
Chapter xVeri�ation of spei� propertiesSerge Haddad , François Vernadat1
1. IntrodutionIn the previous hapter of this book of the Petri nets [DIA 01℄, we studiedthe heking of generi properties of Petri nets suh as boundness or liveness[HV 01℄. If these properties inform the designer about the general behavior ofthe net, those must be supplemented by the analysis of the spei� propertiesof the modelled system. Also we lean in this hapter on the expression and theheking of spei� properties of the Petri nets.Generally, the designer of an appliation de�nes the funtions and/or theservies of this one through a spei�ation. One its modelled appliation, itwishes to hek that its model onforms to the spei�ation. In order to developalgorithms and tools for this heking, it is neessary to formalize the oneptof spei�ation. Two possibilities were largely studied with this goal : eitherthe spei�ation is de�ned by a set of formulas of an adequate logi, or thespei�ation is de�ned using a model of behavior. We will thus explore thesetwo ways whih in pratie are omplementaries : ertain properties will beexpressed more easily using formulas and others more easily using a behavior.To �x the ideas, let us onsider a simpli�ed example of ressoure alloationin mutual exlusion : 2 ustomers are in ompetition to reah a resoure. Theaess ontrol poliy is ensured by a mehanism whose we will make abstration.1LSV, Éole Normale Supérieure de Cahan 61, avenue du Président Wilson 94235 CA-CHAN Cedex - Frane (haddad�lsv.ens-ahan.fr)LAAS-CNRS, 7, Avenue du Colonel Rohe F-31077 Toulouse edex, (fran-ois.vernadat�laas.fr)



2 Petri NetsAmong the properties to be heked, we must express the property of mutualexlusion : P1 �the resoure is used with more by one ustomer�, and by analogywith the problems of the philosophers, whih one generally names the abseneof starvation : P2 �A ustomer awaiting the resoure will obtain it in a �nitetime �. One wants to also be able to speify the operation of a ustomer and toexpress P3 �the ustomer sends initially a request to obtain the resoure (A),that it reeives then an agreement of use (b) and that �nally () it sends amessage of release before turning over in its initial state�.P1 and P2 will be expressed simply using formulas of temporal logis whileP3 will be expressed in a more ompat way using a behavior suh as thatrepresented on the left of the �gure 1.A ontrario, P1 will be expressed only one very indiret by the behaviorrepresented on the straight lines of the �gure 1 : between does two onseu-tive entries in ritial setion (event ? Ack), is inevitably the exit of the onlyustomer present in ritial setion (event ! Rel).Idle WaitWork
! Req

? Ak! Rel ? Ak1

? Ak2

! Rel2! Rel1
Figure 1: Examples of behavioural spei�ationsA logi ready to reason on the behavior of dynami systems to disreteevents must neessarily integrate the onept of sequene of states (�nishedor in�nite) orrespondent into a possible exeution. Moreover it must be ableto express properties of safety like �To more the one proess in the ourse ofexeution of a ritial setion, in any state of the sequene� (f P1), of theproperties of liveness like �If in a state, a proess requires to arry out a aritial setion then in a future state this proess will arry out this ritialsetion� (f P2) and of the properties of equity as �Any proess able to bearried out in an in�nity of states will be hosen by the sheduler an in�nityof time�. The key onept is here the time seen like a disrete suession ofmoments and logis whih integrate this onept are alled underline logialtemporal.These logis are distinguished aording to two axes. Parallelism and/or thenon-determinism imply the existene of various exeutions of the same systemand require their simultaneous taking into aount. Then :



Chapter x 3� the whole of the exeutions is represented as a tree where the varioussuessors of a state are obtained by the possible instanes of events inthis state. One then speaks about branhing logial temporal.� the whole of the exeutions may be also represented as a set of exeutionsequenes. One then speaks about linear logial temporal.The seond axis relates to the elements of the sequene.� We an onsider a sequene of states haraterized by a their set of atomipropositions. One then speaks about state-based temporal logi.� We an also onsider a sequene of elementary transitions, eah one la-belled by an event. One then speaks about event-based temporal logi.Also in the �rst part, we will introdue the syntax and the semantis ofa propositional branhing time logi alled CT L∗. We will present two verystudied fragments of them CT L and LT L. We will show then how to arry outthe heking of formulas on �nite states models.We will omplete this setion by indiating the adaptations to be takeninto aount within the framework of the Petri nets. The prinipal point isto onsider in a suitable way the various types of sequene of �ring (�nished,maximum �nished or in�nite).After having seen the logial approah for the heking, we will be interestedin the �behavioral� approah. The logial approah is sometimes desribed as�double model� in the sense where one has a logi for to speify the propertiesto be heked and of one struture whih represents the behavior of the system(the �Kripke'struture� whih is de�ned by the reahable markings graph inthe ase of a system desribes by a Petri net). At the opposite, the behavioralapproah is sometimes desribed as �simple model� in the sense where we onlydispose of a single struture, a "labelled transitions system� (a struture loseto the the reahable markings graph for Petri Nets. This one makes it possibleto represent at the same time the behavior system and its spei�ation.The behavioral approah proeeds by omparison. Using various relations ofequivalenes or pre-orders, two are ompared behaviours : those satisfy the sameproperties if and only if they are equivalent. Various behavioural equivaleneshave been introdued to take in aount several lasses of properties or, in anequivalent way, several points of view to onsider when a system is analyzed.Among these di�erent point of view, we will �nd the taking into aount ofparallelism and non-determinism. As for temporal logis, we will be brought todistinguish two great families from relations of behavioural equivalenes : thefamily of the �equivalenes of traes� whih onsider the exeution of a systemthrough the set of its sequenes of exeution (f linear temporal logis) and thefamily of �bisimulations� whih onsider the exeution of a system through its"tree� of exeution (f branhing time temporal logis). For these two families,one an also be brought to privilege the "states� of an exeution (f state-based



4 Petri Netstemporal logis) or the events whih onstitute the exeution (f event-basedtemporal logis).A �rst setion will enable us to introdue in an unformal way various possiblepoints of view when the behavior of two systems is ompared. The seondsetion will present the onept of bisimulation and simulation. The assoiatedproedures of deision will be presented. The third part will present �weak�equivalenes whih make it possible to ompare systems desribed at variouslevels of abstration. The last setion will attempt to show the links betweenthe behavioral approah and the logial approah : we will present logi HML[HM 85℄ whih gives a modal haraterization of the bisimulation. relation.In the other diretion, we will have the results of [BCG 91℄ whih gives abehavioural haraterization of temporal logi CT L∗.In the last part, we will analyze the deidability of the evaluation of for-mulas of temporal logi on a Petri net and the test of bisimulation of a netmarked with a labelled transitions system. More preisely, we will establish aswithin the framework of a propositional temporal logi, the evaluation is un-deidable as well for the fragment CT L as for the fragment ltl. This resultalso holds for event-based arboresent logi. In these three ases, the formulasused require only one number very limited temporal operators what indiatesthe robustness of the result (see for example [ESP 98℄). While being based onsimilar arguments, one will show that the test of bisimulation of two markednets is also undeidable [JAN 95℄.Contrary for an event-based linear logi temporal very expressive (the li-near µ-alul), the evaluation of formulas remains deidable [ESP 97℄. In thease of maximal sequenes, the proedure is based on the deidability of thereahability [MAY 84℄ while for the in�nite sequenes, one is redued to thetehnique shorter sequenes seen to hapter 4 of the �rst treating volume ofthe Petri nets [HAD 01℄ or also used in [RAC 78, YEN 92℄. Finally the test ofbisimulation of a marked net and a �nite transitions system beomes deidable(here still using the test of aessibility) [JAN 99℄. This result is all the moreinteresting as very often the spei�ation of a servie is given by suh a systemand the validation onsists in omparing this spei�ation with the Petri netwho implements it.2. Kripke's Strutures and transitions systemsThe labelled Kripke's strutures desribe in a su�iently generi way thebehavior of the systems whih one wishes to study. Those onsist of a set ofstates for whih ertain propositions are heked and of a set of binary relationsbetween states, subsripted by the events of the system.



Chapter x 5De�nition 1 A labelled Kripke's struture LKS = 〈AP, Σ, S, { a
−→}a∈Σ, ν〉 isde�ned by :� AP is a set of atomi proposals� Σ is a �nite alphabet of events� S is a set of states� a

−→ is a binary relation ⊂ S × S� ν : S → 2AP is a labelling whih assoiates in eah state, ν(S) the set ofthe atomi propositions holding in s.When one studies a struture of Kripke labelled, one onsiders it generallyprovided with an initial state s0 what one notes by (SKE, s0). When onedisregards event, one then has business with a struture of Kripke. Contrary, ifone disregards atomi proposal, one speaks about system to transitions labelled.The two following de�nitions formalize these onepts.De�nition 2 A struture of Kripke KS = 〈AP, S,→, ν〉 is de�ned by :� AP is a set of atomi proposals� S is a set of states� → is a binary relation ⊂ S × S� ν : S → 2AP is a labelling whih assoiates in eah state, ν(S) the wholeof the atomi propositions holding in s.De�nition 3 A labelled transitions system LT S = 〈Σ, S, {
a
→}a∈Σ〉 is de�nedby :� Σ is a �nite alphabet of events� S is a set of states� a

−→ is a binary relation ⊂ S × SThereafter, we will note s
a
→ s′ to indiate that (s, a, s′) ∈ S × Σ × S. Byabuse notation, we will also note for σ ∈ Σ∗ : s

σ
→ s′ to indiate that s isaessible starting from s via the sequene from ations (the word) σ.the systems whih we onsider being able to be not-determinists, we will notefor s ∈ S, E ⊂ S and a ∈ Σ : s

a
→ EσE = {s′ ∈ S : s

s
→ s′}We will note �nally s

a

6→, to indiate that s does not have a suessor by theation a and s 6→ to indiate that s does not have any suessor (i.e., onstitutesa state of bloking).These strutures an they be also initialized.



6 Petri Nets3. Temporal Logi3.1. Syntax and SemantisSine one wishes to hek dynami systems with disrete events, let us ex-press what is ommon to all these systems : states and the reahability relationbetween states. As example, a state of a distributed appliation is haraterizedby the state of the proesses (value of the variables, instrution ounter, . . .)and the state of the environment (e.g messages of the hannels). In front ofthe diversity of the possible representations, one will be satis�ed of a largelysu�ient abstration in the majority of the ases to knowing a set of atomiproposals (noted P, Q, . . .). Starting from a given state, the relation of sues-sion indues a set (generally in�nite) of sequenes of states begin with thisstate, still alled paths in the terminology of temporal logi. Also propositionalarboresent logi that we will study CT L∗ de�nes it indutively by a syntaxof formulas of state and of path [EME 96℄.De�nition 4 (Syntax of CT L∗) Let AP be a set of atomi proposition, thenthe formulas of CT L∗are de�ned by the following rules :S1 Eah atomi proposition P is a state formula.S2 If f and g are state formulas then f AND g and NOT f are stateformulas.S3 If f is a path formula then E f and A f are state formulas.P1 Eah formula of state is a path formula.P2 If f and g are path formulas then f AND g and NOT f are path for-mulas.P3 If f and g are formulas of way then X f and f U g is formulas of way.Only the rules S3, P1 and P3 require explanations. One wishes to reason onthe sequenes resulting from a state. Thus E f is heked if starting from thisstate there exists a sequene whih heks f .A f is heked if starting from thisstate all the sequenes hek f . If f is a formula of state then f also interpretsas a formula of way whih is evaluated on the �rst state of the sequene. X
f (X for �next�) onsists in evaluating f on the private under-sequene of the�rst state. Finally f U g (U for �until�) is heked if there exists a su�xof the sequene for whih g is heked and suh as all the preeding su�xes(inluding the initial sequene) hek f . In other words, f remains hekeduntil g is heked and g will be it. We formalize now the semantis of CT L∗ byintroduing the onept of model and satisfation of formula by a model.



Chapter x 7De�nition 5 (Model of CT L∗) A model of CT L∗is a Kripke's struture KS =
〈AP, S,→, ν〉 suh as → is a total binary relation : ∀S ∈ S, ∃T ∈ S suh as
s → tTraditionally temporal logi reasons on in�nite sequenes. Indeed, this oneis interested partiularly in properties of equity whih have meaning only inthis ontext. This explains the onstraint on the relation →. Also a sequene
σ = (s0, s1, . . .) is an in�nite sequene of states suh as ∀I ∈ IN, si → si+1.We will reonsider later this onstraint in the ontext of the Petri nets. Thesequene σi indiates the su�x of σ, (si, si+1, . . .) from where σ0 = σ.Let us note AP = {NOTP | P ∈ AP}. To simplify, we will onsider in thesequel that the labelling funtion ν takes values in 2AP∪AP with the obviousonstraint that :
∀P, s |{P,NOT P} ∩ ν(s)| = 1 (an atomi proposition is either true or false)De�nition 6 (Semanti of CT L∗) Let KS be a model, s a state of SK and
σ = (s0, s1, . . .) a sequene of KS, then the satisfation of a formula of CT L∗ onthis model is de�ned par :S1 KS, s0 |= P if and only if P ∈ ν(s0).S2 KS, s0 |= FANDg if and only if KS, s0 |= f and KS, s0 |= g.

KS, s0 |= NOTf if and only if there are not KS, s0 |= f .S3 KS, s0 |= Ef if and only if ∃σ resulting from s0 suh as KS, σ |= f .
KS, s0 |= Af if and only if ∀σ resulting from s0, KS, σ |= f .P1 Is f a formula of state, KS, σ |= f if and only if KS, s0 |= f .P2 KS, σ |= FANDg if and only if KS, σ |= f and KS, σ |= g.
KS, σ |= NOTf if and only if NOT(KS, σ |= f).P3 KS, σ |= FUg if and only if ∃i suh as KS, σi |= g and ∀j suh as
pr /∈ PROM(em)In pratie, CT L∗is enrihed by abbreviations whih simplify the expressionof the properties :(OR) f OR g ≡ NOT (NOT f AND NOT g)(true) true ≡ NOT P OR P(false) false ≡ NOT true(F) Ff ≡ trueUf(G) Gf ≡ NOT F NOT f(W) fWg ≡ fUg OR GfF f means that f will be true for a su�x of the onsidered sequene. G fmeans that f is true for all the su�xes of the sequene onsidered. Contrary to



8 Petri Nets
f U g, f W g (W for �weak until�) does not imply that g is true for a su�x.In this ase, f remains true for all the su�xes. As example,GF ⇔ F W false.

CT L∗ is a very expressive language. In order to obtain e�etive algorithmsof evaluation, one is led to restrit this language. The two most signi�antrestritions are CT L and LT L.
CT L is the language formed of the syntati rules S1, S2, S3 and P0 :P0 If f and g are state formulas then X f and f U g is path formulas.
CT L is foused on the onept of state. Indeed, one an entirely desribesyntax without de�ning the path formulas using the four operators AXf (forany state suessor of the state onsidered, f holds), EXf (there is a statesuessor of the state onsidered for whih f holds), AFUg (for any sequeneresulting from the state onsidered, f holds until g holds and g will be true)and EFUg (there exist a sequene resulting from the state onsidered suh as

f holds until g and g will be true). The interest of CT L lies in the fat that, onthe one hand, it is su�iently expressive for the spei�ation of the majority ofthe usual properties and that, on the other hand, the methods of heking of thesatisfation of a formula by a model have a omplexity proportional to the sizeof the model and the size of the formula. However ertain properties of fairnessare not expressible in CT L. This gap led to various extensions of the model byoperators suh as AGFf (for any sequene resulting from the state onsidered,
f holds an in�nite number of states of the sequene) whih make it possibleto express usual onepts of fairness. These extensions also have methods ofveri�ation of polynomial omplexity. We left the reader to the referenes whihfollow for more preise details on this langage [EC 81, EC 82, EH 85℄.ExampleThe formula AG (A req U serv) expresses that starting from any state whihontains a request, in any sequene the request will be present until it is served.

