanti
s (failure semanti
s), but weinvite the interested reader to refer to [ARN 92℄ where 
hapter 8 is devoted tovarious equivalen
es of tra
es.4.1. Relations of BisimulationThe three equivalen
es whi
h we have just evoked adopt a �linear� point ofview and fo
usses on the sequen
es of exe
utions of the LTS and disregard itstree stru
ture. To illustrate our matter, now let us 
onsider a 
o�ee ma
hine



Chapter x 27where the only drink available is the 
o�ee sweetened : the 
ustomer introdu
esa 
oin and must obtain the 
o�ee then sugar.0 34125
Coin CoinCo�eeCo�eeSugar

0'1'2' 3'4'
CoinCo�ee Co�eeSugarFigure 7: Two 
o�ee ma
hines : 〈M, 0〉 and 〈Me, 0′〉The ma
hines represented �gure 7 are indistinguishable for the semanti
based on refusal or for testing equivalen
es [BRI 88℄. The two ma
hines 
anrefuse sugar after having delivered drink. For s ∈ {0, 0′} we have :

s after Coin ref {Coin, Sugar} and s after CoinCo�ee ref {Coin,Co�ee, Sugar}From the point of view of the 
ustomer these two ma
hines are thus asmu
h imperfe
t. A 
ustomer who 
an test, as a long time as he wants it thesetwo ma
hines, is unable to distinguish them. For ea
h one of those, 
ertainexperiments will result in obtaining a sweetened 
o�ee and others with a 
o�eewithout sugar.From the point of view of the analysis and in parti
ular if one seeks tounderstand why one 
annot guarantee to the 
ustomer whom it will obtain asweetened drink it is however interesting of distinguish them. in the �rst 
ase,the absen
e of sugar will be 
onse
utive of the non-determinism asso
iated withthe Coin a
tion while in the se
ond it will result from the non-determinismasso
iated with the Co�ee a
tion. The 
on
ept of bisimulation whi
h takesinto a

ount the tree stru
ture of the LTS, and not only its linear stru
ture,will enable us to distinguish these two ma
hines.The 
on
ept of Bisimulation, introdu
ed by Park [PARK 81℄ is at the basemany relations of equivalen
es used for the 
he
king of 
ommuni
ating systems.De�nition 25 Relation of BisimulationLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 be a LTS, B a binary relation (B ⊂ S × S) is arelation of bisimulation if it veri�es :
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∀(p, p′) ∈ B and ∀t ∈ Σ :

[∀q ∈ S If p
t
→ q then ∃q′ ∈ S : p′

t
→ q′ and (q, q′) ∈ B]and [∀q′ ∈ S If p′

t
→ q′ then ∃q ∈ S : p

t
→ q and (q′, q) ∈ B]Two states s1, s2 ∈ S are in bisimulation if there is a relation of bisimulation

B su
h as (s1, s2) ∈ B.De�nition 26 Bisimulation between transitions systemsLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two LTS su
has S∩ = ∅ and for whi
h we let S = S ∪ S′A binary relation B, (B ⊂ S×S) is a relation of bisimulation between LT Sand LT S ′ if it veri�es :

∀(p, p′) ∈ B and ∀t ∈ Σ ∪ Σ′ :

[∀q ∈ S If p
t
→ q then ∃q′ ∈ S : p′

t
→ q′ and (q, q′) ∈ B]and [∀q′ ∈ S If p′

t
→ q′ then ∃q ∈ S : p

t
→ q and (q′, q) ∈ B]De�nition 27 Bisimilar transitions systemsThe pre
eding de�nition extends in a 
anoni
al way to initialized transitionssystems while posing that two ILTS 〈LT S, s0〉 and 〈LT S ′, s′0〉 are in bisimula-tion (or are bisimilar) if a bisimulation relation 
onne
ts their initial respe
tivestates. i.e.

〈LT S, s0〉 and 〈LT S ′, s′0〉 are in bisimulation if ∃ a bisimulation B ⊂ S×Sbetween LT S and LT S ′ su
h as (s0, s
′
0) ∈ BExample 1 0 13 42AB AB 0' 1'3' 2'A BB A

Figure 8: Two bisimilar LTS : 〈E, 0〉, 〈E′, 0′〉

〈E, 0〉, 〈E′, 0′〉, represented 8, are in bisimulation by relation
B = {(0, 0′)(1, 1′), (2, 2′)(3, 3′)(4, 2′)}.
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〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉, asso
iated the drink distributers represented6 are not bisimilar. Let us show for example that 〈D, 0〉 and 〈D′, 0′〉 are notin bisimulation. Let us pro
eed by the absurb and suppose the existen
e of abisimulation B between D and D′ with (0, 0′) ∈ B. Like 0

Coin
→ 1, one musthave (1, 1′) ∈ B or (1, 3′) ∈ B. (1, 1′) ∈ B is impossible be
ause 1

Tea
→ and

1′
Tea
6→ . In the same way (1, 3′) ∈ B involves a 
ontradi
tion be
ause 1

Co�ee
→and 3′

Co�ee
6→ .The ILTS 〈M, 0〉, 〈M ′, 0′〉, asso
iated the 
o�ee ma
hines represented 7, arenot bisimilar. Even if these ILTS are small, it qui
kly be
omes di�
ult to show�with the hand�, starting from the denotational de�nition of the bisimulation(
f def 25), the existen
e or the nonexisten
e of a bisimulation.the se
tion 4.1.1 gives an algorithm making it possible to de
ide bisimulationwhi
h will enable us to rule on these two systems.the se
tion 4.3.4, by introdu
ing the logi
 of Hennesy-Milner, will give us theelements of language making it possible to distinguish without ambiguity thesetwo systems and to show that they are not bisimilar.Property 28 Properties of the bisimulations : [ARN 92℄- The 
onverse relation of a bisimulation is also a bisimulation.- the 
omposition of 2 bisimulations is a bisimulation.- the union of 2 bisimulations is a bisimulation.The properties above make it possible to de�ne a spe
i�
 relation of bisi-mulation, the strong equivalen
e whi
h is the largest bisimulation.De�nition 29 Strong Equivalen
e Strong equivalen
e, noted ∼, is de�ned by

p ∼ q ⇔Def there exists a bisimulationB su
h as(p, q) ∈ B

∼ is re�exive be
ause the identity is a bisimulation. Symmetry and transi-tivity 
ome respe
tively owing to the fa
t that the set of the bisimulations isstable respe
tively by inversion and 
omposition.4.1.1. Algorithm of De
ision of BisimulationThis se
tion shows how to build, if it exists, a relation of bisimulation star-ting from any system of transition �nitary. The property 32 melts the algorithmof de
ision. We present also some elementary 
on
epts and properties whi
hmake it possible �to 
ompa
t� 
omputation.



30 Petri NetsDe�nition 30 Finitary LTSA LTS LT S = 〈Σ, S, {
a
→}a∈Σ〉 is 
alled �nitary, or in an equivalent way,has a ��nite image� relation of a

essibility :

∀S ∈ S and ∀a ∈ Σ, the set {Q ∈ S su
h that S
a
→ Q} is �nite.De�nition 31 ∼N equivalen
esFor a LTS LT S = 〈Σ, S, {

a
→}a∈Σ〉, one 
onsiders the following sequen
e ofrelations indexed by i, noted ∼I : ∀p, q ∈ S� p ∼0 q� p ∼n+1 q ssi ∀a ∈ Σ

∀p′ ∈ S p
a
→ p′ ⇒ ∃q′ ∈ Q : q

a
→ q′ su
h that p ∼n p′

∀q′ ∈ S q
a
→ q′ ⇒ ∃p′ ∈ Q : p

a
→ p′ su
h that q ∼n q′Intuitively, one tests the ∼n-equivalen
e between two systems as follows. Forea
h system, one builds the tree of the sequen
es lower length or equal with

n (obtained by regarding various o

urren
es of the same state as di�erentstates). Then it is 
he
ked that these two trees are bisimilar. The followingproperty spe
i�es the relations between ∼n-equivalen
e and bisimulation.Property 32 ∼N -equivalen
es and bisimulation1. For any LTS, LT S = 〈Σ, S, {
a
→}a∈Σ〉, the following property holds :

∀N ∈ IN,∼ ⊂ ∼n+1 ⊂ ∼n2. If moreover, LT S = 〈Σ, S, {
a
→}a∈Σ〉 is �nitary then :
∼ =

⋂

N≥0

∼N3. If moreover, LT S = 〈Σ, S, {
a
→}a∈Σ〉 is �nite then :

∼ = ∼ns
where ns = |S|1. By re
urren
e on n2. Let us 
all R = ∩N≥0 ∼N .A

ording to the �rst point of the proposal,∼ ⊂ R. To show that R ⊂ ∼,knowing that ∼ are the union of the bisimulations, it is enough to provethat R is a bisimulation. Let s R s′ and s′

a
→ t′. Then by de�nition of

R, ∀n, ∃tn su
h that s
a
→ tnand t′ ∼n tn Sin
e the system of transitions is �nitary, ∃t su
h that t =

tN for an in�nity of n. What means that ∀n, ∃n′ > n su
h that t′ ∼n′ t.What implies a

ording to the �rst point that t′ ∼N t thus t′ R t. These
ond part of the proof is similar to the �rst.



