Chapitre 8

Quantitative verification of Markov chains

8.1. Introduction

Hardware and software systems are more and more pervasaeeiy day life
and, therefore, there is an obvious demand for these systemset the functional
and performance requirements that the users expect. Atitoweaification methods
are a possible, and doable, way to increase our level of candalin the systems that
we design and produce, both in terms of functionality (whe $ystem does) and
performance (how long does it take). Verification methodsd thke into account the
randomness of systems work with a model of the system whiglsischastic process.
In order to limit the complexity of the verification procefisese stochastic processes
are often either Discrete Time Markov Chains (DTMC) or Coatis Time Markov
Chains (CTMC), usually automatically generated by sombdni¢evel formalism like
stochastic Petri nets or stochastic process algebras.

Historically the functional verification and the evaluatiof performance of an ap-
plication have been considered as two distinct steps ofyhm development and
verification process : each steps had its own moddel andiagsdwerification tech-
niques. In the last fifteen years instead we have seen theasfiiug of a discipline
that aims at taking simultaneously into consideration kasthects and that is often
referred to as probabilistic verification or, more apprafaiy, of verification of pro-
babilistic systems. The moving force of the discipline is tiheed of being able to
evaluate the probability of a property expressed as a lagiadla. To show why this
is an important need, we recall a classical example fronegsyseliability.
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Consider a system whose states can be partitioned in trasged IV, the states
in which the system works properl, the states in which the system is still working,
although in a degraded mode, aAd the states in which the system is not working
(failure states). The system can evolve fréimstates taD or F' states, and fronb to
F states. A classical reliability measure for such a systdtreiprobability of being in
a F' state within a given time intervdl calssical performance and reliability methods
can be easily applied to compute such probability.

If instead we ask for a slightly more refined question, as tidability of failing
within I, given that the system has not passed through a degraded rhogeration
then we need to express and compute the probability of regen F' state within/,
passing only throughl” states. A temporal logic (as CSL for example) has temporal
operators that allow a simple, and semantically well-faddefinition for the above
property. In this particular case the formula i®<,(W U!F) wherep is the upper
limit of the probability of such an event as fixed by the design

This chapter presents the two main themes of probabiligtifigation : the tem-
poral logics to express probabilistic verification proesand the techniques to verify
such properties for Markov chains.

The first part of the chapter recalls the basic elements ohafstic processes and
Markov chains, the second part is devoted to the quanttatvrification of discrete
time Markov chains, followed by the quantitative verificatiof continous time Mar-
kov chains. The chapter concludes with an overview of tlegditure on the various
techniques for probabilistic verification as well as on a bemof extensions to the
basic temporal logics presented in the chapter.

8.2. Performance evaluation of Markov models
8.2.1. A stochastic model for discrete events systems

In this section we assume that the reader is familiar withkthgic probability
concepts. For more details the interested reader may ¢¢REl 68, FEL 71, TRI 82]

Notations

—Pr(F) is the probability of even#Z, while Pr(A | B) is the probability ofA
given B.

— The termalmost, in an expression likalmost everywherer almost surely
means with probabilityt.

—1IR (resp.IR",IR**) denotes the real numbers (resp. non negative and strictly
positive reals). Ifr is a real, therjz| denotes its integer part.

—If E C RthenInf(E) (resp.Sup(F)) denotes the lower (resp. upper) bound
of E.
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Given a discrete event systen (DES), its execution is ckeniaed by a sequence,
possibly infinite, of eventge;, es, ...} and associated interval of time between suc-
cessive events in the sequence. Only the events can changaté of the system.

Formally, the stochastic behaviour of a DES is defined by awilies of random
variables :

- Xo,---,Xn,...defined over the (discrete) state space of the system, dkaste
S. In the following, unless otherwise specified, we assumegha finite. X, is the
system initial state and’,, (n > 0) is the state after the!” event. The occurrence of
an event does not necessarily modify the state of the systeathereforeX,,, ; may
be equal taX,,.

—Ty,...,T,, ...defined oveiR ©, whereTy is the time interval before the first event
andT,, (n > 0) is the time interval between thé” and the(n + 1)*" event. please
note that this interval may be nuk.g.a sequence of assignment instructions can be
considered as istantaneous with respect to a complex dsgattzansaction involving
some input/output activity).

If the initial distribution of variabler, is concentrated on a single statewve say
that the process starts ér(i.e. Pr(xzo = s) = 1).

A priori there is no restriction whatsoever on the two families oflan variables,
but, for the stochastic processes that we shall study inolf@fing, we assume that a
discrete event system cannot execute an infinite numbertiohadn a finite amount
of time. that is to say :

Z t, = oo almost surely (8.1)

n=0

The above property allows to define the state of the systengiaea time instant.
let n(7) be the random variable defined by :

(1) =aey min({n | > ty >1})

k=0

according to equation (8.1)(7) is definedalmost everywhereAs exemplified in
figure 8.1,n(7) can have jumps of size bigger than one. The gjéi¢ of the system
attimer, is then simplyz,, ). itis important to remark that(7) it is not equivalent to
the stochastic process, but it allows, in most cases, tyapghdard solution methods.

The diagram of figure 8.1 represents a possitecutiorof the process and shows
the interpretation of each random variable defined abovhd®xecution the process
is initially in states,, where it stays until, at timey, it moves to stateg. At time
70 + 71, the system visits, in zero time, the statgsand s;,, ending up in state-,
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Figure 8.1: an execution of the stochastic process

where it stays for a certain amount of time. The use@(af) in continous time, hides
the vanishing states; ands;» visited by the process.

The performance evaluation of a discrete event system chadedl on two com-
plementary approaches :

— Analysis under transient behaviour, that is to say, theptdation of perfor-
mance measures which are function of the time passed siacgtdtt of the system.
This type of analysis is well suited for studying the systezhdviour in the initializa-
tion phase, or for studying systems with final states. Céassipplications of transient
analysis can be found in the studies aimed at assessingpbadibility and reliability
of systems [LAP 95, MEY 80, TRI 92].

