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Abstract— Markov chains are a well-known stochastic process
that provide a balance between being able to adequately model
the system’s behavior and being able to afford the cost of the
model solution. Systems can be modelled directly as Markov
chains, or with a higher-level formalism for which Markov chains
represent the underlying semantics. Markov chains are widely
used to study the performance of computer and telecommuni-
cation systems. The definition of stochastic temporal logics like
Continuous Stochastic Logic (CSL) and its variant asCSL, and
of their model-checking algorithms, allows a unified approach
to the verification of systems, allowing the mix of performance
evaluation and probabilistic verification.

In this paper we present the stochastic logic CSLTA, which is
more expressive than CSL and asCSL, and in which properties
can be specified using automata (more precisely, timed automata
with a single clock). The extension with respect to expressiveness
allows the specification of properties referring to the probability
of a finite sequence of timed events. A typical example is the
responsiveness property “with probability at least 0.75, a message
sent at time 0 by a system A will be received before time 5 by
system B and the acknowledgment will be back at A before
time 7”, a property that cannot be expressed in either CSL or
asCSL. Furthermore, the choice of using automata rather than
the classical temporal operators Next and Until should help in
enlarging the accessibility of model checking to a larger public.
We also present a model-checking algorithm for CSLTA.

Index Terms— Verification, model checking, Markov processes.

I. INTRODUCTION

S
OFTWARE performance engineering [1] (SPE) is a discipline

that advocates an integrated approach to system design and

system analysis. SPE emphasizes the importance of obtaining

performance measures early in the development process, when

appropriate decisions can be taken at a lower cost, usually through

modelling, given that the target system is not available yet. Over

the years, SPE has evolved to encompass other non-functional

requirements such as dependability and quality of service (QoS)

aspects.

Part of the work of a software performance engineer consists

in defining appropriate performance and dependability properties.

In this paper we introduce a new stochastic logic that allows us to

define and check non-functional properties over Continuous Time

Markov Chains (CTMC).

CTMCs are a well-known stochastic process that balances the

need of having a model that is representative enough of the real

system being modelled, while still allowing affordable solution

costs: there are standard and widespread solution methods for the

computation of performance measures of a CTMC. The relevance

of CTMCs for SPE is clearly evidenced by recent works on

S. Donatelli and J. Sproston are with the Dipartimento di Informatica,
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automatic translations from UML diagrams, annotated according

to some standard or quasi-standard profile such as UML-SPT [2]

and MARTE [3], to various performance evaluation formalisms

like queueing networks [4], stochastic Petri nets [5] and stochastic

process algebras [6], whose underlying stochastic process is in

most cases a CTMC. A complete overview of the tools and

algorithms for the translation from UML diagrams to performance

models can be found in [7].

Historically, CTMCs have been analyzed using steady state

and transient analysis, to compute the probability of finding the

system in a given state assuming it has reached equilibrium, or the

probability of finding a system in a given state at time t. From

these basic methods, the use of state and/or transition rewards

allows the computation of performance/dependability properties.

More recently the definition of Continuous Stochastic Logic

(CSL) [8], [9] and variants, such as asCSL [10], has introduced a

new approach for the definition of the performance and depend-

ability properties of a system. Temporal logic based approaches

are particularly useful when the measure of interest depends on

the execution path. Given a formal description of the system and

its requirements, we can then execute a model-checking algorithm

which establishes automatically whether the system model meets

the requirements expressed in CSL or asCSL.

To illustrate the advantages of stochastic logics, consider a

system whose stochastic behavior is described by a CTMC, whose

states (of which there can be millions) are partitioned into “system

is working properly” (work-states), “system is working in de-

graded mode” (degr-states), or “system is not working properly”

(fail-states). The CTMC can move from work to degr states and

to fail states (either directly or through degr states). A simple

example of CTMC exhibiting this behaviour is shown in Figure 1.

A classical dependability property requires the computation of the

probability of failing within the time interval I , or later than a

given threshold t: these probabilities can be easily computed using

classical solution methods for CTMCs.

Instead, if we are interested in only those failures in which the

system fails within the time interval I , without first entering the

degraded mode, we have to compute the probability of reaching

a fail state within I , while passing only through work states. The

stochastic temporal logic CSL has temporal operators that allow a

simple and semantically-clear description of such a property using

the Until operator: P≤λ(work UI fail). The property is satisfied

in a state s if the set of timed paths of the CTMC that start in s

and visit only work states before entering a fail state at a time

in the interval I have a probability at most λ.

The logic asCSL permits the specification of paths in terms

of state labels (such as work , degr and fail) and action labels.

For example, P≤λ((work ,Act)∗; (work , failure1 ); (fail,
√

)I), is

similar to the CSL formula above, with the additional restriction

that the change from work -states to fail-states is due to action

failure1 .
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Fig. 2. Automata for two QoS properties

In this paper, we propose the new stochastic temporal logic

CSLTA (Continuous Stochastic Logic with Timed Automata),

which builds on CSL and asCSL by enriching the set of properties

that can be defined and verified, and presents its associated model-

checking algorithm. Let us first explain the main motivations for

introducing a new logic. Modifications are along two lines: prop-

erties are specified using deterministic one-clock timed automata,

and the defined logic is at least as expressive as CSL and asCSL

(and strictly more expressive than CSL and asCSL without nested

formulae). For the time being we shall be informal, at the risk of

being slightly imprecise, to convey the main ideas. The rest of

the paper will provide the required formal development.

The idea of using automata for specifying system behavior

is familiar to computer scientists in general, and to software

engineers in particular. The use of automata to specify temporal

logic properties is not new: Vardi and Wolper [11] define a linear-

time temporal logic with Büchi automata operators, while Clarke

et al. [12] introduce the temporal logic ECTL, which uses Muller

automata to specify linear and branching temporal properties, and

develop an associated model-checking algorithm.

Timed automata [13] are a widespread formalism for the

specification of timed systems, and are supported by tools such

as UPPAAL [14]. Previous work has considered the use of timed

automata to specify both the system and the properties that it

should satisfy [13], or, more typically, the use of timed temporal

logic to specify the properties of a timed automata system [15],

[16]; observe that in [16], the model-checking algorithm involves

the transformation of temporal logic properties into timed au-

tomata. In this paper we use timed automata to specify timed

and probabilistic properties of the system, and not to specify the

system itself.

We illustrate the limitations of CSL and asCSL with respect to

CSLTA using again the CTMC of Figure 1. Assume that we are

interested in the probability of the system exhibiting the following

behavior: the system goes from work states to degr states and

then from degr states to fail states in a time greater than or

equal to t. This property can be expressed in CSLTA using the

timed automaton of Figure 2(a), where x is a clock (a variable

whose value increases at the same rate as time). This property can

be expressed also in asCSL, using a formula similar to the one

given above: P≤λ((work , Act)∗; (degr ,Act)∗; (fail,
√

)I), for the

interval I = [t,∞). This property cannot be expressed in CSL,

which can only express the probability of being in work or degr

states until, at a time at least t, the system moves to fail states:

this property is obviously not equivalent to the original one since

it includes also paths that cycle between work and degr states.

Now assume that the QoS requirements imposed on the system

are more stringent and detailed, requiring that, with probability at

least λ, the system goes from work states to degr states in no less

than t′ time units, and then from degr states to fail states in no less

than t′′ time units. Paths are therefore characterized in terms of

states and in terms of two time constraints. This property can be

expressed in CSLTA using the timed automaton of Figure 2(b),

where the edge label {x} indicates that the clock x is reset to

zero on traversal of the edge. Observe that the two properties

are different, because (a) checks only the global time to get to

fail states, while (b) also “looks” inside the composition of this

duration: indeed the automaton of Figure 2(b) is not equivalent

to the automaton of Figure 2(a) with t = t′ + t′′.
This QoS requirement cannot be expressed neither in CSL nor

in asCSL, as will be explained in later sections. What can be

indeed expressed in CSL and asCSL is that, with probability at

most λ, the system moves not before t′ from work states to the

subset of degr states from which, with probability at most λ′,
the system moves to fail not before t′′. Note that we have to

utilize a “fake” probability, introducing an overspecification with

respect to the original QoS requirement, because timed intervals

cannot be nested directly in CSL and asCSL, while probabilistic

operators can be nested. Note that taking λ′ = 1 does not solve

the problem.

In addition to introducing CSLTA, we present its associated

model-checking algorithm. Contrary to the previous approaches,

which perform ad hoc transformations of the CTMC before

a transient or steady-state analysis, this algorithm generates a

Markov regenerative process and then computes a reachability

probability on this process. Furthermore, we prove that CSLTA

is at least as expressive as CSL and asCSL: it is possible to

transform any CSL or asCSL formula into an equivalent CSLTA

formula. We note that the CSLTA model-checking algorithm, when

executed on CSLTA properties transformed from CSL properties,

is no more expensive in terms of computational complexity than

the CSL model-checking algorithm of [9]. Finally, we show that

CSLTA is strictly more expressive than CSL: note that the proof

technique used is different from those used in the non-stochastic

context, for example in [17]. We also show that CSLTA is more

expressive than asCSL, when restricting to the case of formulae

without nesting.

With regard to related work, performance metrics that depend

on paths have also been studied in [18], [19]. In particular, the

work in [19] uses automata for the specification of the set of paths

of interest of a CTMC: rewards, which are usually associated

with states or transitions of the CTMC, are instead associated

with locations and transitions of the automaton, thus providing

a wide range of performance measures based on states and/or

events of the CTMC. We also note that the logic CSLTA is similar

to the logic TECTL∗
∃ [20] from the non-probabilistic model-

checking literature. One-clock timed automata have been studied

in, for example, [21], [22]. Finally, we recall that the original

definition of CSL permitted the description of a sequence of timed

Until formulae within a single probabilistic operator P∼λ [8], in

contrast to the more established definition in which only one time

Until formula can be included within a probabilistic operator:



however, the decidability results of [8] are based on results from

algebraic and trascendental number theory, whereas established

performance evaluation techniques are used as the foundation of

the algorithms for CSL in [9] and for CSLTA in this paper.

The rest of the paper is organized as follows: Section II

defines the syntax and semantics of CSLTA, illustrated with the

help of small examples. Section III presents the model-checking

algorithm for CSLTA and gives an example on a simple CTMC,

while Section IV compares the expressiveness of CSLTA, CSL

and asCSL. Section V summarizes the paper and discusses future

work.

II. SYNTAX AND SEMANTICS OF CSLTA

In this section, we first introduce a number of preliminary

concepts. After defining a class of labelled CTMCs, we recall the

notion of execution path of a CTMC as a finite or infinite sequence

of transitions from state to state. We then introduce a restricted

class of timed automata, and consider the manner in which such

automata can be used to express properties of CTMC execution

paths. Finally we introduce the syntax of CSLTA, which is similar

to CSL but which uses timed automata to express properties of

paths, and present its semantics.

.

A. Labelled Markov Chains

We first introduce continuous-time Markov chains labelled both

by atomic propositions on states and by actions on transitions.

Atomic propositions can refer to basic properties which are

observed when the system is in a state (such as idle or error ),

whereas actions refer to basic properties which are observed when

the system makes a transition from state to state (such as activate

or send message). Such labelled Markov chains can be used as

the underlying semantic model of high-level formalisms such as

stochastic Petri nets and stochastic process algebras. Let R≥0

(R>0) be the set of non-negative (positive) reals, and let N be the

set of natural numbers.

Definition 2.1 (Action- and state-labelled Markov chain):

An action- and state-labelled continuous-time Markov chain

(ASMC) is a tuple M = 〈S,Act ,AP , lab,R〉, where S is a finite

set of states, Act is a finite set of action labels, AP is a finite

set of atomic propositions, lab : S → 2AP is a state labelling

function, and R : S × Act × S → R≥0 is a rate matrix. We

require that for any state s there exists a pair (a, s′) ∈ Act × S

with R(s, a, s′) > 0.

Intuitively, the rate matrix R describes the transitions that can

be made between states of the ASMC, on which actions, and with

which rate. A transition from state s to state s′, performing action

a, exists if R(s, a, s′) > 0. A transition from s to s′ performing

a and of duration τ ∈ R>0 is denoted by s
a,τ−−→ s′.

Definition 2.2 (Paths of M): A finite path of an ASMC M
is a finite sequence of transitions σ = s0

a0,τ0−−−→ s1
a1,τ1−−−→

. . . sn−1
an−1,τn−1−−−−−−−→ sn where R(si, ai, si+1) > 0 for i =

0, . . . , n − 1. An infinite path of M is an infinite sequence of

transitions σ = s0
a0,τ0−−−→ s1

a1,τ1−−−→ . . . where R(si, ai, si+1) > 0

for all i ≥ 0 and such that
∑

i≥0 τi = ∞.

Notation. Given s ∈ S, let PathM(s) be the set of infinite

paths s0
a0,τ0−−−→ s1

a1,τ1−−−→ . . . such that s0 = s. Let PrMs be

the probability measure on PathM(s) defined in the standard

manner (for example, see [9], [10]). Let σ = s0
a0,τ0−−−→ s1

a1,τ1−−−→

p

s1p s0

q s2

p, qs3

∅s4

R(s1, d, s3)

R(s3, c, s4)R(s1, c, s2)
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Fig. 3. An ASMC

. . .
an−1,τn−1−−−−−−−→ sn be a finite path. Then |σ| = n denotes the

length of σ, and τ (σ) =
∑n−1

i=0 τi is the total duration of σ. By

convention, τ−1 = 0. For an infinite path σ, we let |σ| = ∞ and

τ (σ) = ∞.

As usual, we can describe an ASMC by a graph. An example

of an ASMC is given in Figure 3. The vertices of this graph are

its states whereas the edges represent its transitions. The atomic

propositions (here p and q) that are satisfied in a state are indicated

near the corresponding node. Finally, the rate of a transition labels

the corresponding edge.

B. Timed Automata

We now present a restricted variant of timed automata [13],

which are used in CSLTA to describe properties of ASMC paths.

More precisely, in our context, timed automata are used as

acceptors of finite ASMC paths. The class of timed automata

that we consider are deterministic (i.e., given a path σ of an

ASMC, there is at most one path of the timed automaton which

reads σ), and have a single clock. In the same manner as in

classical analysis techniques for timed automata [13], we present

our timed automata using natural-numbered constants (rational-

numbered constants can also be considered through re-scaling)

We proceed to define deterministic (one-clock) timed automata.