Chapter x 313. A

ording to the �rst point from the proposal, ∼n+1⊂∼N . Moreover iffor a system of transitions (�nite or in�nite) ∼n+1=∼N , then ∼n+1=∼sin
e it 
omes while repla
ing in the de�nition ∼N by ∼n+1, that ∼n+1is a relation of bisimulation. Finally let us suppose that for S, all therelations ∼I per 0 ≤ I ≤ ns are di�erent, then the number of 
lassesof equivalen
e grows stri
tly a

ording to i, whi
h is absurd sin
e thisnumber must be lower or equal to ns. There thus exists n ≤ ns su
h that
∼n=∼ and 
onsequently ∼ns

=∼.The last 
hara
terization (
f prop 32.3) is parti
ularly important sin
e itprovides us an algorithm to de
ide the bisimulation in the 
ase of �nite LTS.Property 33 Appli
ation, Equivalen
e and Quotient setLet f be an appli
ation of A 7→ B :1. Let ≡f , the binary relation ⊂ A×A, de�ned by a1 ≡f a2σf(has) = f(b).
≡f is an equivalen
e relation2. Is πf (A) =Def

⋃

B∈f(A) f−1(b).
πf (A) de�ne a partition of A.3. πf (A) = A/≡f1) is obvious sin
e â��=â�� is itself an equivalen
e relation. 2) ΠA is a
overing of A of whose â��blo
ksâ�� are disjoined sin
e f−1 is inje
tive. 3)is assured be
ause ∀π ∈ πf (A) : a1 and a2 ∈ π ⇒ a1 ≡f a2De�nition 34 Output of a stateFor LT S = 〈Σ, S, {

a
→}a∈Σ〉, one 
onsider the appli
ation OutputLT S :

S 7→ P(Σ) whi
h asso
iates with ea
h state q ∈ S, the subset of Σ de�ned inthe following way : OutputS(s) =Def {a ∈ Σ su
h that s
a
→}When there is no ambiguity on the LTS, one will note simply Output(S)in the pla
e of OutputLT S(S)Property 35 Equivalent 
hara
terization of the ∼1-equivalen
eBy taking again the notations introdu
ed into the property 33, one 
onsidersalso the relation of equivalen
e ≡ Output.For any LTS, LT S = 〈Σ, S, {

a
→}a∈Σ〉, we have : ∼1=≡ OutputTwo states are equivalent with order 1 if they allow to 
arry out the samea
tions. It is enough to noti
e that ∼1 is de�ned starting from ∼0 for whi
htwo states are always equivalent (i.e ∼0= S × S)



32 Petri NetsThe property 35 thus makes it possible to dire
tly 
ompute the set of the
lasses of equivalen
e of S for ∼1 (in other words, the quotient of S by ∼1),by using the partition of S de�ned by the appli
ation Output−1. One se
ondobvious property whi
h 
an be made pro�table to limit 
omputation 
onsists innoti
ing that the relation of bisimulation (and more generally any equivalen
eof behavior) 
annot distinguish two deadlo
k states.Property 36 Bisimulation and Deadlo
kFor any LTS, LT S = 〈Σ, S, {
a
→}a∈Σ〉, and any pair of states p, q ∈ S

[ Output(p) = Output(q) = ∅] ⇒ p ∼n q, ∀n ∈ INExample 2 Appli
ation to the 
o�ee ma
hines 〈D, 0〉 and 〈D′, 0′〉 represented7 : We want to know if 〈D, 0〉 and 〈D′, 0′〉 are bisimilar.As the sets of respe
tive states of these ma
hines (S and S′) are disjoined,we pose S = S∪S′ and we will seek the largest bisimulation (i.e ∼) 
ontained in
S. 〈D, 0〉 and 〈D′, 0′〉 will be bisimilar if 0 ∼ 0′. We 
al
ulate ∼ by 
onsideringthe sequen
e of the ∼K-equivalen
es (
f def 31 and prop 32).Computation of ∼1The table below represents the graph of the appli
ation Output−1 (def 34),by using the property 35, one obtains

S/∼1 = {{0, 0′}, {{1′}, {3′}, {2, 2′, 3, 4′}}

P(Σ) P(Σ) 7→ S P(Σ) 7→ P(Σ) 7→ S∪
Σ ∅ ∅ ∅

{Tea,Co�ee} {1} ∅ {1}
{Tea,Coin} ∅ ∅ ∅

{Co�ee,Coin} ∅ ∅ ∅
{Coin} {0} {0′} {0, 0′}
{Co�ee} ∅ {1′} {1′}
{Tea} ∅ {3′} {3′}

∅ {2, 3} {2′, 4′} {2, 2′, 3, 4′}Cal
ul of ∼
0 6∼2 0′ : Indeed 0

Coin
→ 1 and none the su

essors of 0 ' by Coin (i.e 1 'and 3 ') is equivalent to order 1 to 1 (i.e 1′ 6∼1 1 and 3′ 6∼1 1). One 
an thusdire
tly dedu
e that 〈D, 0〉 and 〈Of, 0′〉 are not bisimilar.The property 36, ensures that {2, 2′, 3, 4′} ∈ S/∼ Ex
ept the 
lass {2, 2′, 3, 4′},the other 
lasses are redu
ed to a singleton and thus minimal. One 
an thusdedu
e from it that S/∼ = S/∼2 = {{0}, {0′}, {{1′}, {3′}, {2, 2′, 3, 4′}}



Chapter x 33Operational 
hara
terizationThe pro
ess des
ribes in the de�nition 4.1.1 makes it possible to obtain thelargest bisimulation in
luded in a given binary relation R like the limit of thede
reasing sequen
e of relations <∼N>N≥0. Ea
h term of the sequen
e 
anbe des
ribed in an equivalent way in the form of a partition of the set of thestates. The 
omputation of the terms of this de
reasing sequen
e returns tothe problem of re�nement of a partition (Multi Relational Coarset ProblemPartition) [PT 87℄ used initially within the framework of automata minimiza-tion [AHO 74℄. One thus obtains the most powerful algorithms in O(∆.log(S))where ∆ denotes the number of transitions and S the number of states of thegraph [FER 89℄.
Π-BisimulationWe saw in this se
tion, the standard relation of bisimulation su
h as thatpresented by [PARK 81, MIL 89℄. This one takes into a

ount only the labelsof events and does not allow to take into a

ount the states of the system. The
on
ept of Π-Bisimulation [CLE 89℄ generalizes the 
on
ept of bisimulationwhile imposing that the relation of bisimulation is 
ontained in a relation ofequivalen
e given a priori. One thus 
an, by the means of this relation, takeinto a

ount 
ertain 
hara
teristi
s of the states in the 
omputation of thebisimulation. We will use this 
on
ept of bisimulation in se
tion 4.3.1 to beable to 
onsider an extension of Hennessy-Milner logi
 taking into a

ountatomi
 propositions and also in se
tion 4.2.5 to make sensitive observationalequivalen
e to the divergen
e.De�nition 37 Π-BisimulationLet LT S = 〈Σ, S, {

a
→}a∈Σ〉 be a LTS and Π a relation of equivalen
e on S(i.e π ⊂ S × S), a binary relation B on S is a relation of Π-bisimulation if itveri�es : B ⊂ Π and

∀(p, p′) ∈ Band∀T ∈ Σ :

[∀q ∈ S If p
t
→ q then ∃q′ ∈ S : p′

t
→ q′ and (q, q′) ∈ B]and [∀q′ ∈ S If p′

t
→ q′ then ∃q ∈ S : p

t
→ q and (q′, q) ∈ B]Let us note that if π = S × S, one �nd the standard 
on
ept of bisimu-lation. The pro
edure of general de
ision given in se
tion 4.1.1 adapts to the

Π-bisimulations. It is enough to initialize the sequen
e of equivalen
e relationswhile taking ∼0= Π.



34 Petri Nets4.1.2. Simulation and Co-simulationAs mu
h the 
on
ept of bisimulation indu
es an equivalen
e relation on theLTS, as mu
h the 
on
ept of simulation makes it possible to de�ne an pre-order (a re�exive and transitive binary relation) on the LTS. the 
on
ept ofsimulation is de�ned by breaking the symmetry of the bisimulation de�nition.De�nition 38 SimulationLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S ′ = 〈Σ′, S′, {

a
→}a∈Σ′〉, a binary re-lation R, (R ⊂ S×) is a simulation between LT S and LT S′ if it veri�es :

∀(p, p′) ∈ Rand∀T ∈ Σ :

∀q ∈ S If p
t
→ q alors ∃q′ ∈ S′ : p′

t
→ q′ et (q, q′) ∈ RExtension to the ILTS : As for the relation of bisimulation, the relationof simulation 
an be extended to the initialized labeled transition systems asfollows : 〈LT S, s0〉 simulates 〈LT S ′, s′0〉 if there is a relation of simulation
onne
ting their respe
tive initial states : i.e., there exists a relation of simula-tion R 
ontaining (s0, s

′
0)The Co-simulation makes it possible to obtain a relation of equivalen
e fromthe simulation pre-order.De�nition 39 Co-simulation

LT S Co-simulates LT S ′ ⇔Def LT S simulates LT S ′ and LT S ′ simulate
LT S.Example 3 0 13 2AA B 0' 1' 2'A BFigure 9: Two LTS 
o-similar and not bisimilarLet us 
onsider R = {(0, 0′), (1, 1′), (2, 2′), (3, 1′)} and 
he
k that it is indeeda simulation between 〈S, 0〉 and 〈S′, 0′〉.
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0

A
→ {1, 3} and 0′

A
→ 1′ with (1, 1′) ∈ R1 and (3, 1′) ∈ R1

1
B
→ 2 and 1′

B
→ 2′ with (2, 2′) ∈ R1Like 2 and 3 are deadlo
ks, it has anything more to 
he
k.

R1 is thus a simulation 
ontaining (0, 0′), therefore 〈S, 0〉 simulates 〈S′, 0′〉.In the other dire
tion, one shows just as the relationR2 = {(0′, 0), (1′, 1), (2′, 2)}is a relation of simulation between 〈S′, 0′〉 and 〈S, 0〉. Indeed, we have : 0′
A
→

1′ and 0
A
→ 1 with (1′, 1) ∈ R2 & 1′

B
→ 2′ and 1

B
→ 2 with (2′, 2) ∈ R2Theen 〈S, 0〉 simulates 〈S′, 0′〉 and �nally and 〈S, 0〉 and 〈S′, 0′〉 are thusCo-similar.On the other hand, 〈S, 0〉 and 〈S′, 0′〉 are not bisimilar.It is enough to reason by the absurb and to 
onsider B a relation of bi-simulation. This one has minimum would 
ontain (0′, 0). Consequently, like

0
A
→ {1, 3} and 0′

A
→ 1′, B should also also 
ontain the pairs (1′, 1), (3′, 1). As

1′
B
→ 2 and 3

B

6→ one 
annot have (1′, 3) ∈ B from where 
ontradi
tion appears.nb : The relation B′ = {(3, 2′), (2, 2′)} is the largest bisimulation between Sand S′.Remark the pre
eding example shows that Co-simulation is weaker than thebisimulation. The bisimulation 
an however be de�ned in terms of simulationin the following way : a relation of simulation R of whi
h the symmetri
alrelation R−1 is itself a relation of simulation is one bisimulation. The se
tion?? modal
ara
 presenting 
hara
terization modal equivalen
es of behavior willenable us to spe
ify the relations between 
on
epts of simulation, Co-simulationand bisimulation.4.1.3. Pro
edure of de
ision for simulationConstru
tion presented is very 
lose to that presented in 4.1.1 to de
idebisimulation. Instead of using a su

ession of relations (the ∼K-equivalen
es ofthe de�nition 31), one introdu
es a fun
tion E whi
h by su

essive iterationswill make it possible to obtain its smaller �xed point whi
h 
orresponds, infa
t, with the relation of sought simulation. The interested reader will �nd atalk 
omplete of this 
onstru
tion and asso
iated proofs in [ARN 92℄.We present the more general form here allowing to 
ompute oneΠ-Simulationsimilar to the 
on
ept of Π-bisimulation introdu
ed in de�nition 37). This 
om-putation built starting from an arbitary binary relation R, the greatest simu-lation (if it exists) 
ontained in R.



