
Using Stochastic Comparison for Efficient Model
Checking of Uncertain Markov Chains

Serge Haddad
LSV, ENS de Cachan

61 Av. du Président Wilson 94235 Cachan, France
Email: Serge.Haddad@lsv.ens-cachan.fr

Nihal Pekergin
LACL, Université Paris Est

61 Av. du Général de Gaulle 94010 Créteil, France
Email: nihal.pekergin@univ-paris12.fr

Abstract—We consider model checking of Discrete Time
Markov Chains (DTMC) with transition probabilities which are
not exactly known but lie in a given interval. Model checking
a Probabilistic Computation Tree Logic (PCTL) formula for
interval-valued DTMCs (IMC) has been shown to be NP hard
and co-NP hard. Since the state space of a realistic DTMC is
generally huge, these lower bounds prevent the application of
exact algorithms for such models. Therefore we propose to apply
the stochastic comparison method to check an extended version
of PCTL for IMCs. More precisely, we first design linear time
algorithms to quantitatively analyze IMCs. Then we develop an
efficient, semi-decidable PCTL model checking procedure for
IMCs. Furthermore, our procedure returns more refined answers
than traditional ones: YES, NO, DON’T KNOW. Thus we may
provide useful partial information for modelers in the ‘DON’T
KNOW’ case.

I. INTRODUCTION

Specification. Markovian models have been largely used in
performance, dependability and reliability analysis of com-
puter and communication systems. Modeling a quantitative
stochastic system by a DTMC requires the specification of an
initial distribution and a transition probability matrix. How-
ever, sometimes it may be impossible or unrealistic to deter-
mine precisely these probabilities. First of all, transition rates
are estimated through statistical experiences which provide
intervals of values (bounds) but not exact values. Moreover,
these models are the abstraction of complex interactions or
dependence of system parameters thus interval values for
transition probabilities would be more appropriate than precise
ones. Furthermore substituting a reduced Markov chain for the
original one naturally leads to interval values. Interval-valued
Markov chains for which transition probabilities are supposed
to lie within a range of values have been introduced to capture
such uncertainties [18].

Verification. In quantitative model checking, one first specifies
a complex performability or safety guarantee by a temporal
logic formula and then check its satisfiability based on the
transition graph. Different languages have been proposed de-
pending on the considered stochastic model and properties. In
DTMCs, PCTL [15] has been first proposed and then extended
with more complex operators (e.g. [7]). In CTMCs, a similar
logic, Continuous Stochastic Logic [3] and its extensions [2],
[10] also adapt CTL logic (defined for discrete-event systems).
PCTL is also adequate for Markovian Decision Processes [5].

Model checking of uncertain models. In order to specify
expected behavior, [16] introduces IMCs and check whether
an IMC conforms to the model of the system w.r.t. different
relations. In [18], the authors show how to obtain parameters
of an IMC. Model checking of IMCs has been investigated
first in [23] where it is shown that PCTL model checking of
IMCs is in PSPACE and it is NP hard and co-NP-hard. The
resultats have been generalized to ω-PCTL logic in [7]. Both
[23], [7] also study interval-valued Markov decision processes.
Our contribution. In this paper, we provide an efficient semi-
decision model checking of PCTL formulas over interval-
valued DTMCs (IMCs) based on stochastic comparisons. We
first design (or improve) linear time algorithms to quantita-
tively analyze IMCs.
• For any fixed state s and every subset of states S ′, we

compute the minimal and maximal cumulative probability
to go from s to S ′ in one step.

• [13] establish the existence of the greatest ≤st monotone
and lower bounding transition probability matrix for a
set of substochastic Markov chains specified by an IMC.
Furthermore they design a linear time algorithm to build
such a chain and state a structural characterization w.r.t.
the IMC of finiteness of mean sojourn time in this chain.
We refine this last result by building the subset of (initial)
states for which this sojourn time starting from them is
finite.

The model checking procedure is performed as usual by
a bottom-up evaluation of subformulas and corresponding
labelling of states. However due to the fact that we rely on
a semi-decision procedure, the labels of states are 6-valued:
satisfied for all (∀+), satisfied for none (∀−), exists satisfied
and exists not satisfied (∃+−), exists satisfied (∃+), exists not
satisfied (∃−), don’t know (?). The three first cases are exact
answers while the last three ones are partial ones.

Contrary to [23], [7] our variant of PCTL includes the
mean reachability time operator (D). This operator is useful
for performability studies e.g. the mean time to failure can
be expressed with this operator [24]. Moreover the stochastic
comparison approach is the key point to handle both this
operator and the (time bounded) until operator.
Organization. The remaining of the paper is organized as
follows. Section II is devoted to IMC (definitions and algo-

rithms). We present the syntax and semantic of the considered
PCTL in section III. Model checking of PCTL is developed
in section IV. Related work is discussed in section V. Finally
we conclude and give some perspectives for this approach in
section V.

II. INTERVAL MARKOV CHAINS

A. Definitions

Definition 1: A labelled time-homogeneous DTMC M is
a 3-tuple (S,P, L) where S is a finite set of states, P is the
transition probability matrix, and L : S → 2AP is the labelling
function which assigns to each state s ∈ S , the set L(s) of
atomic propositions a ∈ AP that are valid in s, AP denotes
the finite set of atomic propositions.

Following (with slight changes) the definition in [23], we
define the interval-valued, labelled DTMCs as follows :

Definition 2: A labelled interval-valued time homogeneous
DTMCsM(P−,P+) is defined by a 4-tuple (S,P−,P+, L),
where S and L are defined as in a labelled DTMC. The
interval-valued DTMC is defined by P− (resp. P+) which
is a substochastic matrix, ie. the row sums may be less or
equal to 1 (resp. superstochastic matrix, ie. the row sums may
be greater or equal to 1).

