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Abstract. In this work, we study decision problems related to timeddematta
with silent transitions TA:) which strictly extend the expressiveness of timed
automata TA). First, we answer negatively a central question raisechbyirt-
troduction of silent transitions: can we decide whetherl@mguage recognized
by aTA. can be recognized by sonfd? Then we establish in the framework
of TA. some old open conjectures that O. Finkel has recently sdbretA. His
proofs follow a generic scheme which relies on the fact timy a finite num-
ber of configurations can be reached byAawhile reading a timed word. This
property does not hold foFA., the proofs in the framework &fA. thus require
more elaborated arguments. We establish undecidabiligoofplementability,
minimization of the number of clocks, and closure under faufVe also show
these results in the framework of infinite timed languages.

1 Introduction

The model of timed automata has been proposed by Alur andriitie early 90’s as

a model for real-time systems [AD90,AD94]. A timed autormei®a finite automaton

which can manipulate real-valued variables called closksch evolve synchronously
with the time, can be tested and reset to zero. One of the medtal properties of this
model is that checking reachability properties is decidatiiough the set of configu-
rations of a timed automaton is in general infinite. Sincathieis model has attracted
much attention, as it is very appropriate for verificatiomgmses.

A constant interest goes to the theoretical understanditiggomodel, and to the
theoretical foundations of timed languages. Indeed, thgsatal (untimed) regular for-
mal languages enjoy very nice and robust properties, likeetiuivalence of first-order
logic with aperiodic regular languages, and this forms adesful framework that no-
body can contest.

The case of timed languages is much less satisfactory, gslthaot enjoy those
nice logical and algebraic characterizations, thoughdghigect has inspired several ap-
proaches [Wil94,Dim99,D’S00,Dim01,ACM02,BP02,BPTO2®1,CDPO06]. Indeeithe
right class of timed language has probably not yet been figaged, and much work
is still needed to really understand and formalize the thigoal foundations of timed
languages [Asa04].



A major drawback of timed automata (and their recognizecdrtanguages) is
that they are not closed under complementation and are netndi@izable. It com-
plexifies the definition of equivalent logical languages fas tlosure by negation is
somewhat the quintessence of logics. Hence, either we efxiget about negation
in the logics [Wil94,Bou02], or we restrict to subclassedasfguages closed by com-
plementation [AFH94,D’S00,CDP06], or we try to better ursdend the role of com-
plementation. The paper [Tri03] follows this idea, and aglsstions like “Is a timed
automaton complementable into another timed automatonan a timed automa-
ton be determinized?”. The proofs of Tripakis therein yidlat those two problems are
undecidable, as soon as we require that a witnessing awarbatconstructed. He also
provides such proofs requiring the construction of witesder various other problems
like minimizing the number of clocks required to recognizg\en timed languagetc
In [Fin06], Finkel improved quite a lot the above-mentiomedofs by proving that all
these problems are undecidable, even if we do not requientigruction of withessing
automata.

Whatever the modelling framework, silent transitions ageywseful: for instance
they naturally occur in the design of a modular system whieeg tan correspond to
an internal communication within a component, or they cander as an abstraction
device in order to compare an implementation w.r.t. its gjpation. Furthermore in
timed systems, they can be used to model discrete-time mlravembedded in con-
tinuous environment. From the verification point of viewg $tandard symbolic anal-
ysis techniques (like the construction of the region automaor the construction of
the zone-based simulation graph) apply to timed automatasilent transitions with
no extra cost. Regarding the expressiveness of modelsjttlaion is less positive.
Whereas silent transitions do neither add expressiverm@sonciseness to finite state
systems, the case is much different in timed systems. Itliskmewn that silent transi-
tionsadd extra power to timed automata [BDGP98] and that on a spedified input,
the “branching behaviour” of a timed automaton is infinitelgnching with silent tran-
sitions and finitely branching without.

In this paper, we address three significant problems retategipressiveness. First,
“Are silent transitions required in a specific timed model&”purely reactive sys-
tem should be modelizable without silent transitions (Whsomehow correspond to
proactive behaviour). Then, “Which language operatiors@rve the class of timed
systems?”. A modular design requires operations like urdiomplementation, etc. Fi-
nally “Which resources are really required in order to inmpdant a system?”. This topic
is even more critical in timed systems which are often embddd

More precisely, we prove that it is not possible to:

Expressiveness

— decide whether aan-timed regular language is timed regulae( if it is possi-
ble to remove silent transitions in timed automata), se¢i@e8;

Closure

— decide whether the complement oféimed regular language istimed regu-
lar, see Section 4;



— decide whether the shuffl®ef two (c-)timed regular languages istimed reg-
ular, see Section 6.

Resources

— compute the minimal number of clocks needed to recognizetamed regular
language, see Section 5;

Finally, we extend all previous results, proved for finitaéid words, to infinite timed
words and to timed automata with a Buchi acceptance camdisee Section 7.

This paper builds up on previous works [BDGP98,Fin06]. Weerd [BDGP98]
with our result on expressiveness of silent transitions wedextend undecidability
results of [Fin06] to the framework of timed languages ategy timed automata
with silent transitions. Though we follow the same lineg, éixtension is far from trivial
as results of [Fin06] heavily relied on the finitely brananproperty of timed automata
withoutsilent transitions.

2 Preliminaries

2.1 Timed words, timed languages

If Sis a set,S* denotes the set of all finite words ovEmnwhereasS“ denotes the set
of infinite words overS. We use classical notations lik&-, or Q¢ for the set of
nonnegative real numbers (resp. nonnegative rational etshb

Let X be a fixed finite alphabet. A finite (resp. infiniténed wordw over X' is
an elementw = (ao, 70)(a1,71) ... (an, 7o) ... IN (X x R>g)* (resp.(X x R>g)¥)
such that for every > 0,a; € X, 7, € R>o andr,1 > 7;. The valuer;, gives the
absolute date at which actian, occurs. Giveni € Rx, we define the timed word
w+d = (ag, 70 +d)(a1,71 +d)...(an, 7, +d).... We denote by7 W*(X) (resp.
TW* (X)) the set of finite (resp. infinite) timed words ovBt A timed language over
finite (resp. infinite) wordss a subset oF W*(X) (resp.7 W (X)). Let £ be a timed
language, therf denotes its complement. Let be a timed word ove¥ anda € ¥,
then|w|, is the number of occurrences of lettein w. Finally, let us denot&ntimed
the operator which maps a timed word to the associated udtinoed obtained by
erasing the dates of actions.

2.2 Timed automata

Timed automata have been introduced in the 90’s by Alur atich®ia model for rep-

resenting real-time systems [AD90,AD94]. A timed automaitoa classical untimed
finite automaton to which are associated a finite set of noathexyeal-valued variables
calledclocks

% The shuffle operation corresponds to the scheduling of tekstto be executed on the same
processor by time sharing which have been extensivelyedifdr monoprocessor scheduling
problems.