36 Petri NetsDe�nition 40 Simulation generated by a relationLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two LTSWe 
onsider the mapping E : P(S×) 7→ P(S×) whi
h asso
iates with anybinary relation R ⊂ S × S′, the relation E(R) on S × S′ de�ned as follows :

(s, s′) ∈ E(R) ⇔Def (1) ∧ (2) where(1) (s, s′) ∈ R(2) ∀t ∈ Σ, ∀q ∈ S : s
t
→ q ⇒ ∃q′ ∈ S′ : s′

t
→ q′ su
h that (q, q′) ∈ RProperty 41 Chara
terization of a simulationLet LT S = 〈Σ, S, {

a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two LTS1. the following property holds :

∀N ∈ IN, En+1(R) ⊂ EN (R) ⊂ R2. If moreover, S and S′ are �nitaries then :The sequen
e of relations N≥0 admits for limit Rω with
Rω =

⋂

N≥0 EN (R).
Rω is the greatest �xed point of the fun
tion Ei.e E(Rω) = RΩ and E(A) = A ⇒ A ⊆ Rω3. If moreover, S and S′ are �nite then :
Rω = EK(R) where k = max(|S|, |S′|)The pre
eding property is similar to the 
hara
terization of the bisimulations(
f prop 32). Item 2) shows that Rω is the greatest simulation between Σ and

Σ′ in
luded in R. As E is a de
reasing appli
ation of a powerset in itself,the 
onvergen
e of the sequen
e is assured [ARN 92℄. By 
onstru
tion, Rω isin
luded in R and 
onstitutes the greatest solution of the equation E(R) = E,
Rω is thus the largest simulation in
luded in R. Item 3) provides a means tode
ide simulation between two �nite LTS.4.2. Weak Equivalen
esThe relations of equivalen
e whi
h we 
onsidered until now supposed thatthe transitions systems that we 
ompare admitted the same sets of transitionslabels.At this point, this 
onstraint of identity of the alphabets of a
tion stronglylimits the possibilities of us of equivalen
es or the pre-orders of behaviour :it is not possible, for example to 
ompare systems des
ribed at various levelsof abstra
tion. Thus the various drink distributers en
ountered in this se
tiononly represent in an abstra
t way the �servi
e� rendered by a drink distributer ;



Chapter x 37obviously a true distributer would be more 
omplex. In pra
ti
e, the behavioralapproa
h thus requires to be able to 
ompare systems des
ribed at variouslevels of abstra
tion. Con
retely, one wants to 
ompare systems by making�abstra
tion� of 
ertain events (a
tions) whi
h are not relevant with respe
tto the analysis that one wants to lead. The �rst step 
onsists in de�ning the
riterion of observation of the system : the observed events and those whoseone makes abstra
tion.A simple solution 
onsists in 
onsidering a subset O, observable a
tions, ofthe set of the labels Σ. On
e this de�ned 
riterion, it is ne
essary to 
larifywhat one understands by disregarding inobservable event. A �rst alternativeis provided to us by re-using the 
on
ept of proje
tion already de�ned in thelanguage theory.De�nition 42 Proje
tion of a languageLet O be a subset of Σ, σ a word of Σ∗, the proje
tion of σ out of O, noted
σ⌊O is re
ursively de�ned by :

λ⌊O =Def λ and (σ.a)⌊O =Def

{

σ⌊O.a if a ∈ O
σ⌊O sinonProje
tion operates as a �gum� whi
h erases all the letters of the word notbelonging to O. This operator of proje
tion extends in a 
anoni
al way to a setof words : L ⊂ Σ∗ : L⌊O =Def {σ⌊O : σ ∈ L}De�nition 43 Weak language equivalen
eThe 
omparison between the systems is de�ned with respe
t to a 
ommon
riterion of observation 
ommun : these systems will be equivalent if proje
tionsof their languages 
ompared to this observation 
riterion are equal.Let LT S = 〈Σ, S, {

a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 two transitionssystems, s0 and s′0 their respe
tive initial states and O a 
ommon 
riterion ofobservation i.e., O ⊂ Σ ∩ Σ′

〈LT S, s0〉 ≡O 〈LT S ′, s′0〉σL(〈LT S, s0〉)⌊O = L(〈LT S′, s′0〉)⌊Onb : This equivalen
e generalizes equivalen
e language presented de�nition18. Indeed, by taking O = Σ ∪Σ′, then 〈LT S, s0〉 ≡O 〈LT S ′, s′0〉σ〈LT S, s0〉 ≡
〈LT S ′, s′0〉Example 4 Appli
ation of weak equivalen
e language



38 Petri Nets0 1CoinTea+ Co�ee 0'3' 2'1'Coini′1 i′2Co�ee Tea 0"3" 2"1"CoinCo�ee Tea
i′′1 i′′2Figure 10: Three other 
o�ee ma
hinesLet us 
onsider the three 
o�ee ma
hines 〈M, 0〉, 〈M ′, 0′〉 and 〈M ′′, 0′′〉 re-presented Figure 2 10 and 
ompare by observing only the alphabet O made upof the a
tions Coin, Tea and Co�ee.These three systems admit after proje
tion the same language des
ribesby the following rational expression : (Coin.(Tea + Co�ee))∗, they are thusequivalent language for O : 〈M, 0〉 ≡O 〈M ′, 0′〉 ≡O 〈M ′′, 0′′〉.For as mu
h from the point of view of a 
ustomer, 〈M ′′, 0′′〉 is distingui-shed from both others sin
e this ma
hine �
hooses in an autonomous way� thedrink delivered with the 
ustomer. In state 1�, M � is ready to o�er Tea orof Co�ee but the a
tions i′′1 and i′′2 whose one had a priori wanted to makeabstra
tion have an in�uen
e on the servi
e o�ered by these ma
hines sin
ea

ording to their o

urren
es, Tea or Co�eewill be delivered.The a
tions whose one had de
ided a priori to make abstra
tion ({i′1, i′2, i′′1 , i′′2})disappear under the e�e
t of the �gum� whi
h operated during proje
tion. Forsome of between they, i′1 and i′2, the abstra
tion 
arried out is legitimate in thesense that those do not modify the �observable� behavior of the system, forothers i′′1 and i′′2 , the abstra
tion 
arried out is not founded sin
e these a
tionshave an observable in�uen
e on the behavior of the system.All the di�
ulty is to know a priori if it is �reasonable� to hide an a
tion.The observational equivalen
e, introdu
ed by R. Milner into his 
al
ulationfor 
ommuni
ating systems CCS [MIL 89℄, introdu
es a 
on
ept of �abstra
texperiment� whi
h o�ers a solution to this problem.4.2.1. Experiment, SaturationThe 
on
ept of abstra
t experiment allows an abstra
tion less radi
al thanthe 
on
ept of proje
tion whi
h erases purely and simply any inobservablea
tion. Here, the inobservable a
tions are initially renammed by a 
ommon2label �Tea+ Co�ee� 
onne
ting states 1 to 0 means simply that one 
an go from state 0to state 1 either by the Tea a
tion or by the a
tion Co�ee



Chapter x 39symbol τ . Moreover, one new relation of transition, known as �abstra
t exprei-mentation� and noted ⇒, is de�ned by taking of a

ount the relation of originaltransition (→) and the inobservable sequen
es of a
tions. We give the de�ni-tion now and will give the intuition of this one of it by studying the exampleof saturation presented Figure 5.De�nition 44 Abstra
t experiment : ⇒Let LT S = 〈Σ, S, {
a
→}a∈Σ〉 be a LTS, O a subset of Σ and τ a symbol notbelonging to Σ

⇒ ⊂ S × Σ ∪ {τ} × S 
an be de�ned as follows : ⇒=Def
τ
⇒

⋃

∪o∈O[
o
⇒]where

•
τ
⇒ the relation of transition relating to the inobservable experiments, isobtained by taking the re�exive and transitive 
losure of the union of transitioninobservable relations :

τ
⇒ =Def [

⋃

i∈Σ\O
i
→]∗nb : τ

⇒ renames all the inobservable labels with a 
ommon label τ .The transitivity of τ
⇒ makes it possible to 
onsider a sequen
e of inobser-vable a
tions as an �atomi
� a
tion inobservable. Finally the re�exivity of τ

⇒ensures that of any state of the LTS it is possible to make an a
tion inobser-vable : it only 
onsists to add an inobservable �neutral� transition bu
kling onany state of the LTS.
•

a
⇒, the relation relating to the observable experiments is de�ned as thedouble 
omposition (on the right and on the left) of the inobservable relation ofexperiment τ

⇒ with the original relation observable transition a
→.

a
⇒ =Def

τ
⇒ o

a
→ o

τ
⇒ for a ∈ Onb : a

⇒ makes it possible to extend 
on
ept of observable transition byintegrating the sequen
es of inobservable transitions. As τ
⇒ is re�exive, a

⇒in
ludes the original relation observable transition : a
→. The double 
omposi-tion on the right and on the left makes it possible to regard as one observablea
tion �atomi
� any pre
eded observable a
tion and followed by a sequen
e ofinobservable a
tions.De�nition 45 Saturation of a labelled transition systemThe LTS obtained by substituting the experiment relation (⇒) to the originaltransition relation (→) is 
alled LTS saturated.Let LT S = 〈Σ, S, {

a
→}a∈Σ〉 be a LTS and O a subset of Σ and τ a symbolnot belonging to Σ
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Sat⌊O(LT S) =Def 〈Σ ∪ {τ}, S, {

a
⇒}a∈Σ∪{τ}〉nb : If Σ = O, saturation simply 
onsists in adding to the initial system aâ��loopâ�� labelled by τ on ea
h state.