LT L, the language formed of the syntati rules S1, P1, P2 and P3 isfoused on the onept of sequene. Indeed, one an entirely desribe syntaxwithout de�ning the state formulas by onsidering that the atomi propositionsare path formulas to be heked on the �rst state of the sequene.The use of suh a logi is justi�ed when you onsider the point of view of anobserver whih annot interat with the system. In this ase, only the sequenesare signi�ant One of the interests of LT L, illustrated by the following haptersis its appliability with partial order tehniques for the redution of omplexityof the heking. Generally a model KS is initialized by a state s0 and thesatisfation of the formulas is evaluated on KS, s0. As being given a formula
LT L path f , one will note by abuse of notation KS, s0 |= f to indiate
KS, s0 |= Af .



Chapter x 9ExampleThe formula GF p.exec OR FG p.bloq expresses that during any exeutioneither the proess p is inde�nitely bloked starting from a given state, or thisproess is seleted an in�nity of time by the sheduler.3.2. Methods evaluationThe objetive of a method evaluation is to hek if a formula is satis�edby a partiular model. In this paragraph, we treat only �nite models. Thestudy of the veri�ation of the in�nite models suh as the reahability graphsof unbounded Petri nets will be done at the end of the hapter.In the sequel KS will denote the model, f0 the formula to be heked and
s0 the initial state of the model. The problem to be solved will be to determineif KS, s0 |= f0 holds.3.2.1. Cheking of formulas CT L∗First we show that if we dispose of an evaluation method for LT L one anbuild a method evaluation of CT L∗. The priniple of onstrution is relativelysimple. First First we eliminate the operator E by replaing it by the equivalentexpression NOT A NOT. Let us onsider the syntati tree of a formula ofstate f0 of CT L∗ :� a node labelled by A whih does not omprise in its sub-tree this sameoperator A pre�x g a formula of LT L.� We then evaluate g for all the states of the model and we reate a newproposition [AG]. This proposition is assigned to the states of the modelaording to the result of the evaluation of g.� We substitute in f0, Ag by [AG] and we iterate the proess until thedisappearane of the operator A.� the formula obtained is then a formula of propositional logi whih isevaluated loally on eah state.We all � CT L∗-heks� the method of required heking and �LT L-heks�the method of heking of formulas of LT L. The text of the method is givenbelow.
CT L∗-heks (KS, s0, f0)While ∃f = Ag subformula of f0 where f ∈ LT L DoIntrodue a new atomi proposition [f ]For eah state s DoIf LT L-heks (KS , S, g) Then



10 Petri Netsadd [f ] to ν(s)Elseadd NOT[f ] to ν(s)End ifEnd forSubstitute [f ] to f in f0End While// f0 is now a propositional logi formulaIf s0 |= f0 Thenreturn(TRUE) ;If notreturn (FALSE) ;End ifWe apply this method to the formula A(FAG P AND G AFQ) AND R :� AGP is a formula of the required type.� One evaluates on eah stateGP and one updates in onsequene [AG P ].� One transforms the initial formula whih beomes :A(F[AG P ] AND G AF Q) AND R.� Then the formula is transformed intoA(F[AGP ]ANDG[AFQ])ANDR.� the �nal formula is a propositional formula
[A(F[ AG P ] AND G[ AF Q])] AND R.3.2.2. Veri�ation of LT L formulasWe examine now the veri�ation of LT L formulas. We will proeed intothree steps :� We �normalize� the formula so as to push bak the operator NOT infront of the atomi propositions.� We de�ne the automata with promises whih aept in�nite sequenes ofa model. Then we exhibit a onstrution of an automaton whih aeptsexatly the sequenes whih hek a given formula.� Being given an initialized model, we show how to hek that this modelomprises at least a sequene aepted by a given automaton.The veri�ation method then onsists to build the automaton assoiatedwith NOTf0 and to hek that the model (KS , s0) does not omprise a se-quene aepted by this automaton.Normalization of a LT L formulaWe normalize the formula using operators OR and W (�weak until�). Thenormaliization of a formula f noted norm(F ) pushes bak the operator NOTin front of the atomi propositions. The following equivalenes are easy to hek



Chapter x 11starting from the de�nitions(e.g. NOT (f U g) ⇔ (NOT g AND f) W (NOT f AND NOT g)).� � norm(P ) = P , norm(NOT P ) = NOT P , norm(Xf) = Xnorm(f)� � norm(f OR g) = norm(f) OR norm(g)� � norm(f AND g) = norm(f) AND norm(g)� � norm(fWg) = norm(f)Wnorm(g), norm(fUg) = norm(f)Unorm(g)� � norm(NOT NOT f) = norm(f)� � norm(NOT (f AND g)) = norm(NOT f) OR norm(NOT g)� � norm(NOT (f OR g)) = norm(NOT f) AND norm(NOT g)� � norm(NOT Xf) = Xnorm(NOT f)� � norm(NOT (fUg)) = (norm(NOT g) AND norm(f))W(norm((NOT f) AND norm(NOT g))� � norm(NOT (fWg)) = (norm(NOT g) AND norm(f))U(norm(NOT f) AND norm(NOT g))Automata and LT L formulasWe wish to build an automaton whih reognizes exatly the in�nite se-quenes whih hek a formula (normalized) of LT L. This automaton tries toestablish a proof based on the propositions heked by the initial state of thesequene σ and on a formula to be heked by the su�x σ1. Eah state thusorresponds to a formula to hek.Let us suppose that we have to hek the formula P W Q. Aording toequivalene f W G ⇔ G OR (F AND X(F W G)),� either in the initial state Q holds and σ1 do not have a formula to hek,� or in the initial state P holds and σ1 must hek again P W Q.We thus obtain the automat represented on the �gure 2.
PWQ true

{P}

{Q}

Figure 2: Automaton reognizing P W QA similar equivalene may be used for the â��untilâ�� operator
f U G ⇔ G OR (F AND X (F U G)).However this automaton aepts the sequene where P holds inde�nitely and

Q never holds. The key point is that in the ase of the operator U, one annotinde�nitely hoose the seond alternative of theOR. Let us noteXp an operator



12 Petri Netswho is a promise to hek later an �until� formula by the �rst alternative of theOR. The automaton of the formula PUQ is depited in �gure 3. The semiolonpresent on the ar on the left separates the propositions to be heked and thepromises to hold.
PUQ true

{p};{XpPUQ}

Q

Figure 3: An automaton reognizing P U QThe syntax and the semantis of the automata with promises is given belowDe�nition 7 An automaton with promises A = 〈AP, Q, q0, PROM, E〉 is de-�ned by :� AP a �nite set of atomi propositions� Q a �nite set of states� q0 ∈ Q the initial state� Prom a �nite set of promises� E a �nite set of ars suh as for e ∈ E� in(E) ∈ Q indiates the soure of the ar� out(E) ∈ Q indiates the target of the ar� label(E) ⊂ AP ∪ AP indiates the propositions of the ar� prom(E) ⊂ Prom indiates the promises assoiated with the arDe�nition 8 Let σ = (s0, s1, . . . , sn, . . .) be an in�nite sequene of model KS.
σ is reognized by A = 〈AP, Q, q0, P rom, E〉 if and only if there is a path
(q0, e0, q1, e1, . . .) suht that :� ∀n, in(en) = qn, out(en) = qn+1, label(en) ⊂ ν(sn)� ∀n, ∀pr ∈ prom(en), ∃m > n suh that pr /∈ prom(em)A sequene whih heks the �rst ondition known as will be reognized bythe way.We onsider the onstrution of an automaton equivalent to a formula f . Aswe saw on the examples, one transforms a formula into a disjuntion of lauseswhere eah lause is a onjuntion of atomi propositions (and negations of



Chapter x 13propositions) and formulas to be heked on the following under-sequene. Wenote tr(F ) the transformed formula where the formulas to be heked on thefollowing under-sequene are replaed by propositions (noted like previouslybetween hooks). The operator Xp is employed for the equivalene applied tothe operator �until� : he indiates a promise to hold. Here the onstrutionof this formula. It will be noted that the formula obtained is not presen-ted syntatially in the form of a disjuntion of onjuntive lauses. Howeverthis syntati transformation is obtained by applying repeatedly equivalene
f AND (g OR h) ⇔ (f AND g) OR (f AND h). This transformation willbe arried out during the onstrution of the automaton.If f = P Then tr(f) = fIf f = NOT P Then tr(f) = fIf f = h OR g Then tr(f) = tr(h) OR tr(g)If f = h AND g Then tr(f) = tr(h) AND tr(g)If f = Xg Then tr(f) = [Xg]If f = gUh Then tr(f) = tr(h) OR (tr(g) AND [XpgUh])If f = gWh Then tr(f) = tr(h) OR (tr(g) AND [XgWh])The onstrution of the automaton proeeds as follows :� the initial state of the automaton is reated and labelled with the formulato hek.� One applies the transformation to the formula desribed above. Eahlause orresponds to an outgoing ar of the state. The target of the ar isa node labelled with the onjuntion of formulas of the lause pre�xed bya �next�. The ar is labelled by the atomi propositions and the promisesof the lause.� One reiterates the proess until there is no more new formula. Whatneessarily arrives sine eah formula is a onjuntion of subformulas ofthe initial formula.� For reasons of simpliity, one reates beforehand the state labelled by

true whih loopes on itself without proposition nor promise. This state isnot neessarily reahable from the initial state.One will �nd below a more formalized desription of the algorithm. We willnote Aut(F ), the automaton assoiated with f .Create the state (qtrue, true)Create the ar etrue ave in(etrue) = qtrue, out(etrue) = qtrue,
etiq(etrue) = ∅, prom(etrue) = ∅Create the state (q0, f0)Insert (q0, f0) in TODOWhile TODO 6= ∅ doExtrat (q, f) from TODOCompute tr(f)Express tr(f) in the form of a disjuntion of onjuntive lauses



14 Petri Nets// tr(f) = ORc∈ClFor eah lause c ∈ Cl do// c = ANDi∈IPi ANDj∈J NOT Qj ANDk∈K [Xfk] ANDl∈L[Xpgl]If f ′ = ANDk∈Kfk ANDl∈Lgl �©ti quette un �©tat ThenLet (q′, f ′) that stateElseCreate (q′, f ′)Insert (q′, f ′) in TODOEnd IfCreate an ar e with in(e) = q, out(e) = q′

etiq(e) = {Pi}i∈I ∪ {NOT Qj}j∈J , prom(e) = {Xpgl}l∈LEnd ForEnd WhileLet f = QUg with g = (P OR XP )WR. Alors :
tr(f) = tr(g) OR (Q AND [Xpf ])
tr(g) = R OR ((P OR [XP ]) AND [Xg]) = R OR (P AND [Xg]) OR ([XP ] AND [Xg])Consequently, tr(F ) is the disjuntion of 4 lauses :� R whih leads at the state labelled by true (more nothing to hek)� Q AND [Xpf ] whih loops on the initial state. It is noted that the in�nitepath whih follows this ar is not aepted by the automaton beause thepromise Xpf is never held.� P AND [X G] whih leads at the state labelled by g.� [X P ] AND [X G] whih leads at the state labelled by P AND gUsing tr(G), the reader will hek that the built automaton orresponds tothe �gure 4.

f true
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{Q};{Xpf}

∅;∅

∅;∅

∅;∅

{P};∅

{R};∅

{R};∅

{R};∅

{P};∅

{P};∅Figure 4: The automaton with promises of Q U ((P OR XP ) W R)Theorem 9 (Corretion of the automaton) Is f a formula of LT L, thenthe sequenes satisfying f are exatly those aepted by Aut(F ).ProofLet cl be a lause of tr(F ). By de�nition, cl ⇒ tr(F ). We indutively de�ne on



Chapter x 15the size of f a set of subformulas g of f suh as cl ⇒ tr(G). We note this set
dev(Cl, F ).If f = P OR f = NOT P OR f = Xg Then

dev(cl, f) = {f}Elsif f = h AND g Then
dev(cl, f) = {f} ∪ dev(cl, g) ∪ dev(cl, h)Elsif f = g OR h ThenIf cl ⇒ tr(g) Then

dev(cl, f) = {f} ∪ dev(cl, g)Else //cl ⇒ tr(h)
dev(cl, f) = {f} ∪ dev(cl, h)End ifElsif f = g U h ThenIf cl ⇒ tr(h) Then
dev(cl, f) = {f} ∪ dev(cl, h)Else //cl ⇒ tr(g) AND [XpgUh]
dev(cl, f) = {f} ∪ dev(cl, g)End ifElsif f = g W h ThenIf cl ⇒ tr(h) Then
dev(cl, f) = {f} ∪ dev(cl, h)Else //cl ⇒ tr(g) AND [X g W h]
dev(cl, f) = {f} ∪ dev(cl, g)End ifEnd ifLet σ = (s0, . . . , si, . . .) be a sequene aepted by a path of Aut(F ),

(q0, e0, . . . , qi, ei, . . .). Let us pose fi the formula assoiated with qi and clithe lause whih produes the ar ei. We show by reurrene on the size of theformula g that ∀G ∈ Dev.(cli, fi) σi |= g.If g = P or g = NOT P then g is a term of cli thus g ∈ ei what thusimplies that g ∈ ν(si) σi |= g.If g = X H then [X H ] is a term of cli thus h is a onstituent term of theonjuntion fi+1. By applying the assumption of reurrene, σi+1 |= h whatimplies σi |= Xh.If g = g1 AND g2 then ∀K, gk ∈ Dev.(cli, fi). By applying the assumptionof reurrene, ∀K σI |= gk what implies σi |= g.If g = g1 OR g2 then ∃gk ∈ Dev.(cli, fi). By applying the assumption ofreurrene, ∃K σI |= gk what implies σi |= g.If g = g1 U g2 then1. Either cli ⇒ tr(g2) and g2 ∈ Dev.(cli, fi). By applying the assumption of



16 Petri Netsreurrene, σI |= g2 what implies σi |= g.2. Either cli ⇒ tr(g1) AND [Xpg1Ug2]. Then g1 ∈ Dev.(cli, fi), Xpg ∈
PROM(ei) and g is a term of the onjuntion whih onstitutes fi+1. Byapplying the assumption of reurrene, σI |= g1. Sine g is a term of theonjuntion whih onstitutes fi+1, we an apply the same reasoning to
σi+1, σi+2, â�� until the �rst alternative of the reasoning applies to σjwith j > i. What arrives neessarily bus if not ∀J ≥ I,Xpg ∈ PROM(ej)ontraditing the aeptane of the sequene by the path. Thus we have
∀i ≤ k < j σk |= g1 and σj |= g2, then σi |= g.If g = g1 W g2 then1. Either cli ⇒ tr(g2) and g2 ∈ dev(cli, fi). By applying the assumption ofreurrene, σi |= g2 and σi |= g.2. Either cli ⇒ tr(g1) AND [Xg1Wg2]. then g1 ∈ dev(cli, fi) and g is aterm of the onjuntion whih onstitutes fi+1. By applying the assump-tion of reurrene, σi |= g1. Sine g is a term of the onjuntion whihonstitutes fi+1, the same reasoning applies to σi+1, σi+2,... and :� Either the �rst alternative of the reasoning applies to a sequene σjwith j > i. In that ase, ∀i ≤ k < j σk |= g1 and σj |= g2. Consequently,

σi |= g.� Either ∀j ≥ i, σi |= g1 and onsequently σi |= g.Sine f = f0, σ |= f .Let us suppose now that σ |= f . We built now a path in Aut(f) whihreognizes σ. First, we reursively de�ne a lause of tr(f) depending from σ :
cl(f, σ) = ANDi∈IPi ANDj∈J NOT Qj ANDk∈K [Xfk] ANDl∈L[Xpgl]suh that :

σ |= ANDi∈IPi ANDj∈J NOT Qj ANDk∈KXfk ANDl∈LXgl.Its de�nition follows :If f = P Then cl(f, σ) = fElsif f = NOT P Then cl(f, σ) = fElsif f = Xg Then cl(f, σ) = [Xg]Elsif f = g AND h Then cl(f, σ) = cl(g, σ) AN D cl(h, σ)Elsif f = g OR h ThenIf σ |= g Then
cl(f, σ) = cl(g, σ)Else // σ |= h
cl(f, σ) = cl(h, σ)End ifElsif f = gUh ThenIf σ |= h Then
cl(f, σ) = cl(h, σ)Else // σ |= g AND Xf
cl(f, σ) = cl(g, σ) AND [Xpf ]



Chapter x 17End ifElsif f = gWh ThenIf σ |= h Then
cl(f, σ) = cl(h, σ))Else // σ |= g AND Xf
cl(f, σ) = cl(g, σ) AND [Xf ]End ifEnd ifLet e be the ar assoiated with cl(f, σ), q1 = out(e) and f1 the formulaassoiated with q1. By onstrution, prop(e) ⊂ ν(s0) and σ |= Xf1. Then

σ1 |= f1 and it is possible to iterate the onstrution leading a path reognizing
σ. Let us suppose the existing of a promise XpgUh ouring on the path at therank i. By onstrution of the lause, we have σi |= gUh but in that ase, thereexists a rank j ≥ k suh that σj |= h and onsequently the lause assoiatedwith σj does not does not omprise promises. Finally, this path aepts σ. ♦

LT L formulas may be represented by others models of automata. Here,we essentially have followed the approah desribed in [COU 99℄. The mostwidespread model is ertainly that of Bühi automata [BUC 62℄. Their syntaxand semantis is given below, the interested reader may refer to [VAR 96℄ fora detailled study between temporal logi and automatas.De�nition 10 A Bühi automaton B = 〈AP, Q, Q0,→, F 〉 is de�ned as fol-lows :� AP a �nite set of atomi propositions� Q a �nite set of states suh that for q ∈ Q, etiq(q) ⊂ AP ∪AP is the setof atomi propositions whih holds in that statee� Q0 ⊂ Q the subset of initial states� → is the transition relation ⊂ Q × Q� F ⊂ Q the subset of sues statesDe�nition 11 Let σ = (s0, s1, . . . , sn, . . .) be an in�nite sequene of the model
KS. σ is reognized by B = 〈AP, Q, Q0,→, F 〉 if and only if there exists a path
(q0, q1, . . .) with q0 ∈ Q0 suht that :� ∀n, qn → qn+1 and etiq(qn) ⊂ ν(sn)� ∃f ∈ F suh that ∀n ∃m > n qm = fIt will be noted that the propossitions relate on the states and either tothe transitions, that one has a set of initial states and that the ondition ofaeptane is de�ned by a set of states of suess whose at least state must bereahed an in�nity of time by the path.