For all s, t ∈ S , the following inequalities are satisfied
between P− and P+ :

0 ≤ P−[s, t] ≤ P+[s, t] ∧
∑
t′∈S

P+[s, t′] ≥ 1 ≥
∑
t′∈S

P−[s, t′]

(1)
P−[s, t] ≥ 1−

∑
t′ 6=t

P+[s, t′] (2)

P+[s, t] ≤ 1−
∑
t′ 6=t

P−[s, t′] (3)

A DTMC with transition probability matrix P is said to
belong to M(P−,P+) (denoted P ∈M(P−,P+)), if

∀s, t, P−[s, t] ≤ P[s, t] ≤ P+[s, t] (4)

Remark. Observe that the set of inequalities (1) is a
necessary and sufficient condition for M(P−,P+) to
be non empty. Furthermore one can always change P−

and P+ in order to satisfy inequalities (2) and (3)
without modifying M(P−,P+). Transformations consist
in P−[s, t] := max(P−[s, t], 1 −

∑
t′ 6=tP

+[s, t′]) and
P+[s, t] := min(P+[s, t], 1−

∑
t′ 6=tP

−[s, t′]).
In the sequel, we denote by M (resp. P) a DTMC (resp. a

transition probability matrix) belonging to the set of Markov
chains M(P−,P+).

Verifying PCTL formulas requires to transform the Markov
chain and in particular to build sub-stochastic chains. Thus
we simultaneously deal with stochastic and sub-stochastic
matrices. A sub-stochastic n × n matrix P can also be
considered as a (n+1)× (n+1) stochastic matrix by adding
an additional absorbing state s such that P[s, s] = 1 and
∀s′ 6= s,P[s′, s] = 1 −

∑
s′′ 6=sP[s′, s′′]. In the sequel we

interchangeably use these two representations.

So we introduce a set of sub-stochastic matrices in order to
mainly study the strict sub-stochasticity, i.e. with probability
1, the additional absorbing state is reached. This explains the
asymmetry of the next definition regarding to definition 2.

Definition 3: An interval valued n×n sub-stochastic matrix
M(P−,P+,out) is defined by a n×n sub-stochastic matrix
P−, a n×n positive matrix P+, and a positive vector of size
n out that fulfill:

0 ≤ P−[s, t] ≤ P+[s, t] ∧
∑
t′∈S

P−[s, t′] + out[s] ≤ 1

P+[s, t] ≤ 1−
∑
t′ 6=t

P−[s, t′]− out[s]

A sub-stochastic n × n matrix P is said to belong to
M(P−,P+,out) (denoted P ∈M(P−,P+,out)), if ∀s, t :

P−[s, t] ≤ P[s, t] ≤ P+[s, t] ∧
∑
t∈S

P[s, t] ≤ 1− out[s] (5)

B. Structural Properties of IMC

Given an IMC, a state s and a subset of states S ′, we first
characterize the maximal and minimal value to reach from s
in one step S ′.

Lemma 1: Let M(P−,P+) be a labelled interval-valued
time homogeneous DTMC, S ′ ⊆ S be a subset of states and
s ∈ S be a state. Then:
• min(

∑
t∈S′ P[s, t] | P ∈M(P−,P+)}

= max(
∑
t∈S′ P

−[s, t], 1−
∑
t/∈S′ P

+[s, t])
• max{

∑
t∈S′ P[s, t] | P ∈M(P−,P+))

= min(
∑
t∈S′ P

+[s, t], 1−
∑
t/∈S′ P

−[s, t])
Proof. We only prove the first assertion since the proof of the
second one is similar. Let us note ms ≡ min(

∑
t∈S′ P[s, t] |

P ∈ M(P−,P+)). It follows from Equation (4) that
any P ∈ M(P−,P+) fulfills for any subset S ′ ∈ S∑
t∈S′ P[s, t] ≥

∑
t∈S′ P

−[s, t]. Moreover, since P is
stochastic

∑
t∈S′ P[s, t] ≥ 1 −

∑
t/∈S′ P

+[s, t]. Thus ms ≥
max(

∑
t∈S′ P

−[s, t], 1 −
∑
t/∈S′ P

+[s, t]). In order to prove
equality, we exhibit some P ∈ M(P−,P+) that reaches this
value. We observe that we only have to specify P[s, ∗]. We
order the states of S such that any state of S ′ occurs before
the states out of S ′. We fill row s to minimize the sum of
probabilities for a given set (the first case) with Algorithm 1.

Algorithm 1: Filling algorithm to minimize
Input : P−,P+,S = {s1, s2, · · · sn};
Output : row s of P ∈M(P−,P+) ;
sum = 0;
for i = 1 to n do

1.
P[s, si] = max(P−[s, si], 1−sum−

∑
j>iP

+[s, sj]);
2. sum = sum+ P[s, si];

end

We prove by induction that at the beginning of each iteration
i (including the case i = n + 1 meaning that the algorithm
exits the loop), the following equations are satisfied:

sum =
∑
j<i

P[s, sj]

∀j < i, P−[s, sj] ≤ P[s, sj] ≤ P+[s, sj]

∑
j<i

P[s, sj] = max(
∑
j<i

P−[s, sj], 1−
∑
j≥i

P+[s, sj])

The basis case i = 1 is straightforward except for the
last assertion which follows from

∑
j≥1 P+[s, sj] ≥ 1.

Assume that the above inequalities are satisfied for i − 1.
Instruction 2 and the inductive hypothesis ensure that sum =∑
j<iP[s, sj] +P[s, si] =

∑
j<i+1 P[s, sj]. Instruction 1 en-

sures that P[s, si] ≥ P−[s, si]. Furthermore before instruction
1,
1− sum−

∑
j>iP

+[s, sj]
= 1−

∑
j<iP[s, sj]−

∑
j>iP

+[s, sj]
≤ 1− (1−

∑
i≥j P

+[s, sj])−
∑
j>iP

+[s, sj]
= P+[s, si].
Thus after instruction 1, P[s, si] ≤ P+[s, si] (we also use the
inequality P−[s, si] ≤ P+[s, si]).