Sat⌊Σ(LT S) = 〈Σ ∪ {τ}, S, [{
a
→}a∈Σ ∪ {p

τ
→ p : p ∈ S}〉Example 5 Example of SaturationThe �gure 11 presents the output of the saturation applied to the systemsM' and M � represented Figure 10 when O = {Coin,Tea,Co�ee}.Not to overload the �gure, the loops of τ resulting from 
losure re�exive ofthe relation τ

⇒, normally asso
iated with ea
h state, are not not represented.0'3' 2'1'Coinτ τ

Co�ee TeaCoinCoinCo�ee Tea 0"3" 2"1"CoinCo�ee Tea
τ τ

CoinCoinCo�ee Tea
Figure 11: Sat⌊O(M ′) et Sat⌊O(M ′′)The inobservable labels of a
tions (i′1, i′2, i′′1 , i′′2) were renamed in the satura-ted systems. This renaming and the a
tion of the double 
omposition of inob-servable a
tions, led to a non deterministi
 relation of observable experiment

O
⇒.The saturation may furnishe a non-deterministi
 LTS from a deterministi
LTS. Thus from 1' in Sat⌊O(M ′), the experiment Co�ee will lead into 3'or 1' a

ording to whether only the a
tion Co�ee o

urred or that this onewas followed by the inobservable a
tion i′1. In the same way from state 0�in Sat⌊O(M ′′), the experiment Coin 
an lead in state 1� where the a
tionsTea and Co�ee are possible, in state 2� where only the a
tion Tea is possibleor in state 3� where only the a
tion Co�ee is possible.The abstra
tion 
arried out while 
hoosing not to observe the a
tions i′′1 , I ′′2does not o

ult the fa
t that the ma
hine M ′′ 
an 
hoose drink in the pla
e ofthe 
ustomer.



Chapter x 414.2.2. Weak bisimulation, Observational Equivalen
eThe observational equivalen
e of two systems [MIL 89℄ 
an be de�ned di-re
tly starting from the bisimulation (def 25) by 
onsidering the relation ofbisimulation between the saturated systems.De�nition 46 Weak bisimulationLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two LTS and

O ⊂ Σ ∩ Σ′, a set of 
ommon labels of a
tions.A binary relation B ⊂ S×S′ is a ⌊OBisimulation between LT S and LT S ′if B is a bisimulation between Sat⌊O(LT S) and Sat⌊O(LT S′)This bisimulation parameterized by a set of observable a
tions is often des-
ribed as â��weakâ�� bisimulation in opposition to the standard bisimulation,
alled â��strongâ��, whi
h takes into a

ount all the labels of a
tions. Theobservational equivalen
e introdu
ed into CCS [MIL 89℄ is the largest weakbisimulation.The 
on
epts of strong and weak bisimulation 
oin
ide when all the labelsof a
tions are observed (i.e O = Σ ∪ Σ′) : B is a bisimulation (strong) bet-ween LT S and LT S′ if B is a ⌊(Σ∪Σ′)Bisimulation between Sat⌊Σ(LT S) and
Sat⌊Σ′(LT S ′)4.2.3. De
ision of the weak bisimulationAs the weak bisimulation is �nally de�ned like a strong bisimulation onsaturated systems, the pro
edure of de
ision whi
h we gave for the strong bisi-mulation applies to de
ide weak bisimulation.When the saturated system is 
onsidered, the property 35 remains valid (it
an be simpli�ed by noti
ing that any state of the saturated system has τ in its
Output). It is the same for the property 36 but this one be
omes inoperativein the saturated system, any state has at least one τ -su

essor (itself). In the
ase of the weak bisimulation, the property 36 is reformulated in terms of weakblo
king (def 47).Property 47 Weak bisimulation and weak blo
kingFor any LTS LT S = 〈Σ, S, {

a
→}a∈Σ〉, any subset O of Σ and any pair ofstates p, q ∈ S

[ OutputSat⌊O(LT S)(p) = OutputSat⌊O(LT S)(q) = {τ}] ⇒ p ∼O q



42 Petri NetsExample 6 Example (
ontinued) 5One 
onsiders again the ILTS 〈M ′, 0′〉 and 〈M ′′, 0′′〉 of the example 5. Oneseeks a bisimulation between 〈M ′, 0′〉 and 〈M ′′, 0′′〉. Let S = S ∪ S′The property 36 enables us to obtain equivalen
e at order 1 :
S/∼1 = {{0′, 2′, 3′, 0′′}, {1′, 1′′}, {2′′}, {3′′}}At order 2, it is easy to see that 1′ 6∼2 1′′. Indeed, there are 1′′

τ
⇒ 2′′ whereas1' admits only one τ -su

essor, 1' itself, whi
h is not equivalent at order 1 to2�. While thus 
ontinuing, one would show, with order 3, that 1' and 1� are notequivalent. Thus 〈M ′, 0′〉 and 〈M ′′, 0′′〉 are not observationnaly equivalent.4.2.4. Abstra
t/Quotient modelEquivalen
es or the pre-orders whi
h we saw up to now allow to 
omparea system and its spe
i�
ation, both expressed in the form of graph. The beha-vioral approa
h, pro
eeding by 
omparison, allows to be sure that the systemand its spe
i�
ation have the same properties (the same behavior) modulo the
riterion of abstra
tion sele
ted to perform the 
omparison.For equivalen
es relations, one 
an also pro
eed by proje
tion or â��intros-pe
tionâ��. Instead of 
omparing two LTS, one 
an build the smallest equiva-lent LTS 3.One speaks then of proje
tion or of abstra
t model.De�nition 48 Observational proje
tionFor a LTS LT S = 〈Σ, S, {

a
→}a∈Σ〉, a subset O ⊂ Σ from observable labelsand ∼O, the asso
iated observational equivalen
e relation, one note LT S/∼Othe quotient of LT S by ∼O

LT S/∼O =Def 〈S/∼O,O ∪ {τ}, {
a

∼∼>}a∈O∪{τ}〉 where :1. S/∼O is the quotient of S by ∼O2. a
∼∼> is the smallest relation verifying :(a) (a ∈ O and q

o
⇒ q′) ⇒ q/∼O

o
∼∼> q′/∼O(b) (a 6∈ O and q

o
⇒ q′ and q 6∼O q′) ⇒ q/∼O

τ
∼∼> q′/∼O(2.a) means that any observable transition remains in proje
tion. (2.b) meansthat only the inobservable transitions 
onne
ting two non equivalent states re-main in proje
tion.3with respe
t to the number of states



Chapter x 43Example 7 Example of proje
tionOne 
onsiders 〈X, 0〉 the ILTS represen-ted opposite. One 
hooses to observe
O = {A, B}. In this 
ase,
X/∼O = {{0}, {1}, {2, 3, 4}}

0 1 23 4
I2AA B
I1the ILTS 〈X/∼O, C0〉 obtained by pro-je
tion is represented opposite. It 
om-prises 3 states :

C0 = {0}, C1 = {1}, C2 = {2, 3, 4} One
an note that 
ertain inobservable tran-sitions remain (1 I1→ 4 whi
h mate-rialized the possibility of blo
king af-ter A appear in the form C1
τ

∼∼> C2)while others disappear. The transition
1

I2→ 1 wat
h whi
h the system 
an havean inobservable in�nite exe
ution, onewill speak thereafter (
f se
tion 4.2.5)about divergen
e. This possibility of di-vergen
e of the system is absorbed inthe 
lass C1).
C0 C1 C2A B + τA

By 
onstru
tion, the ILTS obtained byproje
tion (〈X/∼O, C0〉) is equivalentto the ILTS proje
ted 〈X, 0〉. Proje
tionis minimal with respe
t to the numberof states. On the other hand it is notminimal with respe
t to the number oftransitions. Consider 〈Y, Q〉, the ILTSrepresented opposite. There are again
〈Y, Q〉 ∼O 〈X, 0〉 but 〈Y, Q〉 
omprisesless transitions than 〈X/∼O, C0〉.

q r sA B + τ

Example 8 Continuation of the example 5By taking again the results obtained in the example 5, we have :
S/∼ = {{0′, 2′, 3′}, {0′′}, {1′}, {2′′}, {3′′}}
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an by simple proje
tion 4 to dedu
e the relation ∼ from ea
h ILTS :
S/∼ = {{0′, 2′, 3′}, {1′}} and S′/∼ = {{0′′}, {1′′}, {2′′}, {3′′}}The �gure below shows the various steps of the 
omputation : on the leftthe initial system, in the medium the saturated system and, on the right, theproje
ted system.0'3' 2'1'Coini′1 i′2Co�ee Tea 0'3' 2'1'Coinτ τ

Co�ee TeaCoinCoinCo�ee Tea C0 C1CoinTea+ Co�eeFigure 12: 〈M ′, 0′〉, Sat⌊O(M ′) and 〈M ′/∼O, 0′/∼O〉For 〈M ′′, 0′′〉, 
lasses of equivalen
e, S′′/∼O, are redu
ed to singletons, andthe LTS proje
ted is identi
al (isomorph ex
ept for the renaming of the inob-servable a
tions i′′1 and I ′′2 by τ) with the initial LTS.0"3" 2"1"CoinCo�ee Tea
i′′1 i′′2

0"3" 2"1"CoinCo�ee Tea
τ τ

CoinCoinCo�ee Tea C0"C3" C2"C1"CoinCo�ee Tea
τ τFigure 13: 〈M ′′, 0′′〉, Sat⌊O(M ′′) and 〈M ′′/∼O, 0′′/∼O〉The proje
tion of 〈M ′/O, 0′/O〉 give again the ma
hine 〈M, 0〉 (
f 6) ; thesetwo LTS are indeed observationaly equivalent.For 〈M ′, 0′〉, the fa
t of obtaining only one 
lass gathering states 0 ', 2 'and 3 ' allows to â��interiorizeâ�� the two transitions (i′1 and i′2) whose onehad de
ided to make abstra
tion. The 
omputation of observational equivalen
e4proje
tion here in the usual sense : proje
tion of the partition on the sets of statesrespe
tively asso
iated with ea
h one of the LTS



