
Chapitre 8

Quantitative verification of Markov chains

8.1. Introduction

Hardware and software systems are more and more pervasive inevery day life
and, therefore, there is an obvious demand for these systemsto meet the functional
and performance requirements that the users expect. Automatic verification methods
are a possible, and doable, way to increase our level of confidence in the systems that
we design and produce, both in terms of functionality (what the system does) and
performance (how long does it take). Verification methods that take into account the
randomness of systems work with a model of the system which isa stochastic process.
In order to limit the complexity of the verification process,these stochastic processes
are often either Discrete Time Markov Chains (DTMC) or Continous Time Markov
Chains (CTMC), usually automatically generated by some higher level formalism like
stochastic Petri nets or stochastic process algebras.

Historically the functional verification and the evaluation of performance of an ap-
plication have been considered as two distinct steps of the system development and
verification process : each steps had its own moddel and associated verification tech-
niques. In the last fifteen years instead we have seen the flourishing of a discipline
that aims at taking simultaneously into consideration bothaspects and that is often
referred to as probabilistic verification or, more appropriately, of verification of pro-
babilistic systems. The moving force of the discipline is the need of being able to
evaluate the probability of a property expressed as a logic formula. To show why this
is an important need, we recall a classical example from system reliability.
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Consider a system whose states can be partitioned in three classes :W , the states
in which the system works properly,D, the states in which the system is still working,
although in a degraded mode, andF , the states in which the system is not working
(failure states). The system can evolve fromW states toD orF states, and fromD to
F states. A classical reliability measure for such a system isthe probability of being in
aF state within a given time intervalI. calssical performance and reliability methods
can be easily applied to compute such probability.

If instead we ask for a slightly more refined question, as the probability of failing
within I, given that the system has not passed through a degraded mode of operation,
then we need to express and compute the probability of reaching anF state withinI,
passing only throughW states. A temporal logic (as CSL for example) has temporal
operators that allow a simple, and semantically well-founded definition for the above
property. In this particular case the formula is :P≤p(W UIF ) wherep is the upper
limit of the probability of such an event as fixed by the designer.

This chapter presents the two main themes of probabilistic verification : the tem-
poral logics to express probabilistic verification properties and the techniques to verify
such properties for Markov chains.

The first part of the chapter recalls the basic elements of stochastic processes and
Markov chains, the second part is devoted to the quantitative verification of discrete
time Markov chains, followed by the quantitative verification of continous time Mar-
kov chains. The chapter concludes with an overview of the literature on the various
techniques for probabilistic verification as well as on a number of extensions to the
basic temporal logics presented in the chapter.

8.2. Performance evaluation of Markov models

8.2.1. A stochastic model for discrete events systems

In this section we assume that the reader is familiar with thebasic probability
concepts. For more details the interested reader may consult [FEL 68, FEL 71, TRI 82]

Notations

– Pr(E) is the probability of eventE, while Pr(A |B) is the probability ofA
givenB.

– The termalmost, in an expression likealmost everywhereor almost surely,
means with probability1.

– IR (resp.IR+, IR+∗) denotes the real numbers (resp. non negative and strictly
positive reals). Ifx is a real, then⌊x⌋ denotes its integer part.

– If E ⊆ IR thenInf(E) (resp.Sup(E)) denotes the lower (resp. upper) bound
of E.
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Given a discrete event systen (DES), its execution is characterized by a sequence,
possibly infinite, of events{e1, e2, . . .} and associated interval of time between suc-
cessive events in the sequence. Only the events can change the state of the system.

Formally, the stochastic behaviour of a DES is defined by two families of random
variables :

–X0, . . . , Xn, . . . defined over the (discrete) state space of the system, denoted as
S. In the following, unless otherwise specified, we assume that S is finite.X0 is the
system initial state andXn (n > 0) is the state after thenth event. The occurrence of
an event does not necessarily modify the state of the system,and thereforeXn+1 may
be equal toXn.

– T0, ..., Tn, ... defined overIR+, whereT0 is the time interval before the first event
andTn (n > 0) is the time interval between thenth and the(n + 1)th event. please
note that this interval may be null (e.g.a sequence of assignment instructions can be
considered as istantaneous with respect to a complex data base transaction involving
some input/output activity).

If the initial distribution of variablex0 is concentrated on a single states, we say
that the process starts ins (i.e.Pr(x0 = s) = 1).

A priori there is no restriction whatsoever on the two families of random variables,
but, for the stochastic processes that we shall study in the following, we assume that a
discrete event system cannot execute an infinite number of actions in a finite amount
of time. that is to say :

∞
∑

n=0

tn =∞ almost surely (8.1)

The above property allows to define the state of the system at agiven time instant.
let n(τ ) be the random variable defined by :

n(τ ) =def min({n |
n

∑

k=0

tk > τ})

according to equation (8.1),n(τ ) is definedalmost everywhere. As exemplified in
figure 8.1,n(τ ) can have jumps of size bigger than one. The statey(τ ) of the system
at timeτ , is then simplyxn(τ). it is important to remark thaty(τ ) it is not equivalent to
the stochastic process, but it allows, in most cases, to apply standard solution methods.

The diagram of figure 8.1 represents a possibleexecutionof the process and shows
the interpretation of each random variable defined above. Inthe execution the process
is initially in states4, where it stays until, at timeτ0, it moves to states6. At time
τ0 + τ1, the system visits, in zero time, the statess3 ands12, ending up in states7,
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Figure 8.1: an execution of the stochastic process

where it stays for a certain amount of time. The use ofy(τ ) in continous time, hides
the vanishing statess3 ands12 visited by the process.

The performance evaluation of a discrete event system can bebased on two com-
plementary approaches :

– Analysis under transient behaviour, that is to say, the computation of perfor-
mance measures which are function of the time passed since the start of the system.
This type of analysis is well suited for studying the system behaviour in the initializa-
tion phase, or for studying systems with final states. Classical applications of transient
analysis can be found in the studies aimed at assessing the dependability and reliability
of systems [LAP 95, MEY 80, TRI 92].

– Analysis in steady state, that is to say, the computation ofperformance measures
which takes into account only the stationary behaviour of the system, that may be
reached after a transient initial phase.

The analysis in steady state makes sense only if such a stationary behaviour exists,
a condition that can be expressed as follows, denotingπ(τ ) the distribution ofy(τ ) :

lim
τ→∞

π(τ ) = π (8.2)

whereπ is also a distribution, called thestationary distribution.