In order to establish the last inequality, we perform a case
study.
Case 1:

∑
j≤iP

−[s, sj] ≥ 1−
∑
j>iP

+[s, sj]∑
j<iP

−[s, sj]+P−[s, si] ≥ 1−
∑
j≥iP

+[s, sj]+P+[s, si]
Hence before instruction 1,
sum+ P−[s, si] ≥ 1−

∑
j>iP

+[s, sj]
P−[s, si] ≥ 1− sum−

∑
j>iP

+[s, sj]
then after instruction 1, P[s, si] = P−[s, si]
and after instruction 2, sum =

∑
j≤iP

−[s, sj].

Case 2:
∑
j<iP

−[s, sj] < 1−
∑
j≥iP

+[s, sj]
Using the first and the last inductive assertions, we deduce
that sum = 1−

∑
j≥iP

+[s, si].
Hence before instruction 1,
1− sum−

∑
j>iP

+[s, sj] = P+[s, si] ≥ P−[s, si]
Then after instruction 1,
P[s, si] = P+[s, si]
and after instruction 2, sum = 1−

∑
j>iP

+[s, sj]
Moreover

∑
j≤iP

−[s, sj] ≤
∑
j<iP

−[s, sj] + P+[s, si]
< (1−

∑
j≥iP

+[s, sj]) + P+[s, si]
= 1−

∑
j>iP

+[s, sj].

Case 3:
∑
j<iP

−[s, sj] ≥ 1−
∑
j≥iP

+[s, sj]
∧

∑
j≤iP

−[s, sj] < 1−
∑
j>iP

+[s, sj]
Thus before instruction 1, sum =

∑
j<iP

−[s, sj].
1− sum−

∑
j>iP

+[s, sj] =
1−

∑
j<iP

−[s, sj]−
∑
j>iP

+[s, sj]
> −

∑
j<iP

−[s, sj] +
∑
j≤iP

−[s, sj] = P−[s, si].
Here we have used the second hypothesis of Case 3.
Therefore after instruction 1,
P[s, si] = 1− sum−

∑
j>iP

+[s, sj]
≤ 1− (1−

∑
j≥iP

+[s, sj])−
∑
j>iP

+[s, sj] = P+[s, si]
The inequality follows from the first hypothesis of Case 3.
After instruction 2,

sum =∑
j<iP

−[s, sj] + 1−
∑
j<iP

−[s, sj]−
∑
j>iP

−[s, sj]
= 1−

∑
j>iP

+[s, sj].
Using the third inductive assertion with i = n + 1 and

inequation 1, we obtain
∑
j<n+1 P[s, si] = 1. Using again

the third inductive assertion with i the index of the first state
not in S ′, we obtain

∑
t∈S′ P[s, t] = max(

∑
t∈S′ P

−[s, t], 1−∑
t/∈S′ P

+[s, t]). �
In the second case to maximize the sum of probabilities,

we fill row s by Algorithm 2. Let us remark here that if one
is interested in minimizing or maximizing of a partial sum
of probabilities over a subset of states S ′ ∈ S , it would be
sufficient to perform the loop of these algorithms only for this
subset since they occur first in the enumeration of states.

Algorithm 2: Filling algorithm to maximize
Input : P−,P+,S = {s1, s2, · · · sn};
Output : row s of P ∈M(P−,P+) ;
sum = 0;
for i = 1 to n do

P[s, si] = min(P+[s, si], 1−sum−
∑
j>iP

−[s, sj]);
sum = sum+ P[s, si];

end

C. Algorithms for Stochastic Bounds

In this subsection, we present algorithms to construct bound-
ing matrices in the sense of ≤st ordering for a given IMC.
We first give the basic definitions and theorems for stochastic
comparison and we refer to [20] for further informations.

1) Stochastic Comparison: The following is the generic
definition for the ≤st ordering which is known also as strong
ordering or sample-path ordering.

Definition 4: Let X and Y be two random variables taking
values on a totally ordered space S,

X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y)

for all increasing functions f : S → R whenever expectations
exist.
In the case of finite state space that we will consider in
the sequel, the comparison of random variables are defined
through following probability inequalities.

Property 1: Let X and Y be two random variables taking
values on S = {s1, s2, . . . , sn}, and p = [p1 . . . pi . . . pn], q =
[q1 . . . qi . . . qn] be probability vectors respectively denoting
distributions of X and Y (pi = Prob(X = si), and qi =
Prob(Y = si)).

1 ≤ i ≤ n, X ≤st Y ⇔
i∑

k=1

pk ≥
i∑

k=1

qk (6)

The above inequalities are often given by beginning from the
last state. However Eq. (6) is straightforwardly generalizable
for sub-stochastic vectors and thus is more appropriate for our
goals.

Let us notice here that in the sequel we interchangeably use
X ≤st Y and p ≤st q. We apply the following definition to
compare Markov chains.

Definition 5: Let {X(ti)}i≥0 (resp. {Y (ti)}i≥0) be
a DTMC. We say {X(ti)}i≥0 ≤st {Y (ti)}i≥0, if
∀i, X(ti) ≤st Y (ti).
Intuitively, this means that the probability to reach states
having a higher number than a fixed one is greater or equal
in Y at every instant n. The following folk theorem provides
sufficient conditions to establish the comparison of DTMCs
that will be used in the sequel.

Theorem 1: Let P (resp. P′) be the probability transition
matrix of the time-homogeneous Markov chain {X(ti)}i≥0

(resp. {Y (ti), i ≥ 0}). The comparison of Markov chains
is established ({X(ti)}i≥0 ≤st {Y (ti)}i≥0), if the following
conditions are satisfied :

• X(t0) ≤st Y (t0),
• at least one of the probability transition matrices is mono-

tone, that is, either P or P′ (say P) is ≤st monotone, if
for all probability vectors p and q,

p ≤st q =⇒ pP ≤st qP

which is equivalent to

1 ≤ i ≤ n− 1, P[si, ∗] ≤st P[si+1, ∗]

where P[si, ∗] denotes the row of matrix P for state si.
• the transition matrices are comparable in the sense of the
≤st order :

P ≤st P′ ⇐⇒ 1 ≤ i ≤ n, P[si, ∗] ≤st P′[si, ∗]

Algorithm 3: Construction of the greatest lower bounding
matrix P•

Input : P−,P+ : n× n matrices; out: a vector of
size n representing the minimal transition
probabilities to reach the absorbing state;

Output : P• ∈M(P−,P+);
P• ≤st ∀P ∈M(P−,P+);

for i = 1 to n do
for j = 1 to n do

Pa[si, sj] = min(
∑j
k=1 P+[si, sk], 1−∑n

k=j+1 P−[si, sk])− out[i]);
(Ih) if (i ≤ j) and (Pa[si, sj] == 1) then

halt;
end
P•[si, 1] = Pa[si, 1];
for j = 2 to n do

P•[si, sj] = Pa[si, sj]−Pa[si, sj−1];
end

end

2) Bounding Algorithms: We now present algorithms to
construct bounding algorithms for IMC with one absorbing
state proposed in [13], [14].