Chapter x 45allows to legitimate a posteriori this 
hoi
e : o

urren
e of these events do notmodify the behavior `observed� of the system.For 〈M ′′, 0′′〉, ignore the a
tions i′′1 and I ′′2 does not have sense sin
e a

or-ding to their o

urren
es the 
ustomer will have or will not have the 
hoi
e ofits drink.4.2.5. Observational equivalen
e and divergen
eThe example pre
edent has shown that observational equivalen
e performsan abstra
tion relatively reasoned with respe
t to the hidden events. Contrarilywith the weak language equivalen
e whi
h a priori gums all hidden events,observational equivalen
e 
an preserve �visible� events that one did not wantto a priori observe ; typi
ally the 
ase of the events inobservable whi
h remainspresent on the LTS quotient (unobservable events 
onne
ting not equivalentstates)Among the important 
on
epts whi
h �are masked� by observational equi-valen
e, we �nd the 
on
ept of divergen
e, already met in our example of pro-je
tion 7. In the 
ase of �nite LTS, the divergen
e is dire
tly related to theexisten
e of 
y
li
 paths labelled by inobservable labels, whi
h we will 
all ofthe τ -
y
les.The fa
t of observing only 
ertain events leads us to re�ne the standard
on
ept of state of blo
king. Indeed, we want distinguish the states for whi
hthe system (without being blo
ked) may perform only inobservable a
tions(weak blo
king states) and of the states where the system 
an 
arry out anin�nite number of inobservable a
tions (divergent states).De�nition 49 Weak blo
king, divergen
eFor a LTS LT S = 〈Σ, S, {
a
→}a∈Σ〉, O a subset of Σ and s a state of S1. s is a weak blo
king for O if OutputSat⌊O(LT S)(s) = {τ}2. s is a state of divergen
e for O if ∃σ ∈ L(〈S, s〉) ∩ (Σ \ O)∞A weak blo
king 
orresponds in a state where the system 
annot evolve inan observable manner ( the only a
tions 
arried out are not observable) anobserver 
annot thus make the di�eren
e between a state of weak blo
king anda state of blo
king. Contrary to a weak blo
king, from a state of divergen
e thesystem 
an evolve in an observable way but it 
an also evolve inde�nitely in aninobservable way.Example 9



46 Petri NetsOne 
onsiders 〈L, 0〉 represented opposite. Only thea
tion A is observed (O = {A}).5 and 6 is states of blo
king,2, 4, 5, and 6 are states of weak blo
king,0, 1, 2, 3 and 4 are states of divergen
e.
0 1 2II II3 45 6

I IA I
De�nition 50 τ-
y
lesLet LT S = 〈Σ, S, {

a
→}a∈Σ〉 be a LTS and O ⊂ Σ a subset of observablelabels.Two states s1, s2 ∈ S are 
onne
ted by one τ-
y
le if

∃σ1 ∈ (Σ\O)∗, ∃σ2 ∈ (Σ\O)∗ su
h that s1
σ1→ s2 and s2

σ2→ s1Property 51 τ-
y
le and weak bisimulationTwo states s1, s2 ∈ S belonging to same a τ-
y
le are obviously bisimilar.It is enough to noti
e that states s1 and s2 admit exa
tly the same derived statesi.e : ∀t ∈ O∪{τ}, ∀s ∈ S : s1
t
⇒ s ⇔ s2

t
⇒ s.In terms quotient of LTS, a 
orollary of this property is that if a pair ofstates s1 and s2 is 
onne
ted by a τ-
y
le then all the elementary transitions
onstituting this τ-
y
le are �hidden� inside the 
lass of equivalen
e of s1 (i.ethat of s2). In other words, an observational proje
tion disregards all τ-
y
le.Example 10 Observational equivalen
e and divergen
ed0d3 d2d1CoinCo�ee Tea

i1

i2

i3

i4

D0 D1CoinTea+ Co�eeFigure 14: 〈Div, 0〉 and its quotientLet us 
onsider the 
o�ee ma
hine 〈Div, C〉 represented Figure 14. As untilnow O = {Coin,Tea,Co�ee}. The states d1, d2 and d3 are 
onne
ted by one
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τ -
y
le and by applying property 51, it 
omes that d1 ∼O d2 ∼O d3. Conse-quently, ∼O= {{d0}, {d1, d2, d3}}. By noting D0 = {d0} et D1 = {d1, d2, d3},we obtain the LTS quotient. All the inobservable transitions belong to τ -
y
lesand dissapear into equivalen
e 
lasses.It was already shown (
f se
tion 13) that the LTS 〈D, 0〉 and 〈D′, 0′〉 re-presented below were weak bisimilar. One would show in the same way that
〈D, 0〉 ∼O 〈Div, 0〉. By transitivity, these 3 LTS are in weak bisimulation. Foras mu
h, their behaviors are strongly di�erents :

〈D, 0〉 and 〈D′, 0′〉 deliver �inevitably� one drink after it was paid, while for
〈Div, 0〉, the delivery of a drink is only â��potentialâ��.

0 1CoinTea+ Co�ee
0'3' 2'1'Coini′1 i′2Co�ee TeaFigure 15: 〈D, 0〉 and 〈D′, 0′〉 : 2 LTS bisimilar with 〈Div, do〉

4.3. Modal 
hara
terizations of behavioural equivalen
esThe logi
al veri�
ation is based on properties expressed in a spe
i�
 lan-guage (temporal logi
 for instan
e). Che
king the system satis�es these proper-ties is equivalent to show that the system is a model of these properties. Thebehavioral approa
h handles only behaviors. One studies equivalen
e betweenthe behaviours of the system and of the spe
i�
ation and dedu
es, from thisequivalen
e, that the system satis�es its spe
i�
ations : however we have neverexpli
itly stated the properties asso
iated with the spe
i�
ation and never havespe
i�ed the nature of the properties preserved by the used equivalen
e.The work of M. Hennessy and R.Milner [HM 85℄ permits to understand thelinks between these two approa
hes of veri�
ation. It provides in parti
ular a�logi
al� de�nition of the behavioral equivalen
es whi
h spe
i�es the type ofproperties that they allow to 
he
k.



48 Petri Nets4.3.1. De�nition of HMLIn an intuitive way, a logi
 
an be asso
iated with a given behaviouralequivalen
e (a logi
 in adequa
y with an equivalen
e) so that the equivalentbehaviors are the behaviors satisfying the same properties expressed in theadequate logi
.De�nition 52 HML : Logi
 of Hennessy-MilnerSyntax : HML is the smallest set verifying :
true ∈ HML, f, g ∈ HML ⇒ f ∧ g,¬g ∈ HML
f ∈ HML, a ∈ Σ ⇒<a> f ∈ HMLSemanti
s : The semanti
s of the formulas HML is de�ned with respe
t toa LTS LT S. As for modal logi
s, one will note for s ∈ S and f ∈ HML :
LT S, s |= f to indi
ate that the formula f is satis�ed in the state s of thestru
ture (here of the LTS) LT S. As usually, the semanti
s of a formula of
HML is de�ned by indu
tion on the stru
ture of the terms. In what follows :
f and g ∈ HML and a ∈ Σ.

|=, the relation of satisfa
tion, is the smallest relation verifying :
LT S, s |= true ∀s ∈ S
LT S, s |= f ∧ g i� LT S, s |= f and LT S, s |= g
LT S, s |= ¬f i� Not (LT S, s |= ¬f)

LT S, s |=<a> f i� ∃s′ ∈ S su
h that s
a
→ s′ et LT S, s′ |= fAbbreviations : false ≡ ¬true, f ∨ g ≡ ¬(¬f ∧ ¬g), [a]f ≡ ¬ <a> ¬f

<σ> f ≡<a1><a2> . . . <an> f pour σ = a1.a2. . . . anThe semanti
s of a formula of HML (i.e |=, the relation of satisfaisability)is de�ned as for modal logi
s by regarding the LTS as stru
ture of Kripke. Twodi�eren
es may be noti
ed : HML do not utilize of atomi
 propositions. Moreexa
tly, the set of propositional variables only 
ontains the variable true whi
his true in any state. By taking again the notations introdu
ed into the se
tion2 : P = {true} and ν(s) = {true} : ∀s ∈ S. On the other hand, the relation ofa

essibility between the �worlds� of the stru
ture is now labelled.Example 11 Examples of properties expressed into HML

LT S, S |=<a> true An a-experiment is possible starting from s.
LT S, s |=<a> (<b> true∧ <c> true)From s, an a-experiment is possible driving in a state where a b-experiment anda c-experiment are both possible.
LT S, s |= [a]false From s, no a-experiment is possible.



Chapter x 49One again 
onsiders the LTS 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉 represented �gure6 and the properties FI : I ∈ [1, 4] below. The table below gives the results ofthe evaluation of the formulas FI for ea
h one of the LTS.
F1 ≡<a> [b]F
F2 ≡<a> (<b> T∧ <c> T )
F3 ≡ [a](<b> T∧ <c> T )
F4 ≡<a> ( (<b> T ∧ [c]F ) ∨ (<c> T ∧ [b]F ) )

|= F1 F2 F3 F4

D, 0 F V V F
D′, 0′ V F F V
D′′, 0′′ V V F F4.3.2. Modal Chara
terization of the bisimulationTheory of a state : For a logi
 L, one notes TH : S 7→ L, the mapping whi
hasso
iates with a state s S the set of the properties f of L that it satis�es (itstheory). THL(S) =Def {F ∈ L : S |= F}Property 53 Hennessy-Milner's theorem [HM 85℄

HML 
hara
terizes modally the bisimulation. Two states are bisimilar ifthey satisfy the same properties of logi
 HML.
s ∼ qi�THHML(s) = THHML(q)Example 12 Return on the examples 6, 7 and 5The LTS of the �gure 6 are not bisimilar. By taking again the formulas ofthe table 11, one 
an 
on
lude that these CO are 2 to 2 not equivalent :- F3 only holds for D thus D is equivalent neither to D′ nor with D′′.- F4 only holds for D′ thus D′ is equivalent neither to D nor with D′′.The LTS of the �gure 7 are not bisimilar. Let us 
onsider the following for-mula of HML : - G ≡<Coin> ( (<Co�ee> <Sugar> T )∧ (<Co�ee> [Sugar]F )).

M, 0 6|= G while M ′, 0′ |= GThe LTS of the �gure 5 are not bisimilar. Let f ≡ [Coin](<Co�ee> true∧ <Tea> true). f 
an be formulated as follows : after any o

uren
e of the a
tionCoin there is always the possibility of 
arrying out the a
tions Co�ee and Tea.
M ′, 0′ |= f while M ′′, 0′′ 6|= f .4.3.3. HML and atomi
 propositionsAs we saw logi
HML, in its original statement, is based only on the events,the relation of π-bisimulation (
f de�nition 37) 
an be used to allow to expli
itlytake into a

ount the 
on
ept of states.



50 Petri NetsInstead of 
onsidering only one labelled transitions system, we 
onsider alabelled Kripke's stru
ture
LKS = 〈AP, Σ, S, { a

−→}a∈Σ, ν〉 where in ea
h state of S, the valuation ν asso-
iates a set of propositional variables ∈ 2AP (
f de�nition 1).De�nition 54 HML(AP )One notesHML(AP ) the extension of HML to a set of atomi
 propositions
AP as follows :Syntax : HML(AP ) is the smallest set verifying :
AP ⊂ HML(AP ), f, g ∈ HML(AP ) ⇒ f ∧g ∈ HML(AP ),¬f ∈ HML(AP )
f ∈ HML(AP ), a ∈ Σ ⇒<a> f ∈ HML(AP )Semanti
s : The semanti
s of the formulas HML(AP ) is de�ned with respe
tto a labelled Kripke's stru
ture LKS = 〈AP, Σ, S, { a

−→}a∈Σ, ν〉

|=, the relation of satisfa
tion, is the smallest relation verifying :
LKS, s |= P i� P ∈ ν(P )
LKS, s |= f ∧ g ssi LKS , s |= f et LKS, s |= g
LKS, s |= ¬f ssi Non (LKS , s |= ¬f)

LKS, s |=<a> f ssi s
a
→ s′ et LKS, s′ |= fProperty 55 Modal 
hara
terization of the π-bisimulationBy taking again the notations introdu
ed into the de�nition 33, one 
onsidersthe partition πν(S) of S de�ned by the appli
ation ν and one 
onsiders theasso
iated π-bismulation (
f def 37).