Quantitative verification 5

The transient and stationary distributions are the basis for the computation ofper-
formance indices. Examples of indices are the steady state probability that aserver
is up and running, the probability that at timeτ a connection has been established,
and the mean number of clients waiting for a service. to abstract from the definition
of the single performance index, we can introduce the concept of reward function, a
functionf defined on the set of states of the discrete event system and with value onto
IR. given a distributionπ, the quantity

∑

s∈s π(s) ·f(s) represents the measure of the
performance index defined byf .

If f takes values over{0, 1}, we can considerf as the definition of anatomic pro-
positionwhich is satisfied in states if f(s) = 1 and false otherwise. in the following
we shall indicate withP the set of atomic propositions and withs � φ, with s a state
andφ an atomic proposition, the fact thats verifies (or satisfies)φ. in this context, ifπ
is a distribution, the quantity

∑

s�φ π(s) represents the measure of the index defined
by f .

8.2.2. Discrete time Markov chains

Presentation

A Discrete Time Markov Chain (DTMC) is a stochastic process with the following
characteristics :

– the time interval between the time instantstn is a constant whose value is1.

– the next state depends only on the current state, and the transition probability
among states remains constant over time1 :

Pr(Xn+1 = sj |X0 = si0 , ..., Xn = si) =

Pr(Xn+1 = sj |Xn = si) = pij =def P[i, j]

and we shall freely mix the two notationspij andP[i, j] for the transition probability.

Transient and steady state behaviour of a DTMC

We now recall a number of classical results on the analysis ofDTMC : the results
will be explained in an intuitive manner, a full mathematical treatment of the topic
being out of the scope of this chapter.

The transient analysis is rather simple : the change of statetakes place at time
instants{1, 2, . . .}, and given an initial distributionπ0 and the transition probability

1. which justifies the definition ofhomogeneousMarkov chain
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matrix P, we have thatπn, the distribution ofXn (i.e. the state of the chain at time
n) can be expressed asπn = π0 · P

n, which is computed using a basic recurrence
scheme.

To analyze the asymptotic behaviour of a DTMC we need to investigate a bit fur-
ther the DTMC behaviour, in particular we shall classify states as follows :

– A states is said to betransientif the probability of visitings more than once is
strictly less than1. as a consequence, the probability ofPr(Xn = s) goes to zero as
n tends to infinity. A state is said to berecurrentif it is not transient.

– A recurrent states is said to benull recurrent if the mean time between two
successive visits tos is infinite. Intuitively, a null-recurrent state will be visited at
intervals whose mean duration goes to infinity and thereforethe probability of visiting
s will also tends towards0.

– A recurrent states is not null recurrentif the mean time between two successive
visit to s is finite. If a steady state distribution exists, then it is concentrated on the set
of non null recurrent states.

We now explain in detail the steady state analysis procedurefor the case of DTMCs
with a finite state space. The first step consists in building the following graph :

– the set of nodes is the set of states of the chain ;

– there is an arc fromsi to sj if pij > 0.

On the graph we compute the strongly connected components (SCC). If an SCC
has an exit arc, then all the states of the SCC are transient. All the arcs of a bottom
SCC (BSCC), which are components without an exit arc, are nonnull recurrent. In the
particular case of a sink SCC composed by a single states (i.e. P[s, s] = 1), we say
thats is anabsorbingstate.

If the graph is strongly connected (there is a single SCC), then the chain is said to
be irreducible. In the more general case instead each sink SCC constitutes an irredu-
cible subchain.

Even if we consider an irreducible chain, the existence of a steady state distribution
is not guaranted. Indeed a chain with two statess0 ands1, with an initial distribution
concentrated in a single state and transition probabilities p0,1 = p1,0 = 1, keep swit-
ching between the two states at each instant of time and therefore it does not converge
to any stationary distribution. An irreducible chain is said to beperiodic of period
k > 1 if its states can be partitioned into subsetsS0, S1, . . . , Sk−1 such that, from the
states inSi the chain moves, in one step only to states which are inS(i+1) mod k. It is
possible to compute the periodicity of a chain with a linear time algorithm (in the size
of the graph) that we describe in the following using the graph in 8.2. The algorithm
computes first a directed tree that covers all nodes of the chain, using a breadth-first
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Figure 8.2: Example of the computation of a DTMC periodicity

strategy, that allows to label each node with its “heigth”h. Next steps associate with
each arc(u, v) of the graph a weightw(u, v) = h(u) − h(v) + 1 : as a result all the
arcs that are part of the covering tree have a null weight. Theperiodicity of the graph
is then the greatest common divisor (gcd) of the arcs of non null weight. The formal
proof of correctness, that we do not develop here is based on the two following obser-
vations. Periodicity is the gcd of the length of the elementary circuits of the graphs,
and this length is equal to the sum of the weight of the arcs of the circuit.

An irreducible, aperiodic chain (also calledergodic) has a stationary distribution,
and such a distribution isindependent from the initial distribution. The computation of
the steady state distribution is then rather easy, sinceπn+1 = πn ·P. Taking the limit
asn goes to infinity (which is mathematically sound) we getπ = π ·P. Moreoverπ
is the single distribution which is a solution for :

X = X ·P (8.3)

Please note that an initial distribution which is solution of the above equation, is
invariant : whatever the instant of time at which the chain is observed the distribution
will be equal to the initial distribution. Equation (8.3) can be solved with a direct
method, once we add the normalization equationX · 1T = 1 where1T denotes the
column vector of all1. If the size of the system is large, iterative methods are more
effective. The simplest one iterates overX← X ·P [STE 94].

We now consider the more general case, with the single remaining assumption
that the BSCC (denoted as{C1, . . . , Ck}) are aperiodic with stationary distribution
{π1, . . . ,πk}. In this case also the chain has a stationary distribution (which now
depends on the initial distribution), given byπ =

∑k
i=1 Pr(of reachingCi) · πi. To

compute the probability of reaching a BSCC we condition on being in a initial state :
Pr(of reachingCi) =

∑

s∈S π0(s) · π
′
Ci

(s) whereπ
′
Ci

(s) = Pr(of reachingCi |
X0 = s). If PT,T is the submatrix of the transition matrix limited to transient states,
and ifPT,i is the submatrix from transient states towards the states ofCi, thenπ

′
Ci

=
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(
∑

n≥0 (PT,T )n) ·PT,i ·1
T = (I−PT,T )−1 ·PT,i ·1

T . The first equality is obtained
by conditioning on the length of all possible paths that leads toCi, while the second
one is immediate.