Algorithm 3 builds the greatest lower bounding matrix in
the sense of ≤st ordering for matrices in the given interval
with an additional information specified (minimal transition
probabilities to reach the absorbing state). Thus it follows from
Eq. 6 that ∀P ∈M(P−,P+):

1 ≤ i ≤ n, 1 ≤ j ≤ n,
j∑

k=1

P•[si, sk] ≥
j∑

k=1

P[si, sk]

(7)
Given an input matrix, Algorithm 4 produces the greatest

monotone lower bounding matrix in the sense of ≤st ordering.
Moreover ∀t, (P?)t is monotone and provides a lower bound-
ing matrix for all transition probability matrices in the interval.
Thus ∀P ∈M(P−,P+):

1 ≤ i ≤ n, 1 ≤ j ≤ n,
j∑

k=1

(P?)t[si, sk] ≥
j∑

k=1

(P)t[si, sk]

(8)
These inequalities yields indeed the upper bounds to reach
states s1 · · · sj in t steps beginning from state si, in the case
P? is strictly substochastic.

Algorithm 4: Construction of monotone lower bounding
matrix P?

Input : P•, see Algorithm 3;
Output : P? ≤st ∀P ∈M(P−,P+); P? is monotone;
P?[sn, .] = P•[sn, .];
for i = n− 1 downto 1 do

x = 0;
for j = 1 to n do

P?[si, sj] =
max(

∑j
k=1 P•[si, sk],

∑j
k=1 P?[si+1, sk])− x;

x = x+ P?[si, sj];
end

end

A fundamental issue related to a sub-stochastic matrix, P,
is the following one: which components of the vector given
below are finite? ∑

t≥0

(Pt)1n

where 1n is the unit vector (all entries are 1) of size n. This
question can be solved in the general case by the construction
of the strongly connected components of the underlying graph
related to P and then by local summations related to this
decomposition. In the particular case when the matrix is
monotone a quick criterion whether the set of infinite values
is empty has been established in [13].

Property 2: The following statements are equivalent:
• P? is strictly substochastic which is equivalent to the

convergence of the series
∑
t≥1(P

?)t,
• ∀i

∑
j≤iP

•[si, sj] < 1,

• ∀i
∑
j≤iP

+[si, sj] < 1 or
∑
j>iP

−[si, sj] > 0,
• Condition (Ih) of Algorithm 3 is never satisfied.
Here we refine this criterion for monotone matrices by

determining the subset of states with finite values by an
efficient algorithm that simply parses once every entry.

Algorithm 5: Determination of states that reach the
absorbing state with probability 1 in a monotone sub-
stochastic matrix
Input : P?, see Algorithm 4;
Output : set of states;
reach = true; iprec = 0;
for i = 1 to n do

if (reach) and (
∑i
j=1 P?[si, sj] == 1) then

reach = false; iprec = i;
else if (

∑i
j=1 P?[si, sj] == 1) or

(
∑i−1
j=1 P?[si, sj] > 0) then
iprec = i;

else reach = true;
end
return {iprec+ 1, . . . , n}

Property 3: Given an input sub-stochastic (n × n) matrix
P?, Algorithm 5 returns the set of states that reach with
probability 1 the additional absorbing state (indexed by n+1)

Proof. Assume that a state i fulfills
∑i
j=1 P?[si, sj] == 1,

then for all i′ ≤ i,
∑i
j=1 P?[s′i, sj] == 1 by monotonicity.

Consequently the subchain reduced to states 1 to i is a Markov
chain and there is a null probability to reach the absorbing
state. There are two cases: there is no such i . Then ∀i <
n

∑
j>iP[si, sj] > 0 and

∑
j≥1 P[sn, sj] < 1. This means

that in the graph deduced this chain, there is a path from any
state to the absorbing state. Thus with probability 1, each state
reaches the absorbing state.

Otherwise, let us call imax the greatest state that fulfills∑imax
j=1 P?[simax, sj] == 1. After iteration imax, reach

becomes false and iprec = imax. We distinguish two cases:
• reach is false at the end of the algorithm. So iprec = n

and ∀i > imax
∑i−1
j=1 P?[si, sj] > 0) . The inequality

means that in the graph there is an edge from i to a
smaller state. And by induction, there is a path to the set
{1, . . . , imax}. There is a non null probability to never
reach the absorbing state.

• reach becomes true at iteration jmin (and remains true
until the end of the algorithm). By the same reasoning,
the set of states {imax + 1, . . . , jmin − 1}, there is a
non null probability to never reach the absorbing state.
By monotonocity , ∀j′ ≥ jmin,

∑jmin−1
k=1 P[sj , sk] =

0. This means that the states {jmin, n} may be
considered in isolation. By definition of imax,∑imax
j=1 P?[simax, sj] == 1 is never satisfied. Thus with

probability 1, these states reach the absorbing state. �

Remarks
• Algorithm 3 can be also applied for the cases without

any absorbing state. In such a case out vector must be
taken as 0.

• Algorithms 3 and 4 are given separately for the sake of
the readability, however it is possible to build the greatest
lower bounding, monotone matrix by parsing once every
entry starting from the greatest row. Thus the worst-case
complexity for a n× n matrices is O(n2).