18 Petri NetsThe expressiveness of Bühi's automata and automata with promises is iden-tial. It is important to note that LT L has an expressiveness more restritedthan these automatas models [WOL 83℄. Another language of formulas (muhless intuitive), the linear µ-alul has as for him an expressiveness equivalent tothese models [DAM 92℄. We informally explain the translation of an automatonwith promises out of Bühi's automaton :� Let us suppose that we have n promises. For eah ar e of the auto-maton with promises, one builds n + 1 states of the Bühi's automaton
{(qe, I)}I∈1...n+1 with etiq((qe, I)) = etiq(E).� the initial states of the automaton are the (qe, 1) suh as in(E) = q0.� For i ≤ n, there is an ar of (qe, I) towards (qe′ , I) if out(E) = in(e′) andif Pri belongs to prom(e′).� For i ≤ n, there is an ar of (qe, I) towards (qe′ , i + 1) if out(E) = in(e′)and if Pri does not belong to prom(e′).� There is an ar of (qe, n + 1) towards (qe′ , 1) if out(E) = in(e′).� the states of suess are the states {(qe, n + 1)}.The transformation of the ars into states is usual and does not require par-tiular omments. When during the reognition of a sequene, we �nd a state

(qe, I) with i ≤ n, we wait until the promise Pri is held. If it is not it in thenext state, one passes in a of the same state index i if not one passes in asubsripted state by i + 1.Arrived in a state of index n + 1, all the promises were held at least oneand the examination of the promises then is started again. Thus if the promisesare inde�nitely held, one passes an in�nity of time by the states of index n + 1whereas in the ontrary ase one �stagnates� in a subset of states of index
i ≤ n. We leave to the reader the are to �nd a transformation of an Bühi'sautomaton into an automaton with promises. The �gure 5 illustrates thisonstrution. To simplify, one removed the nonaessible states. The states�white� orrespond to index 1, gray states the �dark� orrespond to index 2 andgray states the �learly� orrespond to index 3. The initial states are depitingby an entering ar. The fatty ars indiate transitions between of the samestates index, whereas the �ne ars are assoiated hanges of index.Existene of a sequene aepted by a Bühi automatonThe existene of an in�nite sequene σ of a model KS aepted by aBühi automaton is established using a standard onstrution the so-alledsynhronized produt.De�nition 12 Let KS be a model and B a Bühi automaton then KS × B =
(AP ′, S′,→′, ν′) is de�ned as follows :� AP ′ = AP is a �nite set of atomi propositions,



Chapter x 19
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Figure 5: Transformation of an automaton with promises to a Bühi automaton� S′ = {(s, q)|s ∈ S, q ∈ Q, etiq(q) ⊂ ν(s)}� (s, q) →′ (s′, q′) ⇔ s → s′ and q → q′� ν′(s, q) = ν(s)In an obvious way, the synhronized produt generates the in�nite sequeneswhose �rst omponent (an in�nite sequene of KS) is reognized by the seondomponent (an in�nite path of Q). It remains us to be heked if the synhro-nized produt ontains an in�nite sequene begin with (s0, q0) with q0 ∈ Q0and whose seond omponent ontains an in�nity of ourrenes of states of F .It is the objet of the following theorem. A strongly related omponent (s...)of a graph is elementary if the subgraph assoiated with this s.. is a singletop without loop (in other words, it is not possible to build an in�nite path inthis s..).Theorem 13 Let KS be a �nite model, s0 a state of KS and B a Bühi'sautomaton then :
∃σ = (s0, s1, . . .) a sequene KS aepted by B ⇔ ∃C a nonelementary s.. of
KS ×B aessible from one (s0, q0) ∈ S′ with q0 ∈ Q0 ontaining a state (s, f)with f ∈ F



20 Petri NetsProofLet σ = (s0, s1, . . .) be a sequene of KS aepted by (q0, q1, . . .) a path of
B then by onstrution ((s0, q0), (s1, q1), . . .) is a sequene of KS × B whihmeets an in�nity of time states of the form (s, f) with f ∈ F . Sine KS × Bis �nite, one of these states (noted (s∗, f∗)) is reahed an in�nity of time bythe sequene. Sine from (s∗, f∗) one again reahes this state by a non nullsequene, the s.. ontaining (s∗, f∗) is non elementary. Sine the �rst state ofthe sequene is (s0, q0) this s.. is aessible from (s0, q0).If the left member of equivalene is heked, then there is a �nite sequene
σ1 of (s0, q0) towards (S, F ) and one non null �nite sequene σ2 of (S, F ) wormsitself. Consequently, σ = σ1.σ

∞
2 is an in�nite sequene whose seond omponent(a path in B) aepts the �rst (a sequene of KS). ♦This result provides us an e�etive means of veri�ation : one built thesynhronized produt, one alulates the s.. by means of the algorithm ofTarjan [AHO 74℄ and one examines them. The size of the synhronized produtis proportional to the sizes of the model and the formula. The algorithm, as forhim, operates in a polynomial time aording to the size of the synhronizedprodut.However this e�etiveness is only apparent. On the one hand, the size ofthe model of exeution is very large relative with the size of the model ofspei�ation (e.g size of the graph of aessibility versus size of the Petri net).In addition, the size of the automaton an be an exponential funtion of thesize of the formula. This last point is not also ritial beause the formulas aregenerally of very redued size. Also to redue these problems of omplexity,di�erent tehnial were proposed. Upstream, one seeks to hek the formulaon a smaller model of exeution but equivalent (see the following hapters).Downstream, one seeks to hek a formula without ompletely developing theprodut synhronized by methods �on the �y� [GOD 93, GER 95℄ or to reduethe size of the representation by strutures of data of the type BDD (diagramsof binary deision) [BRY 86℄.3.3. Temporal logi and Petri netsThe spei�ation of formulas of propositional temporal logi of Petri netimplies the de�nition of atomi properties. Sine we evaluate the formulas oftemporal logi on the graph of aessibility, a state of the model is an aessiblemarking. Also, for any boolean expression whose �eld is the set of markings ofthe net is appropriate. In pratie, the expressions used are evaluated easily.One will note p for the marking of p in the urrent state. Here some examplesof frequent formulas.



Chapter x 21� Two plaes p1, p2 are mutually exlusives : AG (p1 · p2 = 0)� For any reahable marking, a plae p will be inevitably marked :AG AF(p > 0)� For any reahable marking, one an always mark a plae p :AG EF (p > 0)� During any sequene of exeution, a plae p is inde�nitely marked andunmarked AG (F (p > 0) AND F (p = 0))� A transition t is live (always �rable in the future of any state) :AG EF ANDp∈P (p ≥ Pré(p, y))Like illustrates it the last example, it is possible to reason on the franhissa-bility of a transition. However it is not the ase of rossing itself beause itwould require to evaluate the evolution of the marking of the plaes betweentwo suessive states. Also one extends the language CT L∗by onsidering theoperator X{E} whose semantis is de�ned by :
σ |= X{e}f if and only if KS, σ1 |= f and the �rst transition from σ is labelledby eIn this paragraph, one onsiders that a transition from Petri net is neverlabelled by the empty word. The methods of heking desribed above extendin an immediate way to this new logial whih is at the same time state andevent-based. Let us suppose that the labelling of a net is the identity. We annow express the fat that a transition t is inde�nitely rossed in all sequene :AGFX{t}true.When we study the deidability of the heking of formulas of temporallogi on Petri net, we will distinguish the following ases :� state-based logi CT L∗(and its fragments) by prohibiting these new ope-rators.� event-based logi CT L∗(and its fragments) if the only atomi propositionsare true and false.The semantis of temporal logi is based on the in�nite sequenes but thedesigner also wishes to reason on the �nite sequenes. For example, one wishesto know if a plae p is always marked in a dead marking. The following formulaAG( ANDt∈T NOT X{t}true ⇒ p > 0) whih seems to be appropriate isinorret beause it is atually a tautology. Indeed, an in�nite sequene neversatis�es ANDt∈TNOTX{t}true.To take into aount these needs for heking, it is neessary to distinguishthe type of studied sequene and to introdue a semantis of adequate satis-fation. Sine we treat the sequenes, we onsider that the path formulas arerepresented by an automaton suh as the ars of this automaton are labelled bylabels of transition from Petri net. In order not to weigh down the presentationby an enumeration of all the possible ases, we limit ourselves to an event-basedlinear logi de�ned by means of labelled Bühi's automaton.



22 Petri NetsDe�nition 14 A labelled Bühi's automaton LB = 〈Σ, Q, Q0, {
a

−→}a∈Σ, F 〉� Σ an �nite alphabet� Q a �nite set of states� Q0 ⊂ Q the subset of the initial states� has
−→ is a binary relation ⊂ S × S� F ⊂ Q a subset of suess statesDe�nition 15 An in�nite sequene σ = (t1, t2, . . . , tn, . . .) of a Petri net R,

σ is aepted by LB = 〈Σ, Q, Q0, {
a

−→}a∈Σ, F 〉 if and only if there is a path
(q0, q1, . . .) with q0 ∈ Q0 suh as :� ∀N, qn

L(tn+1)
−→ qn+1� ∃F ∈ F s.t. ∀N ∃m > n qm = fThe other types of sequene whih interest the designer are the �nite se-quenes and the �nite maximal sequenes (i.e whih end in a dead marking).One then seeks a path in the automaton whih is ompleted by a state of su-ess. A seond manner of takling the problem of the �nite maximal sequenesin the ase of bounded Petri Net onsist with adding a loop to all markingsdied, labelled by a speial ation. Thus any maximal sequene of this new graphis in�nite and those whih are prolonged arti�ially reognize by the ourreneof the speial ation.De�nition 16 A �nite sequene (possibly maximal) σ = (t1, t2, . . . , tf ) of aPetri Net R, σ is reognized by LB = 〈Σ, Q, Q0, {

a
−→}a∈Σ, F 〉 if and only ifthere is a path (q0, q1, . . . , qf ) with q0 ∈ Q0 and qf ∈ F suh that : ∀n <

f, qn
l(tn+1)
−→ qn+1To authorize the labelling of a transition by the empty word (i.e a non obser-vable transition) largely ompliates the semantis of satisfation and introdu-ed the problem of the divergene. A divergent sequene is an in�nite sequeneof whih a su�x is made up exlusively of non observable transitions.This pro-blem will be mentioned in the ontext of the behavioral approah.4. Behavioral ApproahMany relations of equivalene were used or spei�ally proposed for the om-parison and the analysis of onurrent systems sine the equivalene of traesor languages [AHO 74℄ with the observational equivalene [MIL 89℄ while pas-sing by the models of refusal and the equivalenes of test [LED 90, BRI 88℄. See[DE 87, ARN 92, OH 86, GLA 90℄ for a panorama of the existing equivalenes.



Chapter x 23This explosion is explained on the one hand, by the di�ulty in formally de-�ning a universal semantis of onurrent systems [ARN 92℄ and by the varietyof the spei� properties of the studied systems or the points of view whih onean adopt to lead to them analyze : veri�ation or test. In this setion, we willlimit ourselves to the aspet veri�ation.Contrary to the logial approah, the behavioral approah privilegiates in-formation assoiated with the ation labels and generally forgets informationassoiated with the states. The struture taken into aount by the behavioralanalysis is a system of transitions labelled (f de�nition 3).Before going front in formalization, we will try to illustrate various pointsof view likely to be taken into aount. The seleted example is the simpli�edoperation of a o�ee mahine : the onsumer introdues a oin into the oiner,it hooses then his drink while pressing on the assoiated button.The transition systems below, 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉, represent eahone a behavior �similar� to the vending mahine whih we have just desri-bed. The behavioral approah through various equivalenes of behaviors whihwere proposed in the literature will enable us to formalize various onepts of�similarity�.
0 1 32Coin TeaCo�ee 0' 1'3' 4'2'CoinCoin TeaCo�ee 0" 2" 4"3"1"Coin TeaCo�eeCoinFigure 6: Three vending mahines : 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉Aording what was presented in hapter 3 of volume on the Petri nets[HV 01℄, one an assoiate any ILTS a language.De�nition 17 Language assoiated with a ILTSLet 〈LT S, s0〉 be a ILTS with LT S = 〈Σ, S, {

a
→}a∈Σ〉,

L(〈LT S, s0〉) =Def {σ ∈ Σ∗ : ∃ ∈ S suh that sO
σ
→}Contrary to �nite states automatas, the ILTS an omprise an in�nity ofstates, they omprise only one initial state and do not introdue the onept of�nal state [AHO 74℄. Any state of the ILTS is thus regarded as a �nal state



24 Petri Netsand the language reognized by the ILTS is losed by pre�x : any pre�x of areognized word itself is reognized.De�nition 18 Equivalene langageThe onept of language previously introdued enables us to de�ne a �rstonept of equivalene between two transitions systems based on the equalityfrom their respetive languages.Let LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S ′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two transi-tions systems, s0 and s′0 their respetive initial states :

〈LT S, s0〉 ≡ 〈LT S′, s′0〉 i� L(〈LT S, s0〉) = L(〈LT S′, s′0〉)Langage : A �rst omparison riterion of these distributers is provided to usby the study of their language.Here L(〈D, 0〉) = L(〈D, 0′〉) = L(〈D′′, 0′′〉) = {ǫ,Part, Coin.Co�ee, Coin.Tea}and for this riterion these three LTS are equivalents. In partiular, from thepoint of view of the owner of the vending mahine, eah one of them o�er adrink only if this one has been payed.Maximal traes : The preeding riterion disregards possibility of bloking, itonfuses these 3 LTS whereas they present di�erent deadloks. The onept ofmaximal trae allow to take into aount this aspet. The LTS are always onsi-dered as aeptors of language, but now maximal sequenes are the only onereognized : in�nite sequenes or sequenes leading on states without suessor.De�nition 19 Maximal TraesFor LT S = 〈Σ, S, {
a
→}a∈Σ〉 and a ILTS 〈LT S, s0〉, one assoiates Lmax(〈LT S, s0〉)the set of its maximal traes de�ned as follows :

LMax(〈LT S, s0〉) =Def (L(〈LT S, s0〉) ∩ Σ∞)