— Analysis in steady state, that is to say, the computatiggedbrmance measures
which takes into account only the stationary behaviour ef gistem, that may be
reached after a transient initial phase.

The analysis in steady state makes sense only if such argatibehaviour exists,
a condition that can be expressed as follows, denetifig the distribution ofy(7) :

lim w(r) =" (8.2)

T—00

whererr is also a distribution, called trsationary distribution
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The transient and stationary distributions are the basithéocomputation oper-
formance indicesExamples of indices are the steady state probability tregraer
is up and running, the probability that at timea connection has been established,
and the mean number of clients waiting for a service. to absfrom the definition
of the single performance index, we can introduce the cdrnmfegward function a
function f defined on the set of states of the discrete event system dmgailiie onto
IR. given a distributionr, the quantityd " . m(s) - f(s) represents the measure of the
performance index defined by

s€Es

If f takes values ovel0, 1}, we can considef as the definition of aatomic pro-
positionwhich is satisfied in stateif f(s) = 1 and false otherwise. in the following
we shall indicate withP the set of atomic propositions and wihF ¢, with s a state
and¢ an atomic proposition, the fact thaverifies (or satisfies). in this context, ifr
is a distribution, the quantity_ ., m(s) represents the measure of the index defined
by f.

8.2.2. Discrete time Markov chains

Presentation

A Discrete Time Markov ChainDPTMC) is a stochastic process with the following
characteristics :

— the time interval between the time instatjiss a constant whose valuels

—the next state depends only on the current state, and thstioa probability
among states remains constant over fime

Pr(X,+1 =3, X0 =50y, ..., Xpn =58;) =
Pr(X,41 =85 | Xy, = 5i) = Dij =des Pli, j]
and we shall freely mix the two notatiops; andP i, j] for the transition probability.
Transient and steady state behaviour of a DTMC

We now recall a number of classical results on the analydBToC : the results
will be explained in an intuitive manner, a full mathematitaatment of the topic
being out of the scope of this chapter.

The transient analysis is rather simple : the change of sats place at time
instants{1, 2, ...}, and given an initial distributionr, and the transition probability

1. which justifies the definition diomogeneouslarkov chain
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matrix P, we have thatr,,, the distribution ofX,, (i.e. the state of the chain at time
n) can be expressed as, = 7 - P", which is computed using a basic recurrence
scheme.

To analyze the asymptotic behaviour of a DTMC we need to tiyat® a bit fur-
ther the DTMC behaviour, in particular we shall classifytsseas follows :

— A states is said to beransientif the probability of visitings more than once is
strictly less tharl. as a consequence, the probabilityfef{ X,, = s) goes to zero as
n tends to infinity. A state is said to lsecurrentif it is not transient.

— A recurrent state is said to benull recurrent if the mean time between two
successive visits t@ is infinite. Intuitively, a null-recurrent state will be vied at
intervals whose mean duration goes to infinity and therdftegrobability of visiting
s will also tends towards.

— A recurrent state is not null recurrentif the mean time between two successive
visit to s is finite. If a steady state distribution exists, then it iscentrated on the set
of non null recurrent states.

We now explain in detail the steady state analysis procddutbe case of DTMCs
with a finite state space. The first step consists in buildiegfollowing graph :

— the set of nodes is the set of states of the chain;
—there is an arc frorg; to s; if p;; > 0.

On the graph we compute the strongly connected compone@S)(3f an SCC
has an exit arc, then all the states of the SCC are transidirthedarcs of a bottom
SCC (BSCC), which are components without an exit arc, arexatimecurrent. In the
particular case of a sink SCC composed by a single stéte. P[s, s] = 1), we say
thats is anabsorbingstate.

If the graph is strongly connected (there is a single SC@) the chain is said to
beirreducible In the more general case instead each sink SCC constitutiegdu-
cible subchain.

Even if we consider an irreducible chain, the existence téady state distribution
is not guaranted. Indeed a chain with two statgands;, with an initial distribution
concentrated in a single state and transition probatsilitiea = p,,, = 1, keep swit-
ching between the two states at each instant of time andftimeriédoes not converge
to any stationary distribution. An irreducible chain iscs#d be periodic of period
k > 1ifits states can be partitioned into subs&issS,, . .., Sx_1 such that, from the
states inS; the chain moves, in one step only to states which afgin;) 0q & Itis
possible to compute the periodicity of a chain with a linéaetalgorithm (in the size
of the graph) that we describe in the following using the grap8.2. The algorithm
computes first a directed tree that covers all nodes of thimchsing a breadth-first
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Figure 8.2: Example of the computation of a DTMC periodicity

strategy, that allows to label each node with its “heigih’Next steps associate with
each arqu,v) of the graph a weightv(u, v) = h(u) — h(v) + 1 : as a result all the
arcs that are part of the covering tree have a null weight.peedicity of the graph
is then the greatest common divisor (gcd) of the arcs of ndinveight. The formal
proof of correctness, that we do not develop here is baseleotwb following obser-
vations. Periodicity is the gcd of the length of the elempntarcuits of the graphs,
and this length is equal to the sum of the weight of the archetircuit.

An irreducible, aperiodic chain (also calledyodig has a stationary distribution,
and such a distribution isdependent from the initial distributiohe computation of
the steady state distribution is then rather easy, sinca = m,, - P. Taking the limit
asn goes to infinity (which is mathematically sound) we get= = - P. Moreoverr
is the single distribution which is a solution for :

X=X.-P (8.3)

Please note that an initial distribution which is solutidrtlee above equation, is
invariant: whatever the instant of time at which the chain is obserkediistribution
will be equal to the initial distribution. Equation (8.3)rcée solved with a direct
method, once we add the normalization equaBon1” = 1 where1” denotes the
column vector of alll. If the size of the system is large, iterative methods areemor
effective. The simplest one iterates over— X - P [STE 94].