Syntax. Let X be a finite set of clocks. We assume the time domain be thR set
of nonnegative real numbers.valuationv over X is a mapping : X — R>. Let
U C X, the valuatiorw[U « 0] resets each clock df to zero,i.e,, maps each clock
xz € U to0, and each other clock ¢ U to v(z). Letd € R, the valuatiorv + d maps
every clockr € X tov(x) + d.

We writeC(X) for the set of(clock) constraint®ver X consisting of conjunctions
of atomic formulas of the forme > h for x € X, h € Q>¢ is a nonnegative rational
number, and< € {<, <,=,>,>}. Such constraints are interpreted over valuations,
and we writev = + if valuation v satisfies the clock constraint It is defined in a
natural way by | (z < h) whenevew(z) i h, andv = (71 Ay2) whenevew = v,
andv = vo.

Definition 1 (Timed automaton).Let Y’ be a finite alphabet. Amed automatonver X’
isatupled = (L, ¢y, X, E, F) where:

— Lis afinite set of locations,

— {o € L is the initial location,

— X is afinite set of clocks,

- ECLxC(X)x X x 2% x Lis afinite set of edges, and
— Fis the set of final locations.

An edgee = (¢,7v,a,U, ¢') € E represents a transition from locatiohto location?’
with labela, guardy and reset’.

Let X' be afinite alphabet, and lebe a fresh symbol noti&v. We write TA for the
class of timed automata ove&r, andTA. for the set of timed automata over the alphabet
Y. = XY U {e}. The new event is asilent actionand it isunobservableA transition
labelled by a silent action will be calledsdlent transition

Let A be aTA or aTA.. The granularity of A is the smallest positive integer
such that each elementary constraint A in A is such that? - h € N. We define
Ny = {k/d | k € N}. We extend the notion ahodulow.r.t. Q. Letr € Qx, then
we definer mod r = 2 — nr withn = max{i € Z | ir < z} andz = y mod r iff
(x —y mod r) = 0.

If AisaTA, we say it isdeterministiovhenever given two transitiong, vy, a, Uy, £})
and(¢, v2, a, Us, £4), it holds thaty; A 2 is not satisfiable.

Semantics.We give the semantics of a timed automaton as a timed transiistem
and then the corresponding accepted timed languaged ket L, ¢y, X, E, F, R) be a
TA over X (resp.TA.). It defines the timed transition syste$ty, = (Q, qo, —) where:

— Q=L x (Rx()¥ is the set of states also callednfigurations
— qo = (4o, 0) is the initial staté,
— and the transition relations is composed of the following moves:
e delay moves(/, v) 4, (¢,v + d) for everyd € R>o;
o discrete movest,v) < (¢',v') iff there exists some transition
e= ({,7,a,U,l") € E such that |= v, andv’ = v[U < 0].

4 The valuatiord maps each clock to.



A timed executioof A is a (finite or infinite) patty : (¢y, vo) So, (o, vo + do) 2%

al

(£1,v1) N (b1,v1 +d1) — ... In Sy starting in the initial statey (i.e, vo =
0) and alternating between delay and discrete moves. Givelm guimed execution,
T, = Y p<; dr denotes the absolute date at which transition labelled; mccurs. The
durationof ¢ is the (eventually infinite) sum of all delays along.e. sup;(7;).

If 7 is a value smaller than or equal to the duration of a finite etien o, we write
(¢, v,,) for the first configuration along in which the automaton is at date and
(¢ _,vF ) for the last configuration at date More formally, defining~ = max{s |

0,77 Yo,T
7, < 7} andi™ = max{i | 7, < 7} with the conventiomax()) = 0, then:

0,7 QT

(23‘77113'7_) = b+, v+ + T — Ty+ ).

{(5_ or) = Wi, v;- +7—7-), and

For instance, if a single transition occurs at time(/, ., v, ;) is the configuration
before the transition is fired, Where(dgr, ..-) is the configuration after the transition
is fired. A major observation is that when> 0 thenVzr € X, v, (x) > 0.

Let o be a timed execution in @A A. The label ofp is the timed wordw =
(ap,70)(a1,m) ... (with 7; defined as previously). Whemis a timed execution in a
TA., then the label is obtained by deleting framthe occurrences of pairs such that
the first component is. If in addition g is finite and ends in a final location, we say
that the above timed word is accepted Ay We denotelL(.A) the set of finite timed
words accepted byl. Note that in a deterministi€A, every word has at most a single
underlying timed execution.

Let £ C 7W™*(X) be a timed language. It is satined regularwhenever it is
accepted by som@€A, ande-timed regularwhenever it is accepted by sorfid.. Note
that if £ is a(ne-)timed regular language, théimtimed L) is also regular [AD94].

In this paper, we assume the reader is familiar with the regidcomaton construc-
tion and its properties, proposed by Alur and Dill in [AD9@A4].

2.3 Classical results oA and TA,

We summarize all expressiveness and (un)decidabilitytsese will use in our proofs.
They only hold in the context of finite timed words. Similautkslightly different)
results will be presented in section 7.

Theorem 1 (Closure and expressiveness results).

1. The family of timed regular languages is not closed underglementation [AD94].

2. The family of timed regular languages accepted by detastit TA is strictly in-
cluded in the family of timed regular languages [AD94].

3. The family of timed regular languages is strictly incldde the family ofe-timed
regular languages [BDGP98].

The results of theorem 1 also hold for infinite words. Thisasthe case of the next
theorem. The result for infinite words is stated by theorem &=iction 7.

Theorem 2 (Universality problem).



1. The universality problem fofA is undecidable even when restricting T8 with
two clocks [AD94] or with a one-letter alphabet [AOWO7].

2. The universality problem fofA with a single clock is decidable [OW04].
3. The universality problem fofA. with a single clock is undecidable [LWQ8].

2.4 Accepting timed words inTA and TA,

In this subsection, we give two examplesTé. which explain major difficulties that
may arise from silent transitions.

Example 1.TheTA, of Figure 1 recognizes the timed language
Reven= {(a,m1)(a,72)...(a,7,) | 7 =0 mod 2 foreveryl <i <n}.

This timed language is not recognized by aWy[BDGP98].

z = 0;a;

r=2¢;2:=0

Fig. 1. A TA. not equivalent to anJA

Example 2.TheTA. of Figure 2 recognizes the timed language reduced to a simgle
{(a,1)}. However any patitt,0) % (¢o,d) 5 (¢1,d) =% (£1,1) % (£3,1), with

d € [0,1], is an accepting path. Along one of these paths, dengtednfiguration
(ly1>vp1) = (61,1) and(ﬁzl,v;ﬁl) = ({2,0).

r=1;a;20:=0

Fig. 2. (a, 1) is accepted by infinitely (and even uncountably) many paths



3 Removing Silent Transitions

In [BDGP98] the impact of silent transitions on the expresgiower of timed automata
has been studied, and syntactical restrictions have b&en,ghat are sufficient to re-
move silent transitions,e., syntactical restrictions for asttimed regular language to
be timed regular. However, these syntactical restrictizesiot necessary, and we prove
in this section that the problem to decide whethetdimed regular language is timed
regular is indeed undecidable.