We use the symbol ♯ to denote a pseudo-action that is not included

in the action set Act of any ASMC (♯ 6∈ Act). Clock variables are

real-valued variables whose value increases linearly with time.

We consider a single clock variable x. A valuation x̄ ∈ R≥0

is interpreted as assigning a non-negative real value to x. A

constraint is of the form α ≺ x ≺ β or α ≺ x where α, β ∈ N,

α ≤ β and ≺ stands for either < or ≤. An inner constraint is a

constraint α ≺ x ≺ β such that α < β. The set of inner constraints

is denoted Inner. A boundary constraint is a constraint α ≤ x ≤ β

such that α = β; we generally write boundary constraints as

x = α. The set of boundary constraints is denoted Boundary. Let

γ be a constraint and x̄ be a clock valuation. Then we write x̄ � γ

if γ is satisfied when x̄ is substituted for x in γ.

Locations of a timed automaton are labelled with state propo-

sitions. A state proposition is a proposition which either holds, or

does not hold, in an ASMC state. For a set Σ of state propositions,

let |=Σ be its associated satisfaction relation: hence we write

M, s |=Σ Φ to denote that the state s of the ASMC M satisfies

Φ. We omit M and write s |=Σ Φ when clear from the context.

We also consider Boolean expressions of state propositions: for

example s |=Σ Φ1 ∧ Φ2 denotes that s satisfies Φ1 and Φ2. Let

B(Σ) be the set of Boolean expressions over state propositions



of Σ. We will make precise later in the paper the set of state

propositions Σ used in CSLTA. For the purposes of the current

explanation, the reader can consider the case in which Σ = AP

with s |=AP p if and only if p ∈ lab(s), for a state s and p ∈ AP .

Definition 2.3 (Deterministic Timed Automaton): A determin-

istic timed automaton (DTA) A = 〈Σ,Act , L, Λ, Init ,Final ,→〉
comprises:

• Σ, a finite alphabet of state propositions;

• Act , a finite alphabet of actions;

• L, a finite set of locations;

• Λ : L → B(Σ), a location labelling function;

• Init , a subset of L called the initial locations;

• Final , a subset of L called the final locations;

• →⊆ L×((Inner×2Act)∪(Boundary×{♯}))×{∅, x}×L, a set

of edges, where l
γ,A,r−−−−→ l′ denotes that (l, γ, A, r, l′) ∈→.

Furthermore A fulfills the following conditions.

• Initial determinism: ∀l, l′ ∈ Init , Λ(l) ∧ Λ(l′) ⇔ false.

• Determinism on actions: ∀A,A′ ⊆ Act s.t . A ∩ A′ 6=
∅, ∀l, l′, l′′ ∈ L, if l′′

γ,A,r−−−−→ l ∧ l′′
γ′,A′,r′

−−−−−→ l′ then either

Λ(l) ∧ Λ(l′) ⇔ false or γ ∧ γ′ ⇔ false.

• Determinism on ♯: ∀l, l′, l′′ ∈ L, if l′′
γ,♯,r−−−→ l∧l′′

γ′,♯,r′

−−−−→ l′

then either Λ(l) ∧ Λ(l′) ⇔ false or γ ∧ γ′ ⇔ false.

• No ♯-labelled loops: For all sequences l0
γ0,A0,r0−−−−−−→

l1
γ1,A1,r1−−−−−−→ · · · γn−1,An−1,rn−1−−−−−−−−−−−−→ ln such that l0 = ln, there

exists i ≤ n such that Ai 6= ♯.
Let Φ1 and Φ2 be state propositions in the alphabet Σ. Figure 4

depicts a DTA, using the usual conventions for the graphical

representation of timed automata (i.e., nodes represent locations,

and edges represent edges labelled with their guards, actions

sets, and the set of clocks to be reset to 0, respectively). Initial

locations are denoted by an incoming arrow with no source, and

final locations are denoted by a double border. Edges labelled

by ♯ are called boundary edges while the other edges are called

inner edges. For the DTA of Figure 4 the determinism is obvious,

because there is no choice allowed. Figure 5 shows a more

complex DTA, with inner edges (the self loops on l0, l1, and

the arc from l0 to l1), and boundary edges (the arcs from l0
to l1 and from l0 to l2). The DTA respects the determinism

constraints of the definition, because the two boundary edges out

of location l0 lead to two locations whose labelling cannot be

both satisfied by any state of an ASMC (indeed Λ(l1) ∧ Λ(l2) =

(Φ1 ∧ ¬Φ2) ∧ Φ2 = false).

The semantics of DTA, expressed in terms of paths, is stan-

dard [13], apart from the case of boundary edges, which are urgent

and have priority over other edges. Urgency specifies that time

cannot elapse if a boundary edge is enabled, and it is a feature

of the variants of timed automata used in the tools UPPAAL [14]

and KRONOS [23]. In our context, the notions of urgency and

priority are not relevant when considering a DTA in isolation.

They will be introduced later when we define the notion of a

path of a DTA that reads an ASMC path, and the notion of path

acceptance (Definition 2.7).

Examples of DTA: Next and Until. The DTA AX [α,β]Φ1
in

Figure 4 specifies behaviors in which the first transition of M
must be taken to a state satisfying Φ1 after at least α time units,

but not after β time units, and corresponds to the Next path

formula X [α,β]Φ1 of CSL [9]. The action of the transition is

not important; this fact is represented by the action set Act on

the edge of the DTA.

l0 l1
α ≤ x ≤ β;Act ; ∅

Φ1

Fig. 4. The DTA AX [α,β]Φ1

l0

l1 l2
x ≤ β; Act ; ∅

x = α; ♯; ∅

x ≤ β;Act ; ∅

x = α; ♯; ∅

x ≤ α; Act ; ∅

Φ1

Φ1 ∧ ¬Φ2 Φ2

Fig. 5. The DTA AΦ1U
[α,β]Φ2

We can use the DTA AΦ1U [α,β]Φ2
of Figure 5 to represent

the property of eventually reaching a state satisfying Φ2 at some

instant between α and β time units, remaining within states

satisfying Φ1 before that point (the timed Until path property

Φ1U [α,β]Φ2 of CSL [9]). In contrast to the previous example, this

DTA uses boundary edges which witness that the time interval

[α, β] has been entered. In this way, we distinguish between the

time interval [0, α), where the truth value of Φ2 is irrelevant, and

the time interval [α, β], where the truth value of Φ2 becomes

relevant.

Paths of a DTA. We now define a notion of path in a DTA,

which represents a timed evolution of the automaton.

Definition 2.4 (Configurations of A): A configuration of a

DTA A is a pair (l, x̄), where l ∈ L and x̄ is a valuation.

Given an edge e = (l, γ, A, r, l′) ∈→, let source(e) = l,

guard(e) = γ, action(e) = A, reset(e) = r, and target(e) = l′.
We let the valuation x̄[x := 0] be equal to 0 and let the valuation

x̄[∅ := 0] be equal to x̄.

Definition 2.5 (Step of A): A step of a DTA A from a config-

uration (l, x̄) is (l, x̄)
δ,e−−→ (l′, x̄′) of A with δ ≥ 0, source(e) = l,

x̄ + δ � guard(e), target(e) = l′, and x̄′ = (x̄ + δ)[reset(e) := 0].

A single step in the evolution of A is a transition in which we

let time elapse and then an inner or a boundary edge is taken.

Note that δ = 0 is also allowed.

Definition 2.6 (Paths of A): A finite path of a DTA A is

a finite sequence of steps (l0, x̄0)
δ0,e0−−−→ (l1, x̄1)

δ1,e1−−−→
. . . (ln−1, x̄n−1)

δn−1,en−1−−−−−−−→ (ln, x̄n).

An infinite path of a DTA A is an infinite sequence of steps

(l0, x̄0)
δ0,e0−−−→ (l1, x̄1)

δ1,e1−−−→ . . ..

C. Acceptance of ASMC paths

We now give an intuitive explanation of how a path σ =

s0
a0,τ0−−−→ s1

a1,τ1−−−→ . . . of an ASMC M can be accepted by

a DTA A. The key idea is that A evolves according to the

states and actions that it “reads” along σ. Recalling that the

value of clocks in timed automata increase at the same rate as

real-time, as time elapses in M the value of the clock x of A



changes accordingly. Steps corresponding to inner edges of A are

triggered by transitions of M, whereas steps corresponding to

boundary edges of A are triggered by the elapse of time (without

a corresponding transition of M).

The DTA A begins in a configuration (l0, 0) with location l0 ∈
Init such that the initial state s0 of σ satisfies the expression

Λ(l0) over state propositions (formally, s0 |=Σ Λ(l0)). Note that,

by initial determinism, there is at most one l ∈ Init such that s0

satisfies Λ(l). If s0 does not satisfy Λ(l) for all l ∈ Init, then A
rejects σ.

Given the existence of l0 ∈ Init such that s0 satisfies Λ(l0),

the DTA A then moves from (l0, 0) to another configuration

depending on the first transition s0
a0,τ0−−−→ s1 of σ. First we

consider the case in which there are no outgoing boundary edges

from l0. If there exists a step (l0, 0)
τ0,e0−−−→ (l1, x̄1) such that

a0 ∈ action(e0) and s1 satisfies Λ(l1), then this step is taken.

Note that, by determinism on actions, there exists at most one

step satisfying these conditions. If no such step exists, then A
rejects σ.

Now we consider the case in which there exists at least one

boundary edge from l0. Consider the step (l0, 0)
δ′
0,e′

0−−−→ (l′1, x̄′
1),

where action(e′0) = ♯, which (by urgency of boundary edges)

corresponds to the earliest boundary edge available by letting time

elapse from (l0, 0). If δ′0 > τ0, then this step is available only

after M has performed the transition s0
a0,τ0−−−→ s1; hence, the

DTA “reads” the ASMC transition before the boundary edge is

available, and this case is similar to the case in which there are no

boundary edges from l0 in the previous paragraph. If, however,

δ′0 ≤ τ0, the DTA takes the step before “reading” the ASMC

transition. Note that, in this case, the remaining time before the

transition of M must be “read” by A is τ0 − δ′0, rather than τ .

This has implications for deciding whether a boundary edge can

be taken from (l′1, x̄′
1), or whether the transition of M must be

“read” before any boundary edge is enabled for choice.

Unless A has already rejected σ, the path of A generated by σ

then continues from (l1, x̄1) or (l′1, x̄′
1). Finally, if the path of A

generated by σ reaches a configuration with a location in Final ,

then σ is accepted. If, however, the path of A generated by σ

does not reach such a configuration, then σ is rejected. Hence,

there are two ways in which A can reject σ: if there does not

exist a step corresponding to the “reading” of a transition of σ,

or if a final location is never reached.

We now describe formally the conditions for the acceptance of

an ASMC path by a DTA.

Definition 2.7: Let M be an ASMC, and let A be a DTA. The

infinite path σM = s0
a0,τ0−−−→ s1

a1,τ1−−−→ . . . of M is accepted by

A if there exists:

• a finite path σA = (l0, x̄0)
δ0,e0−−−→ (l1, x̄1)

δ1,e1−−−→
. . .

δm−1,em−1−−−−−−−−→ (lm, x̄m) of A,

• an index n ∈ N,

• a time τ ≤ τn, and

• a function κ : {0, . . . , m} → {0, . . . , n} which maps indices

of σA to indices of σM,

such that the following conditions are satisfied:

C1: l0 ∈ Init , x̄0 = 0, κ(0) = 0 and

∀0 ≤ i ≤ m, li ∈ Final ⇔ i = m;

C2: ∀0 ≤ i ≤ m, sκ(i) |=Σ Λ(li);

C3: ∀0 ≤ i < m, if ei is an inner edge

then κ(i + 1) = κ(i) + 1 ∧ aκ(i) ∈ action(ei)

else κ(i + 1) = κ(i);

C4: ∀0 ≤ i < m, if ei is an inner edge then

Boundary edges are urgent:

for all 0 ≤ δ′ < δi, there does not exist an edge e′ =

(li, γ, ♯, r, l′) ∈→ such that x̄ + δ′ � γ and sκ(i) |=Σ

Λ(l′),
and

Boundary edges have priority:

for all edges e′ ∈→ such that e 6= e′, if source(e′) = l,

x̄ + δi � guard(e′), target(e′) = l′ and sκ(i) |=Σ Λ(l′)
then action(e′) 6= ♯;

C5: ∀0 ≤ i < n,
∑

j|κ(j)=i δj = τκ(i);

C6:
∑

j|κ(j)=n δj = τ .

Condition C1 specifies that σA must start from an initial location

and end in a final location. C2 requires that the state propositions

satisfy the expressions labelling the corresponding locations in

the sequence. C3 specifies that κ can map consecutive indices

of σA to the same index of σM, provided that the DTA edges

corresponding to these indices are boundary edges. It also requires

that a transition of the ASMC in σ can be matched by a traversal

of an inner edge provided that the action of the transition is

included in the action set of the edge. C4 limits the path of the

DTA to paths whose steps respect the additional conditions on

♯: urgency and priority of boundary edges. C5 “align times”, by

requiring that the sum of durations in σA corresponding to a

particular index i of σM is τi. C6 applies the reasoning of C5 to

the case in which the path σA features boundary edges directly

before reaching a final state (recall that τ ≤ τn).

It should be clear that given an ASMC M and a DTA A, due

to our requirements for DTA and to the additional requirements

of urgency and priority of boundary edges, there is at most one

path of A that accepts a given path of M. Accordingly, if s is

a state of M we let AccPathM(s,A) be the set of infinite paths

of M starting from s that are accepted by A.

Examples of path acceptance. In Figure 6, we present two

examples of the way in which a path of the ASMC M of Figure 3

can be accepted by the DTA ApU [α,β]q . We write eij to refer to

the edge of ApU [α,β]q from location li to location lj , and we use

dotted lines to represent the κ function. Note that the presence

of more than one dotted line from a state si means that the DTA

traverses a boundary edge. Example 1 of Figure 6 has α = 2 and

β = 6, and depicts a case in which q does not hold at time α,

but becomes true at time 5, which belongs to [α, β]; therefore the

DTA reaches l2 through l1. Example 2 of Figure 6 has α = 6

and β > 6, and depicts a case in which q already holds before α;

therefore the DTA reaches l2 directly from l0.