8.2.3. Continous time Markov chain

Presentation

A Continuous Time Markov Chain (CTMC) has the following characteristics :

– the time interval between the time instantsTn is a random variable distributed as
a negative exponential, whose rate depends only on the stateXn. That is to say :

Pr(Tn ≤ τ |X0 = si0 , ..., Xn = si, T0 ≤ τ0, ..., Tn−1 ≤ τn−1) =

Pr(Tn ≤ τ |Xn = si) = 1− eλi·τ

– The next state depends only on the current state, and the transition probabilities
remain constant2 over time :

Pr(Xn+1 = sj |X0 = si0 , ..., Xn = si, T0 ≤ τ0, ..., Tn−1 ≤ τn−1) =

Pr(Xn+1 = sj |Xn = si) = pij =def P[i, j]

The DTMC defined byP is calledembedded chain. It observes the change of state,
independently of the time elapsed in the state. A CTMC state is said to be absorbing
if it is absorbing in the embedded DTMC.

Transient and stationary behaviour of a CTMC

In a continuous time Markov chain at any time the evolution ofa DES is comple-
tely determined by its current state, due to the memoryless property of the exponential
distribution.

In particular, the process is fully characterized by the initial distribution π(0),
matrixP and by the ratesλi. Let π(τ ) be the distribution ofY (τ ) and writeπk(τ ) =
π(t)(sk). If δ is small enough, the probability of more than one event occurring in
the intervalτ andτ + δ is very small and can be neglected, and the probability of a
change from statek to statek′ is approximately equal toλk · δ · pkk′ (by definition of
exponential distribution).

πk(τ + δ) ≈ πk(τ ) · (1− λk · δ) +
∑

k′ 6=k

πk′(τ ) · λk′ · δ · pk′k

2. Also in this case we say that the chain ishomogeneous
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From which we derive

πk(τ + δ)− πk(τ )

δ
≈ πk(τ ) · (−λk) +

∑

k′ 6=k

πk′(τ ) · λk′ · pk′k

and finally :
dπk
dτ

= πk(τ ) · (−λk) +
∑

k′ 6=k

πk′(τ ) · λk′ · pk′k

Let us define matrixQ as :qkk′ = λk · pkk′ pour k 6= k′ andqkk = −λk(=
−

∑

k′ 6=k qkk′). We can the rewrite the previous equation as :

dπ

dτ
= π ·Q (8.4)

Matrix Q is calledinfinitesimal generatorof the CTMC.

According to equation (8.4) the infinitesimal generator completely specifies the
evolution of the system. Although this equation clearly establish the memoryless pro-
perty of the CTMC, it does not give any direct mean of computing the transient
behaviour of a CTMC. A possible method, calleduniformisation, has been defined
in [JEN 53], and it is based upon the construction of a second Markov chain which
is equivalent to the first one from a probabilistic point of view. This chain is built as
follows. Let’s choose a valueµ ≥ Sup({λi}), and assume that this is the parameter
of the exponential distribution of the time until the next change of state, whatever the
current state is (from which the termuniform). The change of state is defined by the
transition matrixPµ defined by :∀i 6= j,Pµ[si, sj ] = (µ)−1 · λi · P[si, sj ]. The
computation of the infinitesimal generator of such a chain shows immediately that it
is equal to the infinitesimal generator of the first CTMC, which implies that, if we dis-
regard transitions, the two CTMCs describe the same stochastic process. We can then
compute the transient distributionπ(τ ) as follows. We first compute the probability
of being in states at timeτ , knowing that there have beenn changes of state in the
interval[0, τ ]. This probability can be computed through the embedded Markov chain,
and precisely asπ(0) · (Pµ)n. We can then “condition” it through the probability of
havingn changes of state, knowing that the time between two successive changes fol-
lows an exponential distribution. This probability is given bye−µ·τ · (µ · τ )n/n!, from
which we obtain :

π(τ ) = π(0) · (e−µ·τ
∑

n≥0

(µ · τ )n(Pµ)n

n!
)

Although there is an infinite sum, in practice the sum converges rather quickly, and
the sum can be stopped once the precision required is greaterthane−µ·τ · (µ · τ )n/n!.
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We now consider the asymptotic behaviour of a CTMC. Again, the simplest way is
to study the embedded chain, which, as observed when explaining uniformization,
it is not unique. Let us build a DTMC as follows. Chooseµ > Sup({λi}), since
the inequality is strict, it is true that, for each states, Pµ[s, s] > 0 and therefore
each BSCC of this chain is ergodic. As a consequence, a singlestationary distribution
exists, that measures the steady state probability of the occurrence of a state. Since the
uniform chain has the same mean sojourn time in each state, equal to (1/µ), this also
gives the stationary distribution of the CTMC.

In the particular case (rather frequent) in which the embedded chain is ergodic, this
distribution can be computed through the solution of the equationX = X · Pµ, and
Pµ = I + (1/µ)Q. The distribution is therefore the unique solution of the equation :

X ·Q = 0 et X · 1T = 1 (8.5)

By analogy, we then say that the CTMC is ergodic.

8.3. Verification of Discrete Time Markov Chain

8.3.1. Temporal logics for Markov chains

We consider a « probabilistic » extension of theCTL∗ logic, that is namedPCTL∗.
The syntax of this logic is defined inductively upon state formulas and paths formulas.

Définition 1. LetP be the set of atomic propositions.
A PCTL∗ state formula (relative toP) is defined by :

E1 : If φ ∈ P thenφ is aPCTL∗ state formula ;

E2 : If φ andψ are PCTL∗ state formulas then¬φ andφ ∧ ψ are PCTL∗ state
formulas ;

E3 : If ϕ is aPCTL∗ path formula,a ∈ [0, 1] is a rational number, and⊲⊳∈ {=, 6=
, <,≤, >,≥} thenP⊲⊳aϕ is aPCTL∗ state formula.

A path formula ofPCTL∗ (relative toP) is defined by :

C1 : A PCTL∗ state formula is aPCTL∗ path formula ;

C2 : if ϕ and θ are PCTL∗ path formulas, then¬ϕ andϕ ∧ θ are PCTL∗ path
formulas ;

C3 : If ϕ and θ are PCTL∗ path formulas, thenXϕ and ϕUθ are PCTL∗ path
formulas.