Theorem 3 (Removing silent transitions) Given aTA. A, it is undecidable to deter-
mine whether there existsTé B such thatZ(A) = L(B).

To prove this result, and other theorems in the sequel, weceethe problem to the
universality problem for timed automata. We first describ@astruction over timed
languages introduced by Finkel [Fin06].

In the sequelX’ denotes an alphabet, and fresh letter not in¥. We sety, =
Y U{c}.

Definition 2. Let £ andR be two timed languages ovér. Then Compos&, R) is a
timed language ovek', defined as the union of the following three languages:

Vi ={weTW" (X)) | e L, w eTW(X),3rstw=uw(c,1)w}
Vo ={w e TW(Xy) | [wle # 1}
Vs ={weTW (XZy)|Iw € TW'(X), Iw" e R,Ir s.tw =w'(¢e,7)(w" +7)}

Now we state two fundamental properties of this constractiamt will be exten-
sively used in the proofs.

Lemma 1. Let £ andR be two timed languages over alphabiet

— Compos€¢T W*(X),R) = TW*(X), itis thus accepted by a determinisi&
with no clock.

— If £ andR are accepted by A, with at mostn clocks, then Compo6&é, R) is
also accepted by @A, with at most clocks.

Proof. The first point is a simple consequence of the definitions. ¥taibthe proof of
the second point. Let us denotie: (resp.4r) aTA. accepting’ (resp.R) with at most
n clocks. By definition, these automata have exactly oneaidibication and may have
several final locations. We denatethe TA. obtained fromA4, andLx as depicted on
Figure 3. Observe that in this construction, clocks/f can be reused iM% since
the two automata are not connected. Theihas at most: clocks, denoted by, as
requested. Itis routine to verify that accepts the languaggdmpose’, R). a

Lemma 2. Let£ C 7W*(X) be a timed regular language. Then Compa&&Reven)
is timed regular iffC is universal, whereReen is the timed language introduced in
Subsection 2.4.

Proof. We write}V = ComposéL, Rever). We will show now thad’ is timed regular if
and only if £ is universal on¥'. We distinguish two cases:



Fig. 3. Automaton recognizing the languagGemposeL, R).

(1) First case.AssumeL = TW*(X). Applying Lemma 1Y = 7TW™* (X)), which
is obviously timed regular.

(2) Second caseAssumel # TW*(X). Towards a contradiction, assume thais
recognized by 8A A. Lety = (ag, 1) - - - (an, 7) € TW*(X)\ L. Then we have
that, for everyw € TW*(X), y.(c, 7).(w + 7,) € Vif and only if w € Reyen
Mimicking the proof of [BDGP98] which shows th&eyenis not timed regular, we
will get a contradiction. LeK be the maximal constant gf and consider the timed
wordw’ = y.(¢,7,,).(a, 7 + 7,) Wwherer € N is an even integer satisfying> K.
Then, the timed word’ is accepted by, and there exists a path.ithalong which
w’ is accepted. In particular, the last transition of this paty (¢,v,a,U, ), is
such that’ € F is a final location. Let denote iy, v) the configuration reached
aftery.(c, 7,) is recognized. Then’ = v + 7 is the valuation when firing the last
transition, and verifies’ = . Because of the choice af it holds for any clock
z of Athatv'(x) = v(z) + 7 > K. In particular, for any odd integer greater
than, the timed wordy.(c, 7,).(a, 7, + 7') is also accepted by, which is a
contradiction. Hencé/ cannot be recognized byTa.

This concludes the proof: is universal if and only it is timed regular. a
We can now give the proof of Theorem 3.

Proof. We assume that € X, and consider the timed langua@gyenintroduced in
Subsection 2.4. Lef C TW* (X)) be a timed regular language. The langu@aggenis



e-timed regular. Applying Lemma 1, we have that= ComposéL, Reven) IS e-timed
regular. Applying Lemma 2, we have thits timed-regular iffZ is universal. Thus the
universality problem is reducible to checking the timedulagty of ane-timed regular
language thus yielding the undecidability of the latterpem.

4 Complementability and Determinizability

In [Fin06, Theorem 1], Finkel proved that the problems wkethe complement of a
regular timed language is regular and whether a regulardtiar@guage can be recog-
nized by a deterministi¢A are both undecidable. We extend those results to the class
TA. of timed automata with silent transitions.

Theorem 4 (Determinization).lt is undecidable to determine whether, for a givién
A, there exists a deterministiA 5 such thatL(B) = L(A).

SinceTA are less expressive thdA., the above result is a straightforward conse-
quence of Finkel’s result.

Theorem 5 (Complementation).

1. Itis undecidable to determine whether, for a giiéa A, there exists dA. 1B such

that L(B) = L(A).
2. Furthermore this result holds fatA. over alphabets with two letters.

The proof of this theorem is neither a corollary of that ofk&hfor the classTA,
nor an obvious twist of his proof. Indeed, his proof heavéijgs on the fact that given
a timed word and @A, there ardinitelymany timed executions wich yield such a timed
word. This is no more the case for the cld$s, as mentioned in Subsection 2.4. We
propose two undecidability proofs for that result, the despone which holds for timed
automata over alphabets with three letters or more, andtttex one, more involved,
which holds for timed automata over alphabets with two tstte

The two proofs proceed as follows:

— Consider a regular timed language

— Fix a regular timed languag@ such thatR is not regular;

— Build from £ andR, a new regular timed languageomposél, R) (which has
been defined in the previous section) such that universal iff the complement of
ComposeL, R) is regular.

4.1 Case ofTA. over alphabets with three letters or more

For this proof, we instantiate the languaBeby a language proposed in [AM04] for
gracefully proving that the class of timed regular langsageot closed under comple-
ment. It turns out that their result, proved in the framewafrkmed regular languages,
also holds in the framework af-timed regular languages, as stated in the following
proposition.



Proposition 1. AssumeX = {a, b}, and letR, ; be the timed language
Rap = {w = (ao,m0) ... (an, ) € TW(X) | 3i, a; = a, and¥j > i, 7;—7; # 1}.
This timed language is timed regular, but its complemenbts#imed regular.

The proof of this proposition is similar to that in [AMO04], bior sake of completeness,
we write it there as well.

Proof. The timed languag®, ; is accepted by the timed automaton depicted on Fig-
ure 4, hence itis timed regular. We now show that its compfensanots-timed regular,

r#1; a,b

a,b
8 a; =0 8_

Fig. 4. The timed automaton acceptifi¢}, »

i.e, that it cannot be recognized by af¥.. Assume that there existsla. B such that
L(B) = Ra.- The complement dR, ; is the set of timed words in which every action
a is followed one time unit later by an action.