We now describe briefly some examples of paths of M which

are rejected by ApU [2,6]q . If the first transition of M is s0
a,7−−→ s1,

then the associated path of ApU [2,6]q will consist of the single step

(l0, 0)
e01,2−−−→ (l1, 2): after the value of the clock x exceeds 6, it

will not be possible to take further steps. If on the other hand the

path of M is s0
a,1−−→ s1

c,0.5−−−→ s2, then the associated path of

ApU [2,6]q will consist of the single step (l0, 0)
e00,1−−−→ (l0, 1), after

which it will not be possible to take any further steps: the state

s2 is not labelled by p, boundary edges are available only at time

2, and yet the transition s1
c,0.5−−−→ s2 occurs before time 2.

All the timed automata configurations considered in Figure 6

are configurations in which the DTA spends a non-zero amount of

time: this is not always the case if boundary edges are involved.



Example 1: α = 2 and β = 6

s0 a,3
−−−→

s1 c,2
−−−→

s2 −→ . . .

(l0, 0) e01,2
−−−−−→

(l1, 2) e11,1
−−−−−→

(l1, 3) e12,2
−−−−−→

(l2, 5)

Example 2: assume α = 6
s0 a,3

−−−→
s1 d,2

−−−→
s3 c,2

−−−→
s4 −→ . . .

(l0, 0) e00,3
−−−−−→

(l0, 3) e00,2
−−−−−→

(l0, 5) e02,1
−−−−−→

(l2, 6)

Fig. 6. Examples of path aceptance

Indeed a path obtained from the first example by splitting the

step (l0, 0)
e01,2−−−→ (l1, 2) into the two steps (l0, 0)

e00,2−−−→ (l0, 2)

and (l0, 2)
e01,0−−−→ (l1, 2) is also an accepting path for the

ASMC execution of the example. Another source of zero-time

configurations in an accepting path is the presence in the path of

more than one edge with the same clock constraints and no reset

of clock in between.

D. CSLTA

Given the definition of DTA, we can now present formally the

syntax of CSLTA. Note that the syntax of CSLTA is essentially

identical to that of CSL or asCSL [8], [9], [10], apart from the

fact that properties of paths are specified using DTA (instead of

being specified by timed temporal logic operators as, for example,

in CSL).

Definition 2.8 (Syntax of CSLTA): Let λ ∈ [0, 1] be a real

number, and let ∼∈ {<,≤,≥,>} be a comparison operator. The

syntax of CSLTA is defined by:

Φ ::= p | ¬Φ | Φ ∧ Φ | S∼λ(Φ) | P∼λ(A(Φ1, . . . , Φn))

where p ∈ AP and A(Φ1, . . . , Φn) is a DTA with a finite

alphabet Σ of state propositions such that Σ = {Φ1, . . . , Φn}
and Φ1, . . . , Φn are CSLTA formulae.

Note that CSLTA is a CTL∗-like language with nest-

ing of path and state formulae [24]; in particular, the

state propositions of a DTA are state formulae of CSLTA.

For example, we can write a CSLTA formula such as

P≥0.99(ApU [α,β]P≥0.1(A
X [α,β]q

)) (which corresponds to the CSL

formula P≥0.99(pU [α,β]P≥0.1(X [α,β]q))).

Intuitively, state s satisfies the formula S∼λ(Φ) if and only

if val ∼ λ, where val is the steady state probability, computed

assuming the ASMC starts in s, of being in an ASMC state that

satisfies Φ. State s satisfies instead the formula P∼λ(A) if and

only if val ∼ λ, where val is the probability of all ASMC paths

starting in s and accepted by A.

We proceed to define the semantics of CSLTA in terms of the

satisfaction relation |=. For a given CSLTA formula Φ and state s

of M, we write M, s |= Φ to denote that Φ is satisfied in state s.

We write π(s, ·) for the steady-state distribution of M, computed

starting from state s.

Definition 2.9 (Semantics of CSLTA): For M =

〈S,Act ,AP , lab,R〉, and state s ∈ S, the satisfaction relation |=

for CSLTA is defined as follows:

M, s |= p ⇔ p ∈ lab(s)

M, s |= ¬Φ ⇔ M, s 6|= Φ

M, s |= Φ1 ∧ Φ2 ⇔ M, s |= Φ1 and M, s |= Φ2

M, s |= S∼λ(Φ) ⇔ ∑

s′∈S s.t. M,s′|=Φ π(s, s′) ∼ λ

M, s |= P∼λ(A(Φ1, . . . , Φn))

⇔ PrMs (AccPathM(s,A(Φ1, . . . , Φn))) ∼ λ .

III. MODEL CHECKING FOR CSLTA

As usual with CTL∗-like languages [24], in order to evaluate

the satisfaction of a formula Φ over an ASMC M, we proceed

by a bottom-up evaluation of the subformulae occurring in Φ

over all the states of M, labelling accordingly the states with the

subformulae that they satisfy. Let Φ′ be such a subformula.

• If Φ′ is either an atomic proposition p, ¬Ψ or Ψ ∧ Ψ′, then

the evaluation is performed by a straightforward application

of Definition 2.9.

• If Φ′ = S∼λ(Ψ), then the steady-state of M with respect to

every state s is computed first. Afterwards the steady-state

probability of the subset of states that fulfill Ψ is computed

and the value compared with λ in order to check whether s

satisfies Φ′.
• Finally, if Φ′ = P∼λ(A), for each state s, we compute

the probability of AccPathM(s,A) (the set of paths of M
accepted by A), and we compare it to λ in order to check

whether s satisfies Φ′. Observe that the state properties

of A label the states of the ASMC due to the bottom-up

evaluation. The computation of PrMs (AccPathM(s,A)) is

the topic of the remainder of this section.

We use s0 to denote the state for which we compute

PrMs0
(AccPathM(s0,A)), and let l0 ∈ Init be the location of

A for which s0 |=Σ Λ(l0) (if no such location exists then

PrMs0
(AccPathM(s0,A)) = 0).

A. The “synchronized” stochastic process M×A.

The computation of PrMs0
(AccPathM(s0,A)) requires the def-

inition of a stochastic process M × A that describes the joint

evolution of M and A. The stochastic process has been enriched

with two absorbing states: ⊤ and ⊥. At some instant of its

execution, this process may be in one of three situations.

1) At some previous instant, A has not been able to mimic the

execution of M and thus this process is in the absorbing

state ⊥ whatever are the subsequent transitions of M.

2) At some previous instant, A has reached a final location by

following the execution of M and thus this process is in the

absorbing state ⊤ whatever are the subsequent transitions

of M.

3) Otherwise the process is in some state of M associated with

a finite timed execution of A not ending in a final location.

States of M×A. If at some instant the execution of M is neither

rejected nor accepted, we observe that, for the future behavior

of the process M × A, only the current location of the path in

the DTA and the value of clock x are relevant. This yields the

following state description: N(t) = (s(t), l(t), x̄(t)), where s(t)

is the state of M at time t ∈ R≥0, l(t) is the location of A at

time t, and x̄(t) is the value of the clock at time t. However, in

M×A we consider only tangible states, i.e., states which do not

trigger a boundary edge in zero time. Therefore we introduce the



following definition (which allows us to skip non tangible states)

which is sound because, by definition of DTA, there are no loops

of ♯ transitions in A.

Definition 3.1: Let (s, l, x̄) ∈ S×L×R≥0. Then closure(s, l, x̄)

is defined as follows:

• if l ∈ Final then closure(s, l, x̄) = ⊤;

• if l /∈ Final and there is a boundary edge l
γ,♯,r−−−→ l′ with x̄ �

γ and s |=Σ Λ(l′) then closure(s, l, x̄) = closure(s, l′, x̄[r :=

0]);

• otherwise closure(s, l, x̄) = (s, l, x̄).

The set of states of the process M × A is a subset of {⊥,

⊤} ∪ {(s, l, x̄) | closure(s, l, x̄) = (s, l, x̄), s |=Σ Λ(l)}.

Behavior of M×A. Let C = {c0, ..., cm} be the set of constants

used in the clock constraints of A enlarged with 0, ordered as

follows: 0 = c0 < c1 < · · · < cm. We define next(ci) = ci+1 for

all i < m and next(cm) = ∞.

Let (s, l, x̄) be a state such that x̄ ∈ [ci, next(ci)) for some

i ≤ m. Process M × A can evolve from (s, l, x̄) due to two

reasons: (1) the ASMC M changes its state or (2) time elapses

and the value of x reaches next(ci).

In case (1), a transition s
a,τ−−→ s′ is taking place in the ASMC

M before the next timing constant next(ci) is reached, i.e., x̄ +

τ < next(ci), for some τ . If this transition cannot be read by A
from its state (l, x̄), then the stochastic process makes a transition

to ⊥. If it can be read through an edge (l, γ, A, r, l′) of A (and

by definition there is exactly either one or no such edge), then

the process M×A moves to closure(s′, l′, (v + τ )[r := 0]). Note

that closure is needed since boundary transitions may be then

triggered in zero time and/or A may reach a final state, so that

the process enters the ⊤ state.

Case (2) represents instead the situation in which the next clock

barrier is reached by x before an ASMC transition takes place

(an amount of time equal to next(ci) − x̄ has elapsed). Then the

process M×A evolves from (s, l, x̄) to closure(s, l, next(ci)).

It is straightforward to show that each path of M×A leading

to ⊤ corresponds to a (single) path in M accepted by A, and vice

versa. Furthermore, PrMs0
(AccPathM(s0,A)) can be computed as

the probability of reaching ⊤ in process M×A from (s0, l0, 0). In

the remainder of this section we explain how the latter probability

can be computed.

M×A is a Markov Renewal Process. We can rewrite a state of

M×A (different from ⊥,⊤) in terms of the last clock constant

reached, as follows: N(t) = (s(t), l(t), c(t), x̄(t) − c(t)) where

c(t) is the largest c ∈ C such that c ≤ x̄(t).

We now show that M×A is a Markov renewal process (MRP).

For the definition of MRP and Markov renewal sequences, see,

for example, [25]. Consider a sequence {Tk, k = 0, 1, 2, . . .} of

strictly increasing timing instants in the evolution of M × A,

with N(Tk) = (sk, lk, c(Tk), x̄k − c(Tk)). The timing instants are

defined as follows:

1) T0 = 0,

2) if x̄k < cm then Tk+1 is the next time at which the next

constant in C is reached, the clock x is reset to 0, or the

process reaches {⊤,⊥},

3) if x̄k ≥ cm then Tk+1 is the first time after Tk that the

clock x is reset to 0 or the process reaches {⊤,⊥}.

When for some Tk, N(Tk) ∈ {⊥,⊤}, the sequence Tk is finite.

Similarly when x̄k ≥ cm it could happen that the probability to

reach a regeneration point is strictly less than 1. These particular

cases do not raise any problem with respect to our computation

(see the discussion at the end of this section).

Let Yk = N(T+
k ) be the state directly after all of the events at

time Tk.

Theorem 3.2: (Y, T ) = {(Yk, Tk), k = 0, 1, 2, . . .} is a Markov

renewal sequence and N(t) is an MRP.

The proof of Theorem 3.2 is straightforward given the definition

of MRP (see [25]), because, due to the definition of Tk, we have

that Yk = (s(T+
k ), l(T+

k ), c(Tk)) where c(Tk) ∈ C is the value of

the clock at Tk, and the joint distribution of Yk+1 and Tk+1 −
Tk only depends on Yk. Therefore (Y, T ) is a Markov renewal

sequence. Moreover N(t) = (s(t), l(t), c(t), x̄(t)− c(t)), which is

equal to (sk, lk, c(Tk), δ) for some k and 0 ≤ δ ≤ Tk+1 − Tk, is

a MRP because N(t), which is equal to N(Tk + δ), only depends

on Yk.

It is well-known that Y = {Yk, k = 0, 1, 2, . . .} is a Discrete

Time Markov Chain (DTMC), namely the embedded DTMC

of the MRP. In general the solution of an MRP requires the

definition of the global and local kernel matrices (see [25]). The

computation of the probability of reaching the absorbing state ⊤
from the initial state can be performed on the DTMC Pi,j which

expresses the probability that, if i is the state at regeneration

instant 0, then j is the state at the next regeneration instant T1

(that is, Pij = Pr{Y1 = j|Y0 = i}).

B. Tangible Reachability Graph of M×A.

We next define a data structure that supports the definition of

the DTMC Y and the computation of its transition probabilities.

This data structure is called Tangible Reachability Graph (TRG),

and is inspired by the identically-named graph of Deterministic

Stochastic Petri Nets [26], in which the elapsing of time between

two consecutive timing constants c and next(c) is interpreted as

a deterministic “transition” of duration next(c) − c. Note that in

our case a deterministic “transition” can only be preempted by a

transition of M×A that includes a clock reset.

The nodes of the TRG take the form of elements of (S ×L ×
C) ∪ {⊥,⊤}. For a constant c ∈ C and a constraint γ, we write

(c, next(()c)) � γ if, for all x̄ ∈ (c, next(()c)), we have x̄ � γ.

The arcs between nodes of the TRG are defined by the following

four rules:

[M]: a simple Markovian move, in which the ASMC M moves

“according to” the DTA A and there is no clock reset. Formally,

there exists the arc (s, l, c)
M(a,e)−−−−−→ (s′, l′, c) if (1) R(s, a, s′) > 0,

(2) e = (l, γ, A, ∅, l′) is an inner edge of A such that (c, next(c)) �

γ, a ∈ A and s′ |=Σ Λ(l′), and (3) l′ 6∈ Final . Furthermore, there

exists the arc (s, l, c)
M(a,e)−−−−−→ ⊤ if the conditions (1) and (2)

above are satisfied, and l′ ∈ Final .

[M res]: as for a simple Markovian move, but with a clock

reset that can start an evolution of A over boundary transitions.

Formally, there exists the arc (s, l, c)
M res(a,e)−−−−−−−−→ closure(s′, l′, 0)

if (1) R(s, a, s′) > 0 and (2) e = (l, γ, A, x, l′) is an inner edge

of A such that (c, next(c)) � γ, a ∈ A and s′ |=Σ Λ(l′).