∪ {σ ∈ L(〈LT S, s0〉) : ∃s′ ∈ S suh that s
σ
→ s′ and s′ 6→}De�nition 20 Maximal traes equivaleneProvided with this onept of maximal trae, we de�ne the relation of asso-iated equivalene as follows :Let 〈LT S, s0〉 and 〈LT S′, s′0〉 be two transitions systems, s0 and s′0 theirrespetive initial states :

〈LT S, s0〉 ≡Max 〈LT S ′, s′0〉 i� LMax(〈LT S, s0〉) = LMax(〈LT S′, s′0〉)Remark Language and Maximal Traes



Chapter x 25The de�nition 19 is purely denotational, from an operational point of viewthe onept of �maximal traes� an be expressed starting from the onept oflanguage in �supplementing� the ILTS (or the automaton) by adding : a state
⊥ with the set of nodes (⊥ 6∈ S), a label fail with the alphabet Σ (fail 6∈ Σ)and, �nally, by onneting any deadlok to the state ⊥ by a transition labelledby fail.Property 21 Language and Maximal TraesFor LT S = 〈Σ, S, {

a
→}a∈Σ〉, one de�nes Max(LT S) as follows :

Max(LT S) =Def LT S′ = 〈Σ′, S′, {
a
→}a∈Σ′〉where :





Σ′ = Σ ∪ {fail},
S′ = S ∪ {⊥},

{
a′

→′
a∈Σ′} =Def {

a
→a∈Σ} ∪ { s

fail
→ ⊥ : s ∈ S suh that s

6→}

Lmax(〈LT S, s0〉) = Lmax(〈LT S′, s′0〉)σ
L(〈max(LT S), s0〉) = L(〈max(LT S′), s′0〉)Now we have, LMax(〈D, 0〉) = LMax(〈D′, 0′〉) = {Coin.Co�ee, Coin.Tea}but LMax(〈D′′, 0′′〉) = {Coin, Coin.Co�ee, Coin.Tea}.Aording to this new riterion, only D and D′ remain equivalent. If onetakes into aount now the point of view of the ustomer, it is indeed importantto isolate the distributor D′′ whih an to aept a oin without deliveringdrink. Always aording to the point of view of the ustomer, not to be ableto distinguish D and D′ is not aeptable : D leaves the hoie of drink to theustomer while D′ hooses drink in its plae.Refual & Aeptane : The equivalene of maximal traes takes into a-ount �total blokings�, the equivalenes based on the onept of refusal or ofaeptane, allow to take into aount the onept of partial blokings and inpartiular the possibility �of refusing� to arry out an ation. Thus, one anonsider, in addition to the allowed sequenes, the possibility of refusing or ofaepting an ation.De�nition 22 Basi elements of refusal semantis [GLA 90, LED 90℄Let 〈LT S, s0〉 be a ILTS, for s ∈ S, σ ∈ ⋆Σ and A ⊂ Σ, we note :1. s ref A ⇔Def ∀a ∈ A, s

a

6→2. s |= after σ ⇔Def {s′ ∈ S : s
σ
→ s′}3. s |= after σ ref A ⇔Def ∃s′ ∈ “s after σ′′ suh that s′ ref A



26 Petri Nets4. LT S |= after σ ref A ⇔Def s0 |= after σ ref A(1) allows to de�ne partial blokings partial through the refusal set whihone an assoiate a node. (2) denotes the subset of the nodes aessible startingfrom node s via the sequene σ (3) stipulates that �starting from node s, it ispossible, via the sequene σ, to reah a node whih will refuse all the ations of
ADe�nition 23 Relation of Conformane [BRI 88, LED 90℄ Let 〈LT S, s0〉and 〈LT S ′, s′0〉 be two ILTS and L the unionset of their respetive alphabets(L = Σ ∪ Σ′)

LT S conf LT S ′ ⇔Def

{

∀σ ∈ L(〈LT S, s0〉), ∀A ⊂ L :If LT S after σ ref A then LT S ′ after σ ref AIn an informal way, an implementation LT S onforms to a spei�ation
LT S′ if for any sequene σ, if the implementation an evolve by σ then theset of ations A whih it an refuse onstitutes a subset of those whih thespei�ation an refuse after σ [DRI 92℄.De�nition 24 Testing equivalene [BRI 88℄

LT S te LT S ′ ⇔Def

{

L(〈LT S, s0〉) = L(〈LT S′, s′0〉)
LT S conf LT S ′ and LT S ′ conf LT SFor this last point of view, whih melts the semantis based on refusal, theLTS D and Of are not �testing-equivalent� (not D te Of). Indeed D′ an refuseTea or Co�ee ations after having arried out the Coin ation while D afterCoin will always make it possible to obtain Tea or Co�ee. By taking againthe elements of terminology of the de�nition 22, one obtains for example :

0′ after Coin ref {Tea,Coin} et 0′ after Coin ref {Co�ee,Coin} while theonly ation refused from 0 is Coin, i.e., 0 after Coin ref {Coin}.We will not develop more before these semantis (failure semantis), but weinvite the interested reader to refer to [ARN 92℄ where hapter 8 is devoted tovarious equivalenes of traes.4.1. Relations of BisimulationThe three equivalenes whih we have just evoked adopt a �linear� point ofview and fousses on the sequenes of exeutions of the LTS and disregard itstree struture. To illustrate our matter, now let us onsider a o�ee mahine



Chapter x 27where the only drink available is the o�ee sweetened : the ustomer introduesa oin and must obtain the o�ee then sugar.0 34125
Coin CoinCo�eeCo�eeSugar

0'1'2' 3'4'
CoinCo�ee Co�eeSugarFigure 7: Two o�ee mahines : 〈M, 0〉 and 〈Me, 0′〉The mahines represented �gure 7 are indistinguishable for the semantibased on refusal or for testing equivalenes [BRI 88℄. The two mahines anrefuse sugar after having delivered drink. For s ∈ {0, 0′} we have :

s after Coin ref {Coin, Sugar} and s after CoinCo�ee ref {Coin,Co�ee, Sugar}From the point of view of the ustomer these two mahines are thus asmuh imperfet. A ustomer who an test, as a long time as he wants it thesetwo mahines, is unable to distinguish them. For eah one of those, ertainexperiments will result in obtaining a sweetened o�ee and others with a o�eewithout sugar.From the point of view of the analysis and in partiular if one seeks tounderstand why one annot guarantee to the ustomer whom it will obtain asweetened drink it is however interesting of distinguish them. in the �rst ase,the absene of sugar will be onseutive of the non-determinism assoiated withthe Coin ation while in the seond it will result from the non-determinismassoiated with the Co�ee ation. The onept of bisimulation whih takesinto aount the tree struture of the LTS, and not only its linear struture,will enable us to distinguish these two mahines.The onept of Bisimulation, introdued by Park [PARK 81℄ is at the basemany relations of equivalenes used for the heking of ommuniating systems.De�nition 25 Relation of BisimulationLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 be a LTS, B a binary relation (B ⊂ S × S) is arelation of bisimulation if it veri�es :
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∀(p, p′) ∈ B and ∀t ∈ Σ :

[∀q ∈ S If p
t
→ q then ∃q′ ∈ S : p′

t
→ q′ and (q, q′) ∈ B]and [∀q′ ∈ S If p′

t
→ q′ then ∃q ∈ S : p

t
→ q and (q′, q) ∈ B]Two states s1, s2 ∈ S are in bisimulation if there is a relation of bisimulation

B suh as (s1, s2) ∈ B.De�nition 26 Bisimulation between transitions systemsLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two LTS suhas S∩ = ∅ and for whih we let S = S ∪ S′A binary relation B, (B ⊂ S×S) is a relation of bisimulation between LT Sand LT S ′ if it veri�es :

∀(p, p′) ∈ B and ∀t ∈ Σ ∪ Σ′ :

[∀q ∈ S If p
t
→ q then ∃q′ ∈ S : p′

t
→ q′ and (q, q′) ∈ B]and [∀q′ ∈ S If p′

t
→ q′ then ∃q ∈ S : p

t
→ q and (q′, q) ∈ B]De�nition 27 Bisimilar transitions systemsThe preeding de�nition extends in a anonial way to initialized transitionssystems while posing that two ILTS 〈LT S, s0〉 and 〈LT S ′, s′0〉 are in bisimula-tion (or are bisimilar) if a bisimulation relation onnets their initial respetivestates. i.e.

〈LT S, s0〉 and 〈LT S ′, s′0〉 are in bisimulation if ∃ a bisimulation B ⊂ S×Sbetween LT S and LT S ′ suh as (s0, s
′
0) ∈ BExample 1 0 13 42AB AB 0' 1'3' 2'A BB A

Figure 8: Two bisimilar LTS : 〈E, 0〉, 〈E′, 0′〉

〈E, 0〉, 〈E′, 0′〉, represented 8, are in bisimulation by relation
B = {(0, 0′)(1, 1′), (2, 2′)(3, 3′)(4, 2′)}.
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〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉, assoiated the drink distributers represented6 are not bisimilar. Let us show for example that 〈D, 0〉 and 〈D′, 0′〉 are notin bisimulation. Let us proeed by the absurb and suppose the existene of abisimulation B between D and D′ with (0, 0′) ∈ B. Like 0

Coin
→ 1, one musthave (1, 1′) ∈ B or (1, 3′) ∈ B. (1, 1′) ∈ B is impossible beause 1

Tea
→ and

1′
Tea
6→ . In the same way (1, 3′) ∈ B involves a ontradition beause 1

Co�ee
→and 3′

Co�ee
6→ .The ILTS 〈M, 0〉, 〈M ′, 0′〉, assoiated the o�ee mahines represented 7, arenot bisimilar. Even if these ILTS are small, it quikly beomes di�ult to show�with the hand�, starting from the denotational de�nition of the bisimulation(f def 25), the existene or the nonexistene of a bisimulation.the setion 4.1.1 gives an algorithm making it possible to deide bisimulationwhih will enable us to rule on these two systems.the setion 4.3.4, by introduing the logi of Hennesy-Milner, will give us theelements of language making it possible to distinguish without ambiguity thesetwo systems and to show that they are not bisimilar.Property 28 Properties of the bisimulations : [ARN 92℄- The onverse relation of a bisimulation is also a bisimulation.- the omposition of 2 bisimulations is a bisimulation.- the union of 2 bisimulations is a bisimulation.The properties above make it possible to de�ne a spei� relation of bisi-mulation, the strong equivalene whih is the largest bisimulation.De�nition 29 Strong Equivalene Strong equivalene, noted ∼, is de�ned by

p ∼ q ⇔Def there exists a bisimulationB suh as(p, q) ∈ B

∼ is re�exive beause the identity is a bisimulation. Symmetry and transi-tivity ome respetively owing to the fat that the set of the bisimulations isstable respetively by inversion and omposition.4.1.1. Algorithm of Deision of BisimulationThis setion shows how to build, if it exists, a relation of bisimulation star-ting from any system of transition �nitary. The property 32 melts the algorithmof deision. We present also some elementary onepts and properties whihmake it possible �to ompat� omputation.



30 Petri NetsDe�nition 30 Finitary LTSA LTS LT S = 〈Σ, S, {
a
→}a∈Σ〉 is alled �nitary, or in an equivalent way,has a ��nite image� relation of aessibility :

∀S ∈ S and ∀a ∈ Σ, the set {Q ∈ S suh that S
a
→ Q} is �nite.De�nition 31 ∼N equivalenesFor a LTS LT S = 〈Σ, S, {

a
→}a∈Σ〉, one onsiders the following sequene ofrelations indexed by i, noted ∼I : ∀p, q ∈ S� p ∼0 q� p ∼n+1 q ssi ∀a ∈ Σ

∀p′ ∈ S p
a
→ p′ ⇒ ∃q′ ∈ Q : q

a
→ q′ suh that p ∼n p′

∀q′ ∈ S q
a
→ q′ ⇒ ∃p′ ∈ Q : p

a
→ p′ suh that q ∼n q′Intuitively, one tests the ∼n-equivalene between two systems as follows. Foreah system, one builds the tree of the sequenes lower length or equal with

n (obtained by regarding various ourrenes of the same state as di�erentstates). Then it is heked that these two trees are bisimilar. The followingproperty spei�es the relations between ∼n-equivalene and bisimulation.Property 32 ∼N -equivalenes and bisimulation1. For any LTS, LT S = 〈Σ, S, {
a
→}a∈Σ〉, the following property holds :

∀N ∈ IN,∼ ⊂ ∼n+1 ⊂ ∼n2. If moreover, LT S = 〈Σ, S, {
a
→}a∈Σ〉 is �nitary then :
∼ =

⋂

N≥0

∼N3. If moreover, LT S = 〈Σ, S, {
a
→}a∈Σ〉 is �nite then :

∼ = ∼ns
where ns = |S|1. By reurrene on n2. Let us all R = ∩N≥0 ∼N .Aording to the �rst point of the proposal,∼ ⊂ R. To show that R ⊂ ∼,knowing that ∼ are the union of the bisimulations, it is enough to provethat R is a bisimulation. Let s R s′ and s′

a
→ t′. Then by de�nition of

R, ∀n, ∃tn suh that s
a
→ tnand t′ ∼n tn Sine the system of transitions is �nitary, ∃t suh that t =

tN for an in�nity of n. What means that ∀n, ∃n′ > n suh that t′ ∼n′ t.What implies aording to the �rst point that t′ ∼N t thus t′ R t. Theseond part of the proof is similar to the �rst.



Chapter x 313. Aording to the �rst point from the proposal, ∼n+1⊂∼N . Moreover iffor a system of transitions (�nite or in�nite) ∼n+1=∼N , then ∼n+1=∼sine it omes while replaing in the de�nition ∼N by ∼n+1, that ∼n+1is a relation of bisimulation. Finally let us suppose that for S, all therelations ∼I per 0 ≤ I ≤ ns are di�erent, then the number of lassesof equivalene grows stritly aording to i, whih is absurd sine thisnumber must be lower or equal to ns. There thus exists n ≤ ns suh that
∼n=∼ and onsequently ∼ns

=∼.The last haraterization (f prop 32.3) is partiularly important sine itprovides us an algorithm to deide the bisimulation in the ase of �nite LTS.Property 33 Appliation, Equivalene and Quotient setLet f be an appliation of A 7→ B :1. Let ≡f , the binary relation ⊂ A×A, de�ned by a1 ≡f a2σf(has) = f(b).
≡f is an equivalene relation2. Is πf (A) =Def

⋃

B∈f(A) f−1(b).
πf (A) de�ne a partition of A.3. πf (A) = A/≡f1) is obvious sine â��=â�� is itself an equivalene relation. 2) ΠA is aovering of A of whose â��bloksâ�� are disjoined sine f−1 is injetive. 3)is assured beause ∀π ∈ πf (A) : a1 and a2 ∈ π ⇒ a1 ≡f a2De�nition 34 Output of a stateFor LT S = 〈Σ, S, {

a
→}a∈Σ〉, one onsider the appliation OutputLT S :

S 7→ P(Σ) whih assoiates with eah state q ∈ S, the subset of Σ de�ned inthe following way : OutputS(s) =Def {a ∈ Σ suh that s
a
→}When there is no ambiguity on the LTS, one will note simply Output(S)in the plae of OutputLT S(S)Property 35 Equivalent haraterization of the ∼1-equivaleneBy taking again the notations introdued into the property 33, one onsidersalso the relation of equivalene ≡ Output.For any LTS, LT S = 〈Σ, S, {

a
→}a∈Σ〉, we have : ∼1=≡ OutputTwo states are equivalent with order 1 if they allow to arry out the sameations. It is enough to notie that ∼1 is de�ned starting from ∼0 for whihtwo states are always equivalent (i.e ∼0= S × S)



32 Petri NetsThe property 35 thus makes it possible to diretly ompute the set of thelasses of equivalene of S for ∼1 (in other words, the quotient of S by ∼1),by using the partition of S de�ned by the appliation Output−1. One seondobvious property whih an be made pro�table to limit omputation onsists innotiing that the relation of bisimulation (and more generally any equivaleneof behavior) annot distinguish two deadlok states.Property 36 Bisimulation and DeadlokFor any LTS, LT S = 〈Σ, S, {
a
→}a∈Σ〉, and any pair of states p, q ∈ S