MSG: SD : not sure what you mean in the next wordsEND Comme dans le cas
des systèmes de transitions, deux fragments de cette logique sont particulièrement
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intéressants. Two subsets of thePCTL∗ formulas are of particular interest. The first
subset is calledPCTL (by analogy withCTL) and it is built using only the rules
E1, E2, E3, C

′
3 whereC ′

3 is defined as « Ifφ andψ arePCTL state formulas, the
Xφ andφUψ arePCTL path formulas ». The second subset is calledPLTL (by
analogy withLTL) and it is built only on the rulesE1, E3, C

′
1, C2, C3 whereC ′

1 is
« If ϕ ∈ P theϕ is aPLTL state formula ».

We now explain how to evaluate the truth value of aPCTL, PLTL, or PCTL∗

formula.

The semantics of formulas is given in the following. We consider a Markov chain
M whose states are labeled by a subset of atomic propositions.We indicate withs a
state of the chain and withσ = s0, s1, . . . an infinite path in the graph associated to
the chain. We denoteσi the suffixsi, si+1, . . ., andM, s |= φ the satisfaction of state
formulaφ by states andσ |= ϕ the satisfaction of path formulaϕ by pathσ.

Définition 2. LetM be a Markov chain,s a state of the chain, andσ a path of the
chain.
Teh satisfaction of the state formulaφ bys is inductively defined by :

– if φ ∈ P thenM, s |= φ iff s is labelled byφ ;

– if φ ≡ ¬ψ thenM, s |= φ iffM, s 6|= ψ ;

– φ ≡ ψ1 ∧ ψ2 thenM, s |= φ iffM, s |= ψ1 andM, s |= ψ2 ;

– If φ ≡ P⊲⊳aϕ thenM, s |= φ iff Pr({σ |= ϕ} | s0 = s) ⊲⊳ a.

The satisfaction of a path formulaϕ byσ is inductively defined by :

– If ϕ is a state formula, thenσ |= ϕ iffM, s0 |= φ ;

– If ϕ ≡ ¬θ thenσ |= ϕ iff σ 6|= θ ;

– If ϕ ≡ θ1 ∧ θ2 thenσ |= ϕ iff σ |= θ1 andσ |= θ2 ;

– If ϕ ≡ X θ thenσ |= ϕ iff σ1 |= θ ;

– If ϕ ≡ θ1Uθ2 thenσ |= ϕ iff ∃i σi |= θ2 and∀j < i σj |= θ1.

This semantics assume implicitly that the set of paths that verify a formula is mea-
surable. This hypothesis is justifiable, as can be proved through basic results of mea-
sure theory, but this goes beyond the scope of this chapter.

8.3.2. Verification ofPCTL formulas

Given a DTMC and aPCTL formula φ the verification algorithm proceeds by
evaluating bottom up the sub-formulas of the syntactic treeof φ, from the leaves up
to the root. At each step the algorithm evaluates a sub-formula considering as atomic
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Figure 8.3: Calcul deP⊲⊳aψUχ

propositions the operands of the most external operator (ofthe subformula associated
to the tree node considered).

Considering the syntax ofPCTL the formulas to be considered are :¬ψ, ψ ∧
χ, P⊲⊳aXψ, P⊲⊳aψUχ whereψ andχ are (formulas transformed into) atomic proposi-
tions. We now provide an informal explanaton of the algorithm and its correctness.

φ = ¬ψ The algorithm labels withφ each state not labelled withψ.

φ = ψ ∧ χ The algorithm labels withφ each state labelled withψ etχ.

φ = P⊲⊳aXψ The algorithm computes the probabilityps of reaching in a single step
a state labelled withψ, with ps ≡

∑

s′|=ψ P[s, s′] whereP is the transition matrix of
the DTMC. States is then labelled withφ iff ps ⊲⊳ a.

φ = P⊲⊳aψUχ The algorithm computes the probability of reaching a state labelled
byχ, passing only through states labelled byψ. Letps be such a probability. Ifs |= χ
thenps = 1 ; if s 6|= χ ands 6|= ψ thenps = 0. In all other cases,ps is computed
on a transformed DTMC : all the states described aboveMSG: SD : be more precise,
if I remember well is6 ψORχ END are made absorbing, and then the probability of
reachingχ from s in the new chain. Since eachχ state is a BSCC, such a probability
can be computed as explained in 8.2.2, and illustrated in figure 8.3. States is then
labelled withφ iff ps ⊲⊳ a.
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8.3.3. Aggregation of Markov chains

In order to establish the correction of the verification algorithm of PLTL, we recall
the notions of aggregation in Markov chains. The aggregation of finite Markov chains
is an efficient method when one is faced to huge chains [KEM 60]. Its principe is
simple : substitute to a chain, an “equivalent” chain where each state of the lumped
chain is a set of states of the initial chain. There are different versions of aggregation
depending on whether the aggregation is sound for every initial distribution (strong
aggregation) or for at least one distribution (weak aggregation). We simultaneously
introduce aggregation for DTMCs and CTMCs. We noteπ0 the initial distribution of
the chain andXn (resp.Xt) the random variable describing the state of the DTMC
(resp. CTMC) at timen (resp.t) (variables calledY at the beginning of the chapter).
P is the transition matrix of the DTMC andQ is the infinitesimal generator of the
CTMC.

Définition 3. LetM be a DTMC (resp. a CTMC) and{Xn}n∈IN (resp.{Xt}t∈IR+ )
the family of corresponding random variables. Let{Si}i∈I be a partition of the state
space. Define the random variableYn for n ∈ IN (resp.Yt for t ∈ IR+ ) byYn = i iff
Xn ∈ Si (resp.Yt = i iff Xt ∈ Si). Then :

– P (resp.Q) is strongly lumpablew.r.t. {Si}i∈I
iff there exists a transition matrixPlp (resp. an infinitesimal generatorQlp) s.t
∀π0 {Yn}n∈IN (resp.{Yt}t∈IR+ ) is a DTMC (resp. CTMC)

with transition matrixPlp (resp. with infinitesimal generatorQlp).

– P (resp.Q) is weakly lumpablew.r.t.{Si}i∈I
iff ∃π0 {Yn}n∈IN (resp.{Yt}t∈IR+ ) is a DTMC (resp. CTMC).

While a characterization of the strong aggregation by examination of the transi-
tion matrix or the infinitesimal generator is easy, the search of a weak aggregation
is much harder [LED 60]. So we introduce exact aggregation, asimple case of weak
aggregation.