[M KO]: a Markovian move that is not accepted by A. Formally,

there exists the arc (s, l, c)
M KO(a)−−−−−−−→⊥ if there exists s′ ∈ S

such that R(s, a, s′) > 0 and there does not exist an inner edge

e = (l, γ, A, r, l′) of A such that (c, next(c)) � γ, a ∈ A and

s′ |=Σ Λ(l′).
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p

s1

¬p
R(s0, a, s1)

R(s1, a, s0)

R(s1, b, s1)

l0

p

l1

true

l2

true

x ≥ 0; {a}; ∅

I

x ≥ 2; {a}; x

III
x = 3; ♯; ∅

IV

x ≤ 3; {b}; ∅

II

s0 : (s0, l0, 0)

s1 : (s1, l1, 0)

⊥ s3 : (s1, l1, 2) ⊤

s2 : (s0, l0, 2)

s4 : (s0, l0, 3)

s5 : (s1, l1, 3)

M(a, I)
M(b, II)

M KO(a)

D(2)

M(b, II)

M res(a, III)

D(1)

D(2)

D(1)

M(a, I)

M(a, I)

M(a, I)

M(b, II)

Fig. 7. An ASMC M, a DTA A, and their TRG

[D]: let time elapse. Formally, there exists the arc (s, l, c)
D−→

closure(s, l, next(c)) if c < cm.

Note that there is a single arc from a node (s, l, c) due to

a transition (s, a, s′) in the ASMC, because of the assumption

of determinism of A, and that there is at most one D arc

from a node. Observe also that we evaluate the guard of a

transition with respect to the open interval (c, next(c)) based on

the straightforward result that, given a finite set of clock values

(here C), the probability that an ASMC performs a transition

when the value of the clock belongs to this set is null.

We now define TRS as the set of nodes reachable from the

set of states (s, l, 0), for all s ∈ S and l ∈ Init , with s |=Σ Λ(l),

by traversing the arcs expressed by the four rules above (note

that we consider all states s ∈ S because satisfaction needs to be

checked on all states of M). Then the TRG of M×A is defined

as the graph over TRS where the arcs are described as above.

Observe that, if (s, l, c) is a node of the TRG, then any (s, l, c+

δ) with 0 ≤ δ < next(c)−c is a state of the MRP N(t), and that a

D-arc (resp. M res-arc) to a node (s, l, c) means that upon event

D (resp. M res) the state of M×A is exactly (s, l, c), while if the

same state is entered through an M-arc, the state of the process

can be (s, l, c + δ) for any 0 < δ < next(c).

The upper part of Figure 7 shows an ASMC M and a DTA

A. DTA edges have been tagged with roman numerals to cross-

reference them in the TRG of M ×A shown in the lower part.

Let us consider two paths in the TRG and, for each path, the

corresponding realizations in the stochastic process M×A. The

path s0, s1, s3,⊤ corresponds to process evolutions in which an

a-event occurs with clock x in (0, 2) and then time elapses until

clock reaches 3. Note that the intermediate state s3 corresponds

to reaching time 2. The path s0, s1, s1,⊥ captures whose process

evolutions in which an a-event is followed by a b-event and then

again an a-event, all occurring with a clock in (0, 2). As the last

event cannot be mimicked by the DTA, the process reaches ⊥.

s0 : (s0, l0, 0)

⊥ s3 : (s1, l1, 2) ⊤

s2 : (s0, l0, 2)

s4 : (s0, l0, 3)

Fig. 8. The embedded DTMC

s0 : (s0, l0, 0)

s1 : (s1, l1, 0)

⊥

s0′ : (s0, l0, 0)Reset

R(s0, a, s1)

R(s1, b, s1)

R(s1, a, s0)

R(s0, b, s0)

Fig. 9. The subordinated CTMC w.r.t. (s0, l0, 0)

C. Building the embedded DTMC

To compute the probability of reaching ⊤, we need to identify

in the TRG the states of the DTMC Y and the associated transition

probabilities. The states are defined according to the specification

of the MRP.

Definition 3.3: Let s ∈ TRS . Then s is a state of the DTMC

embedded into the MRP (Y, T ) if either:

1) s = (s, l, c) with l ∈ Init and c = 0 (initial states),

2) s can be entered by an arc labelled D or M res,

3) s = ⊤, or

4) s =⊥.

Note that not all states of the TRG are states of the DTMC:

indeed in the example of Figure 7 state s5 is not a state of the

DTMC. Intuitively speaking, in order to reach s5 the ASMC must

perform an a-event after the clock has reached 3.

We have represented in Figure 8 the graph associated with the

embedded DTMC of the example depicted in Figure 7. An arc

between two states means that there is a non null probability to

reach the destination from the source without going through a

regeneration point. For instance, there is an edge from s4 to s0

because one possible path (in the TRG) goes through a M move

followed by a M res move triggering the regeneration point.

To compute the probabilities of the DTMC (i.e., to label the

edges of the associated graph), we need to define, for each state

(s, l, c) ∈ TRS \ {⊥,⊤} of the DTMC, how the process M ×
A can evolve before reaching the next regeneration point. This

(transient) behavior is driven by the subordinated CTMC C(s,l,c),

which describes the evolution of the process from (s, l, c) until

a successive state of M × A is reached, either due to a state

change in M, due to the clock having reached next(c), or due to

the clock being reset.



The states of the subordinated CTMC C(s,l,c) can be computed

using, again, the TRG. From (s, l, c) we take in the TRG the

transitive closure over arcs of type M, possibly followed by

a M res-arc or a M KO-arc. More formally, the states of the

subordinated CTMC C(s,l,c) are defined as follows.

• (s, l, c) ∈ C(s,l,c);

• (s′, l′, c) ∈ C(s,l,c) if there exists a path in the TRG from

(s, l, c) to (s′, l′, c) in which all arcs are of type M;

• ⊤ ∈ C(s,l,c) if there exists a path in the TRG from (s, l, c)

to ⊤ in which either all arcs are of type M, or the path ends

in an M res-arc and all preceding arcs (if any) are of type

M;

• (s′, l′, 0)Reset ∈ C(s,l,c) if there exists a (possible empty)

path in the TRG from (s, l, c) to (s′′, l′′, c) of arcs all of type

M, and an arc from (s′′, l′′, c) to (s′, l′, 0) of type M res;

• ⊥ ∈ C(s,l,c) if there exists a (possible empty) path in the

TRG from (s, l, c) to (s′′, l′′, c) of arcs all of type M, and a

M KO arc from (s′′, l′′, c) to ⊥.

We distinguish in the subordinated CTMCs the state (s, l, 0)Reset ,

entered upon a clock reset, from the state (s, l, 0) entered through

a Markovian transition. Indeed the first state corresponds to

the next regeneration point whereas the second one is only an

intermediate state (see below). Observe that when c > 0 it

is never the case that (s, l, c) can be entered through a non-

Markovian transition1. The subset of “reset” states is denoted

Reset . Summarizing, the states of the subordinated CTMC C(s,l,c)

are of the form ⊥, ⊤, (s′, l′, 0)Reset or (s′, l′, c′) for s′ ∈ S, l′ ∈ L

and c′ ∈ {0, . . . , c}. We shall indicate with s a generic state of

the DTMC, of the various forms indicated above. Note that there

is a subordinated CTMC built only for those states s of form

s = (s, l, c) that we will denote as C(s,l,c) or, equivalentely, as Cs.

Figure 9 depicts the subordinated chain C(s0,l0,0) for state

(s0, l0, 0), Observe that this subordinated chain is derived from

the TRG but is not a subgraph of it due to the duplication

of state (s0, l0, 0). This CTMC represents all behaviors during

the evolution of clock x in (0, 2) until a regeneration point is

reached. The (non-time-triggered) regeneration points correspond

to the absorbing states ⊥ and (s0, l0, 0)Reset. Let us interpret

the state of this CTMC at time 2. If it is ⊥ (respectively,

(s0, l0, 0)Reset) then it means that the next regeneration point

is ⊥ (respectively, (s0, l0, 0)) since we have reached it before

2. If this state is (s0, l0, 0) (respectively, (s1, l1, 0)), it means

that the next regeneration point corresponds to x = 2 and we

follow the corresponding D edge in the TRG to determine the

next regeneration point, here (s0, l0, 2) (respectively, (s1, l1, 2)).

Therefore the probabilities of DTMC transitions from (s0, l0, 0)

are obtained from the transient probability distribution of the

subordinated chain at time 2.

We can now generalize the example to consider the rates of the

DTMC in the general case. Let Ps,s′ be the transition probabilities

of the DTMC. The elements of Ps,s′ are computed using the

subordinated CTMC Cs, and all the elements of row s of P are

computed on the same subordinated CTMC Cs. Rows correspond-

ing to the DTMC states ⊤ and ⊥ are obviously identically zero,

since they are absorbing. Let s = (s, l, c), we denote by πs(τ ) the

1Note that in the TRG a M res transition corresponds in Deterministic
Stochastic Petri Nets to the case of an exponential transition that preempts
a deterministic transition and then immediately re-enables it, which, as
explained in [25], requires a duplication of the states of the subordinated
CTMC.

transient (respectively, steady-state) distribution of Cs at time τ

when τ is finite (respectively, when τ = ∞).

We are now in position to give the formulae for the non null

entries of P . By convention in the following formulae, ⊥Reset =

⊥,⊤Reset = ⊤ and when s′ /∈ Cs then πs(τ )(s′) = 0.

• If c < cm then Ps,s′ equals:

∑

s′′∈Cs\Reset∧s′′
D
−→s′

πs(next(c)−c)(s′′)+πs(next(c)−c)(s′
Reset

)

The first term (sum over s′′) corresponds to the case where the

next regeneration is triggered by x = next(c) and we look for

D edges to determine the next regeneration point. Remember

that Reset is the set of (·, ·, 0)Reset states. The second term

corresponds to a regeneration point obtained by a clock reset

((s′, l′, 0)Reset) or by reaching {⊥,⊤}.

• If c = cm then

Ps,s′ = πs(∞)(s′
Reset

)

for s′ ∈ {⊥,⊤} ∪ {(s′, l′, 0)}

When c = cm, the only way to obtain a regeneration point is

to reset the clock or to reach {⊥,⊤}.

The first case requires transient analysis of the subordinated

CTMCs, which is usually performed by uniformization [27]. The

second case only requires steady-state analysis which is generally

less computationally expensive.

Note that there are two peculiarities of the embedded DTMC.

First, we can re-enter the same state due to a clock reset. This

has no effect on the computation. Second, the transition matrix

can be substochastic, because for some DTMC states there is

a non-null probability to never reach another state of the MRP.

Again, this is not problematic, because the reachability probability

computation with a substochastic matrix is identical as with a

stochastic transition matrix.

Finally, as often in a probabilistic setting, checking whether the

set of paths of M accepted by A has probability 0 or 1 can be

performed without any numerical computation. The only relevant

information in the DTMC, given its transition probability P, is

(for every pair of states (s, s′)) whether P(s, s′) > 0, and this

information is obtained by a simple examination of the TRG.

IV. EXPRESSIVENESS OF CSLTA

In this section we study the relationship between CSLTA,

CSL [9], and asCSL [10]. Formulae interpreted on ASMCs are

described as being equivalent if, for any ASMC, the same states

of the ASMC satisfy the formulae. Formally, we say that the

formula Φ1 (of the logic L1, with the satisfaction relation |=L1
)

and Φ2 (of the logic L2, with the satisfaction relation |=L2
) are

equivalent if, for any ASMC M, and for any state s of M, we

have M, s|=L1
Φ1 if and only if M, s|=L2

Φ2. The logic L1 is

at least as expressive as the logic L2 if, for each formula Φ2

of the logic L2, there exists a formula Φ1 of the logic L1 such

that Φ1 and Φ2 are equivalent. The logic L1 is strictly more

expressive than the logic L2 if L1 is at least as expressive as L2

and there exists a formula Φ1 of L1 such that there does not exist

an equivalent formula Φ2 of logic L2. Given an ASMC M with

state set S and the satisfaction relation |=L of the logic L, let

SatML (Φ) = {s ∈ S | M, s |=L Φ} (when M is clear from the

context we write SatL(Φ)).



A. CSLTA is at least as expressive as CSL

In this section, we recall the definition of CSL [9].

Definition 4.1: The syntax of CSL is defined as follows:

Φ ::= p | Φ ∧ Φ | ¬Φ | S∼λ(Φ) | P∼λ(X IΦ) | P∼λ(ΦUIΦ)

where a ∈ AP is an atomic proposition, I ⊆ R≥0 is a nonempty

interval, ∼∈ {<,≤,≥, >} is a comparison operator, and λ ∈ [0, 1]

is a probability.

For any infinite path σ = s0
a0,τ0−−−→ s1

a1,τ1−−−→ · · · and t ∈ R≥0,

if i the smallest index such that t ≤ ∑i
j=0 τj , then we let σ@t =

si; that is, σ@t is used to denote the state along σ occupied at

time t.

Definition 4.2: For M = 〈S,Act , AP , lab,R〉, and state s ∈ S,

the satisfaction relation |=CSL is defined as follows:

M, s |=CSL p ⇔ p ∈ lab(s)

M, s |=CSL Φ1 ∧ Φ2 ⇔ M, s |=CSL Φ1 and

M, s |=CSL Φ2

M, s |=CSL ¬Φ ⇔ M, s 6|=CSL Φ

M, s |=CSL S∼λ(Φ) ⇔ ∑

s′∈SatMCSL(Φ) π(s, s′) ∼ λ

M, s |=CSL P∼λ(ϕ) ⇔
PrMs {σ ∈ PathM(s) | M, σ |=CSL ϕ} ∼ λ

M, σ |=CSL X IΦ ⇔ M, σ(1) |=CSL Φ and

σ = s
a,τ−−→ σ′ with τ ∈ I

M, σ |=CSL Φ1UIΦ2 ⇔ ∃t ∈ I.M, σ@t |=CSL Φ2 and

∀t′ ∈ [0, t).M, σ@t′ |=CSL Φ1.
In the following, when clear from the context, we write s |=CSL

Φ for M, s |=CSL Φ and σ |=CSL Φ for M, σ |=CSL Φ.

The following proposition shows that CSLTA is at least as

expressive as CSL.

Proposition 4.3: For any formula Φ of CSL there is a formula

Φ′ of CSLTA equivalent to Φ. The size of Φ′ is linear with respect

to the size of Φ.

Proof: The semantics of constructors for state formulae are

identical for CSL and CSLTA; therefore it suffices to prove that

any path formula of CSL is equivalent to some path formula of

CSLTA. The idea of the proof is to translate the path operator

X [α,β]Φ of CSL with the DTA AX [α,β] of Figure 4, and the

path operator Φ1U [α,β]Φ2 with the DTA AΦ1U [α,β]Φ2
of Figure 5.

In the following, we concentrate on the case in which the time

interval of a CSL formula is of the form [α, β], where α > 0 (the

translation of path operators with time intervals other than [α, β]

is similar, and will be discussed briefly at the end of the proof).