[ Output(p) = Output(q) = ∅] ⇒ p ∼n q, ∀n ∈ INExample 2 Appliation to the o�ee mahines 〈D, 0〉 and 〈D′, 0′〉 represented7 : We want to know if 〈D, 0〉 and 〈D′, 0′〉 are bisimilar.As the sets of respetive states of these mahines (S and S′) are disjoined,we pose S = S∪S′ and we will seek the largest bisimulation (i.e ∼) ontained in
S. 〈D, 0〉 and 〈D′, 0′〉 will be bisimilar if 0 ∼ 0′. We alulate ∼ by onsideringthe sequene of the ∼K-equivalenes (f def 31 and prop 32).Computation of ∼1The table below represents the graph of the appliation Output−1 (def 34),by using the property 35, one obtains

S/∼1 = {{0, 0′}, {{1′}, {3′}, {2, 2′, 3, 4′}}

P(Σ) P(Σ) 7→ S P(Σ) 7→ P(Σ) 7→ S∪
Σ ∅ ∅ ∅

{Tea,Co�ee} {1} ∅ {1}
{Tea,Coin} ∅ ∅ ∅

{Co�ee,Coin} ∅ ∅ ∅
{Coin} {0} {0′} {0, 0′}
{Co�ee} ∅ {1′} {1′}
{Tea} ∅ {3′} {3′}

∅ {2, 3} {2′, 4′} {2, 2′, 3, 4′}Calul of ∼
0 6∼2 0′ : Indeed 0

Coin
→ 1 and none the suessors of 0 ' by Coin (i.e 1 'and 3 ') is equivalent to order 1 to 1 (i.e 1′ 6∼1 1 and 3′ 6∼1 1). One an thusdiretly dedue that 〈D, 0〉 and 〈Of, 0′〉 are not bisimilar.The property 36, ensures that {2, 2′, 3, 4′} ∈ S/∼ Exept the lass {2, 2′, 3, 4′},the other lasses are redued to a singleton and thus minimal. One an thusdedue from it that S/∼ = S/∼2 = {{0}, {0′}, {{1′}, {3′}, {2, 2′, 3, 4′}}



Chapter x 33Operational haraterizationThe proess desribes in the de�nition 4.1.1 makes it possible to obtain thelargest bisimulation inluded in a given binary relation R like the limit of thedereasing sequene of relations <∼N>N≥0. Eah term of the sequene anbe desribed in an equivalent way in the form of a partition of the set of thestates. The omputation of the terms of this dereasing sequene returns tothe problem of re�nement of a partition (Multi Relational Coarset ProblemPartition) [PT 87℄ used initially within the framework of automata minimiza-tion [AHO 74℄. One thus obtains the most powerful algorithms in O(∆.log(S))where ∆ denotes the number of transitions and S the number of states of thegraph [FER 89℄.
Π-BisimulationWe saw in this setion, the standard relation of bisimulation suh as thatpresented by [PARK 81, MIL 89℄. This one takes into aount only the labelsof events and does not allow to take into aount the states of the system. Theonept of Π-Bisimulation [CLE 89℄ generalizes the onept of bisimulationwhile imposing that the relation of bisimulation is ontained in a relation ofequivalene given a priori. One thus an, by the means of this relation, takeinto aount ertain harateristis of the states in the omputation of thebisimulation. We will use this onept of bisimulation in setion 4.3.1 to beable to onsider an extension of Hennessy-Milner logi taking into aountatomi propositions and also in setion 4.2.5 to make sensitive observationalequivalene to the divergene.De�nition 37 Π-BisimulationLet LT S = 〈Σ, S, {

a
→}a∈Σ〉 be a LTS and Π a relation of equivalene on S(i.e π ⊂ S × S), a binary relation B on S is a relation of Π-bisimulation if itveri�es : B ⊂ Π and

∀(p, p′) ∈ Band∀T ∈ Σ :

[∀q ∈ S If p
t
→ q then ∃q′ ∈ S : p′

t
→ q′ and (q, q′) ∈ B]and [∀q′ ∈ S If p′

t
→ q′ then ∃q ∈ S : p

t
→ q and (q′, q) ∈ B]Let us note that if π = S × S, one �nd the standard onept of bisimu-lation. The proedure of general deision given in setion 4.1.1 adapts to the

Π-bisimulations. It is enough to initialize the sequene of equivalene relationswhile taking ∼0= Π.



34 Petri Nets4.1.2. Simulation and Co-simulationAs muh the onept of bisimulation indues an equivalene relation on theLTS, as muh the onept of simulation makes it possible to de�ne an pre-order (a re�exive and transitive binary relation) on the LTS. the onept ofsimulation is de�ned by breaking the symmetry of the bisimulation de�nition.De�nition 38 SimulationLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S ′ = 〈Σ′, S′, {

a
→}a∈Σ′〉, a binary re-lation R, (R ⊂ S×) is a simulation between LT S and LT S′ if it veri�es :

∀(p, p′) ∈ Rand∀T ∈ Σ :

∀q ∈ S If p
t
→ q alors ∃q′ ∈ S′ : p′

t
→ q′ et (q, q′) ∈ RExtension to the ILTS : As for the relation of bisimulation, the relationof simulation an be extended to the initialized labeled transition systems asfollows : 〈LT S, s0〉 simulates 〈LT S ′, s′0〉 if there is a relation of simulationonneting their respetive initial states : i.e., there exists a relation of simula-tion R ontaining (s0, s

′
0)The Co-simulation makes it possible to obtain a relation of equivalene fromthe simulation pre-order.De�nition 39 Co-simulation

LT S Co-simulates LT S ′ ⇔Def LT S simulates LT S ′ and LT S ′ simulate
LT S.Example 3 0 13 2AA B 0' 1' 2'A BFigure 9: Two LTS o-similar and not bisimilarLet us onsider R = {(0, 0′), (1, 1′), (2, 2′), (3, 1′)} and hek that it is indeeda simulation between 〈S, 0〉 and 〈S′, 0′〉.
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0

A
→ {1, 3} and 0′

A
→ 1′ with (1, 1′) ∈ R1 and (3, 1′) ∈ R1

1
B
→ 2 and 1′

B
→ 2′ with (2, 2′) ∈ R1Like 2 and 3 are deadloks, it has anything more to hek.

R1 is thus a simulation ontaining (0, 0′), therefore 〈S, 0〉 simulates 〈S′, 0′〉.In the other diretion, one shows just as the relationR2 = {(0′, 0), (1′, 1), (2′, 2)}is a relation of simulation between 〈S′, 0′〉 and 〈S, 0〉. Indeed, we have : 0′
A
→

1′ and 0
A
→ 1 with (1′, 1) ∈ R2 & 1′

B
→ 2′ and 1

B
→ 2 with (2′, 2) ∈ R2Theen 〈S, 0〉 simulates 〈S′, 0′〉 and �nally and 〈S, 0〉 and 〈S′, 0′〉 are thusCo-similar.On the other hand, 〈S, 0〉 and 〈S′, 0′〉 are not bisimilar.It is enough to reason by the absurb and to onsider B a relation of bi-simulation. This one has minimum would ontain (0′, 0). Consequently, like

0
A
→ {1, 3} and 0′

A
→ 1′, B should also also ontain the pairs (1′, 1), (3′, 1). As

1′
B
→ 2 and 3

B

6→ one annot have (1′, 3) ∈ B from where ontradition appears.nb : The relation B′ = {(3, 2′), (2, 2′)} is the largest bisimulation between Sand S′.Remark the preeding example shows that Co-simulation is weaker than thebisimulation. The bisimulation an however be de�ned in terms of simulationin the following way : a relation of simulation R of whih the symmetrialrelation R−1 is itself a relation of simulation is one bisimulation. The setion?? modalara presenting haraterization modal equivalenes of behavior willenable us to speify the relations between onepts of simulation, Co-simulationand bisimulation.4.1.3. Proedure of deision for simulationConstrution presented is very lose to that presented in 4.1.1 to deidebisimulation. Instead of using a suession of relations (the ∼K-equivalenes ofthe de�nition 31), one introdues a funtion E whih by suessive iterationswill make it possible to obtain its smaller �xed point whih orresponds, infat, with the relation of sought simulation. The interested reader will �nd atalk omplete of this onstrution and assoiated proofs in [ARN 92℄.We present the more general form here allowing to ompute oneΠ-Simulationsimilar to the onept of Π-bisimulation introdued in de�nition 37). This om-putation built starting from an arbitary binary relation R, the greatest simu-lation (if it exists) ontained in R.



36 Petri NetsDe�nition 40 Simulation generated by a relationLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two LTSWe onsider the mapping E : P(S×) 7→ P(S×) whih assoiates with anybinary relation R ⊂ S × S′, the relation E(R) on S × S′ de�ned as follows :

(s, s′) ∈ E(R) ⇔Def (1) ∧ (2) where(1) (s, s′) ∈ R(2) ∀t ∈ Σ, ∀q ∈ S : s
t
→ q ⇒ ∃q′ ∈ S′ : s′

t
→ q′ suh that (q, q′) ∈ RProperty 41 Charaterization of a simulationLet LT S = 〈Σ, S, {

a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two LTS1. the following property holds :

∀N ∈ IN, En+1(R) ⊂ EN (R) ⊂ R2. If moreover, S and S′ are �nitaries then :The sequene of relations N≥0 admits for limit Rω with
Rω =

⋂

N≥0 EN (R).
Rω is the greatest �xed point of the funtion Ei.e E(Rω) = RΩ and E(A) = A ⇒ A ⊆ Rω3. If moreover, S and S′ are �nite then :
Rω = EK(R) where k = max(|S|, |S′|)The preeding property is similar to the haraterization of the bisimulations(f prop 32). Item 2) shows that Rω is the greatest simulation between Σ and

Σ′ inluded in R. As E is a dereasing appliation of a powerset in itself,the onvergene of the sequene is assured [ARN 92℄. By onstrution, Rω isinluded in R and onstitutes the greatest solution of the equation E(R) = E,
Rω is thus the largest simulation inluded in R. Item 3) provides a means todeide simulation between two �nite LTS.4.2. Weak EquivalenesThe relations of equivalene whih we onsidered until now supposed thatthe transitions systems that we ompare admitted the same sets of transitionslabels.At this point, this onstraint of identity of the alphabets of ation stronglylimits the possibilities of us of equivalenes or the pre-orders of behaviour :it is not possible, for example to ompare systems desribed at various levelsof abstration. Thus the various drink distributers enountered in this setiononly represent in an abstrat way the �servie� rendered by a drink distributer ;



Chapter x 37obviously a true distributer would be more omplex. In pratie, the behavioralapproah thus requires to be able to ompare systems desribed at variouslevels of abstration. Conretely, one wants to ompare systems by making�abstration� of ertain events (ations) whih are not relevant with respetto the analysis that one wants to lead. The �rst step onsists in de�ning theriterion of observation of the system : the observed events and those whoseone makes abstration.A simple solution onsists in onsidering a subset O, observable ations, ofthe set of the labels Σ. One this de�ned riterion, it is neessary to larifywhat one understands by disregarding inobservable event. A �rst alternativeis provided to us by re-using the onept of projetion already de�ned in thelanguage theory.De�nition 42 Projetion of a languageLet O be a subset of Σ, σ a word of Σ∗, the projetion of σ out of O, noted
σ⌊O is reursively de�ned by :

λ⌊O =Def λ and (σ.a)⌊O =Def

{

σ⌊O.a if a ∈ O
σ⌊O sinonProjetion operates as a �gum� whih erases all the letters of the word notbelonging to O. This operator of projetion extends in a anonial way to a setof words : L ⊂ Σ∗ : L⌊O =Def {σ⌊O : σ ∈ L}De�nition 43 Weak language equivaleneThe omparison between the systems is de�ned with respet to a ommonriterion of observation ommun : these systems will be equivalent if projetionsof their languages ompared to this observation riterion are equal.Let LT S = 〈Σ, S, {

a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 two transitionssystems, s0 and s′0 their respetive initial states and O a ommon riterion ofobservation i.e., O ⊂ Σ ∩ Σ′

〈LT S, s0〉 ≡O 〈LT S ′, s′0〉σL(〈LT S, s0〉)⌊O = L(〈LT S′, s′0〉)⌊Onb : This equivalene generalizes equivalene language presented de�nition18. Indeed, by taking O = Σ ∪Σ′, then 〈LT S, s0〉 ≡O 〈LT S ′, s′0〉σ〈LT S, s0〉 ≡
〈LT S ′, s′0〉Example 4 Appliation of weak equivalene language



38 Petri Nets0 1CoinTea+ Co�ee 0'3' 2'1'Coini′1 i′2Co�ee Tea 0"3" 2"1"CoinCo�ee Tea
i′′1 i′′2Figure 10: Three other o�ee mahinesLet us onsider the three o�ee mahines 〈M, 0〉, 〈M ′, 0′〉 and 〈M ′′, 0′′〉 re-presented Figure 2 10 and ompare by observing only the alphabet O made upof the ations Coin, Tea and Co�ee.These three systems admit after projetion the same language desribesby the following rational expression : (Coin.(Tea + Co�ee))∗, they are thusequivalent language for O : 〈M, 0〉 ≡O 〈M ′, 0′〉 ≡O 〈M ′′, 0′′〉.For as muh from the point of view of a ustomer, 〈M ′′, 0′′〉 is distingui-shed from both others sine this mahine �hooses in an autonomous way� thedrink delivered with the ustomer. In state 1�, M � is ready to o�er Tea orof Co�ee but the ations i′′1 and i′′2 whose one had a priori wanted to makeabstration have an in�uene on the servie o�ered by these mahines sineaording to their ourrenes, Tea or Co�eewill be delivered.The ations whose one had deided a priori to make abstration ({i′1, i′2, i′′1 , i′′2})disappear under the e�et of the �gum� whih operated during projetion. Forsome of between they, i′1 and i′2, the abstration arried out is legitimate in thesense that those do not modify the �observable� behavior of the system, forothers i′′1 and i′′2 , the abstration arried out is not founded sine these ationshave an observable in�uene on the behavior of the system.All the di�ulty is to know a priori if it is �reasonable� to hide an ation.The observational equivalene, introdued by R. Milner into his alulationfor ommuniating systems CCS [MIL 89℄, introdues a onept of �abstratexperiment� whih o�ers a solution to this problem.4.2.1. Experiment, SaturationThe onept of abstrat experiment allows an abstration less radial thanthe onept of projetion whih erases purely and simply any inobservableation. Here, the inobservable ations are initially renammed by a ommon2label �Tea+ Co�ee� onneting states 1 to 0 means simply that one an go from state 0to state 1 either by the Tea ation or by the ation Co�ee



Chapter x 39symbol τ . Moreover, one new relation of transition, known as �abstrat exprei-mentation� and noted ⇒, is de�ned by taking of aount the relation of originaltransition (→) and the inobservable sequenes of ations. We give the de�ni-tion now and will give the intuition of this one of it by studying the exampleof saturation presented Figure 5.De�nition 44 Abstrat experiment : ⇒Let LT S = 〈Σ, S, {
a
→}a∈Σ〉 be a LTS, O a subset of Σ and τ a symbol notbelonging to Σ

⇒ ⊂ S × Σ ∪ {τ} × S an be de�ned as follows : ⇒=Def
τ
⇒

⋃

∪o∈O[
o
⇒]where

•
τ
⇒ the relation of transition relating to the inobservable experiments, isobtained by taking the re�exive and transitive losure of the union of transitioninobservable relations :

τ
⇒ =Def [

⋃

i∈Σ\O
i
→]∗nb : τ

⇒ renames all the inobservable labels with a ommon label τ .The transitivity of τ
⇒ makes it possible to onsider a sequene of inobser-vable ations as an �atomi� ation inobservable. Finally the re�exivity of τ

⇒ensures that of any state of the LTS it is possible to make an ation inobser-vable : it only onsists to add an inobservable �neutral� transition bukling onany state of the LTS.
•

a
⇒, the relation relating to the observable experiments is de�ned as thedouble omposition (on the right and on the left) of the inobservable relation ofexperiment τ

⇒ with the original relation observable transition a
→.

a
⇒ =Def

τ
⇒ o

a
→ o

τ
⇒ for a ∈ Onb : a

⇒ makes it possible to extend onept of observable transition byintegrating the sequenes of inobservable transitions. As τ
⇒ is re�exive, a

⇒inludes the original relation observable transition : a
→. The double omposi-tion on the right and on the left makes it possible to regard as one observableation �atomi� any preeded observable ation and followed by a sequene ofinobservable ations.De�nition 45 Saturation of a labelled transition systemThe LTS obtained by substituting the experiment relation (⇒) to the originaltransition relation (→) is alled LTS saturated.Let LT S = 〈Σ, S, {

a
→}a∈Σ〉 be a LTS and O a subset of Σ and τ a symbolnot belonging to Σ
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Sat⌊O(LT S) =Def 〈Σ ∪ {τ}, S, {

a
⇒}a∈Σ∪{τ}〉nb : If Σ = O, saturation simply onsists in adding to the initial system aâ��loopâ�� labelled by τ on eah state.