III. PCTL

A. PCTL for MCs

We give here the syntax of PCTL close to [15] but extended
by a duration operator (see [19]). Let α, β be integers, p ∈
[0, 1] be a probability, r ∈ R>0 be a positive real, a be an
atomic proposition, and / be a comparison operator ∈ {≤,≥}.
The syntax of PCTL is defined by:

φ ::= true | a | φ ∧ φ | ¬φ |
P/p(Xφ) | P/p(φ1 U [α,β]φ2) | D/r(φ)

The path formula Xφ asserts that the second state of
the path satisfies the state formula φ. The path formula
φ1 U [α,β]φ2 asserts that there exists an i ∈ [α, β] s.t. the
ith state satisfies the state formula φ2 while all preceeding
states satisfy φ1. P/p(ϕ) asserts that the probability measure
π of random paths satisfying the path formula ϕ fulfills π / p.
D/r(φ) asserts that the expected time ρ to reach a state
satisfying φ fulfills ρ / r. In the sequel we call it as the mean
reachability time operator.

Let us present the formal semantics of these formulas. We
denote s |= φ, the satisfaction of a state formula φ by s and
Sφ ≡ {s | s |= φ} is the subset of states that satisfy φ. A path
σ ≡ s0s1 . . . is an infinite sequence of states of the Markov
chain. We denote σ |= ϕ, the satisfaction of a path ϕ formula
by σ.

σ |= Xφ iff s1 |= φ
σ |= φ1U [α,β]φ2 iff ∃i α ≤ i ≤ β ∧ si |= φ2

∧∀j < i sj |= φ1

Let φ be a state formula and σ be a sequence then
FTime(σ, φ) ≡ min{i | si |= φ}. Observe that if φ is never
satisfied then FTime(σ, φ) =∞.

Let M be a Markov chain and ϕ be a path formula. Then
ProbM(s, ϕ) is the probability that a random path in M
starting from s satisfies ϕ. E denotes the expectation operator.
σM(s) is a random path in M starting from s (i.e. a random
variable).

s |= true for all s ∈ S
s |= a iff a ∈ L(s)
s |= ¬φ iff s 6|= φ
s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2

s |= P/p(Xφ) iff ProbM(s,Xφ) / p
s |= P/p(φ1 U [α,β]φ2) iff ProbM(s, φ1U [α,β]φ2) / p
s |= D/r(φ) iff E(FTime(σM(s), φ)) / r

B. PCTL for IMCs

As an IMC is a set of Markov chains, different semantics
are possible. In [23], the authors propose a “boolean” universal

semantics, i.e.:
M(P−,P+), s |= φ iff ∀M ∈M(P−,P+)M, s |= φ

Combining the universal satisfiability of φ and the one of ¬φ,
one obtains three cases:

1) ∀M ∈M(P−,P+), M, s |= φ
2) ∀M ∈M(P−,P+), M, s |= ¬φ
3) ∃M,M′ ∈M(P−,P+), M, s |= φ ∧M′, s |= ¬φ
However if we apply a semi-decision procedure for the

model checking, the number of cases increases. Elaborating
this idea, this leads to six semi decision cases described below.
In order to concisely represent them we denote the result of
checking φ on a state s, s.φ ∈ {∀+,∀−,∃+−,∃+,∃−, ?}.
• s.φ = ∀+ ensures that (s, φ) belongs to case 1.
• s.φ = ∀− ensures that (s, φ) belongs to case 2.
• s.φ = ∃+− ensures that (s, φ) belongs to case 3.
• s.φ = ∃+ ensures that (s, φ) belongs to cases 1 or 3.
• s.φ = ∃− ensures that (s, φ) belongs to cases 2 or 3.
• s.φ =? all cases are possible.

The three first answers fully characterize the situation while
the next two ones partially characterize it and the last one
provides no conclusion.

IV. MODEL CHECKING PCTL

Given an interval valued DTMCM and a PCTL formula φ,
the verification algorithm proceeds by a bottom-up evaluation
of sub-formulae of φ in the syntactic tree of the formula
φ. From leaves to the root, each state is labelled with an
assignement of a value to the sub-formula. Hence, every step
of the algorithm evaluates a formula viewing the operands of
the most external operator as values assigned by the previous
evaluations. Let in the sequel, ψ,ψ1, ψ2 denote an already
evaluated state formula. This leads us to study each operator. In
the sequel, the assignment of the state by label ∃+− is implicit
and corresponds to cases where the state is successively
labelled with both ∃+ and ∃−.

φ = ¬ψ The algorithm labels a state s with s.φ = ∀+ (resp.
s.φ = ∀−, s.φ = ∃+−, s.φ = ∃+, s.φ = ∃−, s.φ =?) if it is
labelled with s.ψ = ∀− (resp. s.ψ = ∀+, s.ψ = ∃+−,s.ψ =
∃−, s.ψ = ∃+, s.ψ =?).

φ = ψ1 ∧ ψ2 The algorithm labels a state s depending on
values s.ψ1, s.ψ2 as presented in the table below. For instance,
when s.ψ1 = ∃+ and s.ψ2 = ∃−, we know that there is a
model such that s does not fulfill ψ2. So this model does not
fulfill φ and this is the only information that can be deduced
thus leading to s.φ = ∃−.

s.ψ1 \ s.ψ2 ∀+ ∀− ∃+− ∃+ ∃− ?
∀+ ∀+ ∀− ∃+− ∃+ ∃− ?
∀− ∀− ∀− ∀− ∀− ∀− ∀−
∃+− ∃+− ∀− ∃− ∃− ∃− ∃−
∃+ ∃+ ∀− ∃− ? ∃− ?
∃− ∃− ∀− ∃− ∃− ∃− ∃−
? ? ∀− ∃− ? ∃− ?

φ = P/p(Xψ) We handle the case / =≤. The other case is
omitted as it is similar.