HML(AP ) gives a modal 
hata
terization for the πν(S)-bisimulation : twostates are πν(S)- bisimilar if they satisfy the same formulas of logi
 HML(AP ).
∀p, q ∈ S : p ∼πν q ssi THHML(AP )(q) = THHML(AP )(q)Example 13 HML and divergen
eWe saw that observational equivalen
e masked the divergent evolutions (
f4.2.5) : it follows that the 
on
ept of event inevitable is not exprimable in

HML.By taking again notations of se
tion 3.3, one notes 〈M, S〉 |= AFX{T}trueto mean that exe
ution of event t is inevitable from the state s. The adequa
yproperty of adequa
y (prop 53) provides us a simple means for to show thatAFX{T}true 
an not be expressed in HML.



Chapter x 51Let us 
onsider the LTS represented �gure 16. 1 |= AFX{A}true, 0 6|=AFX{A}true, obviously we have 1 ∼ 0 and 
onsequently THHML(1) = THHML(0).Then AFX{T}true 
annot be expressed into HML.0 1 2τ AτFigure 16: Divergen
e and inevitablilityLet us 
onsider again the three 
o�ee ma
hines represented 10, all the statesof those satisfy the property AFX{Tea,Co�ee}true, and in parti
ular states 1,1' and 1� who 
orrespond to states where a drink was paid and not yet delivered.Let us 
onsider the LTS 〈Div, d0〉 presented �gure 14, none the states of theLTS satis�es AFX{Tea,Co�ee}true and in parti
ular the state d1. The fa
t ofhaving paid drink does not guarantee that one obtains it in a �nite time.The extension ofHML to the atomi
 propositions (
f 4.3.3), provides us asimple means, in the 
ase of �nite LTS, to extend HML to take into a

ountthe 
on
ept of divergen
e.Let LT S = 〈Σ, S, {
a
→}a∈Σ〉 be a LTS, O ⊂ Σ a subset of observable labels.Let Div(S) be the subset of S de�ned as follows : Div(S) =Def {S ∈ S :

∃ω ∈ Σ \ O∞ and s
ω
→}. Thus, for the LTS of the �gure 10 we have Div =

{d1, d2, d3}.One 
onsiders APDiv =Def {true, Div} and the valuation ν de�ned by
true ∈ ν(S) ∀S ∈ S and Div ∈ ν(s)σs ∈ Div(S). By 
onstru
tion logi

HML(APDiv) and ∼Div, the asso
iated π−bisimulation, are sensitive to thedivergen
e.As example we 
an 
ompare the LTS 〈M ′, 0′〉 and 〈Div, d0〉 presented res-pe
tively �gures 10 and 14.

∼Div 0 = {{d1, d2, d3}, {d0, 0′, 1′, 2′, 3′}}
∼Div 1 = {{d1, d2, d3}, {d0, 0′, 2′, 3′}, {1′}}
∼Div 2 = {{d1, d2, d3}, {d0}{0′, 2′, 3′}, {1′}}
∼Div 3 = ∼Div 2 and 
onsequently ∼Div = ∼Div 2The respe
tive initial states of the two LTS (0, d0) are not in the relationof bisimulation (0 6∼Div d0) and 
onsequently 〈M ′, 0′〉 and 〈Div, d0〉 are not�Div�-bisimilar.



52 Petri Nets4.3.4. Modal 
hara
terizations of other equivalen
e relationsOne 
onsiders the subsets of HML de�ned below :
M =Def {F ∈ HML, F does not 
ontain ∧} and
N =Def {F ∈ M, F does not 
ontain ¬}[HM 85℄ show that whi
h M is a modal 
hara
terization of Co-simulationwhile N is a modal 
hara
terization of language equivalen
e.Stri
t in
lusion between N and HML shows the fa
t that language equiva-len
e is stri
tly 
oarser than observational equivalen
e. Thus, N do not makeit possible any more to express [A] or false whi
h is essential to de�ne proper-ties of deadlo
k : observational equivalen
e preserves deadlo
ks what is not the
ase for equivalen
e language. Observational equivalen
e does not preserve thedivergen
e but 
an be reinfor
ed to this end [NV 90℄.On the other side, the work of [BCG 91℄ attempts to give a behavioural 
ha-ra
terization of logi
 CT L∗. The relation of equivalen
e now operates betweenKripke's stru
tures presented de�nition 1. Its presentation is very 
lose to theone of ∼N equivalen
es given de�nition 31.De�nition 56 Equivalen
es of Kripke's stru
turesLet KS = 〈AP, S,→, ν〉 and KS = 〈AP, S′,→′, ν′〉 two Kripke's stru
turessharing the same set of propositional variables APOne de�nes a sequen
e of equivalen
e relations EK0

, EK1
, . . .sur S ×S′as follows :

s EK0
s′ i� ν(s) = ν′(s′)

s EKn+1
s′ i�1. ν(s) = ν′(s′)2. ∀s1 ∈ S : (s → s1) ⇒ ∃s′1 ∈ S′ : s′ → s′1 and s EKn

s′3. ∀s′1 ∈ S′ : (s′ → s′1) ⇒ ∃s1 ∈ S : s → s1 and s1 EKn
s1Finally, equivalen
e between Kripke's is de�ned as follows :

s EK s′ i� s EKi
s′ : ∀i ≥ 0The behavioral 
hara
terization of logi
 CT L∗is given by the following pro-perty :



Chapter x 53Property 57 behavioral Chara
terization of CT L∗

s EK s′ ⇒ ∀f ∈CT L∗[s |= f ⇔ s′ |= f ][BCG 91℄ also introdu
ed the stuttering equivalen
e whi
h gives a behavio-ral 
hara
terization of logi
al temporal CT L∗_X, namely CT L∗without next-time operator.5. De
idability of the bisimulation and the evaluation of formulasWe now will expose the fundamental results 
on
erning the de
idabilityof the bisimulation of Petri nets and the evaluation of formulas of temporallogi
 for a Petri net. In 
hapter 4 of the treating volume of the Petri nets[HAD 01℄, we saw that the generi
 properties all were de
idables (boundness,a

essibility, . . .). Moreover the 
omplexity of the 
he
king of 
ertain propertiesis 
ompletely 
hara
terized ( the boundness property is EXPspace-
omplete)while for others, the problem remains open (a

essibility is EXPspace-hardbut the algorithm of de
ision is not primitive re
ursive). As shown by thepre
eding se
tions, temporal logi
 and the bisimulation allows to 
hara
terizethe behavior of a labelled Kripke's stru
ture in a way �ner than through thegeneri
 properties. Also one 
an expe
t that the pro
edures of de
ision are moredi�
ult to obtain. For example, the problem of a

essibility is expressed easilyin LT L and CT L.Example� in LT L,
m not a

essible from (R, m0) ⇔ (R, m0) |= G OR p∈P p 6= m(p)� in CT L,
m nona

essible sin
e (R, m0) ⇔ (R, m0) |= AG OR p∈P p 6= m(p)A

ording to the adopted alternative, 
ertain problems are inde
idable while,for the de
idable alternatives, the majority of the de
ision methods rely on thede
idability of a

essibility implying a great 
omplexity 
onsequently. The waysto obtain results of unde
idability or of de
idability are of very di�erent nature.We will thus follow this 
utting in the 
ontinuation.5.1. Unde
idability resultsThe usual te
hnique to show that a problem is ind�©
idable 
onsists inredu
ing another problem ind�©
idable to the initial problem. This te
hniquesupposes that one beforehand determined in another manner the inde
idability



54 Petri Netsof a problem. The problem more general than we study is that of the stop of aprogram.Theorem 58 (Stop of a program with parameters) the problem of the stopof a program prog, parameterized by an integer x is unde
idable.ProofWe will show this result by absurb. Let us suppose that there is program
teststop with two integers parameters : a representation (by an integer) of aprogram prog and a value of entry of this program. The 
hoi
e of the represen-tation of the program is here of no importan
e ; for example, one 
ould 
hooselike representation the integer 
orresponding to the sequen
e of bits of the pro-gram. One will note prog this representation. teststop returns true if prog stopswith the provided value and if not returns false. The behavior of teststop isunspe
i�ed if the �rst parameter is not the representation of a program.We build then a program foo with a single parameter whi
h fun
tions thus.� foo 
he
ks that its parameter x is well the representation of a program

prog (like a 
ompiler does it). If it is not the 
ase, it stops.� foo 
alls teststop(X, X). In other words, it tests if the program prog stopsby taking as entry its representation.� If teststop(X, X) returns true, then foo runs without end if not it stops.Let us examine the behavior of foo(foo).If foo(foo) stops teststopthen(foo, foo) returns true and 
onsequently foo(foo)does not stop what is absurd.In the 
ontrary 
ase, teststop(foo, foo) returns false and 
onsequently foo(foo)stops what is absurd. There is not thus program teststop. ♦The fa
t that the program has a single parameter in entry is not impor-tant as indi
ates it the following 
orollary. In addition, this one illustrates theprin
iple of redu
tion.Corollary 59 (Stop of a program without parameter) the problem of thestop of a program prog without parameter is unde
idable.ProofLet us show that the problem of the stop of a program with a single parameteris redu
ible with the problem of the stop of a program without parameter. Wethus suppose that there is a program teststopbis for the problem of the 
orollaryand we des
ribe how to build a program teststop. Let prog be a program witha parameter and x an integer value. Then teststop behaves as follows :



Chapter x 55� teststop builds the representation of the program prog′ without parameterwhi
h 
onsists in 
alling prog(X).� Then teststop 
alls teststopbis(prog′) and returns the 
orresponding re-sult.Then teststopbis 
annot exist. ♦
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x.etiq1

zero

etiq: x:= x+1
etiq':...

etiq: x:= x-1
etiq':...