We now consider the more general case, with the single réngaassumption
that the BSCC (denoted d€;, ...,Cy}) are aperiodic with stationary distribution
{m1,...,m}. In this case also the chain has a stationary distributidmicfivnow
depends on the initial distribution), given by = Zle Pr(of reachingC;) - m;. To
compute the probability of reaching a BSCC we condition andpé a initial state :
Pr(of reachingC;) = > cgmo(s) - 7, (s) wherem; (s) = Pr(of reachingC; |
Xo = s). If Py is the submatrix of the transition matrix limited to trargistates,
and if Pr; is the submatrix from transient states towards the stat€s mienﬂ-’ci =
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>ps0 Prr)") - Pr;- 1T = (I-Prp)~'-Pr,-17. The first equality is obtained
by conditioning on the length of all possible paths that $etd;, while the second
one is immediate.

8.2.3. Continous time Markov chain
Presentation

A Continuous Time Markov ChairQTMC) has the following characteristics :
— the time interval between the time instaififsis a random variable distributed as
a negative exponential, whose rate depends only on theJstat€hat is to say :
Pr(T, < 7[Xo =549,y Xn =545, T0 < 7050, Tnm1 < Tp1) =
Pr(Tn <7 | Xp = Si) =1—eN7

— The next state depends only on the current state, and tisdtioa probabilities
remain constagtover time :

Pr(XnJr] =55 |X0 = Sig ,Xn = Si,TO S 70, ...,Tn,1 S Tnfl) =

Pr(Xn+1 =S5y ‘Xn = sz) = Pij =def P[Zaj]

The DTMC defined byP is calledembedded chairit observes the change of state,
independently of the time elapsed in the state. A CTMC stasaid to be absorbing
if it is absorbing in the embedded DTMC.

Transient and stationary behaviour of a CTMC

In a continuous time Markov chain at any time the evolutio@ ®&ES is comple-
tely determined by its current state, due to the memorylegsapty of the exponential
distribution.

In particular, the process is fully characterized by theiahidistribution 7 (0),
matrix P and by the rate3;. Let = (7) be the distribution of"(7) and writer (1) =
m(t)(sx). If § is small enough, the probability of more than one event a@aoyiin
the intervalr andr + ¢ is very small and can be neglected, and the probability of a
change from staté to statek’ is approximately equal tdy, - ¢ - prrs (by definition of
exponential distribution).

7rk(7+5)%7rk(7)-(1—)\k-5)+ Z Wk/(T)-)\k/ '5'pk/k
k' £k

2. Also in this case we say that the chairfh@mogeneous
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From which we derive

(T +0) — 7k (7)

5 ~k(T) - (=Ak) Y ke (T) - Mk - P
k' #k
and finally :
dﬂ'k
= = k() (=) + > k(1) - M- P
k' £k
Let us define matrixQ as :qgrr = Mg - prer POUrk # K andqpr, = =g (=
— 2wk Gk )- We can the rewrite the previous equation as :
d
T or.qQ (8.4)
dr

Matrix Q is calledinfinitesimal generatoof the CTMC.

According to equation (8.4) the infinitesimal generator ptetely specifies the
evolution of the system. Although this equation clearlyab8sh the memoryless pro-
perty of the CTMC, it does not give any direct mean of computihe transient
behaviour of a CTMC. A possible method, callediformisation has been defined
in [JEN 53], and it is based upon the construction of a secoadk® chain which
is equivalent to the first one from a probabilistic point oéwi This chain is built as
follows. Let's choose a valug > Sup({A;}), and assume that this is the parameter
of the exponential distribution of the time until the nexaadge of state, whatever the
current state is (from which the teramiform). The change of state is defined by the
transition matrixP* defined by Vi # j,P*[s;,s;] = (1)~ - \; - Ps;, s;]. The
computation of the infinitesimal generator of such a chaowshimmediately that it
is equal to the infinitesimal generator of the first CTMC, whimplies that, if we dis-
regard transitions, the two CTMCs describe the same sttichmecess. We can then
compute the transient distributian(7) as follows. We first compute the probability
of being in states at time7, knowing that there have beenchanges of state in the
interval [0, 7]. This probability can be computed through the embedded Meckain,
and precisely ag(0) - (P*)™. We can then “condition” it through the probability of
havingn changes of state, knowing that the time between two suseesisanges fol-
lows an exponential distribution. This probability is giMey e - (- 7)™ /n!, from
which we obtain :

(- 7)" (P

Although there is an infinite sum, in practice the sum coreergther quickly, and
the sum can be stopped once the precision required is gteater 7 - (- 7)™ /nl.
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We now consider the asymptotic behaviour of a CTMC. Agair, glmplest way is
to study the embedded chain, which, as observed when ekgaimiformization,

it is not unique. Let us build a DTMC as follows. Chooge> Sup({\;}), since
the inequality is strict, it is true that, for each stateP“[s,s] > 0 and therefore
each BSCC of this chain is ergodic. As a consequence, a staglenary distribution
exists, that measures the steady state probability of thertence of a state. Since the
uniform chain has the same mean sojourn time in each state| #q(l /1), this also
gives the stationary distribution of the CTMC.

In the particular case (rather frequent) in which the embddtdhain is ergodic, this
distribution can be computed through the solution of theatign X = X - P#, and
P =1+ (1/u)Q. The distribution is therefore the unique solution of theatpn :

X-Q=0 et X-1T =1 (8.5)

By analogy, we then say that the CTMC is ergodic.

8.3. Verification of Discrete Time Markov Chain
8.3.1. Temporal logics for Markov chains

We consider a « probabilistic » extension of th€ L* logic, that is named®CT L*.
The syntax of this logic is defined inductively upon staterfatas and paths formulas.

Définition 1. LetP be the set of atomic propositions.
A PCTL* state formula (relative t@) is defined by :

E;:If ¢ € Pthengisa PCTL* state formula;

FEy: If ¢ andy are PCTL* state formulas them¢ and ¢ A ¢ are PCTL* state
formulas;

Es:If pisaPCTL* path formulaa € [0, 1] is a rational number, andi € {=, #
, <, <, >, >} thenP.,p is a PCTL* state formula.