Sat⌊Σ(LT S) = 〈Σ ∪ {τ}, S, [{
a
→}a∈Σ ∪ {p

τ
→ p : p ∈ S}〉Example 5 Example of SaturationThe �gure 11 presents the output of the saturation applied to the systemsM' and M � represented Figure 10 when O = {Coin,Tea,Co�ee}.Not to overload the �gure, the loops of τ resulting from losure re�exive ofthe relation τ

⇒, normally assoiated with eah state, are not not represented.0'3' 2'1'Coinτ τ

Co�ee TeaCoinCoinCo�ee Tea 0"3" 2"1"CoinCo�ee Tea
τ τ

CoinCoinCo�ee Tea
Figure 11: Sat⌊O(M ′) et Sat⌊O(M ′′)The inobservable labels of ations (i′1, i′2, i′′1 , i′′2) were renamed in the satura-ted systems. This renaming and the ation of the double omposition of inob-servable ations, led to a non deterministi relation of observable experiment

O
⇒.The saturation may furnishe a non-deterministi LTS from a deterministiLTS. Thus from 1' in Sat⌊O(M ′), the experiment Co�ee will lead into 3'or 1' aording to whether only the ation Co�ee ourred or that this onewas followed by the inobservable ation i′1. In the same way from state 0�in Sat⌊O(M ′′), the experiment Coin an lead in state 1� where the ationsTea and Co�ee are possible, in state 2� where only the ation Tea is possibleor in state 3� where only the ation Co�ee is possible.The abstration arried out while hoosing not to observe the ations i′′1 , I ′′2does not oult the fat that the mahine M ′′ an hoose drink in the plae ofthe ustomer.



Chapter x 414.2.2. Weak bisimulation, Observational EquivaleneThe observational equivalene of two systems [MIL 89℄ an be de�ned di-retly starting from the bisimulation (def 25) by onsidering the relation ofbisimulation between the saturated systems.De�nition 46 Weak bisimulationLet LT S = 〈Σ, S, {
a
→}a∈Σ〉 and LT S′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 be two LTS and

O ⊂ Σ ∩ Σ′, a set of ommon labels of ations.A binary relation B ⊂ S×S′ is a ⌊OBisimulation between LT S and LT S ′if B is a bisimulation between Sat⌊O(LT S) and Sat⌊O(LT S′)This bisimulation parameterized by a set of observable ations is often des-ribed as â��weakâ�� bisimulation in opposition to the standard bisimulation,alled â��strongâ��, whih takes into aount all the labels of ations. Theobservational equivalene introdued into CCS [MIL 89℄ is the largest weakbisimulation.The onepts of strong and weak bisimulation oinide when all the labelsof ations are observed (i.e O = Σ ∪ Σ′) : B is a bisimulation (strong) bet-ween LT S and LT S′ if B is a ⌊(Σ∪Σ′)Bisimulation between Sat⌊Σ(LT S) and
Sat⌊Σ′(LT S ′)4.2.3. Deision of the weak bisimulationAs the weak bisimulation is �nally de�ned like a strong bisimulation onsaturated systems, the proedure of deision whih we gave for the strong bisi-mulation applies to deide weak bisimulation.When the saturated system is onsidered, the property 35 remains valid (itan be simpli�ed by notiing that any state of the saturated system has τ in its
Output). It is the same for the property 36 but this one beomes inoperativein the saturated system, any state has at least one τ -suessor (itself). In thease of the weak bisimulation, the property 36 is reformulated in terms of weakbloking (def 47).Property 47 Weak bisimulation and weak blokingFor any LTS LT S = 〈Σ, S, {

a
→}a∈Σ〉, any subset O of Σ and any pair ofstates p, q ∈ S

[ OutputSat⌊O(LT S)(p) = OutputSat⌊O(LT S)(q) = {τ}] ⇒ p ∼O q



42 Petri NetsExample 6 Example (ontinued) 5One onsiders again the ILTS 〈M ′, 0′〉 and 〈M ′′, 0′′〉 of the example 5. Oneseeks a bisimulation between 〈M ′, 0′〉 and 〈M ′′, 0′′〉. Let S = S ∪ S′The property 36 enables us to obtain equivalene at order 1 :
S/∼1 = {{0′, 2′, 3′, 0′′}, {1′, 1′′}, {2′′}, {3′′}}At order 2, it is easy to see that 1′ 6∼2 1′′. Indeed, there are 1′′

τ
⇒ 2′′ whereas1' admits only one τ -suessor, 1' itself, whih is not equivalent at order 1 to2�. While thus ontinuing, one would show, with order 3, that 1' and 1� are notequivalent. Thus 〈M ′, 0′〉 and 〈M ′′, 0′′〉 are not observationnaly equivalent.4.2.4. Abstrat/Quotient modelEquivalenes or the pre-orders whih we saw up to now allow to omparea system and its spei�ation, both expressed in the form of graph. The beha-vioral approah, proeeding by omparison, allows to be sure that the systemand its spei�ation have the same properties (the same behavior) modulo theriterion of abstration seleted to perform the omparison.For equivalenes relations, one an also proeed by projetion or â��intros-petionâ��. Instead of omparing two LTS, one an build the smallest equiva-lent LTS 3.One speaks then of projetion or of abstrat model.De�nition 48 Observational projetionFor a LTS LT S = 〈Σ, S, {

a
→}a∈Σ〉, a subset O ⊂ Σ from observable labelsand ∼O, the assoiated observational equivalene relation, one note LT S/∼Othe quotient of LT S by ∼O

LT S/∼O =Def 〈S/∼O,O ∪ {τ}, {
a

∼∼>}a∈O∪{τ}〉 where :1. S/∼O is the quotient of S by ∼O2. a
∼∼> is the smallest relation verifying :(a) (a ∈ O and q

o
⇒ q′) ⇒ q/∼O

o
∼∼> q′/∼O(b) (a 6∈ O and q

o
⇒ q′ and q 6∼O q′) ⇒ q/∼O

τ
∼∼> q′/∼O(2.a) means that any observable transition remains in projetion. (2.b) meansthat only the inobservable transitions onneting two non equivalent states re-main in projetion.3with respet to the number of states



Chapter x 43Example 7 Example of projetionOne onsiders 〈X, 0〉 the ILTS represen-ted opposite. One hooses to observe
O = {A, B}. In this ase,
X/∼O = {{0}, {1}, {2, 3, 4}}

0 1 23 4
I2AA B
I1the ILTS 〈X/∼O, C0〉 obtained by pro-jetion is represented opposite. It om-prises 3 states :

C0 = {0}, C1 = {1}, C2 = {2, 3, 4} Onean note that ertain inobservable tran-sitions remain (1 I1→ 4 whih mate-rialized the possibility of bloking af-ter A appear in the form C1
τ

∼∼> C2)while others disappear. The transition
1

I2→ 1 wath whih the system an havean inobservable in�nite exeution, onewill speak thereafter (f setion 4.2.5)about divergene. This possibility of di-vergene of the system is absorbed inthe lass C1).
C0 C1 C2A B + τA

By onstrution, the ILTS obtained byprojetion (〈X/∼O, C0〉) is equivalentto the ILTS projeted 〈X, 0〉. Projetionis minimal with respet to the numberof states. On the other hand it is notminimal with respet to the number oftransitions. Consider 〈Y, Q〉, the ILTSrepresented opposite. There are again
〈Y, Q〉 ∼O 〈X, 0〉 but 〈Y, Q〉 omprisesless transitions than 〈X/∼O, C0〉.

q r sA B + τ

Example 8 Continuation of the example 5By taking again the results obtained in the example 5, we have :
S/∼ = {{0′, 2′, 3′}, {0′′}, {1′}, {2′′}, {3′′}}



44 Petri NetsOne an by simple projetion 4 to dedue the relation ∼ from eah ILTS :
S/∼ = {{0′, 2′, 3′}, {1′}} and S′/∼ = {{0′′}, {1′′}, {2′′}, {3′′}}The �gure below shows the various steps of the omputation : on the leftthe initial system, in the medium the saturated system and, on the right, theprojeted system.0'3' 2'1'Coini′1 i′2Co�ee Tea 0'3' 2'1'Coinτ τ

Co�ee TeaCoinCoinCo�ee Tea C0 C1CoinTea+ Co�eeFigure 12: 〈M ′, 0′〉, Sat⌊O(M ′) and 〈M ′/∼O, 0′/∼O〉For 〈M ′′, 0′′〉, lasses of equivalene, S′′/∼O, are redued to singletons, andthe LTS projeted is idential (isomorph exept for the renaming of the inob-servable ations i′′1 and I ′′2 by τ) with the initial LTS.0"3" 2"1"CoinCo�ee Tea
i′′1 i′′2

0"3" 2"1"CoinCo�ee Tea
τ τ

CoinCoinCo�ee Tea C0"C3" C2"C1"CoinCo�ee Tea
τ τFigure 13: 〈M ′′, 0′′〉, Sat⌊O(M ′′) and 〈M ′′/∼O, 0′′/∼O〉The projetion of 〈M ′/O, 0′/O〉 give again the mahine 〈M, 0〉 (f 6) ; thesetwo LTS are indeed observationaly equivalent.For 〈M ′, 0′〉, the fat of obtaining only one lass gathering states 0 ', 2 'and 3 ' allows to â��interiorizeâ�� the two transitions (i′1 and i′2) whose onehad deided to make abstration. The omputation of observational equivalene4projetion here in the usual sense : projetion of the partition on the sets of statesrespetively assoiated with eah one of the LTS



Chapter x 45allows to legitimate a posteriori this hoie : ourrene of these events do notmodify the behavior `observed� of the system.For 〈M ′′, 0′′〉, ignore the ations i′′1 and I ′′2 does not have sense sine aor-ding to their ourrenes the ustomer will have or will not have the hoie ofits drink.4.2.5. Observational equivalene and divergeneThe example preedent has shown that observational equivalene performsan abstration relatively reasoned with respet to the hidden events. Contrarilywith the weak language equivalene whih a priori gums all hidden events,observational equivalene an preserve �visible� events that one did not wantto a priori observe ; typially the ase of the events inobservable whih remainspresent on the LTS quotient (unobservable events onneting not equivalentstates)Among the important onepts whih �are masked� by observational equi-valene, we �nd the onept of divergene, already met in our example of pro-jetion 7. In the ase of �nite LTS, the divergene is diretly related to theexistene of yli paths labelled by inobservable labels, whih we will all ofthe τ -yles.The fat of observing only ertain events leads us to re�ne the standardonept of state of bloking. Indeed, we want distinguish the states for whihthe system (without being bloked) may perform only inobservable ations(weak bloking states) and of the states where the system an arry out anin�nite number of inobservable ations (divergent states).De�nition 49 Weak bloking, divergeneFor a LTS LT S = 〈Σ, S, {
a
→}a∈Σ〉, O a subset of Σ and s a state of S1. s is a weak bloking for O if OutputSat⌊O(LT S)(s) = {τ}2. s is a state of divergene for O if ∃σ ∈ L(〈S, s〉) ∩ (Σ \ O)∞A weak bloking orresponds in a state where the system annot evolve inan observable manner ( the only ations arried out are not observable) anobserver annot thus make the di�erene between a state of weak bloking anda state of bloking. Contrary to a weak bloking, from a state of divergene thesystem an evolve in an observable way but it an also evolve inde�nitely in aninobservable way.Example 9



46 Petri NetsOne onsiders 〈L, 0〉 represented opposite. Only theation A is observed (O = {A}).5 and 6 is states of bloking,2, 4, 5, and 6 are states of weak bloking,0, 1, 2, 3 and 4 are states of divergene.
0 1 2II II3 45 6

I IA I
De�nition 50 τ-ylesLet LT S = 〈Σ, S, {

a
→}a∈Σ〉 be a LTS and O ⊂ Σ a subset of observablelabels.Two states s1, s2 ∈ S are onneted by one τ-yle if

∃σ1 ∈ (Σ\O)∗, ∃σ2 ∈ (Σ\O)∗ suh that s1
σ1→ s2 and s2

σ2→ s1Property 51 τ-yle and weak bisimulationTwo states s1, s2 ∈ S belonging to same a τ-yle are obviously bisimilar.It is enough to notie that states s1 and s2 admit exatly the same derived statesi.e : ∀t ∈ O∪{τ}, ∀s ∈ S : s1
t
⇒ s ⇔ s2

t
⇒ s.In terms quotient of LTS, a orollary of this property is that if a pair ofstates s1 and s2 is onneted by a τ-yle then all the elementary transitionsonstituting this τ-yle are �hidden� inside the lass of equivalene of s1 (i.ethat of s2). In other words, an observational projetion disregards all τ-yle.Example 10 Observational equivalene and divergened0d3 d2d1CoinCo�ee Tea

i1

i2

i3

i4

D0 D1CoinTea+ Co�eeFigure 14: 〈Div, 0〉 and its quotientLet us onsider the o�ee mahine 〈Div, C〉 represented Figure 14. As untilnow O = {Coin,Tea,Co�ee}. The states d1, d2 and d3 are onneted by one
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τ -yle and by applying property 51, it omes that d1 ∼O d2 ∼O d3. Conse-quently, ∼O= {{d0}, {d1, d2, d3}}. By noting D0 = {d0} et D1 = {d1, d2, d3},we obtain the LTS quotient. All the inobservable transitions belong to τ -ylesand dissapear into equivalene lasses.It was already shown (f setion 13) that the LTS 〈D, 0〉 and 〈D′, 0′〉 re-presented below were weak bisimilar. One would show in the same way that
〈D, 0〉 ∼O 〈Div, 0〉. By transitivity, these 3 LTS are in weak bisimulation. Foras muh, their behaviors are strongly di�erents :

〈D, 0〉 and 〈D′, 0′〉 deliver �inevitably� one drink after it was paid, while for
〈Div, 0〉, the delivery of a drink is only â��potentialâ��.

0 1CoinTea+ Co�ee
0'3' 2'1'Coini′1 i′2Co�ee TeaFigure 15: 〈D, 0〉 and 〈D′, 0′〉 : 2 LTS bisimilar with 〈Div, do〉

4.3. Modal haraterizations of behavioural equivalenesThe logial veri�ation is based on properties expressed in a spei� lan-guage (temporal logi for instane). Cheking the system satis�es these proper-ties is equivalent to show that the system is a model of these properties. Thebehavioral approah handles only behaviors. One studies equivalene betweenthe behaviours of the system and of the spei�ation and dedues, from thisequivalene, that the system satis�es its spei�ations : however we have neverexpliitly stated the properties assoiated with the spei�ation and never havespei�ed the nature of the properties preserved by the used equivalene.The work of M. Hennessy and R.Milner [HM 85℄ permits to understand thelinks between these two approahes of veri�ation. It provides in partiular a�logial� de�nition of the behavioral equivalenes whih spei�es the type ofproperties that they allow to hek.