etiq: GOTO etiq' etiq: HALT

etiq: IF x=0 THEN GOTO etiq1
                    ELSE GOTO etiq2

etiq2

etiq1

nzerofingotodecinc

Figure 17: Weak simulation of a program with 
ounterThe 
hoi
e of the programming language (or the model of 
omputation)is indi�erent as from the moment when this one has the minimal 
onstru
tors
onferring to him a expressiveness equivalent to the Turing's ma
hines. To reusethe previous results, one seeks languages adapted to the studied problems. Inour 
ase, we will 
hoose the model of the programs with 
ounter. The variables ofsu
h a program are the 
ounters that are positive integers, initialized by 0. Theprogram is a sequen
e of instru
tions ; ea
h instru
tion is pre
eded by a label(with the manner of the language Basic). The di�erent kinds of instru
tionsare :� the in
rementation etiq : X := x + 1� the de
rementation etiq : X := x − 1When the de
rementation is applied to a null 
ounter, it 
auses an abortof the program 
onsidered as di�erent from the stop.� the un
onditional jump etiq : GOTO etiq′� the 
onditional jump
etiq : IF x = 0 THEN GOTO etiq1 ELSE GOTO etiq2� the termination etiq : HALTThis instru
tion is ne
essarily the last instru
tion of the program.This program prog has only one exe
ution (starting with the �rst instru
tion)whi
h 
an either be in�nite, or to abort or to stop when the program rea
hes the



56 Petri Netslast instru
tion. We will propose a weak simulation of a program with 
ountersby a Petri net noted Rprog (this name will also apply to the various variants ofsimulation). One asso
iates with ea
h label, a pla
e whi
h when it is markedindi
ates that the instru
tion is the next instru
tion to be 
arried out ; initiallyonly the pla
e of the label of the �rst instru
tion 
ontains a token. Ea
h 
ounteris translated by a pla
e initially not marked. The translation of the instru
tionsintrodu
es the transitions as indi
ated in the �gure ?? : X. Ea
h transition islabelled by the type of instru
tion (inc, dec, goto, fin, zero, nzero). Simulationis weak in the sense where a labelled transition zero 
an be �red although thepla
e x is marked. An exa
t simulation would require an inhibiting ar
 fromthe pla
e x towards the labelled transition zero. In other words, among themaximum sequen
es (�nite or in�nite), only one of them 
orresponds to anexa
t simulation of the program while the other sequen
es �
heat� by �ring in aill-
onsidered way at least a labelled transition zero whereas the 
orresponding
ounter is not null. It is then obvious that :
prog terminates

⇔All maximal runs of Rprog �
heat� or mark pla
e haltThis leads us to the �rst results of inde
idability.Theorem 60 (Evaluation of a propositional formula LT L or CT L) Ina Petri net, the problem of the evaluation of a propositional formula LT L or
CT L is unde
idable.ProofIt is enough for us to express the se
ond term of equivalen
e.In LT L : F (ORx.etiq∈P (x.etiq = 1 AND x > 0) OR halt = 1)And in CT L : AF (ORx.etiq∈P (x.etiq = 1 AND x > 0) OR halt = 1)

♦Let us noti
e that this result is presented within the framework of a seman-ti
s on the maximum sequen
es �nite or in�nite. One 
an easily restri
t oneselfwith the in�nite sequen
es by adding a transition who bu
kles around the pla
e
halt. This remark is true for the following result.By modifying the translation of the 
onditional jump as indi
ated on the�gure 18, we obtain a 
omplementary result.Theorem 61 (Evaluation of an event-based formula CT L) In a Petri net,the problem of the evaluation of an event-based formula CT L is unde
idable.Proof
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l ab

x

x.l ab1

zero

l ab2

l ab1

nzero

error

lab : IF x=0 THEN GOTO lab1 ELSE GOTO lab2Figure 18: Another weak simulation of the 
onditional jumpThe equivalen
e previously mentionned is still valid and it is su�
ient toexpress the se
ond term of equivalen
e in event-based logi
 CT L :AF(EX{erreur} true OR EX{fin} true) ♦Let us noti
e that the operator of bran
hing logi
 EX allows to test the�rability what is not possible with an event-based linear logi
. We now willtransform our weak simulation on
e again to treat the 
ase of the bisimula-tion.We add to our network two new �
omplementary� pla
es y and y′ so thatthat a token either present or in y or in y′ but never simultaneously in the twopla
es.For a marking m of this nature, one will note m the marking obtained byreversing the 
ontents of y and y′. One modi�es on
e again the 
onditionaljump but also the last instru
tion as indi
ated on the �gure 19.
l ab

x

zero

l ab2

l ab1

nzero

halt

l ab

end

y

y

zero zero
y’t2

t1

t3Figure 19: A third weak simulation



58 Petri NetsInitial marking m0 is de�ned by a token in the label of the �rst instru
tionand a token in the pla
e y. Here still, one of the maximal sequen
es of exe-
ution 
orresponds to the simulation of the program with 
ounters. When one�deviates� of exa
t simulation by �ring a labelled transition zero whereas the
orresponding 
ounter is marked, one 
an, either swap the 
ontents of y and y′(by t2 or t3), or to leave it un
hanged (by t1). The transitions of the t2 typeand t3 are not used by exa
t simulation.Theorem 62 (Bisimulation of Petri nets) the problem of the bisimulationof two marked nets (R, m0) and (R′, m′
0) is unde
idable.ProofWe will show that a program with 
ounters prog stops if and only if (Rprog, m0)and (Rprog, m0) are not bisimilar1. prog stopsLet suppose us that m0 and m0 are not bisimilar. Let m0, m1, . . . , mn the se-quen
e of markings 
orrsponding to the exa
t simulation of prog. We show byre
urren
e that for i < n, mi and mi are bisimilar. Sin
e mi 
orresponds to astep of the exa
t simulation of prog, it is possible to speak about the next ins-tru
tion to exe
ute. If this instru
tion is an in
rementation, a de
rementation,an un
onditional jumb or the non zero bran
h of a 
onditional jump then asingle transition labelled with the 
orresponding a
tion is �rable from mi and

mi leading to respe
tively mi+1 and mi+1. If this instru
tion 
orresponds tothe zero bran
h zero of a 
onditional jump 
onne
tion, then here also only onetransition (t1) is �rable from mi and mi sin
e the tested (x) 
ounter is notmarked ; the �ring of t1 leads to mi+1 and mi+1. Let us now examine mn−1and mn−1. The transition labelled by fin is �rable from mn−1 but is not �-rable from mn−1 sin
e y is not marked. The markings mn−1 and mn−1 are notbisimilar and 
onsequently m0 are m0 are not bisimilar.2. prog does not stopWe de�ne the relationR 
ontaining (m0, m0) and show thatR is a bisimulation.
R = {(m, m′) | m = m′ where m is a marking rea
hed by the exa
t simulationof prog and m′ = m}. Of 
ourse, it is enough to prove that R is a bisimulationonly for the se
ond type of pair of markings. Let m be a rea
hed marking bythe exa
t simulation of prog. Sin
e Puisque prog does not stop,the transitionlabelled by fin is not �rable from m. In a 
ase of abort, no more transitionis �rable both from m and m. If the next transition to exe
ute is not thezero bran
h of a 
onditional jump then a single transition (
orresponding tothe simulation) is �rable from m and m. This transition 
orresponds to the



Chapter x 59simulation of prog and 
onsequently the pair of rea
hed markings belongs to
R. If the next transition is a non zero bran
h then two 
hoi
es o

ur from ofa 
onditional jump m (respe
tively m), to 
ontinue the simulation by �ringthe transition labelled by nzero or to �diverge� from the simulation by �ringa transition labelled by zero t1 or t2 (respe
tively t1 or t3). We show that msimulates m (the 
onverse is symetri
).� If transition nzero is �red from m, the same is �red from m and the pairof rea
hed markings 
orresponds to the next step of the simulation of

prog.� If transition t1 is �red from m, t3 is �red from m and the rea
hed markingsare the same.� If transition t2 is �red from m, t1 is �red from m and the rea
hed markingsare the same.
♦The attentive reader will have noti
ed that the proof applies to any equiva-len
e - from language equivalen
e to bisimulation - sin
e if prog stop then twonets then are not language equivalent.In the same way, for the marked nets of the proof, two transitions t and

t′ are never �rable in a 
on
urrent way (i.e m ≥ Pre(T ) + Pre(t′)), then theresult remains valid for equivalen
es whi
h take into a

ount 
on
urrent �ring.5.2. De
idability resultsDuring this paragraph, we will 
all upon various 
on
epts introdu
ed in
hapter 4 of the volume of the Petri nets [HAD 01℄ (together semi-linear, te
h-nique of shorter sequen
es, . . .). We strongly advise with reader to defer to itfor better appre
iating what follows.5.2.1. LT L FormulasWe �rst study the veri�
ation of an event-based temporal logi
 formula(for instan
e from linear µ-
al
ul), formulas whi
h 
an be represented by anautomaton [DAM 92℄. Terminal states are interpreted as usual in the 
ase of a�nite sequen
e semanti
s or as those of a Bü
hi's automaton when the semanti
sis expressed in terms of in�nite sequen
e.The veri�
ation pro
edure for �nite systems 
onsists in :� building the automaton asso
iated with the negation of the formula,



60 Petri Nets� building the syn
hronized produ
t between the labelled transition systemof the model (i.e. the rea
hability graph) and the automaton,� �nding a �nite sequen
e (respe
tively in�nite) rea
hing (respe
tively ain�nite times) a terminal state.This pro
edure is obviously not possible in the 
ase of in�nite transitionsystems, but the key of the method that we will expose 
onsists in building aPetri net who generates the labelled transitions system produ
t and then totest in this net the existen
e of an adequate sequen
e.
a

b

a

t’ 1 (a)

t’ 2 (b)

t’ 3 (a)

t2 ( λ)

t1 (a)

t3 (b)

t2 ( λ)

t3 . t’ 2 (b)

t1 . t’ 1 (a)
t1 . t’ 3 (a)

Aut

I ni t Net ProdNet

S MA 

Figure 20: Syn
honized produ
t betwen a Petri Net and a automatonThe 
onstru
tion on a Petri Net �produ
t� has been viewed during the 
hap-ter treating the study of languages and we re
all it brie�y here (see �gure 20).� The automaton (Aut) is translated in a Petri net (in fa
t a one-safe statema
hine) (SMA),� The produ
t net (ProdNet) is obtained, from the net asso
iated with themodel (InitNet) and from the state ma
hine, as follows :� The set of pla
es of the produ
t net is de�ned as the (disjoint) unionof the sets of pla
es and the initial marking as the sum of the initialmarkings,� For ea
h pair of transitions sharing the same label we asso
iate a tran-sition ; the input and output ar
s of that transition are obtained byunion of 
orresponding ar
s in the initial nets. Transition of the initialnet labelled by the empty word remain un
hanged.It obviously follows that the observable tra
es of this net are exa
tly the