Définition 4. LetM be a DTMC (resp. a CTMC) and{Xn}n∈IN (resp.{Xt}t∈IR+ )
the family of corresponding random variables. Let{Si}i∈I be a partition of the state
space. Define the random variableYn for n ∈ IN (resp.Yt for t ∈ IR+ ) byYn = i iff
Xn ∈ Si (resp.Yt = i iff Xt ∈ Si). Then :

– A initial distributionπ0 is equiprobable w.r.t.{Si}i∈I
if ∀i ∈ I, ∀s, s′ ∈ Si, π0(s) = π0(s

′).

– P (resp.Q) is exactly lumpablew.r.t. {Si}i∈I
iff there exists a transition matrixPlp (resp. an infinitesimal generatorQlp) s.t.
∀π0 equiprobable{Yn}n∈IN (resp.{Yt}t∈IR+ ) is a DTMC (resp. CTMC)

with transition matrixPlp (resp. with infinitesimal generatorQlp)
andπn (resp.πt) is equiprobable w.r.t.{Si}i∈I .
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Exact and strong aggregations have simple characterizations [SCH 84] stated in
the next proposition.

Proposition 5. LetM be a DTMC (resp. a CTMC) andP (resp.Q) the corresponding
transition matrix (resp. the corresponding infinitesimal generator). Then :

– P (resp.Q) is strongly lumpable w.r.t.{Si}i∈I iff
∀i, j ∈ I ∀s, s′ ∈ Si

∑

s′′∈Sj
P[s, s′′] =

∑

s′′∈Sj
P[s′, s′′]

(resp.
∑

s′′∈Sj
Q[s, s′′] =

∑

s′′∈Sj
Q[s′, s′′])

– P (resp.Q) is exactly lumpable w.r.t.{Si}i∈I iff
∀i, j ∈ I ∀s, s′ ∈ Si

∑

s′′∈Sj
P[s′′, s] =

∑

s′′∈Sj
P[s′′, s′]

(resp.
∑

s′′∈Sj
Q[s′′, s] =

∑

s′′∈Sj
Q[s′′, s′])

Proof
We prove the first point and let to the reader the similar proofof the second point.

Assume that the condition is fulfilled, letπn the distribution ofXn at timen.
DefinePlp[i, j] =

∑

s′∈Sj
P[s, s′] for an arbitrarys ∈ Si (well defined using the

condition). Then :
∑

s∈Si
πn+1(s) =

∑

s∈Si

∑

j

∑

s′∈Sj
πn(s

′)P[s′, s] =
∑

j

∑

s′∈Sj
πn(s

′)
∑

s∈Si
P[s′, s] =

∑

j(
∑

s′∈Sj
πn(s

′))Plp[j, i]
This établishes that the condition is sufficient.

Assume now that the condition is not fulfilled,
∃i, j ∈ I ∃s, s′ ∈ Si

∑

s′′∈Sj
P[s, s′′] 6=

∑

s′′∈Sj
P[s′, s′′]

Let π0,s etπ0,s′ be the initial point distributions fors ands′. These two distributions
lead to the sameY0. Then :
∑

s′′∈Sj
π1,s(s

′′) =
∑

s′′∈Sj
P[s, s′′] 6=

∑

s′′∈Sj
P[s′, s′′] =

∑

s′′∈Sj
π1,s′(s

′)

This proves that matrixPlp cannot exist.

♦♦♦

Figure 8.4 illustrates the concept strong aggregation in case of a DTMC.

When the condition of strong aggregation is fulfilled the transition matrix (resp.
the infinitesimal generator) of the lumped chain can be directly computed from the
transition matrix (resp. from the infinitesimal generator)of the initial chain as stated
by the next proposition (immediate consequence of the proofof proposition 5).

Proposition 6. LetM be a DTMC (resp. a CTMC) strongly lumpable w.r.t.{Si}i∈I .
Let Plp (resp.Qlp) be the transition matrix (resp. the infinitesimal generator) asso-
ciated with the lumped chain then :
∀i, j ∈ I, ∀s ∈ Si,P

lp[i, j] =
∑

s′∈Sj
P[s, s′] (resp.Qlp[i, j] =

∑

s′∈Sj
Q[s, s′])
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Figure 8.4: An example of strong aggregation in a DTMC

As for strong aggregation, in case of exact aggregation the transition matrix (resp.
the infinitesimal generator) of the lumped chain can be directly computed from the
transition matrix (resp. from the infinitesimal generator)of the initial chain. Observe
that starting with an initial distribution equidistributed over the states of every sub-
set of the partition, at any time the distribution is equidistributed. Consequently, if
the DTMC (resp. the CTMC) is ergodic, its stationnary distribution is equidistributed
over the states of every subset of the partition. Otherwise stated, knowing the transi-
tion matrix (resp. the infinitesimal generator) of the lumped chain, one can compute
its stationnary distribution, and deduce (bylocal equidistribution) the stationnary dis-
tribution of the initial chain. This last step is impossiblewith strong aggregation which
does not ensure equiprobability of states inside a subset.

Proposition 7. LetM be a DTMC (resp. a CTMC) which is exactly lumpable w.r.t.
{Si}i∈I . LetPlp (resp.Qlp) be the transition matrix (resp. the infinitesimal generator)
associated with the lumped chain, then :

– ∀i, j ∈ I, ∀s ∈ Sj Plp[i, j] = (
∑

s′∈Si
P[s′, s])× (|Sj |/|Si|)

(resp.Qlp[i, j] = (
∑

s′∈Si
Q[s′, s])× (|Sj |/|Si|))

– If ∀i ∈ I, ∀s, s′ ∈ Si, π0(s) = π0(s
′) then

∀n ∈ IN (resp.∀t ∈ IR+), ∀i ∈ I, ∀s, s′ ∈ Si, πn(s) = πn(s
′) (resp.πt(s) = πt(s

′)),
whereπn (resp.πt) is the probability distribution at timen (resp.t)

– If P (resp.Q) is ergodic andπ is its stationnary distribution then
∀i ∈ I, ∀s, s′ ∈ Si, π(s) = π(s′)

8.3.4. Verification ofPLTL formulas

Given a DTMCM and aPLTL formulaφ, by definitionφ is either an atomic
proposition, orP⊲⊳aϕ whereϕ is a path formula built on the operatorsX , U and on
atomic propositions. The first case is straighforward, while we describe the second
case in the following.
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As in the previous case, the evaluation proceeds by evaluating the subformulas
of ϕ in the order given by a bottom-up visit of the syntactical tree of the formula.
Here after each subformula evaluation transforms both the formula and the DTMC
such that at the end the formula becomes an atomic proposition whose evaluation is
straightforward. The evaluated subformulaϕ′ is substituted by the atomic proposition
[ϕ′] in the formula itself.