Let 77 be the set of timed words overX' such that:

(i) Untimedw) belongs to the untimed regular languagé*,
() all a’s occur within[0, 1], and
(7i7) notwoa’s occur at the same date.

It is straightforward to check thaf, is timed regular. Now observe that a word of the
form a™b™ belongs toUntimed7; N R, ) if and only if m > n holds. Hence a con-
tradiction: both intersection and thintimedoperator preserve regularity of languages,
and{a™b™ | m > n} is not regular. O

The following lemma will be useful on the proof of Theorem 5This is the coun-
terpart of [AD94, Theorem 3.17] for complements of timeduleg languages.

Lemma 3. Let.A be aTA. over alphabet” andw ¢ L(A) be a finite timed word,
then there is another timed word’ ¢ L(.A) whose dates are rational. Furthermore,
Untimedw) = Untimedw’).

Proof. Let d be the granularity ofd. Letw = (a1, 71) - . . (an, 7). FOr convenience of
notations, we defing) = 0. We buildw’ = (a1, 7). .. (an, 7)) by induction. Moreover
the timed word will satisfy this property:

V0§i<jSn,VkEN,Tj—TiNk/d<:>TJ’»—TZ-’~k/dWith ~e{<,<} (@)



The inductive property is the following one: thereis awefd = (a1, ") . .. (an, 77")
fulfilling the property (1) withvi < m, 7" € Q. The base case is proved by taking
U)O = w.

Assume that there is a word™ = (a1, 71") ... (an, 7,7) fulfilling property (1). If
mm € Qthenw™t! = w™. Otherwise we split the set of indexés= {0,1,...,n}
intwo subsetd= = {i € I | )" =7}, mod 1/d}andlx =1\ I=.As7/" € Q
forall i < m (by induction hypothesis) andg’, ; ¢ Q, we have thaf0,...,m} C I.
For eachi € I, defined; as the distance betweefi* and thel /d-grid aroundr,;) ;:

0; = min(|7j" — 701 — k/d| | k € Z). We then seb as the minimum ovefy of
these distance®: = min(d; | ¢ € Ix). Observe that > 0. Pick some)’ such that
0 < ¢ < dandr , + ¢ € Q. We buildw™*! as follows.Vi € Iz, 7" ™" = 7"
andVi € I—,7"*" = 7" + ¢, It is easy to check thav™*! fulfills the inductive
property. Indeed, we first have thtif”“l € Q fori < m + 1 by the choice o’ and
by the inductive property. Second itind;j both belong ta/= or I, then the value of
7; — 7; IS unchanged, and otherwise it is incremented (or decresdgnts’, what does
not change the validity of property (1) by the choice’of

We claim thatw’ ¢ L(.A). By contradiction, assume that' € L(.A) and let

€n

(Lo, v0) — (Lo,vo +7}) =5 (br,v1) . (bn1, 01 + 7, — 71 1) < (Lo, vn)

be a finite accepting path far’. Examine the pathity, vo) —~ (fo,vo + 71) —
(br,v1) . (bp—1, V-1 + Tn — Tn—1) L, (¢, vy). The value of a clock when firing

an edge; in the former path is; — 77 for some;j < 4 (corresponding to the last reset of

x before firinge;) and this value in the latter path4s— ;. Due to property (1) on time
differences relative t» andw’, the previous observation shows that the guard of every
e; in the latter path is satisfied and thus= L(A) which yields a contradiction. O

We can now prove the following Lemma, from which Theorem SJsily follows
since universality of timed automata is undecidable.

Lemma 4. Assumeg{a,b} C X. LetL C TW*(X) be a timed regular language, and
define the timed languagéover X, asV = Composé., R, ;). ThenV is recognized
by aTA. if, and only if, £ is universal.

Proof. To prove this lemma, we distinguish two cases:

(1) First case.Assumel = TW™*(X). Applying Lemma 1V = TW*(X,). Thus,
V = (), which is obviously £-)timed regular.

(2) Second caseAssumel # 7W™*(X). Towards a contradiction, assume that
is recognized by &A. A’ with granularityd. Let w = (ao,70)...(ap,7p) €
TW*(X) \ L. By Lemma 3, we can assume that all dates are rational. Weedefin
the timed regular languag® as follows:

Untimedz) € a*b*,

T = (a,Té)...(a,T,gl)(b,T(')’)...(b,T,'c;),
Y0 <i < ki, 7} € [, 7p + 1],
Vng‘;éjgkl,T{;ATJ’..

W =w(e,mp)r €T >



Similarly to the proof of Proposition 1, observe thantimedZ; N V) = {w’ |
Im > n,w’ = Untimedw) ca™b™}. This contradicts our assumption thatbe
e-timed regular since the right member of the previous eguislinot regular.

This concludes the proof: is universal iffV is e-timed regular. a

4.2 Case ofTA. over alphabets with two letters
We first state the following lemma:

Lemma 5. Let.A be aTA. with n clocks and granularityl. Let(¢, v) be a configuration
of A. Then[0, 1/d[ can be partitioned ag; U ... U I,,, wherel, ..., I,, are disjoint
consecutive intervals such that < 2n+1, and for everyl < j < m,forall 6,4’ € I,
for everyk € N, forall z € X, for every € {<, <},

v(z) +dxk/d <= v(z)+d xk/d.

Proof. For everyz € X, there is exactly one valug € [0, 1/d[ such that(z) + 0, €
Ng. Let A = {61,...,6,} be the set of such values, assumig< ;. Of course,
J < n. Let the partition0, 1/d[ be given by[0, §1[W[d1, 01]W]01, d2[W. .. W]d s, 1/d][. It
is routine to check that this partition fulfills the requirent of the lemma. O

The next proposition extends 1é\. the well-known result [AD94] that the class of
TA over an alphabet reduced to a singleton is not closed undeplementation.

Proposition 2. LetR,, be the following timed language:
Roe={(a,m1)...(a,7) | T <i<j<mstr —7=1}.
ThenR, is note-timed regular.

Proof. Towards a contradiction, we assume thatThe A recognizes the language, .
We denote by: the number of clocks afl, and byd its granularity. The languagde,,
is the set of timed words such that no pair of occurrencessofire separated by one
time unit.

Pick a timed wordw = (a,71) ... (a, on+1) IN R, Such thatV = 2n + 1, and:

—foralll<i<j<N,0<m7 <7 <1/d,
—foralll <i< N, 1 <7y <147 <TNgit1 <1+1/d

Let o be a timed execution afl which acceptsv, and consider the configuration
(41> v,1)- Applying Lemma 5 to this configuration, we get a partitiorj®fl /d[ com-
posed of at mosd intervals. There exists asuch thatV + 1 < j < 2N, 7; — 1 and
7;+1 — 1 belong to the same interval of this partition.