A path formula ofPCT L* (relative toP) is defined by :
Ci1: A PCTL* state formula is a?CT L* path formula;

Cy @ if ¢ and§ are PCTL* path formulas, therp and ¢ A 6 are PCTL* path
formulas;

Cs:If p and @ are PCTL* path formulas, thenXy and /0 are PCTL* path
formulas.

MSG: SD : not sure what you mean in the next woEElND Comme dans le cas
des systemes de transitions, deux fragments de cette ®giopt particulierement
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intéressants. Two subsets of tR€'T' L* formulas are of particular interest. The first
subset is called®>CTL (by analogy withCT L) and it is built using only the rules
Ey, Es, E3, C% whereCY is defined as « Iy andy are PCTL state formulas, the
X¢ and gl are PCTL path formulas ». The second subset is calletdl’L (by
analogy withLT'L) and it is built only on the rule¥,, E3, C}, Cs, C3 where(C/ is
«If ¢ € PtheyisaPLTL state formula ».

We now explain how to evaluate the truth value dP&T'L, PLTL, or PCTL*
formula.

The semantics of formulas is given in the following. We cdesia Markov chain
M whose states are labeled by a subset of atomic proposiiiéa#ndicate withs a
state of the chain and with = s, s1, ... an infinite path in the graph associated to
the chain. We denote; the suffixs;, s;+1, ..., andM, s = ¢ the satisfaction of state
formula¢ by states ando |= ¢ the satisfaction of path formula by patho.

Définition 2. Let M be a Markov chaing a state of the chain, and a path of the
chain.
Teh satisfaction of the state formujeby s is inductively defined by :

—if p € PthenM, s = ¢ iff sis labelled by ;
—if¢p=-ythenM,s = ¢iff M, s (= ;

— ¢ =11 NbgthenM, s = ¢ iff M, s =11 and M, s = 1o
—If ¢ = Bugp thenM, s = ¢ iff Pr({o = ¢} | so = s) < a.

The satisfaction of a path formulaby o is inductively defined by :
— If p is a state formula, thed = ¢ iff M, sg = ¢;
—Ifp=-0theno = ¢iff o |~ 6;

—Ifp=6; ANOytheno E ¢ iff o =01 ando = 05 ;
—Ifp=X0theno E ¢iff oy E0;
—If o = 0,Ub, theno = ¢iff Ji o, =0, andVj <io; = b6;.

This semantics assume implicitly that the set of paths teafywa formula is mea-
surable. This hypothesis is justifiable, as can be provemigir basic results of mea-
sure theory, but this goes beyond the scope of this chapter.

8.3.2. Verification of PC'T L formulas
Given a DTMC and aPCT'L formula ¢ the verification algorithm proceeds by

evaluating bottom up the sub-formulas of the syntactic tfeg, from the leaves up
to the root. At each step the algorithm evaluates a sub-flaricansidering as atomic



12 Systémes Temps Réel

@04/21“ “i {

0.3@ o)
k %.8 o& %8
o T={1,2,5,8)
x
O —an-w 0 0.70 0
0.10 0 0 63/93 90/93
Oty (e E 8] ][]
o 0 o0 o0 1
1 O.3¢ o%
@ 1@@9 O~210.1

0
0 0

100/93 70/93 0 0 -
(zace | 10793 100793 0 0| 1@ O
o 0 10
01

Figure 8.3: Calcul dé>., ool x

propositions the operands of the most external operatahé$ubformula associated
to the tree node considered).

Considering the syntax aPCT'L the formulas to be considered are-, 1) A
X, Poaa X0, PogapU x Wherey andy are (formulas transformed into) atomic proposi-
tions. We now provide an informal explanaton of the algonithnd its correctness.

The algorithm labels witlp each state not labelled with.
The algorithm labels witly each state labelled with et y.

The algorithm computes the probabiljty of reaching in a single step
a state labelled with), with p, = Zs’bw P|s, '] whereP is the transition matrix of
the DTMC. States is then labelled withy iff pg > a.

(¢ = Pyu¥U x| The algorithm computes the probability of reaching a stabelled

by x, passing only through states labelledibyl et p, be such a probability. I§ = x
thenps = 1;if s £ x ands [~ ¢ thenp, = 0. In all other cases; is computed
on a transformed DTMC : all the states described ald8&: SD : be more precise,

if | remember well is £//O Ry END are made absorbing, and then the probability of
reachingy from s in the new chain. Since eaghstate is a BSCC, such a probability
can be computed as explained in 8.2.2, and illustrated indi@u3. States is then
labelled withg iff ps < a.
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8.3.3. Aggregation of Markov chains

In order to establish the correction of the verification ailfpon of PLTL, we recall
the notions of aggregation in Markov chains. The aggregatfdinite Markov chains
is an efficient method when one is faced to huge chains [KEM B]principe is
simple : substitute to a chain, an “equivalent” chain whexehestate of the lumped
chain is a set of states of the initial chain. There are difierersions of aggregation
depending on whether the aggregation is sound for evengligiistribution Etrong
aggregation or for at least one distributionneak aggregation We simultaneously
introduce aggregation for DTMCs and CTMCs. We nagethe initial distribution of
the chain andX,, (resp.X;) the random variable describing the state of the DTMC
(resp. CTMC) at timen (resp.t) (variables called” at the beginning of the chapter).
P is the transition matrix of the DTMC an@ is the infinitesimal generator of the
CTMC.