The transformation of the DTMC is more complex. We descrbe itin the following
for the most complex case of a subformulaϕ′ ≡ ψUχ. Every states such that0 <
Pr(σ |= ϕ′ | s0 = s) < 1 of the original DTMC is duplicated intosy, labelled by the
propositions labellings and[ϕ′] andsn labelled by the propositions labellings. All
other states are labelled according to the value of the same probability formula, either
0 or 1. The above probabilities are computed with the same procedure as forPCTL.
So will denote the states that are not duplicated.

The transition probability matrix of the new DTMC is defined as follows :

– The transition probability between states ofS0 is left unchanged as well.

– For all duplicated states, letpy(s) = Pr(σ |= ϕ′ | s0 = s) and pn(s) =
1 − py(s). The probability to move from a states′ of the original chain to a statesy

(resp.sn) is the probability of moving froms′ to s in the original chain, multiplied by
py(s) (resp.pn(s)).

– From statessy (resp.sn) the chain can only move towards duplicated states
s′y (resp.s′n) or towards statess′ of the original chain such thatpy(s′) = 1 (resp.
pn(s′) = 1). The associated transition probabilities are defined byP′[sy, s′y] =
P[s, s′]py(s′)/py(s) andP ′[sy, s′] = P [s, s′]/py(s), similarly for the statessn.

To complete the definition of the transformed chain we need todefine the initial pro-
bability of a statesy (resp.sn) given that the system starts in states. This conditional
probability is given bypy(s) (resp.pn(s)). Consequently,π′

0(s
y) = py(s)π0(s) et

π′
0(s

n) = pn(s)π0(s).

Observe thatP′ is indeed a transition matrix. We prove it only for a relevantcase.
∑

s′∈So
P′[sy, s′] +

∑

s′∈S\So
P′[sy, s′y] =

1
py(s)

(

∑

s′∈So,py(s′)=1 P[s, s′] +
∑

s′∈S\So
P[s, s′]py(s′)

)

Examining a step of the chain, one observes that the expression between parentheses
is the probabilitypy(s).

We show the DTMC transformation caused by subformulaψUχ in figure 8.5.

The correction of this construction is established using the following lemmas. We
noteM′ the transformed chain. A path is saidnormal if it meets infinitely oftenSo.

Lemme 8. The set of normal paths has measure 1 inM and inM′.
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Figure 8.5: CTMC transformation forPLTL

Proof
Let us recall that a random path has a probability 1 to meet a sink SCC and to visit
infinitely often its states. Examine the different cases of asink SCC inM ouM′.

– There exists a state of the SCC fulfillingχ or ¬χ ∧ ¬ψ ; this state belonging to
So will be visited infinitely often.

– All states of the SCC fulfill¬χ ∧ ψ. InM, this leads topn(s) = 1 for every
states in this SCC. Suppose that inM′ the SCC includes a duplicate states. Then
necessarily there is a path froms to a states′ which fulfills χ. Hence this SCC could
not be a sink one.

♦♦♦

Let ϕ′′ be a subformula ofϕ whereϕ′ occurs. Let us noteϕ′′(ϕ′ ← [ϕ′]), the
formulaϕ′′ in whichϕ′ has been substituted by the atomic proposition[ϕ′].

Lemme 9. For every subformulaϕ′′ ofϕ whereϕ′ occurs, one has for every random
pathσ ofM′, Pr(σ |= ϕ′′(ϕ′ ← [ϕ′])⇔ ϕ′′) = 1

Proof
The base case corresponds àϕ′′ = ϕ′ and this is a consequence of the previous lemma
since for a normal pathσ, σ |= ϕ′ iff σ |= [ϕ′]. One proves the lemma by induction
on the size of the formula observing in the case of temporal operators that a suffix of
a normal path is a normal path.

♦♦♦
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Observe that the previous lemma applies to the caseϕ′′ = ϕ.

Notations. Define the abstraction mappingabs from states ofM′ s.t. abs(sy) =
abs(sn) = s et abs(s) = s for everys ∈ So. Define the stochastic processMabs

whose state space is the one ofM obtained by the abstractionabs applied onM′.
The following lemma is the key point for the correction of thealgorithm.

Lemme 10. The stochastic processMabs is a weak aggregation of the processM′

(w.r.t. the initial distributionπ′
0) and it is identical to the Markov chainM.

Proof
Let us noteπn (resp.π′

n) the distribution ofM (resp.M′) at timen. We prove by
recurrence onn that :
∀s ∈ So πn(s) = π′

n(s) et∀s ∈ S\So π′
n(s

y) = πn(s)py(s)∧π
′
n(s

n) = πn(s)pn(s)

Forn = 0, this is due to the definition ofπ′
0. Assume that the equations are fulfilled

for n. Let us prove it forn + 1. We only handle the case of a statesy and let to the
reader the other cases.
π′
n+1(s

y) =
∑

s′∈So
π′
n(s

′)P′[s, sy] +
∑

s′y∈So
π′
n(s

′y)P′[s′y, sy]

=
∑

s′∈So
πn(s

′)P[s′, s]py(s) +
∑

s′y|s′∈S\So
πn(s

′)py(s′)P′[s′, s] py(s)
py(s′)

= py(s)
(

∑

s′∈So
πn(s

′)P[s′, s] +
∑

s′∈S\So
πn(s

′)P′[s′, s]
)

= py(s)πn+1(s)

The resultat is then immediate since inMabs, ∀s ∈ S\So πabsn (s) = π′
n(s

y)+π′
n(s

n).

♦♦♦

We establish now the correction of the algorithm.

Théorème 11.Letσ (resp.σ′) be a random path ofM (resp.M′). Then :

PrM(σ |= ϕ) = PrM′(σ′ |= ϕ(ϕ′ ← [ϕ′]))

Proof
PrM(σ |= ϕ) = PrMabs(σabs |= ϕ)
(lemma 10)
= PrM′(σ′ |= ϕ)
Indeed the truth value ofϕ for a pathσ′ depends only on its abstractionσabs.
= PrM′(σ′ |= ϕ(ϕ′ ← [ϕ′]))
(lemma 9)

♦♦♦
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8.3.5. Verification ofPCTL∗

Given a DTMC and a formulaφ of PCTL∗, the verification algorithm proceeds
again through a bottom-up visit of the syntactical tree of the formulaφ by evaluating
the subtrees ofφ that correspond toPLTL formulas, substituting each verified sub-
formula with an atomic proposition. In each step of the algorithm what needs to be
evaluated is a formula ofPLTL.