Therefore our task consists in showing that, for a given ASMC

M = 〈S,Act ,AP , lab,R〉, a given state s ∈ S, and an infinite

path σ ∈ PathM(s), we have:

1) σ |=CSL Φ1U [α,β]Φ2 iff σ ∈ AccPathM(s,AΦ1U [α,β]Φ2
),

and

2) σ |=CSL X [α,β]Φ iff σ ∈ AccPathM(s,AX [α,β]Φ).

Consider case (1). We show first that σ |=CSL Φ1U [α,β]Φ2

implies σ ∈ AccPathM(s,AΦ1U [α,β]Φ2
). Let σM = s0

a0,τ0−−−→
s1

a1,τ1−−−→ · · · be a path such that σM |=CSL Φ1U [α,β]Φ2. Then,

by Definition 4.2, there exists t ∈ [α, β] such that σM@t |=CSL

Φ2 and σM@t′ |=CSL Φ1 for all t′ < t. There are two cases to

consider:

(1.a) Φ2 is satisfied when the value of the clock x reaches α;

(1.b) Φ2 is not yet satisfied when the value of the clock x

reaches α.

Consider case (1.a). Observe that there exists some i ∈ N

such that si |=CSL Φ1 ∧ Φ2, sj |=CSL Φ1 for all j < i,

and
∑i−1

k=0 τk < α ≤ ∑i
k=0 τk. We assert that the ASMC

path σM is accepted by the path σA = (l0, x̄0)
τ0,e00−−−−→

. . . (l0, x̄i−1)
τi−1,e00−−−−−−→ (l0, x̄i)

τi,e02−−−−→ (l2, x̄i+1) of AΦ1U [α,β]Φ2

(that is, to accept σM, the DTA performs i loops of the edge e00,

then traverses the edge e02). To verify that σM is accepted by

σA, consider Definition 2.7. First, observe that l0 ∈ Init , x̄0 = 0

and l2 ∈ Final . Second, recalling that Λ(l0) = Φ1, we observe

that sj |=CSL Λ(l0) for all j ≤ i. Furthermore, recalling that

Λ(l2) = Φ2, we observe that si |=CSL Λ(l2). Third, we have

that aj ∈ Act , and hence aj ∈ action(e00), for all j < i. The

final requirements of Definition 2.7, which concern the durations

of σM and σA, follow directly from the observation that the

durations of the transitions of σA are equal to the durations of

the first i transitions of σM.

Now consider case (1.b). In this case, there exists i ∈ N such

that si |=CSL Φ2, sj |=CSL Φ1 for all j < i, and α <
∑i−1

k=0 τk <

β. Furthermore, we let iα < i be the largest index for which
∑iα−1

k=0 τk ≤ α. Intuitively, the state siα will be the state along

σM when α time units have elapsed. Let τ ′ = α − ∑iα−1
k=0 τk

and τ ′′ = τiα − τ ′. We claim that the ASMC path σM is

accepted by the path σA = (l0, x̄0)
τ0,e00−−−−→ . . .

τiα−1,e00−−−−−−−→
(l0, x̄iα)

τ ′,e01−−−−→ (l1, x̄iα+1)
τ ′′,e11−−−−→ (l1, x̄iα+2)

τiα+1,e11−−−−−−−→
. . .

τi−1,e11−−−−−−→ (l1, x̄i)
τi,e12−−−−→ (l2, x̄i+1) of AΦ1U [α,β]Φ2

(that is,

to accept σM, the DTA performs iα loops of the edge e00, then

traverses the edge e01, then performs i−(iα+1) loops of the edge

e11, then traverses the edge e12). Consider Definition 2.7: we note

that the index described in point 2 of Definition 2.7 is i, and the

function κ : {0, . . . , i + 1} → {0, . . . , i} is defined by κ(j) = j

for all j ≤ iα, and κ(j) = j − 1 for all iα < j ≤ i + 1. We now

verify that the choice of σA, index i, and function κ satisfies

the conditions of Definition 2.7. First, observe that l0 ∈ Init ,

x̄0 = 0 and l2 ∈ Final . Second, recalling that Λ(l0) = Φ1

(Λ(l1) = Φ1 ∧ ¬Φ2, Λ(l2) = Φ2, respectively), we observe that

sj |=CSL Λ(l0) for all j ≤ iα (sj |=CSL Λ(l1) for all iα < j < i,

si |=CSL Λ(l2), respectively). Third, we have that aj ∈ Act , and

hence aj ∈ action(e00), aj ∈ action(e11) and ai ∈ action(e12),

for all j ≤ i. The final requirements of Definition 2.7, concerning

the durations of σM and σA, follow by the following facts: for

all j ≤ i such that j 6= iα, we have that the duration of the jth

transition of σM is equal to the duration of the κ(j)th transition

of σM; furthermore, τiα = τ ′ + τ ′′.
The reverse direction of case (1) follows in a similar manner,

and we omit the details.

Consider case (2). We show that σ |=CSL X [α,β]Φ implies

σ ∈ AccPathM(s,AX [α,β]Φ). Let σM be a path such that

M, σM |=CSL X [α,β]Φ. Then, by Definition 4.2, we have

σM = s
a,τ−−→ σ′ for some a ∈ Act , τ ∈ I and path σ′,

where σM(1) |=CSL Φ. By the definition of the DTA AX [α,β]Φ,

there exists a path (l0, 0)
τ,e−−→ (l1, τ ) where e = (l0, α ≤ x ≤

β,Act , ∅, l1) is the edge from l0 to l1. From the fact that l0 ∈ Init ,

l1 ∈ Final , and σM(1) |=CSL Φ, we have that σM is accepted by

AX [α,β]Φ according to the criteria of Definition 2.7. The reverse

direction of case (2) follows in a similar manner,

We now consider briefly the case for other types of time

intervals. For the Next operator, the DTA of Figure 4 requires

only modifications to the guard of its single edge (for example, the

time interval (α,∞) is represented by the guard x > α). Similarly,



open or half-open time intervals of the Until operator can be

represented by changing the associated inequalities of constraints

from non-strict to strict: for example, the time interval (α, β] can

be represented by changing the constraint x ≤ α to x < α in

the DTA of Figure 5. For a time interval of the form [α,∞) or

(α,∞) for α > 0, the guards of the form x ≤ β in the DTA of

Figure 5 are changed to true. Instead, for a time interval of the

form [0, β] or [0, β), the location l0 and its outgoing edges are

removed, and both l1 and l2 become initial locations.

Finally, the assertion on formula sizes is straightforward.

�

We observe that the verification of a CSL formula of the form

P∼λ(Φ1UIΦ2) and a CSLTA formula of the form P∼λ(AΦ1UIΦ2
)

involve similar computation steps: for example, in the case of

I = [α, β] with α > 0, a transient analysis of two CTMCs

is required, both in the CSL model-checking algorithm of [9],

and in the CSLTA model-checking algorithm of Section III. The

computational complexity of model checking CSLTA properties

transformed from equivalent CSL properties is the same as that

for model checking the original CSL properties with the algorithm

of [9].

B. CSLTA is at least as expressive as asCSL

In this section, we recall the stochastic temporal logic asCSL

[10], and show that every asCSL formula can be expressed as a

CSLTA formula.

1) Definition of asCSL: First we present the syntax and se-

mantics of asCSL. In contrast the original presentation of asCSL

in [10], we consider nondeterministic program automata as path

operators, as opposed to regular expressions (called programs in

[10]). As asCSL programs can be translated into nondeterministic

program automata, the presentation of asCSL is as general as the

original presentation with regular expressions. Also note that we

use the special action
√

, which in a similar way to ♯, allows

a transition in the automaton without a corresponding transition

in the ASMC. Note the distinction between ♯-labelled transitions

of DTA and
√

-labelled transitions of nondeterministic program

automata: the latter are not triggered by behavior of the ASMC,

whereas, in contrast, ♯-labelled transitions are triggered by the

passage of time.

Definition 4.4: A nondeterministic program automaton (NPA)

is a tuple N = 〈Z, Ξ, δ, ZInit , ZF 〉, where Z is a finite set of

states with the set ZInit ⊆ Z of initial states and the set ZF ⊆ Z

of final states, Ξ is a finite input alphabet, and δ : Z ×Ξ → 2Z is

a transition function. We say that N is a deterministic program

automaton (DPA) if |ZInit | = 1 and |δ(z, u)| ≤ 1 for each z ∈ Z

and u ∈ Ξ.

Definition 4.5: The syntax of asCSL is defined as follows:

Φ ::= p | Φ ∧ Φ | ¬Φ | S∼λ(Φ) | P∼λ(N (Ξ)I)

where a ∈ AP is an atomic proposition, I ⊆ R≥0 is a nonempty

interval, ∼∈ {<,≤,≥, >} is a comparison operator, λ ∈ [0, 1] is

a probability, and N (Ξ) is a NPA with input alphabet Ξ such that

Ξ ⊆ {(Φ, b) | Φ is an asCSL formula ∧ b ∈ Act ∪ {√}}.

We write z
u−→ z′ to denote z′ ∈ δ(z, u) (that is, to denote a

transition of an NPA).

Definition 4.6: A run of an NPA N is a (finite) sequence r =

z0
u0−−→ z1

u1−−→ · · · un−1−−−−→ zn of transitions of N . If z0 ∈ ZInit

and zn ∈ ZF then we say that the run r is accepting. We use

last(r) to denote the last state zn of r. For a state z of N , let

RunsN (z) be the set of runs of N with the first state z, and for

Z′ ⊆ Z, let RunsN (Z′) =
⋃

z∈Z′ RunsN (z).

Definition 4.7: For M = 〈S,Act ,AP , lab,R〉, and state s ∈ S,

the satisfaction relation |=asCSL is defined as follows:

M, s |=asCSL p ⇔ p ∈ lab(s)

M, s |=asCSL ¬Φ ⇔ M, s 6|=asCSL Φ

M, s |=asCSL Φ1 ∧ Φ2 ⇔ M, s |=asCSL Φ1 and

M, s |=asCSL Φ2

M, s |=asCSL S∼λ(Φ) ⇔ ∑

s′∈SatMasCSL(Φ) π(s, s′) ∼ λ

M, s |=asCSL P∼λ(N (Ξ)I)

⇔ PrMs (AccPathM(s,N (Ξ)I)) ∼ λ

where AccPathM(s,N (Ξ)I) is defined in the following way. Let

z be a state of N and σ be a finite path of M. We define

RunsN (z, σ) as the greatest set of runs z
Φ0b0−−−→ z1

Φ1b1−−−→
· · · Φn−1bn−1−−−−−−−→ zn such that:

1) z ∈ RunsN (z, σ) if and only if |σ| = 0;

2) if z
Φ0b0−−−→ z1

Φ1b1−−−→ · · · Φn−1bn−1−−−−−−−→ zn ∈ RunsN (z, σ) and

n ≥ 1, then:

• M, σ(0) |=asCSL Φ0;

• if b0 ∈ Act , then σ = s
b0,τ−−−→ σ′ with z1

Φ1b1−−−→
· · · Φn−1bn−1−−−−−−−→ zn ∈ RunsN (z1, σ′);

• if b0 =
√

, then z1
Φ1b1−−−→ · · · Φn−1bn−1−−−−−−−→ zn ∈

RunsN (z1, σ).

For the set Z′ ⊆ Z of states of N , we let RunsN (Z′, σ) =
⋃

z∈Z′ RunsN (z, σ). The set of ASMC paths accepted by N with

time interval I ⊆ R≥0, denoted by AccPathM(s,N I), is defined

as {σ ∈ PathM(s) | ∃ finite prefix σfin of σ s.t. ∃ accepting r ∈
RunsN (ZInit , σfin) and τ (σfin) ∈ I}.

When clear from the context, we write Runs(Z′, σ) instead of

RunsN (Z′, σ).

2) From NPA to DTA: To show that every asCSL formula

can be expressed as a CSLTA formula, it suffices to show how

a formula P∼λ(N (Ξ)I) can be encoded as a CSLTA formula

P∼λ(A), similarly to the translation from CSL to CSLTA of

Section IV-A. In order to obtain the required DTA A from N (Ξ)I ,

two steps are required: first, it is necessary to determinize, using a

standard subset construction, the NPA N (Ξ) in order to obtain the

graph of A, represented as a DPA; then it is necessary to represent

the time interval I within A using clock guards, in particular to

constrain the global time of entry to final locations to those times

in the interval I .

We first present the determinization of a NPA. Note that
√

-

transitions are eliminated from the NPA to obtain the determinized

automaton; unlike the case of ♯-transitions in DTA,
√

-transitions

do not have priority over other transitions. Hence, if a state z

has an outgoing a-transition (for a ∈ Act) and an outgoing
√

-

transition leading to a state with an outgoing a-transition, when

reading an a-transition of an ASMC, there will be a nondetermin-

istic choice between the a-transition and the
√

-transition from z.

We choose to eliminate sequences of
√

-transitions in order to

avoid such situations, noting that we also have to consider the

case in which sequences of
√

-transitions which reach final states

are taken after an action.

We require the following notation. Let N = 〈Z, Ξ, δ, ZInit , ZF 〉
be an NPA, Z′ ⊆ Z, Φ be an asCSL formula, and a ∈ Act . Then



we let Runs(Z′, (Φ, a)) equal:

{z0
Φ0

√
−−−→ · · · Φn−2

√
−−−−−→ zn−1

Φn−1a−−−−−→ zn ∈ Runs(Z′) |
z0 ∈ Z′ ∧ Φ ⇒ ∧

i<n Φi} .

Therefore Runs(Z′, (Φ, a)) is the set of runs of N starting from

a state in Z′ which perform
√

-transitions before performing a

single a-transition, where the conjunction of the asCSL formulae

labelling transitions along the path is implied by Φ. We also let

Runs(Z′, (Φ,
√

), ZF ) equal:

{z0
Φ0

√
−−−→ · · · Φn−1

√
−−−−−→ zn ∈ Runs(Z′) |

z0 ∈ Z′ ∧ Φ ⇒ ∧

i<n Φi ∧ zn ∈ ZF } .

Hence Runs(Z′, (Φ,
√

), ZF ) is the set of runs from a state in

Z′ to a state in ZF which perform
√

-transitions only, where the

conjunction of formulae along the path is implied by Φ (it is

possible to have a run of length 0 featuring a single state, which

must be both in Z′ and ZF ).