Définition 3. Let. M be a DTMC (resp. a CTMC) anflX,.}, .y (resp-{X:}, g +)
the family of corresponding random variables. {&; };; be a partition of the state
space. Define the random varialitg for n € IN (resp.Y; fort € R" ) byY;, = i iff
X, €S, (resp.Y; =i iff X, € S;). Then:

— P (resp.Q) is strongly lumpablev.r.t. {S; }icr
iff there exists a transition matri®'? (resp. an infinitesimal generat®'?) s.t
V7o {Yn}, N (resp{Yi}, g+)is a DTMC (resp. CTMC)
with transition matrixP'? (resp. with infinitesimal generatad'?).

— P (resp.Q) is weakly lumpablewn.r.t. {S; }icr
iff 3mo {Ya}, e (resp.{Y:}, r+) is @ DTMC (resp. CTMC).

While a characterization of the strong aggregation by eration of the transi-
tion matrix or the infinitesimal generator is easy, the dearfca weak aggregation
is much harder [LED 60]. So we introduce exact aggregatiaimgple case of weak
aggregation.

Définition 4. Let M be a DTMC (resp. a CTMC) anflX,, }, .|\ (resp.{Xt}tEIR+)
the family of corresponding random variables. {&; };<; be a partition of the state
space. Define the random varialifg for n € IN (resp.Y; fort € R" ) byY;, =i iff
X, €85, (resp.Y; =i iff X, € S;). Then:

— A initial distributionmy is equiprobable w.r.t{.S; };cr
if Vi € 1,Vs,s" € S;,mo(s) = mo(s).

— P (resp.Q) is exactly lumpablev.r.t. {S; }icr
iff there exists a transition matri®'? (resp. an infinitesimal generat@®'?) s.t.
Vo equiprobableY,, }, -y (resp.{Yt}te]R+) isa DTMC (resp. CTMC)
with transition matrixP'? (resp. with infinitesimal generata'?)
andm, (resp.m) is equiprobable w.rt{S; };cs.
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Exact and strong aggregations have simple charactenzaf®CH 84] stated in
the next proposition.

Proposition 5. Let M be a DTMC (resp. a CTMC) arll (resp.Q) the corresponding
transition matrix (resp. the corresponding infinitesimahgrator). Then :
— P (resp.Q) is strongly lumpable w.r.{.S; } ;< iff
Vi,j € IVs,s' € S; Zs”esj P[s, 3//] — Es”esj P[s', S//]
(resp.d_,icg, Qls, 8"l = Xgres, Qls',s")
—P (resp.Q) is exactly lumpable w.r.{S; };c; iff
Vi,j € IVs,s' € S; ZS”GS]‘ P[S”,S} — Es”esj P[S/I7S/]
(reSp-Zs”esj Q[s", s] = Zs”esj Q[s", ')

Proof
We prove the first point and let to the reader the similar paddhe second point.

Assume that the condition is fulfilled, let, the distribution ofX,, at timen.

Define P[i,j] = P|s, s'] for an arbitrarys € S; (well defined using the
condition). Then :

ZSESi 7Tn+1(8) = ZSESZ' Zj ZS’ESj ﬂn(sl)P[Sla 5} =

2 Zs'esj Tn(s') Xses, Pl 8] = 22,0 es, Tn(s'))PP[j, 1]

This établishes that the condition is sufficient.

s'€S;

Assume now that the condition is not fulfilled,

Ji,j € 13s,8" €8i ) gneg, Pls,s"| # X gnes, Pls's 8]

Let 7o, et . be the initial point distributions fos ands’. These two distributions
lead to the sam#&;,. Then:

Dsres; Ts(8") = 2gnes, Pls, "l # Xgnes, Pls's 8" = Ygnes, ms(8)

This proves that matri®'? cannot exist.

000

Figure 8.4 illustrates the concept strong aggregationse cda DTMC.

When the condition of strong aggregation is fulfilled thengition matrix (resp.
the infinitesimal generator) of the lumped chain can be direomputed from the
transition matrix (resp. from the infinitesimal generatofrthe initial chain as stated
by the next proposition (immediate consequence of the pybpfoposition 5).

Proposition 6. Let M be a DTMC (resp. a CTMC) strongly lumpable w.{.8;};c;.
Let P'? (resp.Q'?) be the transition matrix (resp. the infinitesimal generh@sso-
ciated with the lumped chain then :

Wi,j € 1,Vs € S, PPli j] = X g Pls,s') (resp.Q7i, j] = X5, Qls, ')
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Figure 8.4: An example of strong aggregation in a DTMC

As for strong aggregation, in case of exact aggregatiorrémsition matrix (resp.
the infinitesimal generator) of the lumped chain can be direomputed from the
transition matrix (resp. from the infinitesimal generatof}he initial chain. Observe
that starting with an initial distribution equidistributever the states of every sub-
set of the partition, at any time the distribution is equidlgited. Consequently, if
the DTMC (resp. the CTMC) is ergodic, its stationnary disition is equidistributed
over the states of every subset of the partition. Otherwieted, knowing the transi-
tion matrix (resp. the infinitesimal generator) of the lummhain, one can compute
its stationnary distribution, and deduce (bgal equidistribution) the stationnary dis-
tribution of the initial chain. This last step is impossibl#h strong aggregation which
does not ensure equiprobability of states inside a subset.

Proposition 7. Let M be a DTMC (resp. a CTMC) which is exactly lumpable w.r.t.
{S;}icr. LetP™ (resp.Q'P) be the transition matrix (resp. the infinitesimal generjto
associated with the lumped chain, then :

~Vi,j € I,Vs € §; PP[i,j] = (X, e, Pls', s]) x (1551/15il)
(resp.Q[i, j] = (X, es, Qls", s]) x (IS;1/1S])

—1fVie 1,Vs,s" € S;,mo(s) = mp(s") then
vn € IN (resp.vt € RY), Vi € 1,Vs,s' € S, m,(s) = mn(s') (resp.my(s) = m(s)),
wherer,, (resp.m;) is the probability distribution at time, (resp.t)

— If P (resp.Q) is ergodic andr is its stationnary distribution then
Viel,Vs,s €S;,m(s)=m(s")

8.3.4. Verification of PLT L formulas

Given a DTMCM and aPLTL formula ¢, by definition¢ is either an atomic
proposition, orB., Wherey is a path formula built on the operataois ¢/ and on
atomic propositions. The first case is straighforward, &kl describe the second
case in the following.
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As in the previous case, the evaluation proceeds by evagu#tie subformulas
of ¢ in the order given by a bottom-up visit of the syntacticabtad the formula.
Here after each subformula evaluation transforms both dhadla and the DTMC
such that at the end the formula becomes an atomic propositimse evaluation is
straightforward. The evaluated subformyfais substituted by the atomic proposition
[¢'] in the formula itself.