We now prove that for each € X, there existg € N such that:

kfd < vy, (@) < v, (@) + (301 —75) < (k+1)/d (2)

Letx € X. We distinguish two cases:



— Assume that has not been reset between the configuratiéns, v, ;) and(¢, ., v, )

0,757 70Ty
alongo. It implies thatv, . (z) = v, (z) + 7; — 1. Due to the choice of, we
know thatv,  (z) +7; — 1 andv, . (z) + (Tj41 — 75) = v, 1 () + 7j41 — 1 satisfy
the same constraints of ‘granularifiy Hence, equation (2) holds for cloek

— Assume that: has been reset alongbetween the configuratior{g,, ;,v, ;) and
(€7, Vg.7,)- Inthis case, equation (2) holds fbr= 0. Indeed) < v, . () since
7; > 0. Furthermore, as the date at which clackas been last reset between the
two above-mentioned configurations is within the intef¥al + 1/d[, we get that

Vrr, (T) + (Tj41 — 75) < (15 — 1) + (711 — 75) < 1/d.

Leté = 1+ 7;_n — 7;. From equation (2) and the constraints on the time sequence

(Ti)1<i<2n+1, We get that for every: € X, there exists some € N such that:
kjd<wv,. (x) <v,,(z)+d<(k+1)/d (3)

Now we build a timed executiop’ as follows. It mimicse up to the configuration
(04.7,+Va,r,)- Then, itlets) time units elapse, which leads to configuratiép, , v, - +
d). Then it fires thénstantaneousubsequencaé.é., with null duration) ofp (say ¢;)
leading from(¢,, v, ) to ({3 v, ). The timed executiom; is non empty as
it contains at least a transition labelled byThis sequence can also be executed from
(E;Tj " Vgrr, +4) since, following equation (3), both configurations satisiy same con-
straints of granularityl. More precisely, using the notion of ‘regions’ associatethw
A (we refer to [AD94] for a definition and properties of regionsimed automata), the
two configurations belong to the same region, and so do thednbigurations reached
after firingg;. Then, due to the so-called time-abstract bisimulatioperty of regions,
it is possible to extend’ from this configuration by the same actionsiapossibly with
other delays, until reaching an accepting locationg(@saccepting).

Now, the timed word read op’ has two occurrences af separated by one time
unit (those at date;_ ; and at daté + 7;,_ ). Thus, it does not belong ®,, hence a
contradiction. O

We can now prove the following Lemma from which easily follbWwheorem 5.2,
since universality of timed automata over a one-letter albg is undecidable (recall
Theorem 2, item 1).

Lemma 6. Assume: € Y. LetL C 7W™*(X) be a timed regular language, and define
the timed languag® over X, asV = ComposéL, R, ). ThenV is recognized by a
TA. if, and only if, £ is universal.

Proof. We distinguish two cases:

(1) First case.We assumel = TW*(X). As a consequence of Lemmal,= )
which is obviously §-)timed regular.

(2) Second caseWe assume # 7W*(X) . Towards a contradiction, we assume
thatV is recognized by &A. A’ with granularityd andn clocks. Pickw’ =
(a1,7]) . (am,7,) INTW*(Z)\Land letw = w'(c, 7},)(a, 1) . .. (a, Ton41) €
VY with N = 2n + 1 such that:



sforalll<i<j<N,7, <n<m<7,+1/d;

° fOI’a”lSiSN,T;n—f—1<TN+i <147 <TNti+1 <T7/n+1+1/d.
From a timed execution acceptingn .4, we construct a timed executigh(which
plays the wordsu’, the N next actions, and then applies the construction of the
proof of Proposition 2 fron@ﬁ;ﬁnﬂ, U;TT,HH)) to obtain another accepting execu-
tion o’ whose associated word does not belony tgielding a contradiction.

This concludes the proof: is universal iffV is e-timed regular. a

5 Minimization of the Number of Clocks

In [Fin06, Theorem 2], Finkel proved that given a timed laag®@ recognized by 3A
with n clocks (@ > 2), we cannot decide whether it can be recognized B avith
n — 1 clocks. In this Section, we prove that this result also hatdke framework of
TA..

We first prove the following proposition, which exhibits arfédy of timed languages
such that thex-th language is recognized by arclock TA, but not by anyn — 1)-clock
TA.. These languages are known since [HKWT95] when restri¢tifié.. However, the
extension of the result tBA. is non-trivial since silent transitions allow more complex
timed executions (see subsection 2.4).

Proposition 3 (Language with a minimal number of clocks)Letn > 1 be a positive
integer. Define the language,, as follows:

RnZ{(G,Tl)(a,Tg)...(a,Tgn)|V1§i§n, 0<m < 1/\Tn+i:1+7—i}-

The timed languag®., is accepted by @A with n clocks, but not by anyA, and even
anyTA., with strictly less tham clocks.

Proof. Letn > 1 be a positive integer. The langua@s, is recognized by th@A A,
depicted on Figure 5.

qo q1

i:: a N a
x1:=0 N z2 =0

gn+1

Fig. 5. Automaton.A,, with n clocks.



Now assume that there exist3A. B with less tham clocks, and such thdt(5) =
L(A). Denote byd the granularity of3. Fix some value$r; )1<i<, suchthad < <
Ty < ... < Ty < 1/d,and consider the timed wotd = (a, 71 )(a, 72) ... (a, ™) (a, 71+
1)(a, 72 +1)...(a,7, + 1). Obviouslyw € R, and thusw is accepted bys along
some rurp.

For each index in {1,...,n}, we consider the configuratio, .. 1,v, 1)
The last transition before this configuration is thus a détagsition. We distinguish
two cases:

— First case: There exists an index € {1,...,n} such that for every clocl,

U, ,+1(®) #0 mod 1/d. This implies that the region (with respect to granularity
d) to which belongs the valuatiar), ., . ; is ‘time-open’,i.e., for everyv € r, there
existsd > 0 suchthav+0 € randv—¢ € r. Thus, we can change the time elapsed
during the last transition, and add such a valu&he new configuration which is
reached along this modified execution({§ . ,,,v, .., +d)andv, ., +4is

in the same region ag . ;. Hence, applying the time-abstract bisimulation prop-
erty of the regions, it is possible to follow exactly the satramsitions (possibly
at different dates). This gives another accepting exesulievertheless, the timed
word which is read on this execution does not belonf fobecause théth ¢ and
thei + N-th a are separated bly+ § > 1 units of time. Hence a contradiction.

— Second caséiWe assume that for every indéx {1, ...,n}, there exists a clock
suchthav, . ,,(z) =0 mod 1/d. Since the number of clocks &fis strictly less
thann, there exists a clock suchthav, . ., (z) =0 mod 1/dandv, . ,,(z) =
0 mod 1/dwith1 <i < j <n.Sincer; +1 > 0 andr; + 1 > 0, the two values
V,.-.11(x) andv, _ ., (z) are positive, hence sontg'd for k € N*. This leads to
a contradiction, as the time elapsed between these twadgtsis strictly less than
1/d (and positive).

This concludes the proof: suchld. B cannot exist. O

We first establish the following property of the construnt@omposeapplied to
languages?,,.