Before defining the DPA corresponding to an NPA, we must

identify the set of formulae which can appear in transition labels

of the DPA, and which will be used subsequently to define the

set of state propositions of the DTA. This set of formulae will be

constructed such that an ASMC path is accepted by at most one

run of the DTA obtained from an NPA. In particular, we construct

a set of disjoint state propositions. Formally, let Σ be the smallest

set of asCSL formulae such that:

1) Φ1 ∧ Φ2 ⇔ false for all Φ1, Φ2 ∈ Σ;

2) for each Φ such that Runs(Z, (Φ, a)) 6= ∅, for some a ∈ Act ,

or Runs(Z, (Φ,
√

), ZF ) 6= ∅, there exists {Φ1, . . . , Φn} ⊆ Σ

such that Φ ≡ ∨

1≤i≤n Φn.

Definition 4.8: Let N = 〈Z, Ξ, δ, ZInit , ZF 〉 be an NPA. The

determinization of N is the DPA det(N ) = 〈Q, Ξ′, ∆, qInit , QF 〉,
where:

• Q = 2Z , qInit = ZInit , and QF = {q ∈ 2Z | ∃Φ ∈
Σ s.t. Runs(q, (Φ,

√
), ZF ) 6= ∅};

• Ξ′ = {(Φ, a) | Φ ∈ Σ ∧ a ∈ Act};

• ∆ : Q × Ξ′ → 2Q is the transition function defined by

∆(q, (Φ, a)) = {z ∈ Z | ∃r ∈ Runs(Z, (Φ, a))∧ last(r) = z}
for all q ∈ Q and (Φ, a) ∈ Ξ′.

It can be verified that |∆(q, (Φ, a))| ≤ 1 for all q ∈ Q and

(Φ, a) ∈ Ξ′.
We now define the DTA A(N I ) by pushing the asCSL state

formulae featured in transition labels in det(N ) into location

labels of A(N I), and using the interval I in guards of edges

leading directly to final locations (which correspond to the set

E′′ of DTA edges in the following definition). We also have to

consider the case in which a final state of the NPA is reached

at a time before the interval I (considered in the set E′ of DTA

edges below), which does not correspond to acceptance.

Definition 4.9: Let N be an NPA, [α, β] ⊆ R≥0 such that

α > 0, and det(N ) = 〈Q, Ξ′, ∆, qInit , QF 〉 be the determiniza-

tion of N . We let A(N [α,β]) = 〈Σ,Act , (Q × Σ) ∪ (QF ×
Σ), Λ, Init ,Final ,→〉 be such that:

• QF = {q | q ∈ QF };

• Λ(q, Φ) = Λ(q, Φ) = Φ for each q ∈ Q and Φ ∈ Σ;

• Init = {(qInit , Φ) | Φ ∈ Σ};

• Final = {(q, Φ) ∈ QF ×Σ | q ∈ QF ∧Runs(q, (Φ,
√

), ZF ) 6=
∅};

• → is equal to the set:

⋃

(q,Φ)∈Q×Σ,a∈Act,Φ′∈Σ







E((q,Φ), a, Φ′) ∪
E′((q, Φ), a, Φ′) ∪
E′′((q, Φ), a, Φ′)







,

where:

– E((q,Φ), a,Φ′) = {(q, Φ)
true,a,∅−−−−−−−→ (q′, Φ′) | q′ =

∆(q, (Φ, a)) ∧ q′ 6∈ QF };

– E′((q,Φ), a, Φ′) = {(q, Φ)
x<α,a,∅−−−−−−→ (q′, Φ′) | q′ =

∆(q, (Φ, a)) ∧ q′ ∈ QF };

– E′′((q, Φ), a, Φ′) = {(q, Φ)
α≤x≤β,a,∅−−−−−−−−→ (q′, Φ′) | q′ =

∆(q, (Φ, a)) ∧ q′ ∈ QF }.

Definition 4.9 considers the case in which α > 0; the case

for α = 0 is similar, but the set E′ of DTA edges is empty. It

can be verified that A(N [α,β]) satisfies the conditions of initial

determinism and determinism on actions of Definition 2.3 (the

other two conditions of Definition 2.3 are irrelevant because

A(N [α,β]) does not have any boundary edges).

Proposition 4.10: Let M be an ASMC, s be a state of M,

N be an NPA and [α, β] ⊆ R≥0. Then AccPathM(s,N [α,β]) =

AccPathM(s,A(N [α,β])).
The proof of the proposition can be found in the ap-

pendix. From Proposition 4.10 and the observation that

PrMs (AccPathM(s,N [α,β])) = PrMs (AccPathM(s,N (α,β])) =

PrMs (AccPathM(s,N [α,β))) = PrMs (AccPathM(s,N (α,β))),

the subsequent corollary then follows.

Corollary 4.11: Let M be an ASMC, s be a state of M, N
be an NPA, I ⊆ R≥0, ∼∈ {<,≤,≥, >} and λ ∈ [0, 1]. Then

M, s |=asCSL P∼λ(N I) if and only if M, s |= P∼λ(A(N I)).

C. CSLTA is strictly more expressive than CSL

In this section, we give an example of a CSLTA formula for

which no equivalent CSL formula exists. We note that the DTA of

the CSLTA formula considered does not feature time constraints,

and therefore we can obtain an NPA which is equivalent to the

DTA in a straightforward manner; hence our result suffices also to

show that there exists an asCSL formula for which no equivalent

CSL formula exists.

Proposition 4.12: There is a formula of CSLTA for which there

is no equivalent CSL formula.

The proof of Proposition 4.12 follows a scheme that is different

from proofs of similar results on expressiveness of temporal logics

for transition systems. We first define the left-hand delimiter 〈
for intervals, where 〈 denotes either [ or (. Similarly, the right-

hand delimiter 〉 denotes either ] or ). Consider the family of

ASMCs M[µ, µ′] of Figure 10 (left), for 0 < µ, µ′ < 1. Let Φ

be a formula of CSL or CSLTA (for simplicity, we write |= to

denote the satisfaction relation of both CSL and CSLTA). Then

[Φ](s) = {(µ, µ′) ∈ (0, 1)2 | M[µ, µ′], s |= Φ}. For any 0 < ζ <

1, let Φζ = P≥ζ(A), where A is the DTA depicted in Figure 10

(right). It follows that [Φζ ](s0) = {(µ, µ′) ∈ (0, 1)2 | µ · µ′ ≥ ζ}.

Lemma 4.13: Let Φ be a formula of CSL. Then:

1) for i ∈ {2, 3}, [Φ](si) is either (0, 1)2 or ∅;

2) [Φ](s1) is a finite union of rectangles of the form (0, 1) ×
〈a, b〉;

3) [Φ](s0) is a finite union of (open, closed, or mixed) rectan-

gles of (0, 1)2.

Proof: Assertion (1). When starting from s2 or s3, the sat-

isfaction of Φ does not depend on µ or µ′. Therefore assertion (1)

is satisfied trivially.
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Fig. 10. A family of Markov chains M[µ, µ′] and a DTA A of CSLTA

Assertion (2). We prove assertion (2) by induction on the size

of the formula, taking into account all CSL operators one by

one. Let Φ be a formula of CSL. If Φ is an atomic proposition,

then [Φ](s1) is either (0, 1)2 or ∅. If Φ = ¬Φ′, then [Φ](s1) =

(0, 1)2\[Φ′](s1), and thus [Φ](s1) is a finite union of rectangles of

the form (0, 1)×〈a,b〉. If Φ = Φ′∧Φ′′, then [Φ](s1) = [Φ′](s1)∩
[Φ′′](s1), and thus [Φ](s1) is a finite union of rectangles of the

form (0, 1) × 〈a, b〉.
If Φ = S≥λ(Φ′), then first we observe that the steady-state

distribution π of M[µ, µ′] starting from s1 is such that π(s1, s2) =

µ′ and π(s1, s3) = 1 − µ′. Now we distinguish different cases

depending on whether s2 |=CSL Φ′ and s3 |=CSL Φ′. If both

states satisfy Φ′, then [Φ](s1) = (0, 1)2; if neither satisfies Φ′

then [Φ](s1) = ∅; if s2 |=CSL Φ′ and s3 6|=CSL Φ′ then [Φ](s1) =

(0, 1) × [λ, 1); if s2 6|=CSL Φ′ and s3 |=CSL Φ′ then [Φ](s1) =

(0, 1)×(0, 1−λ]. The cases of Φ = S∼λ(Φ′), with ∼∈ {≤, <, >},

follow similarly.

If Φ = P≥λ(X [α,β]Φ′) we distinguish different cases de-

pending on whether s2 |=CSL Φ′ and s3 |=CSL Φ′. All the

cases are handled similarly, and we only consider that in which

s2 |=CSL Φ′ and s3 6|=CSL Φ′. Then [Φ1](s1) = {(µ, µ′) ∈
(0, 1)2 | (e−α − e−β) · µ′ ≥ λ} = (0, 1) × [ λ

e−α−e−β , 1), which

is of the required form. The cases of Φ = P∼λ(X [α,β]Φ′), with

∼∈ {≤, <,>}, follow similarly.

If Φ = P≥λ(Φ′U [α,β]Φ′′), we make a case analysis w.r.t. to the

rectangles where the satisfaction of Φ′ and Φ′′ by s1 is invariant

(that is, we consider rectangles of the partition of (0, 1)2 induced

by the rectangles of [Φ′](s1) and [Φ′′](s1)). Our aim is to obtain

[Φ](s1) by replacing each such rectangle with a set of rectangles

in which Φ is satisfied.

Given such a rectangle R ⊆ (0, 1)2 for which

M[µ, µ′], s1 |=CSL Φ′′ for all (µ, µ′) ∈ R, then

M[µ, µ′], s1 |=CSL Φ for all (µ, µ′) ∈ R. Hence R is included

in [Φ](s1). Conversely, if M[µ, µ′], s1 |=CSL ¬Φ′ ∧ ¬Φ′′ for

all (µ, µ′) ∈ R, then M[µ, µ′], s1 6|=CSL Φ for all (µ, µ′) ∈ R.

Hence no rectangle contained in R is included in [Φ](s1).

Now consider a rectangle R for which, for all (µ, µ′) ∈
R, we have M[µ, µ′], s1 |=CSL Φ′ ∧ ¬Φ′′. Assume that

M[µ, µ′], s2 |=CSL Φ′′ and M[µ, µ′], s3 6|=CSL Φ′′ (the other

cases are handled similarly). Then we obtain {(µ, µ′) ∈ R |
M[µ, µ′], s1 |=CSL Φ} = {(µ, µ′) ∈ R | (1 − e−β) · µ′ + e−β ≥
λ} = {(µ, µ′) ∈ R | µ′ ≥ λ−e−β

1−e−β }. Thus we include in [Φ](s1)

the rectangle R∩ ((0, 1) × [λ−e−β

1−e−β , 1)).

The cases of Φ = P∼λ(Φ′U [α,β]Φ′′), ∼∈ {≤, <,>}, follow

similarly.

Assertion (3). We now prove assertion (3) by induction on the

size of the formulae. Let Φ be a formula of CSL. The cases in

which Φ is an atomic proposition, Φ = ¬Φ′, Φ = Φ′ ∧ Φ′′ and

Φ = S∼λ(Φ′) are proved exactly as for assertion (2) (the steady-

state distribution of M[µ, µ′] starting from s0 is the same as that

starting from s1).

If Φ = P≥λ(X [α,β]Φ′), we make a case analysis w.r.t. to the

rectangles in which the satisfaction of Φ′ by s0 and s1 is invariant

(that is, we consider rectangles of the partition of (0, 1)2 induced

by the rectangles of [Φ′](s0) and [Φ′](s1)). As above, we obtain

[Φ](s0) by replacing each such rectangle with a set of rectangles

in which Φ is satisfied. We only consider one such case (the other

cases are handled similarly). Consider a rectangle R ⊆ (0, 1)2 for

which, for all (µ, µ′) ∈ R, we have M[µ, µ′], s0 |=CSL Φ′ and

M[µ, µ′], s1 6|=CSL Φ′. Then {(µ, µ′) ∈ R | M[µ, µ′], s0 |=CSL

Φ} = {(µ, µ′) ∈ R | (e−α/µ − e−β/µ) · µ ≥ λ}. Let f(µ) =

(e−α/µ − e−β/µ) · µ. Note that the derivative of f changes its

sign only a finite number of times inside (0, 1) (in fact in R).

Therefore (0, 1) may be decomposed into a finite number of

consecutive intervals where inside an interval f is monotonic.

As a consequence (0, 1) may be partitioned into a finite number

of consecutive intervals (different from the previous ones) where

alternatively f is greater or equal than λ or strictly smaller than

λ. The intervals for which f is greater than or equal to λ induce

a finite number of rectangles of the form 〈a,b〉 × (0, 1), which

are included [Φ](s0). The cases of Φ = P∼λ(X [α,β]Φ′), with

∼∈ {≤, <, >}, follow similarly.

If Φ = P≥λ(Φ′U [α,β]Φ′′), we make a case analysis w.r.t. to

the rectangles where the satisfaction of Φ′ and Φ′′ by s0 and by

s1 is invariant (that is, we consider rectangles of the partition of

(0, 1)2 induced by the rectangles of [Φ′](s0), [Φ′](s1), [Φ′′](s0)

and [Φ′′](s1)). Again, we obtain [Φ](s0) by replacing each such

rectangle with a set of rectangles in which Φ is satisfied.

We handle only one case, noting that the other cases are

handled similarly. Consider the rectangle R ⊆ (0, 1)2 such

that, for i ∈ {0, 1}, we have M[µ, µ′], si |=CSL Φ′ ∧ ¬Φ′′

M[µ, µ′], s2 |=CSL ¬Φ′∧Φ′′ and M[µ, µ′], s3 |=CSL ¬Φ′∧¬Φ′′.
The key observation here is that, inside any such rectangle, the

loop around s0 is irrelevant due to the nature of the Until operator.

Then we have {(µ, µ′) ∈ R | M[µ, µ′], s0 |=CSL Φ} = {(µ, µ′) ∈
R | (e−2α(1+2α)−e−2β(1+2β))·µ′ ≥ λ} = {(µ, µ′) ∈ R | µ′ ≥

λ
e−2α(1+2α)−e−2β(1+2β)

} (the first formula has been obtained by

applying an Erlang distribution). Then we include the rectangle

R∩ ((0, 1) × [ λ
e−2α(1+2α)−e−2β(1+2β)

, 1)) in [Φ](s0).