48 Petri Nets4.3.1. De�nition of HMLIn an intuitive way, a logi an be assoiated with a given behaviouralequivalene (a logi in adequay with an equivalene) so that the equivalentbehaviors are the behaviors satisfying the same properties expressed in theadequate logi.De�nition 52 HML : Logi of Hennessy-MilnerSyntax : HML is the smallest set verifying :
true ∈ HML, f, g ∈ HML ⇒ f ∧ g,¬g ∈ HML
f ∈ HML, a ∈ Σ ⇒<a> f ∈ HMLSemantis : The semantis of the formulas HML is de�ned with respet toa LTS LT S. As for modal logis, one will note for s ∈ S and f ∈ HML :
LT S, s |= f to indiate that the formula f is satis�ed in the state s of thestruture (here of the LTS) LT S. As usually, the semantis of a formula of
HML is de�ned by indution on the struture of the terms. In what follows :
f and g ∈ HML and a ∈ Σ.

|=, the relation of satisfation, is the smallest relation verifying :
LT S, s |= true ∀s ∈ S
LT S, s |= f ∧ g i� LT S, s |= f and LT S, s |= g
LT S, s |= ¬f i� Not (LT S, s |= ¬f)

LT S, s |=<a> f i� ∃s′ ∈ S suh that s
a
→ s′ et LT S, s′ |= fAbbreviations : false ≡ ¬true, f ∨ g ≡ ¬(¬f ∧ ¬g), [a]f ≡ ¬ <a> ¬f

<σ> f ≡<a1><a2> . . . <an> f pour σ = a1.a2. . . . anThe semantis of a formula of HML (i.e |=, the relation of satisfaisability)is de�ned as for modal logis by regarding the LTS as struture of Kripke. Twodi�erenes may be notied : HML do not utilize of atomi propositions. Moreexatly, the set of propositional variables only ontains the variable true whihis true in any state. By taking again the notations introdued into the setion2 : P = {true} and ν(s) = {true} : ∀s ∈ S. On the other hand, the relation ofaessibility between the �worlds� of the struture is now labelled.Example 11 Examples of properties expressed into HML

LT S, S |=<a> true An a-experiment is possible starting from s.
LT S, s |=<a> (<b> true∧ <c> true)From s, an a-experiment is possible driving in a state where a b-experiment anda c-experiment are both possible.
LT S, s |= [a]false From s, no a-experiment is possible.



Chapter x 49One again onsiders the LTS 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉 represented �gure6 and the properties FI : I ∈ [1, 4] below. The table below gives the results ofthe evaluation of the formulas FI for eah one of the LTS.
F1 ≡<a> [b]F
F2 ≡<a> (<b> T∧ <c> T )
F3 ≡ [a](<b> T∧ <c> T )
F4 ≡<a> ( (<b> T ∧ [c]F ) ∨ (<c> T ∧ [b]F ) )

|= F1 F2 F3 F4

D, 0 F V V F
D′, 0′ V F F V
D′′, 0′′ V V F F4.3.2. Modal Charaterization of the bisimulationTheory of a state : For a logi L, one notes TH : S 7→ L, the mapping whihassoiates with a state s S the set of the properties f of L that it satis�es (itstheory). THL(S) =Def {F ∈ L : S |= F}Property 53 Hennessy-Milner's theorem [HM 85℄

HML haraterizes modally the bisimulation. Two states are bisimilar ifthey satisfy the same properties of logi HML.
s ∼ qi�THHML(s) = THHML(q)Example 12 Return on the examples 6, 7 and 5The LTS of the �gure 6 are not bisimilar. By taking again the formulas ofthe table 11, one an onlude that these CO are 2 to 2 not equivalent :- F3 only holds for D thus D is equivalent neither to D′ nor with D′′.- F4 only holds for D′ thus D′ is equivalent neither to D nor with D′′.The LTS of the �gure 7 are not bisimilar. Let us onsider the following for-mula of HML : - G ≡<Coin> ( (<Co�ee> <Sugar> T )∧ (<Co�ee> [Sugar]F )).

M, 0 6|= G while M ′, 0′ |= GThe LTS of the �gure 5 are not bisimilar. Let f ≡ [Coin](<Co�ee> true∧ <Tea> true). f an be formulated as follows : after any ourene of the ationCoin there is always the possibility of arrying out the ations Co�ee and Tea.
M ′, 0′ |= f while M ′′, 0′′ 6|= f .4.3.3. HML and atomi propositionsAs we saw logiHML, in its original statement, is based only on the events,the relation of π-bisimulation (f de�nition 37) an be used to allow to expliitlytake into aount the onept of states.



50 Petri NetsInstead of onsidering only one labelled transitions system, we onsider alabelled Kripke's struture
LKS = 〈AP, Σ, S, { a

−→}a∈Σ, ν〉 where in eah state of S, the valuation ν asso-iates a set of propositional variables ∈ 2AP (f de�nition 1).De�nition 54 HML(AP )One notesHML(AP ) the extension of HML to a set of atomi propositions
AP as follows :Syntax : HML(AP ) is the smallest set verifying :
AP ⊂ HML(AP ), f, g ∈ HML(AP ) ⇒ f ∧g ∈ HML(AP ),¬f ∈ HML(AP )
f ∈ HML(AP ), a ∈ Σ ⇒<a> f ∈ HML(AP )Semantis : The semantis of the formulas HML(AP ) is de�ned with respetto a labelled Kripke's struture LKS = 〈AP, Σ, S, { a

−→}a∈Σ, ν〉

|=, the relation of satisfation, is the smallest relation verifying :
LKS, s |= P i� P ∈ ν(P )
LKS, s |= f ∧ g ssi LKS , s |= f et LKS, s |= g
LKS, s |= ¬f ssi Non (LKS , s |= ¬f)

LKS, s |=<a> f ssi s
a
→ s′ et LKS, s′ |= fProperty 55 Modal haraterization of the π-bisimulationBy taking again the notations introdued into the de�nition 33, one onsidersthe partition πν(S) of S de�ned by the appliation ν and one onsiders theassoiated π-bismulation (f def 37).

HML(AP ) gives a modal hataterization for the πν(S)-bisimulation : twostates are πν(S)- bisimilar if they satisfy the same formulas of logi HML(AP ).
∀p, q ∈ S : p ∼πν q ssi THHML(AP )(q) = THHML(AP )(q)Example 13 HML and divergeneWe saw that observational equivalene masked the divergent evolutions (f4.2.5) : it follows that the onept of event inevitable is not exprimable in

HML.By taking again notations of setion 3.3, one notes 〈M, S〉 |= AFX{T}trueto mean that exeution of event t is inevitable from the state s. The adequayproperty of adequay (prop 53) provides us a simple means for to show thatAFX{T}true an not be expressed in HML.



Chapter x 51Let us onsider the LTS represented �gure 16. 1 |= AFX{A}true, 0 6|=AFX{A}true, obviously we have 1 ∼ 0 and onsequently THHML(1) = THHML(0).Then AFX{T}true annot be expressed into HML.0 1 2τ AτFigure 16: Divergene and inevitablilityLet us onsider again the three o�ee mahines represented 10, all the statesof those satisfy the property AFX{Tea,Co�ee}true, and in partiular states 1,1' and 1� who orrespond to states where a drink was paid and not yet delivered.Let us onsider the LTS 〈Div, d0〉 presented �gure 14, none the states of theLTS satis�es AFX{Tea,Co�ee}true and in partiular the state d1. The fat ofhaving paid drink does not guarantee that one obtains it in a �nite time.The extension ofHML to the atomi propositions (f 4.3.3), provides us asimple means, in the ase of �nite LTS, to extend HML to take into aountthe onept of divergene.Let LT S = 〈Σ, S, {
a
→}a∈Σ〉 be a LTS, O ⊂ Σ a subset of observable labels.Let Div(S) be the subset of S de�ned as follows : Div(S) =Def {S ∈ S :

∃ω ∈ Σ \ O∞ and s
ω
→}. Thus, for the LTS of the �gure 10 we have Div =

{d1, d2, d3}.One onsiders APDiv =Def {true, Div} and the valuation ν de�ned by
true ∈ ν(S) ∀S ∈ S and Div ∈ ν(s)σs ∈ Div(S). By onstrution logi
HML(APDiv) and ∼Div, the assoiated π−bisimulation, are sensitive to thedivergene.As example we an ompare the LTS 〈M ′, 0′〉 and 〈Div, d0〉 presented res-petively �gures 10 and 14.

∼Div 0 = {{d1, d2, d3}, {d0, 0′, 1′, 2′, 3′}}
∼Div 1 = {{d1, d2, d3}, {d0, 0′, 2′, 3′}, {1′}}
∼Div 2 = {{d1, d2, d3}, {d0}{0′, 2′, 3′}, {1′}}
∼Div 3 = ∼Div 2 and onsequently ∼Div = ∼Div 2The respetive initial states of the two LTS (0, d0) are not in the relationof bisimulation (0 6∼Div d0) and onsequently 〈M ′, 0′〉 and 〈Div, d0〉 are not�Div�-bisimilar.



52 Petri Nets4.3.4. Modal haraterizations of other equivalene relationsOne onsiders the subsets of HML de�ned below :
M =Def {F ∈ HML, F does not ontain ∧} and
N =Def {F ∈ M, F does not ontain ¬}[HM 85℄ show that whih M is a modal haraterization of Co-simulationwhile N is a modal haraterization of language equivalene.Strit inlusion between N and HML shows the fat that language equiva-lene is stritly oarser than observational equivalene. Thus, N do not makeit possible any more to express [A] or false whih is essential to de�ne proper-ties of deadlok : observational equivalene preserves deadloks what is not thease for equivalene language. Observational equivalene does not preserve thedivergene but an be reinfored to this end [NV 90℄.On the other side, the work of [BCG 91℄ attempts to give a behavioural ha-raterization of logi CT L∗. The relation of equivalene now operates betweenKripke's strutures presented de�nition 1. Its presentation is very lose to theone of ∼N equivalenes given de�nition 31.De�nition 56 Equivalenes of Kripke's struturesLet KS = 〈AP, S,→, ν〉 and KS = 〈AP, S′,→′, ν′〉 two Kripke's struturessharing the same set of propositional variables APOne de�nes a sequene of equivalene relations EK0

, EK1
, . . .sur S ×S′as follows :

s EK0
s′ i� ν(s) = ν′(s′)

s EKn+1
s′ i�1. ν(s) = ν′(s′)2. ∀s1 ∈ S : (s → s1) ⇒ ∃s′1 ∈ S′ : s′ → s′1 and s EKn

s′3. ∀s′1 ∈ S′ : (s′ → s′1) ⇒ ∃s1 ∈ S : s → s1 and s1 EKn
s1Finally, equivalene between Kripke's is de�ned as follows :

s EK s′ i� s EKi
s′ : ∀i ≥ 0The behavioral haraterization of logi CT L∗is given by the following pro-perty :



Chapter x 53Property 57 behavioral Charaterization of CT L∗

s EK s′ ⇒ ∀f ∈CT L∗[s |= f ⇔ s′ |= f ][BCG 91℄ also introdued the stuttering equivalene whih gives a behavio-ral haraterization of logial temporal CT L∗_X, namely CT L∗without next-time operator.5. Deidability of the bisimulation and the evaluation of formulasWe now will expose the fundamental results onerning the deidabilityof the bisimulation of Petri nets and the evaluation of formulas of temporallogi for a Petri net. In hapter 4 of the treating volume of the Petri nets[HAD 01℄, we saw that the generi properties all were deidables (boundness,aessibility, . . .). Moreover the omplexity of the heking of ertain propertiesis ompletely haraterized ( the boundness property is EXPspace-omplete)while for others, the problem remains open (aessibility is EXPspace-hardbut the algorithm of deision is not primitive reursive). As shown by thepreeding setions, temporal logi and the bisimulation allows to haraterizethe behavior of a labelled Kripke's struture in a way �ner than through thegeneri properties. Also one an expet that the proedures of deision are moredi�ult to obtain. For example, the problem of aessibility is expressed easilyin LT L and CT L.Example� in LT L,
m not aessible from (R, m0) ⇔ (R, m0) |= G OR p∈P p 6= m(p)� in CT L,
m nonaessible sine (R, m0) ⇔ (R, m0) |= AG OR p∈P p 6= m(p)Aording to the adopted alternative, ertain problems are indeidable while,for the deidable alternatives, the majority of the deision methods rely on thedeidability of aessibility implying a great omplexity onsequently. The waysto obtain results of undeidability or of deidability are of very di�erent nature.We will thus follow this utting in the ontinuation.5.1. Undeidability resultsThe usual tehnique to show that a problem is ind�©idable onsists inreduing another problem ind�©idable to the initial problem. This tehniquesupposes that one beforehand determined in another manner the indeidability



54 Petri Netsof a problem. The problem more general than we study is that of the stop of aprogram.Theorem 58 (Stop of a program with parameters) the problem of the stopof a program prog, parameterized by an integer x is undeidable.ProofWe will show this result by absurb. Let us suppose that there is program
teststop with two integers parameters : a representation (by an integer) of aprogram prog and a value of entry of this program. The hoie of the represen-tation of the program is here of no importane ; for example, one ould hooselike representation the integer orresponding to the sequene of bits of the pro-gram. One will note prog this representation. teststop returns true if prog stopswith the provided value and if not returns false. The behavior of teststop isunspei�ed if the �rst parameter is not the representation of a program.We build then a program foo with a single parameter whih funtions thus.� foo heks that its parameter x is well the representation of a program

prog (like a ompiler does it). If it is not the ase, it stops.� foo alls teststop(X, X). In other words, it tests if the program prog stopsby taking as entry its representation.� If teststop(X, X) returns true, then foo runs without end if not it stops.Let us examine the behavior of foo(foo).If foo(foo) stops teststopthen(foo, foo) returns true and onsequently foo(foo)does not stop what is absurd.In the ontrary ase, teststop(foo, foo) returns false and onsequently foo(foo)stops what is absurd. There is not thus program teststop. ♦The fat that the program has a single parameter in entry is not impor-tant as indiates it the following orollary. In addition, this one illustrates thepriniple of redution.Corollary 59 (Stop of a program without parameter) the problem of thestop of a program prog without parameter is undeidable.ProofLet us show that the problem of the stop of a program with a single parameteris reduible with the problem of the stop of a program without parameter. Wethus suppose that there is a program teststopbis for the problem of the orollaryand we desribe how to build a program teststop. Let prog be a program witha parameter and x an integer value. Then teststop behaves as follows :



Chapter x 55� teststop builds the representation of the program prog′ without parameterwhih onsists in alling prog(X).� Then teststop alls teststopbis(prog′) and returns the orresponding re-sult.Then teststopbis annot exist. ♦
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Figure 17: Weak simulation of a program with ounterThe hoie of the programming language (or the model of omputation)is indi�erent as from the moment when this one has the minimal onstrutorsonferring to him a expressiveness equivalent to the Turing's mahines. To reusethe previous results, one seeks languages adapted to the studied problems. Inour ase, we will hoose the model of the programs with ounter. The variables ofsuh a program are the ounters that are positive integers, initialized by 0. Theprogram is a sequene of instrutions ; eah instrution is preeded by a label(with the manner of the language Basic). The di�erent kinds of instrutionsare :� the inrementation etiq : X := x + 1� the derementation etiq : X := x − 1When the derementation is applied to a null ounter, it auses an abortof the program onsidered as di�erent from the stop.� the unonditional jump etiq : GOTO etiq′� the onditional jump
etiq : IF x = 0 THEN GOTO etiq1 ELSE GOTO etiq2� the termination etiq : HALTThis instrution is neessarily the last instrution of the program.This program prog has only one exeution (starting with the �rst instrution)whih an either be in�nite, or to abort or to stop when the program reahes the



56 Petri Netslast instrution. We will propose a weak simulation of a program with ountersby a Petri net noted Rprog (this name will also apply to the various variants ofsimulation). One assoiates with eah label, a plae whih when it is markedindiates that the instrution is the next instrution to be arried out ; initiallyonly the plae of the label of the �rst instrution ontains a token. Eah ounteris translated by a plae initially not marked. The translation of the instrutionsintrodues the transitions as indiated in the �gure ?? : X. Eah transition islabelled by the type of instrution (inc, dec, goto, fin, zero, nzero). Simulationis weak in the sense where a labelled transition zero an be �red although theplae x is marked. An exat simulation would require an inhibiting ar fromthe plae x towards the labelled transition zero. In other words, among themaximum sequenes (�nite or in�nite), only one of them orresponds to anexat simulation of the program while the other sequenes �heat� by �ring in aill-onsidered way at least a labelled transition zero whereas the orrespondingounter is not null. It is then obvious that :
prog terminates

⇔All maximal runs of Rprog �heat� or mark plae haltThis leads us to the �rst results of indeidability.Theorem 60 (Evaluation of a propositional formula LT L or CT L) Ina Petri net, the problem of the evaluation of a propositional formula LT L or
CT L is undeidable.ProofIt is enough for us to express the seond term of equivalene.In LT L : F (ORx.etiq∈P (x.etiq = 1 AND x > 0) OR halt = 1)And in CT L : AF (ORx.etiq∈P (x.etiq = 1 AND x > 0) OR halt = 1)