The transformation of the DTMC is more complex. We descrioetiie following
for the most complex case of a subformyla= /. Every states such that) <
Pr(o = ¢’ | so = s) < 1 of the original DTMC is duplicated inte?, labelled by the
propositions labellings and[¢’] and s™ labelled by the propositions labelling All
other states are labelled according to the value of the saof@bility formula, either
0 or 1. The above probabilities are computed with the same proeeaiiforPCT' L.
S, will denote the states that are not duplicated.

The transition probability matrix of the new DTMC is definesifallows :

— The transition probability between statesSgfis left unchanged as well.

— For all duplicated states, lety(s) = Pr(c = ¢’ | sp = s) andpn(s) =
1 — py(s). The probability to move from a staté of the original chain to a stat¢
(resp.s™) is the probability of moving froms’ to s in the original chain, multiplied by
py(s) (resp.pn(s)).

— From statesV (resp.s™) the chain can only move towards duplicated states
s’V (resp.s’™) or towards states’ of the original chain such thaty(s’) = 1 (resp.
pn(s’) = 1). The associated transition probabilities are definedPbj?, s'V] =
Pls, s'|py(s")/py(s) andP’[sY, s'] = P[s, s']/py(s), similarly for the states”.

To complete the definition of the transformed chain we neetkfme the initial pro-
bability of a states¥ (resp.s™) given that the system starts in statélhis conditional
probability is given bypy(s) (resp.pn(s)). Consequentlyr(|(s¥) = py(s)mo(s) et
mo(s™) = pn(s)mo(s).

Observe thaP’ is indeed a transition matrix. We prove it only for a relevease.
ZS/GSO P/[8y7 8/] + ZS/GS\SO P/[Sy, Sly] =

e (Zs'eso,py<s'>:1 Pls, 'l + X oesis, Pls: 8/]py(sl))
Examining a step of the chain, one observes that the exprebsiween parentheses
is the probabilitypy(s).

We show the DTMC transformation caused by subformtilgy in figure 8.5.

The correction of this construction is established usimgftiowing lemmas. We
note M’ the transformed chain. A path is saidrmalif it meets infinitely oftensS,.

Lemme 8. The set of normal paths has measure Mhand in M’.
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Figure 8.5: CTMC transformation fdP LT L

Proof
Let us recall that a random path has a probability 1 to meetlaSCC and to visit
infinitely often its states. Examine the different cases siht SCC inM ou M’.

— There exists a state of the SCC fulfillingor -y A —1); this state belonging to
S, will be visited infinitely often.

— All states of the SCC fulfilbx A . In M, this leads tgn(s) = 1 for every
states in this SCC. Suppose that i’ the SCC includes a duplicate stateThen
necessarily there is a path frosrto a states’ which fulfills . Hence this SCC could
not be a sink one.

000

Let ¢” be a subformula ofp wherey’ occurs. Let us note’ (¢' «— [¢']), the
formulay” in which ¢’ has been substituted by the atomic proposifigh

Lemme 9. For every subformula” of ¢ wherey’ occurs, one has for every random
patha of M', Pr(o |= ¢"(¢" — [¢']) & ¢") =1

Proof

The base case corresponds’a= ¢’ and this is a consequence of the previous lemma
since for a normal path, o = ¢’ iff o = [¢’]. One proves the lemma by induction
on the size of the formula observing in the case of temporataiprs that a suffix of

a normal path is a normal path.

000
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Observe that the previous lemma applies to the gédse .

Notations. Define the abstraction mappings from states ofM’ s.t. abs(s¥) =
abs(s") = s etabs(s) = s for everys € S,. Define the stochastic procegd s
whose state space is the one/of obtained by the abstractiarbs applied onM’.
The following lemma is the key point for the correction of #igorithm.

Lemme 10. The stochastic processt?* is a weak aggregation of the process’
(w.r.t. the initial distributionr()) and it is identical to the Markov chai.

Proof

Let us noter,, (resp.m,,) the distribution ofM (resp.AM’) at timen. We prove by
recurrence om that :

Vs € S, mp(s) =l (s) etVs € S\S, m,(sY) = mn(s)py(s) Am, (™) = mn(s)pn(s)

Forn = 0, this is due to the definition af|. Assume that the equations are fulfilled
for n. Let us prove it forn 4+ 1. We only handle the case of a stateand let to the
reader the other cases.

Tni1(8Y) = ges, T )P'[s, Y]+ 3 ues, mn(s") P[5, Y]
= ZS’ESO Wn(S/)P[S/v s]py(s) + Zs’?/‘s’es\so Wn(sl)py(s/)P/[slv 5] 55((:/))
= 0l (Swes, (P 8] + Sesns, Tl VP15 5]) = py(s)ma(s)

The resultat is then immediate sinceMt®*s, Vs € S\ S, 72%%(s) = 7/, (s¥)+7/,(s").
000

We establish now the correction of the algorithm.

Théoréme 11.Leto (resp.c’) be a random path oM (resp.M’). Then :

Pra(o b= @) = Prav (o’ = oo — [¢']))

Proof

Prag(o F ¢) = Py (0% F )
(lemma 10)

= Pra(o’ = 9)

Indeed the truth value af for a patho’ depends only on its abstractiofi®s.