The cases of Φ = P∼λ(Φ′U [α,β]Φ′′), ∼∈ {≤, <, >}, follow

similarly. �

Because [Φζ ](s0) = {(µ, µ′) | µ · µ′ ≥ ζ} cannot be expressed

as a finite union of rectangles, Lemma 4.13 establishes that Φζ

is not equivalent to any formula of CSL. Lemma 4.14 then gives

a direct proof of Proposition 4.12.

Lemma 4.14: For each 0 < ζ < 1, the CSLTA formula Φζ is

not equivalent to any formula of CSL.

We also conjecture that there exists a CSLTA formula for which

no equivalent asCSL formula exists. This conjecture is based on

the result shown in the next subsection, which shows that there

exists a CSLTA formula which does not use nesting for which

there exists no single equivalent asCSL formula which does not

use nesting.
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Fig. 11. A family of ASMCs M[µ, µ′µ′′] and a DTA A of CSLTA

D. CSLTA without nesting is strictly more expressive than asCSL

without nesting

Consider the ASMC M[µ, µ, µ′′] shown on the left of Fig-

ure 11. Given a CSLTA formula Φ, let [Φ] = {(µ, µ′, µ′′) ∈
(0, 1)3 | M[µ, µ′, µ′′], s0 |= Φ}; similarly, given an

asCSL formula Φ′, let [Φ′] = {(µ, µ′, µ′′) ∈ (0, 1)3 |
M[µ, µ′, µ′′], s0 |=asCSL Φ′}. (Note that, in contrast to the case

of CSL in Section IV-C, we consider only the state s0 of M.) The

DTA on the right of Figure 11 will be used to define the CSLTA

formula for which there exists no equivalent asCSL formula

without nesting.

Given that the action set Act of M[µ, µ′, µ′′] is equal to {a},

the single state proposition of M[µ, µ′, µ′′] is true, and that,

for the purposes of the following results, we do not allow nesting

within asCSL formulae, we have that the input alphabet Ξ of

any considered N is equal to the set {(true, a), (true,
√

)}:

for this reason, we write z
a−→ z′ and z

√
−→ z′ for z

truea−−−−−→ z′

and z
true

√
−−−−−−→ z′, respectively.

We identify the set of NPA referring to sequences of a-

transitions of at most length 2: let 2NPA refer to the set of NPA

for which the longest path from the set of initial states to the

set of final states features at most two a-transitions. Let N =

〈Z, Ξ, δ, ZInit , ZF 〉 be an NPA, let Runs[N ] = RunsN (ZInit ), and

let Runs
[N ]
≤2 = {r ∈ Runs[N ] | r has at most two a-transitions}

and let Runs
[N ]
≥3 = Runs[N ] \ Runs

[N ]
≤2 .

We can obtain an NPA N≤2 such that we have Runs[N≤2] =

Runs
[N ]
≤2 . Informally, to obtain N≤2 we represent each state z ∈ Z

of N by three copies z0, z1 and z2 in N≤2. The transition

relation of N≤2 is defined such that a transition z1

√
−→ z2 of

N is represented by zi
1

√
−→ zi

2 in N≤2, for i ∈ {0, 1, 2}. A

transition z1
a−→ z2 of N is represented in N≤2 by the transitions

zi
1

a−→ zi+1
2 for i ∈ {0, 1}, and by z2

1
a−→ zsink, where zsink is

an additional state without outgoing transitions. The set of initial

states of N≤2 is {z0 | z ∈ ZInit}, and the set of final states of

N≤2 is ∪i∈{0,1,2}{zi | z ∈ ZF }. It can be verified that N≤2 is a

2NPA.

Similarly, we can obtain an NPA N≥3 such that, for any finite

path σ of M[µ, µ′, µ′′], the set Runs[N≥3] = Runs
[N ]
≥3 . To obtain

N≥3 we represent each state z ∈ Z of N by three copies z0, z1

and z2 in N≥3. The transition relation of N≥3 is defined such

that a transition z1

√
−→ z2 of N is represented by zi

1

√
−→ zi

2 in

N≤2, for i ∈ {0, 1, 2}. A transition z1
a−→ z2 of N is represented

by zi
1

a−→ zi+1
2 for i ∈ {0, 1} and by z2

1
a−→ z2

2 . The set of initial

states of N≥3 is {z0 | z ∈ ZInit}, and the set of final states of

N≥3 is {z2 | z ∈ ZF }.

For NPA N and interval I ⊆ R≥0, we write Pr
M[µ,µ′,µ′′]
s0 (N I)

for Pr
M[µ,µ′,µ′′]
s0 (AccPathM[µ,µ′,µ′′](s0,N I)) when clear from

the context.

Lemma 4.15: Let 〈α, β〉 ⊆ R≥0 such that β < ∞,

and let µ, µ′, µ′′ ∈ R>0. Then for any NPA N , we have

Pr
M[µ,µ′,µ′′]
s0 (N 〈α,β〉

≤2 ) = limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉).

Proof: First note that AccPathM[µ,µ′,µ′′](s0,N 〈α,β〉)
equals:

AccPath
M[µ,µ′,µ′′](s0,N 〈α,β〉

≤2 )∪AccPath
M[µ,µ′,µ′′](s0,N 〈α,β〉

≥3 ).

Hence:

Pr
M[µ,µ′,µ′′]
s0 (N 〈α,β〉)

≤ Pr
M[µ,µ′,µ′′]
s0 (N 〈α,β〉

≤2 ) + Pr
M[µ,µ′,µ′′]
s0 (N 〈α,β〉

≥3 ) .

We then observe the following fact:

limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉

≤2 )

≤ limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉)

≤ limν→0(Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉

≤2 ) + Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉

≥3 )) .

Now note that limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉

≥3 ) = 0 (from the fact

that, as ν tends to 0, the probability that there exists a finite

prefix of a path of M[µ, µ′, ν] comprising at least three a-

transitions and with time duration in 〈α, β〉 tends to 0). Hence

limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉

≤2 ) = limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉).

From the fact that the value of µ′′ is irrelevant to the

probability of satisfying a property specified by a 2NPA,

we have limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉

≤2 ) = Pr
M[µ,µ′,µ′′]
s0 (N 〈α,β〉

≤2 )

for any µ′′ ∈ R>0. Hence Pr
M[µ,µ′,µ′′]
s0 (N 〈α,β〉

≤2 ) =

limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,β〉). �

Lemma 4.16: Let 〈α,∞) ⊆ R≥0, and let µ, µ′, µ′′ ∈
R>0. Then for any NPA N , we have either

limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,∞)) = 1 or Pr

M[µ,µ′,µ′′]
s0 (N 〈α,∞)

≤2 ) =

Pr
M[µ,µ′,µ′′]
s0 (N 〈α,∞)).

Proof: First note that, if AccPathM[µ,µ′,µ′′](s0,N 〈α,∞)
≥3 ) 6=

∅, then limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,∞)

≥3 ) = 1 from the fact that, as

ν tends to 0, the probability that there exists a finite prefix of

a path of M[µ, µ′, ν] comprising at least three a-transitions and

with time duration in 〈α,∞) tends to 1. In this case, noting that:

limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,∞)

≥3 )

≤ limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,∞)) ,

we conclude that limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,∞)) = 1

If AccPathM[µ,µ′,µ′′](s0,N 〈α,∞)
≥3 ) = ∅, then:

AccPathM[µ,µ′,µ′′](s0,N 〈α,∞))

= AccPathM[µ,µ′,µ′′](s0,N 〈α,∞)
≤2 ) .

Therefore Pr
M[µ,µ′,µ′′]
s0 (N 〈α,∞)

≤2 ) = Pr
M[µ,µ′,µ′′]
s0 (N 〈α,∞)).

�

Hence, by Lemma 4.15 and Lemma 4.16, and by letting the

rate of the self-loop labelling s2 approach 0, it suffices to consider

asCSL formulae which use 2NPA, rather than arbitrary NPA

(noting that the case in which limν→0 Pr
M[µ,µ′,ν]
s0 (N 〈α,∞)) = 1

is not of interest).



Let A be the DTA of Figure 11. Then consider the CSLTA

formula Φζ = P≥ζ(A) for some ζ ∈ (0, 1). It follows that [Φζ ] =

{(µ, µ′, µ′′) ∈ (0, 1)3 | e−µ · e−µ′ ≥ ζ}. Rewriting, we obtain

[Φζ ] = {(µ, µ′, µ′′) ∈ (0, 1)3 | µ + µ′ ≤ − ln(ζ)}.

Lemma 4.17: Let Φ = P∼λ(N 〈α,β〉) be an asCSL formula for

which N is a 2NPA. Then [Φ] = {(µ, µ′, µ′′) ∈ (0, 1)3 | µ 6=
µ′ ∧Υ 6= ∼ λ}∪ {(µ, µ′, µ′′) ∈ (0, 1)3 | µ = µ′ ∧Υ= ∼ λ}, where

either:

• Υ 6= and Υ= are both 0, or are both 1;

• Υ 6= and Υ= are both e−µα − e−µβ ;

• Υ 6= is of the form
µ′(e−µα−e−µβ)−µ(e−µ′α−e−µ′β)

µ′−µ , and Υ=

is of the form µ(e−µα − e−µβ);

• Υ 6= is of the form (e−µα − e−µβ) +

(
µ′(e−µα−e−µβ)−µ(e−µ′α−e−µ′β)

µ′−µ )(1 − (e−µα − e−µβ))

and Υ= is of the form (e−µα − e−µβ) + (µ(e−µα −
e−µβ))(1 − (e−µα − e−µβ)).

The case in which Υ 6= or Υ= are of the form e−µα − e−µβ

corresponds to the case in which N accepts paths which have the

duration of the first transition in 〈α, β〉. The third point considers

the case in which N accepts paths which have the duration of

the prefix consisting of the first two transitions in 〈α, β〉 (where

the expression is obtained by applying an Erlang distribution).

The fourth point corresponds to the case in which N accepts

paths which have the duration of the first transition in 〈α, β〉 (first

summand) and paths which do not have the duration of the first

transition in 〈α, β〉 but have the duration of the prefix consisting

of the first two transitions in 〈α, β〉 (second summand).

Given the fact that it is not possible to represent the set

[Φζ ] = {(µ, µ′, µ′′) ∈ (0, 1)3 | µ+µ′ ≤ − ln(ζ)} using any of the

expressions of Lemma 4.17, we have the following proposition.

Proposition 4.18: There is a formula of CSLTA without nesting

for which there is no equivalent asCSL formula of the form

P∼λ(N I) without nesting.

V. CONCLUSION

In this paper we have defined a new stochastic temporal logic

CSLTA, based on timed automata, which we propose as a good

trade-off between adding flexibility to property specification and

limiting the explosion of complexity in analysis. With regard to

the specification of properties, the most significant extension is the

possibility of specifying an arbitrary number of timing constraints

along an execution path which may also depend on the history of

the process. We have shown that CSLTA is at least as expressive

as both CSL and asCSL. Furthermore, the evaluation process is

handled in an uniform way via Markov regenerative processes

rather than by ad hoc transformations as previously. We note that

the two restrictions that we have placed on the timed automata

used, namely that they are deterministic and have one clock, allow

us to obtain a tractable stochastic process for the joint process

of the system and the property, namely a Markov regenerative

process, for which there exists well-known solution methods [25],

[28].

Further work can consider an implementation of the proposed

method (possibly exploiting existing Deterministic Stochastic

Petri Net tools), and the extension of CSLTA to allow for re-

wards [29]. We would also like to investigate the use of CSLTA

for the definition of properties of performance models generated

automatically from the sequence diagrams of UML, where the

ability of CSLTA to reason about concatenated time intervals could

be of use.
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APPENDIX

PROOF OF PROPOSITION 4.10

Part (1). We first show that σ ∈ AccPathM(s,N [α,β]) implies

σ ∈ AccPathM(s,A(N [α,β])). From σ ∈ AccPathM(s,N [α,β]),

there exists a finite prefix σfin of σ such that τ (σfin) ∈ [α, β]

and there exists an accepting run r ∈ Runs(ZInit , σfin). We

concentrate on the case in which σfin has at least one transition.

Let:

σfin = s0 a0,τ0

−−−−→ s1 a1,τ1

−−−−→ . . .
am,τm

−−−−−→ sm+1 .

Assume that there does not exist a prefix σ′ of σfin such that

τ (σ′) ∈ [α, β] and that there exists an accepting run r ∈
Runs(ZInit , σ

′). Then, by Definition 4.7, we can identify an

accepting run in Runs(ZInit , σfin) of N which comprises m

segments, each of which consists of a number of
√

-transitions,

followed by a transition with an action label from Act , except

possibly in the last segment which can also feature a final

fragment comprising
√

-transitions. We refer to accepting runs

not having a final fragment comprising
√

-transitions as runs of

form 1, whereas the other runs are referred to as being of form

2.

Formally, a run of form 1 is as follows:

r = (zi
0

Φi
0

√
−−−→ . . .

Φi

ni−1

√
−−−−−−→ zi

ni

Φi

niai

−−−−→ zi+1
0 )i=0,...,m

We now show how the run r of N and the finite path σfin of M
can be used to obtain an a path

σA = (l0, x̄0)
τ0,e0

−−−−→ . . .
τm,em

−−−−−→ (lm+1, x̄m+1)

of A(N [α,β]) which can be used, via Definition 2.7, to accept σ.

The path σA will be constructed such that, for each i ≤ m + 1,

we have li = (qi, Φi) where zi
0 ∈ qi and Φi ⇒ ∧

k<ni Φi
k such

that si |=asCSL Φi. We proceed by induction on the length of the

path of A(N [α,β]).

The base case is as follows: by Definition 4.9, we have l0 =

(qInit , Φ) for some Φ ∈ Σ. By Definition 4.8, we have qInit =

ZInit . Because r is accepting, we have that z0
0 ∈ ZInit , and hence

z0
0 ∈ qInit . We choose Φ such that both (1) Φ ⇒ ∧

k<n0 Φ0
k

and (2) s0 |=asCSL Φ. To satisfy these criteria, we observe the

following:

• s0 |=asCSL Φi
k for all k < n0 by Definition 4.7, and therefore

s0 |=asCSL

∧

k<n0 Φi
k.

• By the definition of Σ, there exists Σ′ ⊆ Σ

such that
∨

Φ′∈Σ′ Φ′ ≡ ∧

k<n0 Φi
k (because

Runs(qInit , (
∧

k<n0 Φi
k, a0)) 6= ∅).