♦Let us notie that this result is presented within the framework of a seman-tis on the maximum sequenes �nite or in�nite. One an easily restrit oneselfwith the in�nite sequenes by adding a transition who bukles around the plae
halt. This remark is true for the following result.By modifying the translation of the onditional jump as indiated on the�gure 18, we obtain a omplementary result.Theorem 61 (Evaluation of an event-based formula CT L) In a Petri net,the problem of the evaluation of an event-based formula CT L is undeidable.Proof
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lab : IF x=0 THEN GOTO lab1 ELSE GOTO lab2Figure 18: Another weak simulation of the onditional jumpThe equivalene previously mentionned is still valid and it is su�ient toexpress the seond term of equivalene in event-based logi CT L :AF(EX{erreur} true OR EX{fin} true) ♦Let us notie that the operator of branhing logi EX allows to test the�rability what is not possible with an event-based linear logi. We now willtransform our weak simulation one again to treat the ase of the bisimula-tion.We add to our network two new �omplementary� plaes y and y′ so thatthat a token either present or in y or in y′ but never simultaneously in the twoplaes.For a marking m of this nature, one will note m the marking obtained byreversing the ontents of y and y′. One modi�es one again the onditionaljump but also the last instrution as indiated on the �gure 19.
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58 Petri NetsInitial marking m0 is de�ned by a token in the label of the �rst instrutionand a token in the plae y. Here still, one of the maximal sequenes of exe-ution orresponds to the simulation of the program with ounters. When one�deviates� of exat simulation by �ring a labelled transition zero whereas theorresponding ounter is marked, one an, either swap the ontents of y and y′(by t2 or t3), or to leave it unhanged (by t1). The transitions of the t2 typeand t3 are not used by exat simulation.Theorem 62 (Bisimulation of Petri nets) the problem of the bisimulationof two marked nets (R, m0) and (R′, m′
0) is undeidable.ProofWe will show that a program with ounters prog stops if and only if (Rprog, m0)and (Rprog, m0) are not bisimilar1. prog stopsLet suppose us that m0 and m0 are not bisimilar. Let m0, m1, . . . , mn the se-quene of markings orrsponding to the exat simulation of prog. We show byreurrene that for i < n, mi and mi are bisimilar. Sine mi orresponds to astep of the exat simulation of prog, it is possible to speak about the next ins-trution to exeute. If this instrution is an inrementation, a derementation,an unonditional jumb or the non zero branh of a onditional jump then asingle transition labelled with the orresponding ation is �rable from mi and

mi leading to respetively mi+1 and mi+1. If this instrution orresponds tothe zero branh zero of a onditional jump onnetion, then here also only onetransition (t1) is �rable from mi and mi sine the tested (x) ounter is notmarked ; the �ring of t1 leads to mi+1 and mi+1. Let us now examine mn−1and mn−1. The transition labelled by fin is �rable from mn−1 but is not �-rable from mn−1 sine y is not marked. The markings mn−1 and mn−1 are notbisimilar and onsequently m0 are m0 are not bisimilar.2. prog does not stopWe de�ne the relationR ontaining (m0, m0) and show thatR is a bisimulation.
R = {(m, m′) | m = m′ where m is a marking reahed by the exat simulationof prog and m′ = m}. Of ourse, it is enough to prove that R is a bisimulationonly for the seond type of pair of markings. Let m be a reahed marking bythe exat simulation of prog. Sine Puisque prog does not stop,the transitionlabelled by fin is not �rable from m. In a ase of abort, no more transitionis �rable both from m and m. If the next transition to exeute is not thezero branh of a onditional jump then a single transition (orresponding tothe simulation) is �rable from m and m. This transition orresponds to the



Chapter x 59simulation of prog and onsequently the pair of reahed markings belongs to
R. If the next transition is a non zero branh then two hoies our from ofa onditional jump m (respetively m), to ontinue the simulation by �ringthe transition labelled by nzero or to �diverge� from the simulation by �ringa transition labelled by zero t1 or t2 (respetively t1 or t3). We show that msimulates m (the onverse is symetri).� If transition nzero is �red from m, the same is �red from m and the pairof reahed markings orresponds to the next step of the simulation of

prog.� If transition t1 is �red from m, t3 is �red from m and the reahed markingsare the same.� If transition t2 is �red from m, t1 is �red from m and the reahed markingsare the same.
♦The attentive reader will have notied that the proof applies to any equiva-lene - from language equivalene to bisimulation - sine if prog stop then twonets then are not language equivalent.In the same way, for the marked nets of the proof, two transitions t and

t′ are never �rable in a onurrent way (i.e m ≥ Pre(T ) + Pre(t′)), then theresult remains valid for equivalenes whih take into aount onurrent �ring.5.2. Deidability resultsDuring this paragraph, we will all upon various onepts introdued inhapter 4 of the volume of the Petri nets [HAD 01℄ (together semi-linear, teh-nique of shorter sequenes, . . .). We strongly advise with reader to defer to itfor better appreiating what follows.5.2.1. LT L FormulasWe �rst study the veri�ation of an event-based temporal logi formula(for instane from linear µ-alul), formulas whih an be represented by anautomaton [DAM 92℄. Terminal states are interpreted as usual in the ase of a�nite sequene semantis or as those of a Bühi's automaton when the semantisis expressed in terms of in�nite sequene.The veri�ation proedure for �nite systems onsists in :� building the automaton assoiated with the negation of the formula,



60 Petri Nets� building the synhronized produt between the labelled transition systemof the model (i.e. the reahability graph) and the automaton,� �nding a �nite sequene (respetively in�nite) reahing (respetively ain�nite times) a terminal state.This proedure is obviously not possible in the ase of in�nite transitionsystems, but the key of the method that we will expose onsists in building aPetri net who generates the labelled transitions system produt and then totest in this net the existene of an adequate sequene.
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Figure 20: Synhonized produt betwen a Petri Net and a automatonThe onstrution on a Petri Net �produt� has been viewed during the hap-ter treating the study of languages and we reall it brie�y here (see �gure 20).� The automaton (Aut) is translated in a Petri net (in fat a one-safe statemahine) (SMA),� The produt net (ProdNet) is obtained, from the net assoiated with themodel (InitNet) and from the state mahine, as follows :� The set of plaes of the produt net is de�ned as the (disjoint) unionof the sets of plaes and the initial marking as the sum of the initialmarkings,� For eah pair of transitions sharing the same label we assoiate a tran-sition ; the input and output ars of that transition are obtained byunion of orresponding ars in the initial nets. Transition of the initialnet labelled by the empty word remain unhanged.It obviously follows that the observable traes of this net are exatly the



Chapter x 61words generated by the initial net and reognized by the automaton (withouttaking into aount the terminal states). This is the departure point of theevaluation method.Theorem 63 (Evaluation of an event based LT L formula) In a Petrinet, the evaluation of an event based LT L formula is a deidable problem (andmore generally any formula whose negation is representable as an automaton)ProofThis result is valid for any kind of sequenes : �nite, �nite maximal, in�nite,divergent. We limit us to the third �rst kinds sine we dont have de�ned in apreise way a semantis for the divergent sequenes.1. Case of the �nite sequenesWe searh the existene of a �nite sequene in the net whih marks a plaeassoiated with a terminal state of the automaton. In other words, for eah ofthose plae, we searh to over the marking de�ned by the presene of a tokenin that plae. The overing problem has been addressed in and the method ofthe shorter sequenes furnishes a proedure whose omplexity is EXPspace.2. Case of the �nite maximal sequenesWe searh the existene of a �nite maximal sequene in the produt net whihmarks a plae assoiated with a terminal state of the automaton. Let Term bethe subset of that plaes. In other words, the net has to stop him in a markingwhere one of the plaes of Term is marked. The set of these markings is a om-putable semi-linear set (∩t∈T {m | NOT m ≥ Pre(t)}∩∪p∈Term{m | m ≥ −→p }.We have to know if one of the markings of a semi-linear set is reahable. Sinea semi-linear set is a �nite union of linear sets, we have suessively to test theaessibility of eah linear set. Finally, to eah linear set E = {w | ∃λ1, . . . , λm

inIN, t.q. w = u +
∑m

i=1 λi.vi}, we add to the net a transition ti for i from 1to m suh that Pré(ti) = vi and Post(ti) =
−→
0 . Then, we have to test, in themodi�ed net, if u is reahable ; unfortunately, the orresponding algorithm isnot reursive primitive.3. Case of the in�nite sequenesWe searh the existene of an in�nite sequene in the produt net whih marksin�nitely often a plae assoiated with a terminal state of the automaton ;in other words one of the transitions, having one of the plaes as an inputplae, is �red in�nitely often. We �nd again the problem to searh an in�nitesequene in whih a given transition t admits an in�nity of ourrenes. Thatis, suh a sequene have the form σ = σ1.σ2. . . . .σi. . . . where t appears in eah

σi. With the help of extration lemma of the hapter 3 of [HV 01℄ applied tothe intermediate markings reahed by the sequenes σ1.σ2. . . . .σi, we deduethat the existene of suh in�nite sequene is equivalent to the existene of



62 Petri Netsa sequene of the form m0[σ1〉m1[σ2〉m2 where m1 ≤ m2 and t having anourrene in σ2. Finally, by adding an output plae pt to t, the initial problemis equivalent in this modi�ed net to searh a sequene m0[σ1〉m1[σ2〉m2 with
m1 ≤ m2 and m1(pt) < m2(pt). This last problem is also solved using thetehniques of the shorter sequenes (see [RAC 78, YEN 92℄ for more details)and leads again to a proedure with a EXPspace omplexity. ♦An interesting question is to known is the deidability is preserved when youonsider extensions of Petri Nets. In fat, this evaluation beomes undeidablefor almost the totality of the extensions of Petri nets. It is for instane the asefor reursive Petri nets and even for restrited models [BOU 96℄. However,when you onsider only a sequential semantis of the �ring of an abstrattransition, the problem remains deidable [HAD 00℄.5.2.2. BisimulationWe now study the bisimulation of a marked net and a �nite transition sys-tem. We will use the ∼N -equivalenes, introdued by the de�nition 31, allowingto haraterize in the ase of �nite STE the bisimulation (f prop 32).To avoid the ambiguity in our notations, in partiular with respet to theorigin of the states whih we will onsider, we will mention the name of theSTE expliitly. Thus we will note 〈LT S, S〉 to larify the fat that the state sis a state of the STE LT S.We introdue two useful notations for the next developments. Let LT S =
〈Σ, S, {

a
→}a∈Σ〉 be a labelled transition system,� IncLT S

n denotes the set of initialized systems inompatible with LT S for
∼n : IncLT S

n = {〈LT S ′, s′〉 | ∀s ∈ S NOT 〈LT S′, s′〉 ∼n 〈LT S, s〉)}� ∗
−→ denotes the transitive and re�exive losure of the union of the a

−→.In other words, 〈LT S, s〉 ∗
−→〈LT S, s′〉 i� s′ is reahable from s.Lemma 64 Let LT S = 〈Σ, S, {

a
→}a∈Σ〉 be a �nite labelled transition system(ns = |S|) and LT S ′ = 〈Σ′, S′, {

a
→}a∈Σ′〉 a labelled transition system, then :

∀s ∈ S, ∀s′ ∈ S′,

〈LT S, s〉 ∼ 〈LT S ′, s′〉 ⇔







〈LT S, s〉 ∼ns
〈LT S ′, s′〉AND

∃/ 〈LT S′, s”〉 ∈ IncSTE
ns

s.t. 〈LT S ′, s′〉 ∗
−→〈LT S′, s”〉ProofFor the impliation from left to right, if 〈LT S, S〉 ∼ 〈LT S ′, 〉 then aording toproperty ?? bisimdeis 〈LT S, S〉 ∼ns

〈LT S′, 〉. In addition, by an obvious re-urrene on the number of transitions a
−→ whih lead of 〈LT S ′, 〉 to 〈LT S′, S”〉



Chapter x 63by using the de�nition of ∼, one establishes that there exists s1 aessible sine
s (with the same number of transitions) suh that 〈LT S′, S”〉 ∼ 〈LT S, s1〉)and onsequently 〈LT S ′, S”〉 ∼ns

〈LT S, s1〉.For the impliation from right to left, we de�ne the relation R as follows :
〈LT S, s1〉R 〈LT S′, s′1〉 ssi







〈LT S, s1〉 ∼ns
〈LT S ′, s′1〉AND

∃/ 〈LT S′, s”〉 ∈ IncLT S
ns

t.q. 〈LT S ′, s′1〉
∗

−→〈LT S′, s”〉We show that R is a relation of bisimulation.Let us suppose that 〈LT S, s1〉
a

−→〈LT S, s2〉 ; then there exists 〈LT S ′, s′2〉 suhthat
〈LT S ′, s′1〉

a
−→〈LT S′, s′2〉 and 〈LT S, s2〉 ∼ns−1 〈LT S′, s′2〉.Sine 〈LT S′, s′2〉 is aessible from 〈LT S′, s′1〉, we have :

∃/ 〈LT S′, s”〉 ∈ IncLT S
ns

t.q. 〈LT S ′, s′2〉
∗

−→〈LT S ′, s”〉. In partiular,
〈LT S ′, s′2〉 /∈ IncLT S

ns
. Thus there exists 〈LT S, s3〉 ∼ns

〈LT S′, s′2〉.By transitivity and the fat that ∼n⊂∼n−1, 〈LT S, s3〉 ∼ns−1 〈LT S, s2〉and under the terms of the property ?? bisimdeis, 〈LT S, s3〉 ∼ns
〈LT S, s2〉.Again by transitivity, one thus obtains 〈LT S, s2〉 ∼ns

〈LT S′, s′2〉.The ase 〈LT S ′, s′1〉
a

−→〈LT S ′, s′2〉 is similar. ♦This haraterization is at the base of the following result.Theorem 65 (Bisimulation between a net and a �nite system) The pro-blem of the bisimulation beween a marked net 〈R, m0〉, without transition la-belled by the empty word, and a �nite labelled transition system 〈LT S, s0〉 isdeidable.ProofLike previously ns = |S|. To deide if 〈R, m0〉 ∼ns
〈LT S, s0〉, it is enough toverify that :� for eah transition labelled by a �rable from m0 and leading to m1, thereexists s1 suh that 〈LT S, s0〉

a
−→〈LT S, s1〉 and 〈LT S, s1〉 ∼ns−1 〈R, m1〉,� Forall s1 suh that 〈LT S, s0〉

a
−→〈LT S, s1〉, ther exists a transition label-led by a �rable from m0 and leading to m1 suh that

〈LT S, s1〉 ∼ns−1 〈R, m1〉.This obviously leads to a reursive proedure whose depth is limited to ns.It remains us to be tested if there is an aessible marking m1 sine m0 suh as
m1 ∈ IncLT S

ns
. Let us study initially markings belonging to IncLT S

ns
. Aordingto the preeding reursive proedure, to test ∼ns

one examines only �ringsequenes of length ≥ ns. Let us pose v the maximal valuation of an ar of R



64 Petri Netsand B = v.ns. Let us take two markings m and m′ suh as ∀p ∈ P, m(p) 6=
me(p) ⇒ m(p) ≥ B AND me(p) ≥ B. These two markings are equivalent for
∼ns

. That is to say thus a marking m bounded by B, let us pose SupB(m) =
{me |me ≥ m AND ∀p ∈ P, m(p)}.Obviously all the markings in SupB(m) are equivalent for ∼ns

. We have tonote that a marking neessarily belongs to SupB(m) for a m bounded by B.The deision proedure operates in two steps First for eah marking m boundedby B, she tests - using the previous proedure - if m ∈ IncLT S
ns

. Then for eahof these m, it searh if there exists m′ ∈ SupB(m) with m′ reahable from
m0. This researh onsists in testing the aessibility of m in a net augmentedwith a transition tp for eah plae p suh that m(p) = B, transition de�ned by
Pre(tp) = −→p and Post(tp) =

−→
0 . ♦In [JAN 99℄, one will be able to �nd results more tehniques like the exis-tene test of a �nite labelled transition system in bisimulation with a Petrinet.
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