We can label s.φ = ∀+, by considering the upper bound-
ing case: if the one-step transition probability from state s
remains less than p with maximal transition probabilities to
states where φ is possibly satisfied, then condition 1 of the
satisfability is ensured. We label a state s with s.φ = ∀+ if

min(
∑

s′.φ6=∀−
P+[s, s′], 1−

∑
s′.φ=∀−

P−[s, s′]) ≤ p

We can label s.φ = ∀−, by considering the lower bounding
case: if the one-step transition probability from state s exceeds
p with minimal transition probabilities to states where φ is
surely satisfied, then condition 2 of the satisfability is ensured.
We label a state s with s.φ = ∀− if

max(
∑

s′.φ=∀+
P−[s, s′], 1−

∑
s′.φ 6=∀+

P+[s, s′]) > p

For all states not yet labelled, we compute two reals ms

and Ms by means of the filling algorithms given in the
previous section. To compute ms, we first apply Algorithm
1 with input parameter S ′ = {s′ | s′.φ 6= ∀−}, to determine
the output parameter P[s, ∗] with s ∈ S and then compute
ms =

∑
s′∈S′ P[s, s′]. Similarly, Ms is computed from

Algorithm 2 with input parameter S ′ = {s′ | s′.φ = ∀+}
and Ms is computed from the obtained vector for the set
S ′ = {s′ | s′.φ = ∀+}: Ms =

∑
s′∈S′ P[s, s′]). Then the not

yet labelled states are labelled as follows: If ms ≤ p∧Ms > p
then s.φ = ∃+− else if ms ≤ p then s.φ = ∃+ else if Ms > p
then s.φ = ∃− else s.φ =?.

φ = P/p(ψ1 U [α,β]ψ2)

Principle. Once ψ1 and ψ2 have been evaluated, the standard
method consists to eliminate states fulfilling ¬(ψ1 ∨ ψ2) to
merge states fulfilling ψ2 in an absorbing state and to study the
behaviour of the transformed substochastic chain without the
absorbing state during the interval [0, α−1] and the behaviour
of the transformed substochastic chain with the absorbing
state during the interval [α, β]. In the framework of IMC,
the probability to stay in a subset of states and then reach
some absorbing state can be lower bounded using P− (see
below case 4). However using P+ for the upper bound does
not provide accurate results (since for instance the pointwise
upper bounding often transforms a substochastic matrix in a
superstochastic one!) and this is where stochastic comparison
takes place (see case 3). Other cases are simpler.

As in the case of the former operator, we consider here the
case / =≤ and there are 6 possible answers that we can assign
to a state.

1. In the case α = 0, some immediate conclusions are
possible from the label of s.

– if s.ψ2 = ∀+, formula φ is satisfied with probability
1, thus these states are labelled with s.φ = ∀−.

– if s.ψ1 = ∀−, somme immediate conclusions de-
pending on the label for s.ψ2 are possible:

∗ s.ψ2 = ∀− =⇒ s.φ = ∀+. Formula φ is not
satisfied with probability 1, thus these states are
labelled with s.φ = ∀+.

∗ s.ψ2 = ∃− =⇒ s.φ = ∃+. Formula φ is not
satisfied with probability 1 for some chains of the
interval, thus these states are labelled with s.φ =
∃+.

∗ s.ψ2 = ∃+ =⇒ s.φ = ∃−. Formula φ is satisfied
for some chains of the interval with probability 1
thus these states are labelled with s.φ = ∃−.

* s.ψ2 = ∃+− =⇒ s.φ = ∃+−. Formula φ is
satisfied for some chains and it is not satisfied
for other chains of the interval.

2. In the case s.ψ1 = ∀−, and α > 0, formula φ is satisfied
with probability 0. Thus these states are labelled with
s.φ = ∀+.

3. We now see if we can label with ∀+. We define two sets:
S1 = {s | s.ψ2 = ∀− ∧ s.ψ1 6= ∀−}, S2 = {s | s.ψ2 6=
∀−}. The states S−S1 are made absorbing. We consider
the upper bounding case to reach absorbing states S2 from
S1 states. First we reorder states of S1with respect to the
maximal transition probabilities to S2 states (the matrices
are reordered by row and column permutations). Then
we build lower bounding matrix restricted to states S1,
and make it monotone by means of algorithms given in
section II-C.

3.1. Construct a column vector, r+ of size n for maximal
transition probabilities to the absorbing S2 states
from S1 states. The maximal transition probability
from a state si ∈ S1 to S2 for all possible Markov
chains in the interval ∈ M(P−,P+) is defined by
r+[si] :

r+[si] = min(
∑
sk∈S2

P+[si, sk], 1−
∑
sk 6∈S2

P−[si, sk])

(9)
We reorder this vector in the decreasing order
(r+[s1] ≥ r+[s2] · · · ≥ r+[sn]).

3.2. Construct P• through Algorithm 3 by consider-
ing the set of states S1. In the sequel, we de-
note this set by {s1, s2, · · · sn} The input pa-
rameters of Algorithm 3 are P− and P+ ma-
trices of size n; vector out is defined by sum-
ming the probabilities over S − S1 states: ∀si ∈
S1, out[si] = max(

∑
sk 6∈S1 P−[si, sk], 1 −∑

sk∈S1 P+[si, sk]). The output matrix P• is the
lower bounding matrix for all Markov chains in
the interval M(P−,P+) with probability transition
matrix P. Thus from Eq. 7, ∀si ∈ S1 :

1 ≤ j ≤ n,
j∑

k=1

P•[si, sk] ≥
j∑

k=1

P[si, sk]

3.3. The monotone lower bounding matrix for all the
Markov chains in the interval M(P−,P+) is com-
puted through Algorithm 4 and denoted by P?.