The combination of these two facts allows us to choose Φ ∈ Σ

such that s0 |=asCSL Φ (there will exist at least one such Φ).

Now assume that we have constructed the path

(l0, x̄0)
τ0,e0

−−−−→ . . .
τ i−1,ei−1

−−−−−−−→ (li, x̄i)

for i ≤ m+1. Our task is to construct (li, x̄i)
τ i,ei

−−−→ (li+1, x̄i+1)

from the fragment

ri = zi
0

Φi
0

√
−−−→ . . .

Φi

ni−1

√
−−−−−−→ zi

ni

Φi

niai

−−−−→ zi+1
0

of r. By definition, we have that ri ∈ Runs(zi
0, (Φi, ai)),

where Φi ∈ Σ is such that (1) Φi ⇒ ∧

k<ni Φi
k and (2)

si |=asCSL Φi (that such Φi exists follows from the reasoning

given for Φ0 above). Therefore by Definition 4.8 and the fact



that zi
0 ∈ qi, which holds by induction, we have that zi+1

0 ∈
∆(qi, (Φi, ai)). Furthermore, again by Definition 4.8, we have

qi+1 = ∆(qi, (Φi, ai)), and hence zi+1
0 ∈ qi+1. Now we have to

ensure the existence of the edge ei of A(N [α,β]) which can be

taken after τ i time units. If i < m, then by Definition 4.9, for

any Φ ∈ Σ, we have the edge (qi, Φi)
true,ai,∅−−−−−−−−→ (qi+1, Φ)

if qi+1 6∈ QF , and the edges (qi, Φi)
x<α,ai,∅−−−−−−→ (qi+1, Φ)

(qi, Φi)
α≤x≤β,ai,∅−−−−−−−−→ (qi+1, Φ) if qi+1 ∈ QF . Let li+1 =

(qi+1, Φi+1) where Φi+1 ∈ Σ is such that (1) Φi+1 ⇒ ∧

k≤ni Φi
k

and (2) si+1 |=asCSL Φi+1 (again, the existence of Φi+1 follows

from the reasoning given for Φ0). If i = m, then we have the

edge (qm, Φm)
α≤x≤β,am,∅−−−−−−−−−→ (qm+1, Φm+1), and let lm+1 =

(qm+1, Φm+1).

We now verify that the path σA can be used to accept σ

according to Definition 2.7.2 First, we have that l0 ∈ Init , x̄0 = 0

and qm+1 ∈ Final (because zm+1
0 ∈ qm+1 and zm+1

0 ∈ ZF

implies trivially that Runs(qm+1, (Φm+1,
√

), ZF ) 6= ∅). Second,

for all i ≤ m+1, observe that si |=asCSL Φi. Then, recalling that

Λ(li) = Λ(qi, Φi) = Φi, we have si |= Λ(li).

Third, note that the condition of Definition 2.7 requiring that

ai ∈ action(ei) is satisfied trivially because action(ei) = {ai}.

Fourth, we clearly have that the total time elapsed along σfin is

equal to that elapsed along σA (because the same time durations

τ i, for all i ≤ m + 1 are used for both paths).

Finally (and significantly), we have to verify that σA is indeed

a path of A(N [α,β]). The arguments concerning the existence of

the appropriate edges are given above, and therefore it remains

to show that the constraints of the edges are satisfied. For i < m,

if qi+1 6∈ QF we have guard(ei) = true, which is trivial. The

case in which qi+1 ∈ QF but (qi+1, Φi+1) 6∈ Final , in which

there exist edges with guards x < α and α ≤ x ≤ β can also

be dealt with trivially. If qi+1 ∈ QF and (qi+1, Φi+1) ∈ Final ,

then ei must be such that guard(ei) = (x < α). For this case,

assume that there exists i < m such that x̄i + τ i ≥ α. First,

consider the case in which α ≤ x̄i + τ i ≤ β. It then follows

that we can find a run r′ of N comprising i fragments such that

last(r′) ∈ ZF (by applying the reasoning given above). Hence

the prefix of σfin up to the (i + 1)th state is sufficient to show

that σ ∈ AccPathM(s,N [α,β]), which contradicts the assumption

that σfin is the shortest such prefix. Second, consider the case in

which x̄i + τ i > β. From the fact that τ (σfin) ≥ x̄i + τ i > β,

clearly τ (σfin) 6∈ [α, β], which is a contradiction.

Next we consider the case of edge em, for which guard(em) =

(α ≤ x ≤ β). We have that τ (σfin) =
∑

i≤m τ i. From the fact

that the clock x is not reset on any edge of A(N [α,β]), it follows

that x̄m =
∑

i<m τi. Hence x̄m + τm (the value of x when the

edge em should be taken) is equal to
∑

i≤m τ i, and therefore

equal to τ (σfin). From σ ∈ AccPathM(s,N [α,β]), we know that

τ (σfin) ∈ [α, β]. Hence α ≤ x̄m + τm ≤ β, and consequently

x̄m + τm
� guard(em). Therefore, we conclude that σA is a path

of A(N [α,β]).

Form 2 differs from form 1 in the sense that the final part

of the run of N consists of a sequence of
√

-transitions. More

2We note that κ is the identity function, because there are no boundary
edges in A(N [α,β]).

precisely, form 2 is the following:

r = ((zi
0

Φi
0

√
−−−→ . . .

Φi

ni−1

√
−−−−−−→ zi

ni

Φi

niai

−−−−→ zi+1
0 )i=0,...,m)

Φm+1
0

√
−−−−−→ . . .

Φm

nm+1−1

√
−−−−−−−−→ zm+2

0

Most of the details of this case are similar to those of form 1,

and therefore we only briefly sketch the differences. Again, the

aim is to show how the run r of N and the finite path σfin of M
can be used to obtain an a path

σA = (l0, x̄0)
τ0,e0

−−−−→ . . .
τm,em

−−−−−→ (lm+1, x̄m+1)

of A(N [α,β]) which can be used, via Definition 2.7, to accept σ.

The proof proceeds in the same manner as that for form 1, except

that, for i = m, we consider the final fragment:

rm+1 = zm+1
0

Φm+1
0

√
−−−−−→ . . .

Φm

nm+1−1

√
−−−−−−−−→ zm+2

0 .

By definition, we have that rm+1 ∈ Runs(zm
0 , (Φm,

√
), ZF ).

Noting also that zm+2
0 ∈ ZF , the remainder of the reasoning

follows as for form 1.

Part (2). We now show that σ ∈ AccPathM(s,A(N [α,β])).

implies σ ∈ AccPathM(s,N [α,β]). From σ ∈
AccPathM(s,A(N [α,β])), there exists a path σA =

(l0, x̄0)
τ0,e0

−−−−→ . . .
τm,em

−−−−−→ (lm+1, x̄m+1) of A(N [α,β])

satisfying the conditions of Definition 2.7. We show how σA
can be used to identify a finite prefix

σfin = s0 a0,τ0

−−−−→ s1 a1,τ1

−−−−→ . . .
am,τm

−−−−−→ sm+1

of σ such that τ (σfin) ∈ [α, β] and there exists an accepting run

r ∈ Runs(ZInit , σfin) of N , which suffices for showing that σ ∈
AccPathM(s,N [α,β]). The idea is to iterate backwards along the

path σA from (lm+1, x̄m+1) to (l0, x̄0).

First we consider (lm+1, x̄m+1): by Definition 2.7, we have

lm+1 ∈ Final . We choose x̄m+1 = τ (σfin).

Now consider the final transition (lm, x̄m)
τm,em

−−−−−→
(lm+1, x̄m+1) of σA. We construct the path fragment rm, which

is either of form 1 or of form 2 of part (1) of this proof. Note

that em is of the form (qm, Φm)
α≤x≤β,am,∅−−−−−−−−−→ (qm+1, Φm+1).

Hence, by Definition 4.9, we have that ∆(qm, (Φm, am)) ∈ QF .

Furthermore, by Definition 4.8, for all z ∈ ∆(qm, (Φm, am)),

it follows that there exists r′ ∈ Runs(qm, (Φm, am)) such that

last(r′) = z. Hence there exists r′ ∈ Runs(qm, (Φm, am)) such

that last(r′) = zm+1
0 . Let rm = r′. Note that the first state of

rm, namely zm
0 , is such that zm

0 ∈ qm.

Now let 0 < i ≤ m, and assume that we have constructed

the path (rj)j=i,...,m of N . We show how to construct the path

fragment ri−1. Consider the transition (li−1, x̄i−1)
τ i−1,ei−1

−−−−−−−→
(li, x̄i) of σA. Writing li = (qi, Φi) and zi

0 as the first

state of ri, we have that zi
0 ∈ qi by induction. By Defini-

tion 4.9 the edge ei−1 of the DTA transition will be of the

form ei−1 = (qi−1, Φi−1)
true,ai−1,∅−−−−−−−−−→ (qi, Φi) or ei−1 =

(qi−1, Φi−1)
x<α,ai−1,∅−−−−−−−−→ (qi, Φi), where qi−1 ∈ Q is such that

qi = ∆(qi−1, (Φi−1, ai−1)). By Definition 4.8, for all z ∈ qi, it

follows that there exists r′ ∈ Runs(qi−1, (Φi−1, ai−1)) such that

last(r′) = z. Hence there exists r ∈ Runs(qi−1, (Φi−1, ai−1))

such that last(r′) = zi
0. Let ri−1 = r′. The first state zi−1

0 of

ri−1 is such that zi−1
0 ∈ qi−1.



We now show that the path r = (ri)i=0,...,m of N is in the

set Runs(ZInit , σfin). Assuming that |σfin| > 0, we proceed by

induction on the length of path suffixes of σfin.

Consider rm. Assume that the last transition rm has an action

label from Act (that is, r is of form 1 according to part (1) of

the proof). We write:

rm = zm
0

Φm
0

√
−−−−→ . . .

Φm
nm−1

√
−−−−−−→ zm

nm

Φm
nmam

−−−−−→ zm+1
0 .

First we consider the path of length 0 comprising sm+1. Clearly,

by Definition 4.7, we have that zm+1
0 ∈ Runs(zm+1

0 , sm+1). Next

consider the transition zm
nm

Φm
nmam

−−−−−→ zm+1
0 . By Definition 2.7,

we have sm |= Λ(lm). Because Λ(lm) = Φm ⇒ ∧

j≤nm Φm
j , it

follows that sm |=asCSL Φm
j for all j ≤ nm. By Definition 4.7,

by sm |=asCSL Φm
nm , and using the fact that the final transition

of σfin is sm am,τm

−−−−−→ sm+1 and zm+1
0 ∈ Runs(zm+1

0 , sm+1), we

conclude that:

zm
nm

Φm
nm am

−−−−−→ zm+1
0 ∈ Runs(zm

nm , sm am,τm

−−−−−→ sm+1) .

Given that, for each j < nm, the transition zm
j

Φm
j

√
−−−−→

zm
j+1 features

√
, we can conclude from Definition 4.7 that

Runs(zm
j , sm am,τm

−−−−−→ sm+1) contains the path:

zm
j

Φm
j

√
−−−−→ . . .

Φm
nm−1

√
−−−−−−→ zm

nm

Φm
nmam

−−−−−→ zm+1
0 .

Now assume that the last transition of rm is a
√

-transition

(that is, r is of form 2 according to part (1) of the proof); we

write rm = rm
1 rm

2 where:

rm
1 = zm

0
Φm

0

√
−−−−→ . . .

Φm
nm−1

√
−−−−−−→ zm

nm

Φm
nmam

−−−−−→ zm+1
0

rm
2 = zm+1

0

Φm+1
0

√
−−−−−→ . . .

Φm

nm+1−1

√
−−−−−−−−→ zm+2

0 .

For each j ≤ nm+1, by Definition 4.7 we can show that:

zm+1
j

Φm+1
j

√
−−−−−→ . . .

Φm

nm+1−1

√
−−−−−−−−→ zm+2

0 ∈ Runs(zm+1
j , sm+1) .

The proof for the remaining suffixes of rm proceeds as for

the previous case. Note that sm |= Λ(lm) where Λ(lm) =

Φm ⇒ ∧

j≤nm Φm
j , and hence sm |=asCSL Φm

j for all j ≤ nm.

Furthermore, we have Λ(lm+1) = Φm ⇒ ∧

j≤nm+1 Φm+1
j , and

hence sm+1 |=asCSL Φm+1
j for all j ≤ nm+1. Hence, for both

cases, we have shown that rm ∈ Runs(zm
0 , sm am,τm

−−−−−→ sm+1).

Let 0 < i ≤ m, and assume that we have shown that

(rj)j=i,...,m ∈ Runs(zi
0, s

i ai,τ i

−−−→ . . .
am,τm

−−−−−→ sm+1), where zi
0

is the first state of ri. The task of showing that (rj)j=i−1,...,m ∈
Runs(zi−1

0 , si−1 ai−1,τ i−1

−−−−−−−→ . . .
am,τm

−−−−−→ sm+1) is similar to

the case for rm in the case that r is of form 1. First, from

si−1 |= Λ(li−1), we have that sm |=asCSL Φi−1
j for all j ≤ ni−1.

Using the fact that (rj)j=i,...,m ∈ Runs(zi
0, s

i ai,τ i

−−−→ . . .
am,τm

−−−−−→

sm+1), we have that zi−1
ni−1

Φi−1

ni−1ai−1

−−−−−−−−→ zi
0 is contained in

Runs(zi−1
ni−1 , s

i−1 ai−1,τ i−1

−−−−−−−→ . . .
am,τm

−−−−−→ sm+1) .

Then we have that, for each j < ni−1,

zi−1
j

Φi−1
j

√
−−−−−→ . . .

Φi−1

ni−1−1

√

−−−−−−−→ zi−1
ni−1

Φi−1

ni−1ai−1

−−−−−−−−→ zm
0

is contained in

Runs(zi−1
j , si−1 ai−1,τ i−1

−−−−−−−→ . . . sm am,τm

−−−−−→ sm+1) .

Hence r = (ri)i=0,...,m of N is in the set Runs(ZInit , σfin). It

remains to show that τ (σfin) ∈ [α, β]. Recall that x̄m+1 = τ (σfin).

Given that σA is a path of A(N [α,β]) for which guard(em) =

(α ≤ x ≤ β), and that A(N [α,β]) never resets the clock x, we

have that x̄m+1 = x̄m + τm ∈ [α, β]. Hence τ (σfin) ∈ [α, β]. We

conclude that σ ∈ AccPathM(s,N [α,β]) as required.