=Pra (0" (¢’ < [¢])
(lemma 9)

000
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8.3.5. Verification of PCT L*

Given a DTMC and a formula of PCT'L*, the verification algorithm proceeds
again through a bottom-up visit of the syntactical tree effihrmula¢ by evaluating
the subtrees ap that correspond t@ L7 L formulas, substituting each verified sub-
formula with an atomic proposition. In each step of the atpar what needs to be
evaluated is a formula dP LT'L.

8.4. Verification of Continuous Time Markov Chain

Performance evaluation of systems is usually defined in &ragous context. We
open this section with a discussion on the limits of claggieaformance indices, that
justify the introduction of a temporal logics for perfornt@revaluation.

8.4.1. Limitations of standard performance indices

The classical performance evaluation indices, recalleskation 8.2.1, provide a
set of important informations to a system designer, but dheyot capture all per-
formance aspects of a system. As an example we consider snfioenpance indices
aimed at assessing the dependability of a system.

— Instantaneous availabilitis related to transient behaviour : it represents the pro-
bability at timer of service availability.

— Steady-state availabilitis related to steady-state behaviour : it is represents the
probability of service availability in steady-state.

—Interval availability : it represents the probability of having the service always
available between time and7’.

— Steady-state interval availabilityit is the steady-state probability that the ser-
vice is continuously available between two instants of tiBecause we are conside-
ring the steady-state behaviour, such probability doed@pénd on the specific points
in time, but only on the duration of the interval limited byettwo points.

— Steady-state simultaneous availability and reactivityis the steady-state pro-
bability that, upon a request, the system is continuouslsking until the service is
completed and the response time does not exceed a preddiiasddld.

While the first two properties can be directly and easily cated from the tran-
sient and steady-state probabilities, the computatiomefother properties is more
involved. It is feasible to devise, for each property, arhad-computation for the pro-
bability of interest, but it is more convenient to define agrahlogics that can express
complex performance properties, and for which a generak#gn can be designed.
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8.4.2. A temporal logics for continuous time Markov chains

The temporal logics CSL (“Continuous Stochastic Logic"attve are going to
define is an adaptation of the CTL logics (“Computation Tregit” [EME 80]) to
CTMC. The logics allows to express formulas teshaluates over stateand that are
built with the following syntax (in the definition we followhe approach proposed
in [BAI 03a]).

Définition 12. A CSL formula is inductively defined by :

—If ¢ € P thengis a CSL formula;

— If ¢ ety are CSL formula therm¢ and ¢ A ¢ are CSL formulas;

—If ¢ isa CSL formulag € [0, 1] is a real numben< e {<, <, >, >} thenSy, ¢
is a CSL formula;

— If ¢ ande) are CSL formulasg € [0, 1] is a real numben< e {<, <,>, >} and
I'is an interval ofR>( then P, X’ ¢ and P, ¢4+ are CSL formulas.

The first two definitions are standard CTL formulas, and we oloexplain them
here in more details. The formuls..,¢ is satisfied by a state of the CTMC if,
given that the initial state of the chain ésthe cumulative steady-state probability
of the states that satisty, verifiesp 1 a. This evaluation is well-defined, since, in
a finite CTMC, a steady-state distribution always existsh&f CTMC is ergodic the
evaluation of the formula does not depend on the specifie stat

An execution of a stochastic process satisfig)sy if the first change of state
takes place within the intervdl and leads to a state that verifiesA states satis-
fies Po.o X ¢ if the probabilityp of the executions of the stochastic process that start
in s and satisfyX'! ¢ verifiesp > a.

An execution of a stochastic process satisfieé) if it exists a time instant € I
such that is true atr and for all preceeding time instantss true. A states satisfies
Po..oU! if the probability p of the executions that starts inand satisfygi/!+)
verifiesp > a.

Using CSL, the availability and dependability propertig®rmally defined before
can be expressed in more formal terms as :

— Instantaneous availabilitguarantee 0$9% :
onvggtrueu[ﬂﬂ disp

wheredisp is an atomic proposition that indicates that the serviceadable.
— Steady-state availabilityuarantee 0$9% :

S>0.99disp
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— Interval availabilityguarantee 0$9% :
P01 truetd™™') —disp

— Steady-state interval availabilityuarantee 0$9% :

[r.7]

S<o.01trueld =disp

— Steady-state simultaneous availability and reactigitirantee 099% with la-
tency of at mos8 time units :

520.99 (req = on.gg (dispu[o’?’] CLC]C))

wherereq is the atomic proposition that indicates that a request keas lbeceived,
andack is an atomic proposition that indicates that the serviceldeen delivered.
Note that the tw®9% requirements do not have the same meaning. The condition on
the internal operator is a condition on the executions ttaatssin a particular state,
while the condition on the outer operator is a global requert on all the states of
the chain, weighted by their steady-state probabilities.

8.4.3. Verification algorithm

Given a CTMC and a CSL formula, the algorithm evaluates the formula star-
ting from the inner formulas and proceeding from inner taeodibrmulas, following
bottom-up the syntactical tree of the formuyland labelling each state with the sub-
formulas satisfied in that state. At each step, the algorigvaiuates a formula by
considering as atomic propositions the operands of the mdstnal operator. The
algorithm can be therefore explained considering one opeaha time.

The algorithm labels witlp each state which is not labelled with

The algorithm labels witlp every state labelled with both andy.

The algorithm computes the steady state distribution o2& C with
initial probability concentrated im (the stochastic process startssjras explained in
section 8.2.3). The probability of all states labelled withre then summed up and the
algorithm labels withp the states if the sum, let it bep, verifiesp > a. Note that for
all the states of a BSCC a single computation is needed : theideer all states of the
BSCC satisfyy or none of them does. Similarly, if the CTMC has a single etadiy
distribution, then the truth value of the formula does ngiete on the state.