Chapter x 61words generated by the initial net and re
ognized by the automaton (withouttaking into a

ount the terminal states). This is the departure point of theevaluation method.Theorem 63 (Evaluation of an event based LT L formula) In a Petrinet, the evaluation of an event based LT L formula is a de
idable problem (andmore generally any formula whose negation is representable as an automaton)ProofThis result is valid for any kind of sequen
es : �nite, �nite maximal, in�nite,divergent. We limit us to the third �rst kinds sin
e we dont have de�ned in apre
ise way a semanti
s for the divergent sequen
es.1. Case of the �nite sequen
esWe sear
h the existen
e of a �nite sequen
e in the net whi
h marks a pla
easso
iated with a terminal state of the automaton. In other words, for ea
h ofthose pla
e, we sear
h to 
over the marking de�ned by the presen
e of a tokenin that pla
e. The 
overing problem has been addressed in and the method ofthe shorter sequen
es furnishes a pro
edure whose 
omplexity is EXPspace.2. Case of the �nite maximal sequen
esWe sear
h the existen
e of a �nite maximal sequen
e in the produ
t net whi
hmarks a pla
e asso
iated with a terminal state of the automaton. Let Term bethe subset of that pla
es. In other words, the net has to stop him in a markingwhere one of the pla
es of Term is marked. The set of these markings is a 
om-putable semi-linear set (∩t∈T {m | NOT m ≥ Pre(t)}∩∪p∈Term{m | m ≥ −→p }.We have to know if one of the markings of a semi-linear set is rea
hable. Sin
ea semi-linear set is a �nite union of linear sets, we have su

essively to test thea

essibility of ea
h linear set. Finally, to ea
h linear set E = {w | ∃λ1, . . . , λm

inIN, t.q. w = u +
∑m

i=1 λi.vi}, we add to the net a transition ti for i from 1to m su
h that Pré(ti) = vi and Post(ti) =
−→
0 . Then, we have to test, in themodi�ed net, if u is rea
hable ; unfortunately, the 
orresponding algorithm isnot re
ursive primitive.3. Case of the in�nite sequen
esWe sear
h the existen
e of an in�nite sequen
e in the produ
t net whi
h marksin�nitely often a pla
e asso
iated with a terminal state of the automaton ;in other words one of the transitions, having one of the pla
es as an inputpla
e, is �red in�nitely often. We �nd again the problem to sear
h an in�nitesequen
e in whi
h a given transition t admits an in�nity of o

urren
es. Thatis, su
h a sequen
e have the form σ = σ1.σ2. . . . .σi. . . . where t appears in ea
h

σi. With the help of extra
tion lemma of the 
hapter 3 of [HV 01℄ applied tothe intermediate markings rea
hed by the sequen
es σ1.σ2. . . . .σi, we dedu
ethat the existen
e of su
h in�nite sequen
e is equivalent to the existen
e of



62 Petri Netsa sequen
e of the form m0[σ1〉m1[σ2〉m2 where m1 ≤ m2 and t having ano

urren
e in σ2. Finally, by adding an output pla
e pt to t, the initial problemis equivalent in this modi�ed net to sear
h a sequen
e m0[σ1〉m1[σ2〉m2 with
m1 ≤ m2 and m1(pt) < m2(pt). This last problem is also solved using thete
hniques of the shorter sequen
es (see [RAC 78, YEN 92℄ for more details)and leads again to a pro
edure with a EXPspace 
omplexity. ♦An interesting question is to known is the de
idability is preserved when you
onsider extensions of Petri Nets. In fa
t, this evaluation be
omes unde
idablefor almost the totality of the extensions of Petri nets. It is for instan
e the 
asefor re
ursive Petri nets and even for restri
ted models [BOU 96℄. However,when you 
onsider only a sequential semanti
s of the �ring of an abstra
ttransition, the problem remains de
idable [HAD 00℄.5.2.2. BisimulationWe now study the bisimulation of a marked net and a �nite transition sys-tem. We will use the ∼N -equivalen
es, introdu
ed by the de�nition 31, allowingto 
hara
terize in the 
ase of �nite STE the bisimulation (
f prop 32).To avoid the ambiguity in our notations, in parti
ular with respe
t to theorigin of the states whi
h we will 
onsider, we will mention the name of theSTE expli
itly. Thus we will note 〈LT S, S〉 to 
larify the fa
t that the state sis a state of the STE LT S.We introdu
e two useful notations for the next developments. Let LT S =
〈Σ, S, {

a
→}a∈Σ〉 be a labelled transition system,� IncLT S

n denotes the set of initialized systems in
ompatible with LT S for
∼n : IncLT S

n = {〈LT S ′, s′〉 | ∀s ∈ S NOT 〈LT S′, s′〉 ∼n 〈LT S, s〉)}� ∗
−→ denotes the transitive and re�exive 
losure of the union of the a

−→.In other words, 〈LT S, s〉 ∗
−→〈LT S, s′〉 i� s′ is rea
hable from s.Lemma 64 Let LT S = 〈Σ, S, {

a
→}a∈Σ〉 be a �nite labelled transition system(ns = |S|) and LT S ′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 a labelled transition system, then :

∀s ∈ S, ∀s′ ∈ S′,

〈LT S, s〉 ∼ 〈LT S ′, s′〉 ⇔







〈LT S, s〉 ∼ns
〈LT S ′, s′〉AND

∃/ 〈LT S′, s”〉 ∈ IncSTE
ns

s.t. 〈LT S ′, s′〉 ∗
−→〈LT S′, s”〉ProofFor the impli
ation from left to right, if 〈LT S, S〉 ∼ 〈LT S ′, 〉 then a

ording toproperty ?? bisimde
is 〈LT S, S〉 ∼ns

〈LT S′, 〉. In addition, by an obvious re-
urren
e on the number of transitions a
−→ whi
h lead of 〈LT S ′, 〉 to 〈LT S′, S”〉



Chapter x 63by using the de�nition of ∼, one establishes that there exists s1 a

essible sin
e
s (with the same number of transitions) su
h that 〈LT S′, S”〉 ∼ 〈LT S, s1〉)and 
onsequently 〈LT S ′, S”〉 ∼ns

〈LT S, s1〉.For the impli
ation from right to left, we de�ne the relation R as follows :
〈LT S, s1〉R 〈LT S′, s′1〉 ssi







〈LT S, s1〉 ∼ns
〈LT S ′, s′1〉AND

∃/ 〈LT S′, s”〉 ∈ IncLT S
ns

t.q. 〈LT S ′, s′1〉
∗

−→〈LT S′, s”〉We show that R is a relation of bisimulation.Let us suppose that 〈LT S, s1〉
a

−→〈LT S, s2〉 ; then there exists 〈LT S ′, s′2〉 su
hthat
〈LT S ′, s′1〉

a
−→〈LT S′, s′2〉 and 〈LT S, s2〉 ∼ns−1 〈LT S′, s′2〉.Sin
e 〈LT S′, s′2〉 is a

essible from 〈LT S′, s′1〉, we have :

∃/ 〈LT S′, s”〉 ∈ IncLT S
ns

t.q. 〈LT S ′, s′2〉
∗

−→〈LT S ′, s”〉. In parti
ular,
〈LT S ′, s′2〉 /∈ IncLT S

ns
. Thus there exists 〈LT S, s3〉 ∼ns

〈LT S′, s′2〉.By transitivity and the fa
t that ∼n⊂∼n−1, 〈LT S, s3〉 ∼ns−1 〈LT S, s2〉and under the terms of the property ?? bisimde
is, 〈LT S, s3〉 ∼ns
〈LT S, s2〉.Again by transitivity, one thus obtains 〈LT S, s2〉 ∼ns

〈LT S′, s′2〉.The 
ase 〈LT S ′, s′1〉
a

−→〈LT S ′, s′2〉 is similar. ♦This 
hara
terization is at the base of the following result.Theorem 65 (Bisimulation between a net and a �nite system) The pro-blem of the bisimulation beween a marked net 〈R, m0〉, without transition la-belled by the empty word, and a �nite labelled transition system 〈LT S, s0〉 isde
idable.ProofLike previously ns = |S|. To de
ide if 〈R, m0〉 ∼ns
〈LT S, s0〉, it is enough toverify that :� for ea
h transition labelled by a �rable from m0 and leading to m1, thereexists s1 su
h that 〈LT S, s0〉

a
−→〈LT S, s1〉 and 〈LT S, s1〉 ∼ns−1 〈R, m1〉,� Forall s1 su
h that 〈LT S, s0〉

a
−→〈LT S, s1〉, ther exists a transition label-led by a �rable from m0 and leading to m1 su
h that

〈LT S, s1〉 ∼ns−1 〈R, m1〉.This obviously leads to a re
ursive pro
edure whose depth is limited to ns.It remains us to be tested if there is an a

essible marking m1 sin
e m0 su
h as
m1 ∈ IncLT S

ns
. Let us study initially markings belonging to IncLT S

ns
. A

ordingto the pre
eding re
ursive pro
edure, to test ∼ns

one examines only �ringsequen
es of length ≥ ns. Let us pose v the maximal valuation of an ar
 of R



64 Petri Netsand B = v.ns. Let us take two markings m and m′ su
h as ∀p ∈ P, m(p) 6=
me(p) ⇒ m(p) ≥ B AND me(p) ≥ B. These two markings are equivalent for
∼ns

. That is to say thus a marking m bounded by B, let us pose SupB(m) =
{me |me ≥ m AND ∀p ∈ P, m(p)}.Obviously all the markings in SupB(m) are equivalent for ∼ns

. We have tonote that a marking ne
essarily belongs to SupB(m) for a m bounded by B.The de
ision pro
edure operates in two steps First for ea
h marking m boundedby B, she tests - using the previous pro
edure - if m ∈ IncLT S
ns

. Then for ea
hof these m, it sear
h if there exists m′ ∈ SupB(m) with m′ rea
hable from
m0. This resear
h 
onsists in testing the a

essibility of m in a net augmentedwith a transition tp for ea
h pla
e p su
h that m(p) = B, transition de�ned by
Pre(tp) = −→p and Post(tp) =

−→
0 . ♦In [JAN 99℄, one will be able to �nd results more te
hniques like the exis-ten
e test of a �nite labelled transition system in bisimulation with a Petrinet.
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