8.4. Verification of Continuous Time Markov Chain

Performance evaluation of systems is usually defined in a continuous context. We
open this section with a discussion on the limits of classical performance indices, that
justify the introduction of a temporal logics for performance evaluation.

8.4.1. Limitations of standard performance indices

The classical performance evaluation indices, recalled insection 8.2.1, provide a
set of important informations to a system designer, but theydo not capture all per-
formance aspects of a system. As an example we consider some performance indices
aimed at assessing the dependability of a system.

– Instantaneous availabilityis related to transient behaviour : it represents the pro-
bability at timeτ of service availability.

– Steady-state availabilityis related to steady-state behaviour : it is represents the
probability of service availability in steady-state.

– Interval availability : it represents the probability of having the service always
available between timeτ andτ ′.

– Steady-state interval availability: it is the steady-state probability that the ser-
vice is continuously available between two instants of time. Because we are conside-
ring the steady-state behaviour, such probability does notdepend on the specific points
in time, but only on the duration of the interval limited by the two points.

– Steady-state simultaneous availability and reactivity: it is the steady-state pro-
bability that, upon a request, the system is continuously working until the service is
completed and the response time does not exceed a predefined threshold.

While the first two properties can be directly and easily computed from the tran-
sient and steady-state probabilities, the computation of the other properties is more
involved. It is feasible to devise, for each property, an ad-hoc computation for the pro-
bability of interest, but it is more convenient to define a general logics that can express
complex performance properties, and for which a general algorithm can be designed.
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8.4.2. A temporal logics for continuous time Markov chains

The temporal logics CSL (“Continuous Stochastic Logic”) that we are going to
define is an adaptation of the CTL logics (“Computation Tree Logic” [EME 80]) to
CTMC. The logics allows to express formulas thatevaluates over states, and that are
built with the following syntax (in the definition we follow the approach proposed
in [BAI 03a]).

Définition 12. A CSL formula is inductively defined by :

– If φ ∈ P thenφ is a CSL formula ;

– If φ etψ are CSL formula then¬φ andφ ∧ ψ are CSL formulas ;

– If φ is a CSL formula,a ∈ [0, 1] is a real number,⊲⊳∈ {<,≤, >,≥} thenS⊲⊳aφ
is a CSL formula ;

– If φ andψ are CSL formulas,a ∈ [0, 1] is a real number,⊲⊳∈ {<,≤, >,≥} and
I is an interval ofIR≥0 thenP⊲⊳aX Iφ andP⊲⊳aφUIψ are CSL formulas.

The first two definitions are standard CTL formulas, and we do not explain them
here in more details. The formulaS⊲⊳aφ is satisfied by a states of the CTMC if,
given that the initial state of the chain iss, the cumulative steady-state probabilityp
of the states that satisfyφ, verifiesp ⊲⊳ a. This evaluation is well-defined, since, in
a finite CTMC, a steady-state distribution always exists. Ifthe CTMC is ergodic the
evaluation of the formula does not depend on the specific states.

An execution of a stochastic process satisfiesX Iφ if the first change of state
takes place within the intervalI and leads to a state that verifiesφ. A states satis-
fiesP⊲⊳aX Iφ if the probabilityp of the executions of the stochastic process that start
in s and satisfyX Iφ verifiesp ⊲⊳ a.

An execution of a stochastic process satisfiesφUIψ if it exists a time instantτ ∈ I
such thatψ is true atτ and for all preceeding time instantsφ is true. A states satisfies
P⊲⊳aφU

Iψ if the probability p of the executions that starts ins and satisfyφUIψ
verifiesp ⊲⊳ a.

Using CSL, the availability and dependability properties informally defined before
can be expressed in more formal terms as :

– Instantaneous availabilityguarantee of99% :

P≥0.99trueU
[τ,τ ]disp

wheredisp is an atomic proposition that indicates that the service is available.

– Steady-state availabilityguarantee of99% :

S≥0.99disp
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– Interval availabilityguarantee of99% :

P<0.01trueU
[τ,τ ′]¬disp

– Steady-state interval availabilityguarantee of99% :

S<0.01trueU
[τ,τ ′]¬disp

– Steady-state simultaneous availability and reactivityguarantee of99% with la-
tency of at most3 time units :

S≥0.99(req ⇒ P≥0.99(dispU
[0,3]ack))

wherereq is the atomic proposition that indicates that a request has been received,
andack is an atomic proposition that indicates that the service hasbeen delivered.
Note that the two99% requirements do not have the same meaning. The condition on
the internal operator is a condition on the executions that starts in a particular state,
while the condition on the outer operator is a global requirement on all the states of
the chain, weighted by their steady-state probabilities.

8.4.3. Verification algorithm

Given a CTMC and a CSL formulaφ, the algorithm evaluates the formula star-
ting from the inner formulas and proceeding from inner to outer formulas, following
bottom-up the syntactical tree of the formulaφ and labelling each state with the sub-
formulas satisfied in that state. At each step, the algorithmevaluates a formula by
considering as atomic propositions the operands of the mostexternal operator. The
algorithm can be therefore explained considering one operator at a time.

φ = ¬ψ The algorithm labels withφ each state which is not labelled withψ.

φ = ψ ∧ χ The algorithm labels withφ every state labelled with bothψ andχ.

φ = S⊲⊳aψ The algorithm computes the steady state distribution of theCTMC with
initial probability concentrated ins (the stochastic process starts ins) as explained in
section 8.2.3). The probability of all states labelled withψ are then summed up and the
algorithm labels withφ the states if the sum, let it bep, verifiesp ⊲⊳ a. Note that for
all the states of a BSCC a single computation is needed : indeed either all states of the
BSCC satisfyφ or none of them does. Similarly, if the CTMC has a single stationary
distribution, then the truth value of the formula does not depend on the state.