The occurrence of a transition in a statén within the intervall

and the fact that the state reached upon the transitiorfisatisare two independent
events, and therefore the probability of the paths thasfyetie formula can be com-
puted as the product of the probabilities of the two evergsIl= [r, 7] ; we assume
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a closed interval, without loss of generality (since we ara continuous domain the
fact of including or not the bounds of the interval in the cartgtion does not influence
the result). LetQ the infinitesimal generator of the CTMC, altithe matrix of the
embedded DTMC. The probability of the first eventi&lss] — ¢7'Qls:sl while the
probability of the second evenJs ., P[s, s'].

The evaluation of this formula requires transient analgssCTMC
obtained from the original CTMC by some simple transforimagi If X is a CTMC,

then we shall indicate witlX'? the chain obtained by making absorbing all states of
X that verify ¢. In order to simplify the presentation, we consider as separases
the various type of intervals.

— ¢ = PoyaUd[9>=[y. In this case the executions of the chain on which we cumu-
late the probability should never leave the states thatyeériuntil a state that verifies
X is reached, without any contraint in time. temps. In otherdspwe are interested
in the behaviour of the chain from its initial state until itters a state that satisfies
—1) V x. Let's consider the chaiX "¥Vx. If a BSCC of this chain contains a state that
verifiesy then the probability that we are interested inl ifor all states of the BSCC
(since all states of a BSCC are recurrent), if no such a skigésen the BSCC, then
the probability is0. Let's call “good” a BSCC associated with a probabilityThis
probability only depend on the embedded chainXof¥VX and its computation has
already been described in section 8.2.2.

— ¢ = P27y In this case the execution of the procees must visit ontesta
that verify ¢ until a state that satisfieg s reached, and this event should happen at
time 7 at the latest. In other words, the probability is cumulatieti@ the paths until
a state that verifies) Vv y is reached. We need therefore to compute the following
probability Pr(X "¥VX(1) E x | X "¥VX(0) = s).

— ¢ = PoyuU!™7 . In this case the excution of the process must stay in within
states that verify) during the interval0, 7] and it must verifyy at timer. The case of
a change of state atis not considered since the probability of this event is z&e
probability to be computed is equal By(X ¥ (1) E ¥ A x | X 7¥(0) = s).

— ¢ = PooypUdm>°[y. In this case the execution of the process must stay in within
states that verify) during the interval0, 7] and then starting from the stateeached
at time 7 it must verify the furmulayi/[>->ly. The probability to be computed is
thgreforezs/,:w Pr(X ¥ (r) = s"| X7¥(0) = s) - w(s') wherem(s") is computed
using the procedure for the first case.

—¢ = Py, A similar reasoning as for the previous case leads to the
following formula :

Doy Pr(X (1) = 8" | X7¥(0) = ) - Pr(X9VX(r' —7) F x | X™VX(0) = &)
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8.5. State of the art in the quantitative evaluation of Markov chains

The field of Markov chain verification has started on the veaition of DTMCs.
The first approach for the verification of LTL over DTMCs (posed in [VAR 85]) is
conceptually very simple : the formula is translated intoleclid automata, the non-
determinism is then removed and a Rabin automata is prodd¢edsynchronized
product of this automata with the DTMC produces another DTK€which, using a
variation of the technique explained in section 8.2, it isgible to compute the requi-
red probability. The complexity of the computation is douékponential in the size of
the formula. An improvement in complexity is given by theaithm in [COU 95] : a
new DTMC is built iteratively from the initial DTMC, and thegration is driven by the
operators of the formula. This is the algorithm that we haesented in section 8.3.4.
The resulting algorithm is exponential in the size of therfola, and the authors show
that the algorithm has optimal complexity. A third algonthproposed in [COU 03],
also translates the formula into a Buchi automata. Due tgé#ngcular construction
followed by the algorithm, it is then possible to compute pnebability associated to
the formula directly on the synchronized product of the mé&ta and of the formula.
This algorithm has an optimal complexity as well, and moezdv provides better
performance than the previous one in many practical cases.

A classical technique for evalauting the performance ofsiesy consists in as-
sociating “rewards” with states and/or transitions of thain, and in computing the
mean reward or the cumulated reward at tim@ewards are taken into account by the
PRCTL logics, which has been defined in [AND 03], where an evaluedigorithm
is also presented.

The first relevant work on the verification of CTMCs has appdan [AZI 96,
AZI 00], where it is shown thaf’S L verification is decidable. The verification algo-
rithm is extremely complex, since it does not perform thelioiapproximations that
we have done in thé'S L verification algorithm presented in this chapter.

We should remark that verification algorithm may become aupcal for large
Markov chains. A possible way to solve the problem is to takeaatage of a modular
specification of the system, substituting a module with allemane, which is never-
theless equivalent with respect to the verification of thvegiformula. This approach
has been introduced first in [BAI 03a], and it has been lataegaized in [BAI 03b],
where various definitions of equivalence are considered.

The C'SL logics that was introduced in section 8.4.2 has two maintditian. On
one side, the path formulas are defined only in terms of atpnojgositions associated
to states, and not also in terms of the actions/transitiotise path. On the other side
the temporal constraints on path formulas are bound to leeviais, which generates
a number of limitations to the expressivity of the tempo@istraints in the formula.
The first limitation has been eliminated in [BAI 04] : theC'S L logics substitutes to
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the temporal operators, a regular expression over statbacions. A different ap-
proach is presented instead in [DON 07] : tH8 L7 logics there introduced defines
the formulas with the support of a one-clock, determinjstined automataC' SLT4
strictly extend<”'S L, and it is at least as expressive:ags’ S L. Moreover the verifica-
tion algorithm is not based on the construction of a numbenadified CTMCs, but
on the definition of a Markov renewal process, and on the caatiom of the discrete
embedded Markov chain of the process.

A totally different approach to limit the complexity of thenification task has been
proposed in [YOU 06]. IfP<, ¢ is the formula to be verified, we can generate a number
of random executions, and we can then compute the perceofttige executions that
do satisfy¢; according to standard probability results, this peragatiends to the
probability to be computed. This method is very efficient witee verification of the
formula requires only executions that have an upper boutichig.
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