The input parameter of the algorithm is matrix P•

obtained in the previous step.
We have the following inequalities for each state si ∈
S1, for all power matrices (t ≥ 1) of any Markov
chain in the interval M(P−,P+) with probability
transition matrix P:

1 ≤ j ≤ n,
j∑

k=1

(P?)t[si, sk] ≥
j∑

k=1

(P)t[si, sk]

(10)
These inequalities still hold, if we multiply both part
of the inequality for a state sj by (r+[sj]−r+[sj+1])
(the n+ 1th entry for vectors r and r+ is assumed
to be 0). Then by summing all inequalities over j =
{1, · · ·n}, we can deduce that

n∑
k=1

(P?)t[si, sk]r+[sk] ≥
n∑
k=1

(P)t[si, sk]r+[sk]

(11)
This inequality can be rewritten as

(P?)t · r+ ≥el (P)t · r+

where ≤el denotes the component (element)-wise
ordering.
Let r be the column vector computed for a given
P ∈M(P−,P+) in the interval. ∀si ∈ S1 :

r[si] =
∑
sk∈S2

P[si, sk] = P[si,S2]

Obviously, r+ provides the maximal vector for all
vectors r computed from any matrix P in the interval
M(P−,P+):

r+ ≥el r

Combining this inequality with 11, we have

(P?)t · r+ ≥el (P)t · r+ ≥el (P)t · r (12)

where power 0 for a matrix is the identity matrix.
Let us remark that (P)tr represents the probabilities
to reach S2 states within t+ 1 steps.

3.4. We check if the upper bound to reach S2 states in
time interval [α, β] remains less or equal to p. Thus
we consider maximal probabilities to reach S2 states
at time t (see Eq. 12), that means to reach a state
within t−1 steps by the power t−1 of matrix P? and
then within 1 step from this state to a state S2 by r.
Therefore we sum over in time interval t = (α−1)+

to β−1 1 where (α−1)+ = max(0, α−1). For each
state s ∈ S1, if the following inequality is satisfied
2 then s.φ = ∀+

1The case where both α = β = 0 will not be considered, since
ψ1 U [0,0]ψ2 ≡ ψ2.

2When β =∞, the sum is infinite. We discuss this case at the end of the
section.

(
β−1∑

t=(α−1)+

(P?)t) · r+

 [s] ≤ p (13)

4. We now see if we can label with ∀−. We define two sets:
S ′2 = {s | s.ψ2 = ∀+}. S ′1 = {s | s.ψ2 6= ∀+ ∧ s.ψ1 =
∀+}. Let S ′1 = {s1,2 , · · · , s′n}. States out of S

′

1 will be
absorbing. First we construct a column vector r− of size
n′ to compute minimal transition probabilities from states
S ′1 to the set of absorbing S ′2 states. ∀si ∈ S

′

1 :

r−[si] = max(
∑
sk∈S

′
2

P−[si, sk], 1−
∑
sk 6∈S

′
2

P+[si, sk])

(14)
We consider the lower bounding case, thus we consider
P− instead of P? of the former case. Obviously we have
the following inequalities for all power matrices (t ≥ 1)
of any chain restricted to S ′1 in the interval M(P−,P+)
with probability transition matrix P:

(P−)t · r− ≤el (P)t · r− ≤el (P)t · r

We check if the upper bound to reach S ′2 states in time
interval [α, β] exceeds p. Thus for each state s ∈ S ′1, if
the following inequality is satisfied, then s.φ = ∀−(

β−1∑
t=(α−1)+

(P−)t) · r−
 [s] > p (15)

5. We now see if we can label ∃+. The sets S1 and S2 are
defined as in case 3.

5.1. Define a column matrix rm of size n for the lower
bounding reaching probability to S2 states from S1

states :

rm[s] = max(
∑
sk∈S2

P−[s, sk], (1−
∑
sk 6∈S2

P+[s, sk]))

5.2. Reorder this vector in the decreasing order. State
space S1 will be also ordered in this order. Let
us remark here that this reordering is not required
contrary to the previous case but it is heuristic.

5.3. We guess a matrix Pm restricted to the set S1 =
{s1, · · · , sn} belonging toM(P−,P+) by applying
Algorithm 1 to construct each row.

5.4. We check if formula φ is checked by considering
matrix Pm and the vector rm. For each state s ∈ S,
If the following inequality is satisfied then s.φ = ∃+

(
β−1∑

t=(α−1)+

(Pm)t) · rm[s] ≤ p

6. We now see if we can label ∃−. The sets S ′1 and S ′2 are
defined as in case 4.

6.1. Define a column matrix rM of size n′ for the upper
bounding reaching probability to S ′2 states from S ′1

states :

rM [s] = min(
∑
sk∈S

′
2

P+[s, sk], 1−
∑
sk 6∈S

′
2

P−[s, sk])

6.2. Reorder this vector in the increasing order. The set
S ′1 will be also ordered with respect to this order.

6.3. Similiar to the former case, we construct a matrix
PM restricted to the set of states S ′1 = {s1, · · · , sn′}
by applying Algorithm 2 to construct each row.

6.4. We now check if formula φ is checked by consid-
ering matrix PM and the vector rM . For each state
s ∈ S ′ , if the following inequality is satisfied then
if s.φ = ∃+ then s.φ = ∃+− else s.φ = ∃−

(
β−1∑

t=(α−1)+

(PM)t) · rM [s] > p

7. In the case α = 0, for all states yet already labelled
– s.ψ2 = ∃+− =⇒ s.φ = ∃−
– s.ψ2 = ∃+ =⇒ s.φ = ∃−

8. We assign s.φ =? to all the states which have not already
labelled.

φ = D/r(ψ)
Principle. Once ψ has been evaluated, the standard method
consists to merge states fulfilling ψ in an absorbing state and
to study the behaviour of the transformed chain during the
interval [0,∞[. More precisely, let us recall that given a subset
of states S ′ , the vector indexed by S − S ′ corresponding to
the mean time to reach S ′ is given by the formula:

(
∑
t≥0

(P)t)1m (16)

where P is the transition probability matrix restricted to S−S ′

states of cardinality m and 1m is a column vector of size m
with all entries equal to 1. This is the starting point of our
method which substitutes in the equation (16) a matrix for P.
As for the case of “until” operator the choice of the matrix
depends on the information one looks for: case 1 involves the
stochastic comparison, case 2 uses P− for a pointwise lower
bounding and cases 3 and 4 construct an ad hoc matrix.