φ = P⊲⊳aX
Iψ The occurrence of a transition in a states in within the intervalI

and the fact that the state reached upon the transition satisfiesψ are two independent
events, and therefore the probability of the paths that satisfy the formula can be com-
puted as the product of the probabilities of the two events. LetI = [τ, τ ′] ; we assume
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a closed interval, without loss of generality (since we are in a continuous domain the
fact of including or not the bounds of the interval in the computation does not influence
the result). LetQ the infinitesimal generator of the CTMC, andP the matrix of the
embedded DTMC. The probability of the first event iseτQ[s,s] − eτ

′Q[s,s], while the
probability of the second even is

∑

s′�ψ P[s, s′].

φ = P⊲⊳aψU
Iχ The evaluation of this formula requires transient analysisof a CTMC

obtained from the original CTMC by some simple transformations. IfX is a CTMC,
then we shall indicate withXφ the chain obtained by making absorbing all states of
X that verifyφ. In order to simplify the presentation, we consider as separate cases
the various type of intervals.

– φ = P⊲⊳aψU
[0,∞[χ. In this case the executions of the chain on which we cumu-

late the probability should never leave the states that verify ψ, until a state that verifies
χ is reached, without any contraint in time. temps. In other words, we are interested
in the behaviour of the chain from its initial state until it enters a state that satisfies
¬ψ ∨χ. Let’s consider the chainX¬ψ∨χ. If a BSCC of this chain contains a state that
verifiesχ then the probability that we are interested in is1 for all states of the BSCC
(since all states of a BSCC are recurrent), if no such a state exists in the BSCC, then
the probability is0. Let’s call “good” a BSCC associated with a probability1. This
probability only depend on the embedded chain ofX¬ψ∨χ and its computation has
already been described in section 8.2.2.

– φ = P⊲⊳aψU
[0,τ ]χ. In this case the execution of the procees must visit only states

that verifyψ until a state that satisfiesχ s reached, and this event should happen at
time τ at the latest. In other words, the probability is cumulated along the paths until
a state that verifies¬ψ ∨ χ is reached. We need therefore to compute the following
probabilityPr(X¬ψ∨χ(τ ) � χ | X¬ψ∨χ(0) = s).

– φ = P⊲⊳aψU
[τ,τ ]χ. In this case the excution of the process must stay in within

states that verifyψ during the interval[0, τ ] and it must verifyχ at timeτ . The case of
a change of state atτ is not considered since the probability of this event is zero. The
probability to be computed is equal toPr(X¬ψ(τ ) � ψ ∧ χ | X¬ψ(0) = s).

– φ = P⊲⊳aψU
[τ,∞[χ. In this case the execution of the process must stay in within

states that verifyψ during the interval[0, τ ] and then starting from the states reached
at time τ it must verify the furmulaψU [0,∞[χ. The probability to be computed is
therefore

∑

s′�ψ Pr(X¬ψ(τ ) = s′ | X¬ψ(0) = s) · π(s′) whereπ(s′) is computed
using the procedure for the first case.

– φ = P⊲⊳aψU
[τ,τ ′]χ. A similar reasoning as for the previous case leads to the

following formula :
∑

s′�ψ Pr(X¬ψ(τ ) = s′ | X¬ψ(0) = s) ·Pr(X¬ψ∨χ(τ ′− τ ) � χ | X¬ψ∨χ(0) = s′)
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8.5. State of the art in the quantitative evaluation of Markov chains

The field of Markov chain verification has started on the verification of DTMCs.
The first approach for the verification of LTL over DTMCs (proposed in [VAR 85]) is
conceptually very simple : the formula is translated into a Büchi automata, the non-
determinism is then removed and a Rabin automata is produced. The synchronized
product of this automata with the DTMC produces another DTMC, for which, using a
variation of the technique explained in section 8.2, it is possible to compute the requi-
red probability. The complexity of the computation is doubly exponential in the size of
the formula. An improvement in complexity is given by the algorithm in [COU 95] : a
new DTMC is built iteratively from the initial DTMC, and the iteration is driven by the
operators of the formula. This is the algorithm that we have presented in section 8.3.4.
The resulting algorithm is exponential in the size of the formula, and the authors show
that the algorithm has optimal complexity. A third algorithm, proposed in [COU 03],
also translates the formula into a Büchi automata. Due to theparticular construction
followed by the algorithm, it is then possible to compute theprobability associated to
the formula directly on the synchronized product of the automata and of the formula.
This algorithm has an optimal complexity as well, and moreover it provides better
performance than the previous one in many practical cases.

A classical technique for evalauting the performance of a system consists in as-
sociating “rewards” with states and/or transitions of the chain, and in computing the
mean reward or the cumulated reward at timet. Rewards are taken into account by the
PRCTL logics, which has been defined in [AND 03], where an evaluation algorithm
is also presented.

The first relevant work on the verification of CTMCs has appeared in [AZI 96,
AZI 00], where it is shown thatCSL verification is decidable. The verification algo-
rithm is extremely complex, since it does not perform the implicit approximations that
we have done in theCSL verification algorithm presented in this chapter.

We should remark that verification algorithm may become impractical for large
Markov chains. A possible way to solve the problem is to take advantage of a modular
specification of the system, substituting a module with a smaller one, which is never-
theless equivalent with respect to the verification of the given formula. This approach
has been introduced first in [BAI 03a], and it has been later generalized in [BAI 03b],
where various definitions of equivalence are considered.

TheCSL logics that was introduced in section 8.4.2 has two main limitation. On
one side, the path formulas are defined only in terms of atomicpropositions associated
to states, and not also in terms of the actions/transitions in the path. On the other side
the temporal constraints on path formulas are bound to be intervals, which generates
a number of limitations to the expressivity of the temporal constraints in the formula.
The first limitation has been eliminated in [BAI 04] : theasCSL logics substitutes to
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the temporal operators, a regular expression over states and actions. A different ap-
proach is presented instead in [DON 07] : theCSLTA logics there introduced defines
the formulas with the support of a one-clock, deterministic, timed automata.CSLTA

strictly extendsCSL, and it is at least as expressive asasCSL. Moreover the verifica-
tion algorithm is not based on the construction of a number ofmodified CTMCs, but
on the definition of a Markov renewal process, and on the computation of the discrete
embedded Markov chain of the process.

A totally different approach to limit the complexity of the verification task has been
proposed in [YOU 06]. IfP≤aφ is the formula to be verified, we can generate a number
of random executions, and we can then compute the percentageof the executions that
do satisfyφ ; according to standard probability results, this percentage tends to the
probability to be computed. This method is very efficient when the verification of the
formula requires only executions that have an upper bound intime.
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