Lemma 7. Assume: € X' andn be an integer.

— Casen > 2. Let£ C TW*(X) accepted by somBA with n clocks.
— Casen > 1. Let£L C TW*(X) accepted by somBA. with 1 clock.

Considery,, overX, = Y U{c} defined a3/, = Composée’, R,,). ThenL is univer-
sal if, and only if,V,, is accepted by 8A. with n — 1 clocks.

Proof. We distinguish two cases:

1. First case.We assumeC is universal onX, i.e. L = TW*(X*). Then,V, =
TW*(X4),i.e,V, is universal on*, and thus it can be accepted by a (determin-
istic) timed automatowithout any clock



2. Second caseWe assumeC is not universal on¥, i.e., £ is strictly included in
TW*(X). Then, thereis atimed word= (a1, 71) ... (ar, 7) € TW*(X) which
does not belong t&€. Consider now a timed word € 7W*(X). It holds that
u.(e, ). (x + 1) € V, iff z € R,,. Towards a contradiction, assume th&tis
accepted by 38A. B with n — 1 clocks. Let us denote hythe granularity of3, and
fix some valueg/)1<i<, Such that) < 7{ < 75 < ... < 7}, < 1/d. We consider
the timed wordv = (a, 77)(a,75) ... (a,7))(a, 7 + 1)(a, 7 + 1)...(a, 7}, + 1).
Obviously,v € R,, and thusw = u.(¢c, 7%).(v + 7%) € V, is accepted bys. We
can then apply the reasoning developed in the proof of Propos$ to the timed
word w, and get a contradiction. Indeed, this proof does not relyhenfact that
the initial valuation isO and thus can be reproduced from configuration reached
after recognizing:.(c, 7). We can finally conclude that such a timed automagon
cannot exist. Hence, the timed languaggecannot be recognized by amj. with
strictly less tham clocks.

Thus determining whethéy,, can be recognized by BA. with less tham clocks is
equivalent to deciding whethéYis universal. O

We can now state the following theorem, which extends Tha@®f [Fin06] to
timed automata with silent transitions. Note that our undgaility result holds even
for one-clockTA., in contrast with the class of one-clo@R for which we can decide
this problem.

Theorem 6 (Minimizing the number of clocks).Letn be an integer.

— Casen > 2.Forn > 2, itis undecidable to determine whether, for a giién(and
thus also forTA,) A with n clocks, there exists 8A. B with n — 1 clocks such that
L(A) = L(B).

— Casen > 1.Itis undecidable to determine whether, for a giviea .A with 1 clock,
there exists &A. B without clocks such that(A) = L(B).

Proof. The proof follows from Lemma 7. Assume a timed langudggiven as de-
scribed in Lemma 7. Due to Lemma 1, the timed langukgés timed regular (resp.
e-timed regular whem = 1) and is accepted by BA with n clocks (resp. &A. with

a single clock). Since the two universality problems thatomasider are undecidable
(see Theorem 2), this concludes the proof. a

6 Shuffle Operation

In this section, we are interested in the shuffle operationifieed words. In order to
conform to the definition considered in [Fin06] and in [DinjO&e introduce a new
description of timed words: given a timed watd= (ag, 79) - . . (an, 7). . ., we define
its associatedelay timed worddenotedelay(w), and defined by

Delay(w) = (70,a0) - (11 — 70),a1) -+ - (7, — T=1),@n) -+



Delay timed words are thus simply words on the alph&Bef, x X), i.e., elements of
(R> x X)*. This description of a timed word gathers the delay of tina glapses to-
gether with the next discrete actiddelay is a bijection between timed word& {V* (X))
and delay timed word§R>q x X)*).

We first define the shuffle operation on finite words on an alph&b Givenu, v €
X*, we defineu L v as the set of words

{w=z19122Y2 . . . Tpyp | U = 122 ... zp @NAV = Y1y ... Yn } -

We extend it to sets of words by defining, 61, S; C X*, S1 s Sy = {s1 W s9 |
S1 € 51782 € SQ}

This definition thus directly applies to delay timed wordpabetX = (R>x X))
andvia the Delay mapping can be used to define the shuffle operatioon timed
words. Giveru andv in 7W* (X)),

u W v = Delay™ ! (Delay(u) L Delay(v)) .

It also extends to delay timed languagess, sets of delay timed words, by previous
definition on sets of words. Moreover, we define naturally tledions of €-) delay
timed regular languages, as those associated wijHhined regular languages by the
operatoDelay.

Remark 1.The shuffle operation corresponds to the scheduling of taekstto be ex-
ecuted on the same processor by time sharing which have ktmrsively studied for
monoprocessor scheduling problems.

In order to simplify the notations, in the sequel of this g@ttwe only handle delay
timed words. The results for timed words are obtainiedhe Delay mapping.

Finkel and Dima proved independently that delay timed raglainguages are not
closed under shuffle operation. We first extend this redalted as [Fin06, Theorem 4],
to e-delay timed regular languages.

Proposition 4. The shuffle of two delay timed regular languages is not neciésan
e-delay timed regular language.

Proof. To prove this result, we follow the lines of the proof of [FBjOWe first define
three delay timed regular languages:

- Nl = {(tlva) ’ (150‘) ) (t27a) | b1+t = 1},
- N2 = {(Lb) : (va) | se RZO}’
- N3 ={(t1,a) - (1,b) - (s,0) - (1,a) - (t2,a) | t1,s,t2 € R>p}.

If the shuffle of two delay timed regular languages wasatelay timed regular
language, and sincedelay timed regular languages are closed under inteogedtie
delay timed languaggV; L N>) N N3 would also bes-delay timed regular. We show
that this is not the case.

(Nl LI_INQ)QNg = {(tl,a)-(l,b)-(s,b)~(1,a)~(t2,a) | tl,tQ,S S Rzo, t1 -+t = 1}



Towards a contradiction, we suppose that there exi$s.ad accepting this language.
We denote byl the granularity ofA.
Letw be a delay timed word accepted Hysuch that the following properties hold:

t2 %O mod 1/d
s+t #0 mod 1/d
s #Z0 mod 1/d

Sincew is accepted by, there exists a path in the automaton which recognizes
by =5 0. 0,1 =5 ¢, wheree; are edges of4. This path can be viewed as a
(linear®) TA. A’ with n + 1 locations corresponding to the occurrences of locations in
the path andw edges corresponding to the occurrences of edges in theTgadttlocks

of the two automata are the same ones. The guard and the fesebocurring edge
are the ones of the original one. The set of final locationssisgleton whose element
corresponds t@,,.

By construction,A’ has no cyclew € L(A’") C L(.A) and its granularity!’ divides
the one ofA.

Using [BDGP98, Theorem 21], it is possible to build frof another timed au-
tomaton without silent transitiond” accepting the same timed language, and such that
its granularity is equal to that oft’. Let us examine in the region automaton4f,

a path which accepts. Due to assumptions made ert; andi., the region reached
immediately before the firing of the thirdis time-open. Indeed a region is time-open
as soon as there exists a clock valuation inside it such thaly elock value is not
equivalent to 0 modulo the granularity of the automaton. lmentary examination of
the timed word yields to the possible clock valugsts +1,t0+1+s,t0+2+5,3+s
(recall that there are no silent transitions4f).

As a consequence, we can postpone the date at which thigitarns taken by
a small delay. We obtain another timed wartlwhich is accepted byl”, but which
does not satisfy the constraints @, 11 N2) N N3 (i.e, t1 + t2 = 1). This yields a
contradiction sincev’ € L(A") = L(A") C L(A). 0

Observation.Let us analyze the scheme of the previous proof:

1. fix a wordw in the languag& under study;

2. transform one of its accepting paths into a lin®r which accepts a languagg
such thatw € £' andf’ C £;

3. transform this linealfA. into a TA using the construction of [BDGP98] which
accepts the same languaffe(this is possible as there is no cycle in fi&.);

4. apply a technique specific I in order to obtain a word,’ accepted by thiFA
such that’ ¢ L.

One could believe that such a scheme could be adapted to th@peevious results of
this paper. However, it is worth noticing that the intricatsstruction of [BDGP98],
when it is applied to silent transitions which reset somekdpincreases the number
of clocks. This prevents the application of this scheme ¢opgfoofs which rely on the
number of clocks of the origindlA. (more precisely theorems 5.2 and 6).

5 LinearTA. stands for &A. with no cycle.



We now state our extension of [Fin06, Theorerfits]the framework offA..

Theorem 7 (Shuffle).The problem of deciding whether the shuffle of two delay timed
regular languages is-delay timed regular is undecidable.

Proof. Let X’ be a finite alphabet containing at least one leitéiVe denote by andc
two letters notin¥, and define”, = YU {c} andX}, = XU {b}. We consider a delay
timed regular languagé C (R>o x X)*. Denoting byA; C (R>o x X)* the delay
timed regular language introduced in the proof of the presiproposition, we define
VY C (R> x X;)* as the union of the following three delay timed languagéss (s a
natural adaptation d@omposeo delay timed words)

Vi ={w|3Fw €L, I € (Rsgx X)*,Irstw=w"-(c,7) w'}
Vo =A{w| |wle # 1}
Vs ={w|Iw € (Ryg x X)*, " e My, Irstw=w"-(¢,7) w"}

Since£ and\; are delay timed regular, we get thatis also delay timed regular.
We consider now the delay timed language= V 11 N, whereN; has been defined
in the previous proof. Note tha, involves letterb. We claim thatC is universal (on
X)) iff W is e-delay timed regular. We distinguish two cases:

1. First case.We assumeC is universal on¥, i.e, £ = (R>o x X)*. Then,V =
(R>o x X4)*, i.e, V is universal onX, . It is then easy to verify that th@A
depicted on Figure 6 recognizig. In particular,V is (¢)-delay timed regular.

Xy
z=1;b ; ; b
A/

Fig. 6. A TA accepting/V .

E+;l‘2:0 2+

2. Second caseWe assumel is not universal onr. Towards a contradiction, as-
sume thadV is e-delay timed regular. Then, the delay timed language- W N
(R>o x 2)* - (1,¢) - N3) is e-delay timed regular. Pick a delay timed ward=
(r1,a1) - (Tk,a1) € (R>o x X)* which does not belong t€. Consider now a
delay timed word: € (R>o x X3)*. We will show the following equivalence:

w-(l,e)rzeX <= xe€ (N WNy)NN;

First suppose that’ = w-(1,¢)-x € X. Sincew’ € (R>oxX)* (1, ¢)-N3, we get
thatz € N3. Since there is a single occurrencedf w’, w’ belongs to eithey; L
Ns or V3 1 Na. Assume thaty' € Vy 10 Na, thusw’ € w™ - (1,¢) - w 1 we

6 Just notice that the proof presented in [Fin06] is not coteplecorrect, but it can be fixed
using our techniques.



with w™ € £ andws € N,. Thusw™ # w and sow is obtained by inserting letter
occurrences ofv, in w~ but these aré occurrences which cannot occurina
word overX. Hence we have that- (1,¢)-z € ((R>o x X)* - (1,¢) - N1) i Na.
Again since a word of\5 includes onlyb occurrences, we get € N; L N3,
which concludes the proof of the first direction. Conversilg second implication
follows fromw - (1,¢) - (M W Na) C (w - (1,¢) - N1) W Ns.

Then we mimic the proof of Proposition 4 and prove thattannot bes-timed
regular. However, this is not direct, and requires to befoarkeet denote by4 a
TA. acceptingX. We denote byl its granularity. Consider a delay timed ward
belonging to(\; s A2) N A3 such that:

tQ §_'£O mod l/d
s+ to #0 mod1/d
s #0 mod 1/d

S+Z§:i7—j§é0 mod 1/d, Vi € {1,...,k}

This is possible since the set of pafsst,) that do not fulfill one of these equations
has zero measure w.r.t. Lebesgue measure. We can theneamnittsdielay timed

wordw’ = w - (1,¢) - € X. Using the same techniques as in the previous proof,

we can exhibit &A .A” whose granularity divideg and such that’ € L(A"”) C
L(A). We give the delay timed word':

w = (r1,a1) - (Th,ax) - (1,¢) - (t1,a) - (1,b) - (s,b) - (1,a) - (t2,a) .

A simple examination yields that the possible clock valuesched immediately
before the firing of the lasi are the following onests, to + 1,t5 + 1 + 5,12 +
24+5,3+s,4+s,4+s+7,..., 4+ s+ Zlefj. As a consequence, due to

the constraints imposed an the region reached at this instant is time-open, and

we can postpone the firing of the lastWe obtain another timed word” which is
accepted byd”, but does not belong t&, since it violates the property +t; = 1
required by(N; L N3) N N3. This yields the contradiction.

This concludes the proof: determining wheth®rcan be recognized byBA. is equiv-
alent to deciding whethet is universal. a

7 Extension to Infinite Timed Words

In this section, we explain how all previous results extenthe framework of infinite
timed words. First, we define the acceptance of infinite timvetts by timed automata
with or without silent transitions. We assume that the atarege condition is given
by a Biichi condition, and replace the set of accepting lonatF' in the definition
of a timed automaton by a set cdpeated locationsk. Take A = (L, 4y, X, E, R)
such a timed automaton. For defining its semantics in termsfivite timed words,
we need to distinguish between automata with or withoutsiteansitions. We first
assume thatl has no silent transitions. Given a infinite timed executior{¢y, vy ) do,

ao

(Lo, v + do) — (£1,v1) 4, (01,v1 +dy) 2 .., its label is the infinite timed



word w = (ag, 7)i>0 Wherer; is given as previously by; = >, _, di. If the timed
execution passes infinitely often through a locatioripfve say that it is amccepting
executionand that its label is accepted by the timed automatoifhen, we assume
that 4 is a timed automaton oveY. (that is, it has silent transitions). As in the case
of finite timed words, we define by’ the timed word obtained from by deleting
the pairs whose first component is equaktdt may be the case that’ is finite: it
happens exactly when there are infinitely many actions ledhély <, but only finitely
many labelled by elements different from If the timed execution passes infinitely
often through a repeated location, and if moreowéis infinite, we say tha is an
accepting execution, and that its lahel is accepted byA. In both cases, the set of
infinite timed words accepted by is denoted.“ (A).

The decidability of the universality problem is different the case of finite and
infinite words w.r.t. the number of clocks. The next theorehicl has been established
very recently states the case of infinite words.

Theorem 8 (Universality problem). The universality problem over infinite words for
TA with a single clock is undecidable [AD®S].

All the results we have presented in the framework of langaagf finite timed
words extend to the framework of languages of infinite timedds (with a slight mod-
ification due to the previous theorem). We sum up all resaltee following theorem.

Theorem 9 (Infinite words). The five following problems are undecidable:

1. Given aTA. A, determine whether there exist3A B such thatL* (B) = L“(A).

2. Given aTA. A, determine whether there exists a determinigc B such that
L¥(B) = L¥(A).

3. Given aTA. A over an alphabet of at least two letters, determine whetheret
exists aTA. 5 such thatL“ (B) = L¥(A).

4. Given aTA A with n clocks ¢ > 1), determine whether there exist§a. B with
n — 1 clocks such that“(B) = L¥(A).

5. Given twoTA A and B, determine whether the shuffle bf (A4) and L«(B) is
e-timed regulaf.

The proof of this theorem can be derived from the various fsra@ have proposed
in the framework of finite timed words. The idea is to modifg ttonstructiolCompose
for the framework of infinite timed words, and then to builcegular timed languagi
(over infinite words) witnessing the strict inclusion beemehe two families of studied
languages.

As previously, given an alphabét, we pick a letter not in X, and denote by,
the alphabef’ U {c}.

Definition 3. Let£ C 7TW*(X) andR C 7TW*(X) be two timed languages ovér
(the first one only contains finite words, whereas the secodomly contains infinite

7 For this result, we exclude Zeno timed words since the coatitn of [BDGP98] is only valid
for infinite non Zeno words.



words). Then Inf-Compoé&£&, R) is a timed language of infinite words ovEr. defined
as the union of the following three languages:

Vi ={weTW(Xy)|w €L, Iw e TW(X),Ir stw=w'(c, 7w}
Vo ={weTW(Zy) | lwle # 1}
Vs ={weTW“(Xy)|Iw e TW*(Y), I’ € R,3Ir s.t.w = w' (¢, 7)(w” + 7)}

We obtain similar properties for this new construction:

Lemma8. LetL C TW*(X) andR C TW¥(X) be two timed languages over al-
phabet.

— Inf-Compos&Z W*(X), R) = TW¥(X), it is thus accepted by a deterministic
TA with no clock.

— If £LandR are accepted b¥A. with at mostn clocks, then Inf-Compog&, R) is
also accepted by @A, with at most. clocks.

The proof of this lemma is similar to that of Lemma 1.

Proof (of Theorem 9)We detail the main elements of the proof for each item of the
theorem. For all of them (except ite?r), the proof proceeds by adapting the definition
of the witness language to the context of infinite words, dmehtapplying the reason-
ning of the case of finite timed words. Indeed, the constoncith the case of infinite
timed words still considers a languagevhich is composed of finite timed words. As a
consequence, when considering the case of a non-univargpldge, one can consider
a finite timed word not element @. It is then routine to check that all the details of the
proofs are preserved in this context.

1. Removing silent transition¥Ve define the interpretation of the langua@genin
the context of infinite timed words as follows:

Raven= {(a,7)i>0 € TW“(X) | 5 =0 mod 2 for everyi > 0}

2. DeterminizationThe result is a corollary of Theorefnn [Fin06] establishing the
undecidability of determinizability for timed Bichi autata.

3. Complementation over an alphabet with at least two letMs define the interpre-
tation of the languag®,, ; in the context of infinite timed words as follows:

L;yb = {(ai,Ti)izo S TWM(E) | i, a; = a, ande > i,Tj —T; 75 1}

Note that to obtain the undecidability result, it is necegsa adapt the proof by
considering the languagg” defined as the set of infinite timed wordssuch that:
(z) Untimedw) belongs to the untimed regular languagé™a®,
(1) all a’s before the firsb occur within[0, 1], and
(7i7) notwoa's in the initial fragment occur at the same date.
4. Minimization of the number of clocks, case> 1. The interpretation of the lan-
guageR,, in the context of infinite timed words is defined as follows:

R% = {(G,Ti)izo S TWW(E) |V1 <i<n, 07 <1 ATt = 1—1—7’1'}



5. Shuffle of timed languagdsirst, to adapt the proof of Proposition 4, we modify the
definitions of the language's;, N2 and A as follows:

NP ={(t1,a)- (1,a) - (tz,a) - (1,0)° |ty + 1o = 1}
Ny ={(1,0) - (5,0) - (1,0)* | 5 € R0}
¥ ={(ti.a) - (1,b) - (s,0) - (1,a) - (t2,a) - (1,b)* | t1,5,t2 € R}

Second, to adapt the proof of Theorem 7, we consider a defegdtregular lan-
guagel C (R>o x X)* and extend the definition of the languagén the context
of infinite words by adapting the constructiémf-ComposeV* is the subset of
(R>o x X4 )« defined as the union of the following three languages :

Ve ={w|3Iw €L, ' € (Rsox X)W, Irstw=w"(¢,7) w'}
Vs ={w||w|c #1}
Vi ={w]| I € (R>o x X)*, I e N¥,Irstw=w"-(¢,7) w"}

Then, for each of the above results, it is possible to vehii &l the details of the proof
presented in the case of finite (delay) timed words extendeg@ase of infinite (delay)
timed words. O

For some of the points of the previous theorem, another prmefild have been
possible by “suffixing” the languages WyW* (X) (with a natural meaning for the
suffixing operation). However observe that, for instanc¢he case of complementation
and even in the untimed framework (whérnis a language of finite wordsjL X« )¢
LeXe,

8 Conclusion

In this work, we have studied decision problems relatedn@ti automata with silent
transitions. First we have answered negatively a centedtipn raised by the introduc-
tion of silent transitions: can we decide whether the lagguacognized by a timed au-
tomaton with silent transitions is recognized by some atas§med automaton? Then
we have extended undecidability results known in the fraorkwef timed automata.
Proofs of these results are more involved than the previoes because a timed word
can be accepted in uncountably many different ways by a tmuoimaton with silent
transitions. In addition to the interest of the results, wedidve that such proofs give
more insight on the role of silent transitions.

Finally, since all our proofs rely on the introduction of annletter, a possible future
work is the particular case of an alphabet reduced to a somgle
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