As in the former cases, we consider here the case / =≤.
1. We first see if we can label s.φ = ∀+. We define
S1 = {s | s.ψ 6= ∀+}. Our goal is to provide an upper
bound on the mean reaching time to states for which ψ is
surely satisfied (S−S1). Thus the states out of S1 is made
absorbing. We construct first the lower bounding matrix
P• restricted to S1 = {s1, · · · , sn} states from Algorithm
3. The input parameter out (the minimal transition prob-
abilities to the absorbing state) is computed as follows:
∀si ∈ S1, out[si] = max(

∑
sk 6∈S1 P−[si, sk], 1 −∑

sk∈S1 P+[si, sk]). The monotone version is built by
Algorithm 4. Thus for any chainM∈M(P−,P+) with
probability transition matrix P:

(
∑
t≥0

(P?)t)1n ≥el (
∑
t≥0

(P)t)1n

For each state in S1, if the following inequality is satisfied
then s.φ = ∀+ (

∑
t≥0

(P?)t)1n

 [s] ≤ r

Observe that some components of this computed vector
could be infinite. However we apply beforehand algo-
rithm 5 that determines the subset of S1 that corresponds
to states with finite value. Then we only compute the
above infinite sum for this subset of states.

2. We now see if we can label s.φ = ∀−. We consider lower
bounding case to reach states satisfying ψ. Thus we define
S ′1 = {s | s.ψ = ∀−}, which is the set of states for which
ψ is surely not satisfied. If the infinite sum (see Eq. 16)
is greater than r for the lower bounding case, one can
conclude that the mean reaching time is always greater
than r. Hence for each state s ∈ S ′1, if the following
inequality is satisfied then s.φ = ∀−∑

t≥0

(P−)t)1n′

 [s] > r

3. We now see the case for label s.φ = ∃+. We con-
sider the set of states S1 as in case 1 and guess a
matrix Pm ∈ M(P−,P+) restricted to S1. Each row
is constructed by Algorithm 1 in order to minimize the
transition probabilities. Thus for each state in S1, if the
following inequality is satisfied then s.φ = ∃+∑

t≥0

(Pm)t)1n

 [s] ≤ r

4. Similar to the previous case, we guess a matrix PM ∈
M(P−,P+) restricted to the set of states S ′1 (defined
in case 2.) The rows are constructed by Algorithm 2 in
order to maximize the transition probabilities. For each
state s ∈ S ′1, if the following inequality is satisfied then
if s.φ = ∃+ then s.φ = ∃+− else s.φ = ∃−(

∑
t≥0

(PM)t)1n′

 [s] > r

5. For all states which are not already labelled we assign ?.
Remark. Observe that the convergence of infinite sums in-
volved in the algorithms related to the D and the U oper-
ators can be checked before starting the computation. This
is performed either by standard graph analysis when the
substochastic matrix is arbitrary (based on the decomposition
in strongly connected components) or by algorithm 5 when the
matrix is monotone. In both cases, the algorithms determine
the subset of initial states for which the computation is nec-
essary and transform the matrix (depending on the considered
operator) in such a way that the convergence is ensured. As
usual, the convergence is exponentially quick (since the sum

is geometric). Therefore for a reasonable precision, a finite
approximating sum is efficiently computed.

V. RELATED WORK

A. Interval-valued Markov chains

In [16] IMCs are introduced to specify the expected behav-
ior of a model under uncertainties. The obtention of parameters
of an IMC is considered in [18]. Following another approach,
in [25], algorithms are proposed to build extremal monotone
chains for an IMC. These results have been applied in the
framework of the bounding aggregation for Near Complete
Decomposable Markov chains [25], [22]. In [13], IMC sub-
chains are considered and polynomial time algorithms are
designed to compute the maximal monotone lower bound both
in continuous and discrete time settings. These results have
been applied to study different reliability and performance
problems [14].

While the bounds developed in [25], [13] can be applied to
analyze the transient and the steady-state behaviour, in [6],
P. Buchholz only focused on the steady-state analysis and
built optimal bounds for steady-state distributions based on
the polyhedra theory initially proposed by [9].

The model checking of interval valued Markov chains has
been investigated in [23]. The authors showed that the proba-
bility to satisfy a PCTL formula are specified by polynomial
inequalities (rather than linear ones in the case of DTMC)
which leads to a PSPACE algorithm. They also established
that PCTL model checking is NP-hard and co-NP-hard. In
[7], these results have been generalized to ω-PCTL logic.

B. Semi-Decision procedures for Model Checking

Abstraction is an useful technique in order to analyze
systems with huge state spaces. It consists in grouping states
and producing an abstract system which can be an ”under” or
”over” approximation of the original system. It has been first
applied in the framework in the discrete event systems and
has been recently generalized for probabilistic systems. In [11]
the abstraction of a DTMC naturally yields a continuous time
interval valued Markov chain. Then using three-valued seman-
tic (YES, NO, DON’T KNOW) the authors apply a method
based on resolution of an associated Markov Decision Process
(MDP). [17] handles the case of CTMCs by uniformising the
CTMC then applying the abstraction procedure as in [11]. A
different view of abstraction is proposed in [8] whose goal
is to obtain a ”purely” stochastic system excluding the non
determinism induced by the intervals.

All previous approaches are based on the bounds for state
probabilities. In this context it must be observed a general the-
ory exists: stochastic comparison [20]. Bounding methods are
suitable to apply in model checking, since we need to check
if some constraints are satisfied or not without considering
exact values. The stochastic comparison approach provides an
interesting alternative for model checking since this approach
lets us to provide the bounds on transient distributions as
well as the stationary distribution of the underlying Markovian
model. Indeed, the stochastic comparison of distributions

provides the inequalities on the partial sum of probabilities. In
model checking, given a formula F , the verification is resumed
to compute the sum of probabilities of states satisfying F in a
transient or the stationary distribution. We call this set of states
Ssuccess. Thus we must first reorder the state space in order to
put Ssuccess states at the end or in the beginning of the state
space. This is necessary in order to extract the inequalities on
the sum of the probabilities of these states from the bounding
distributions.

The second step is the verification step. Let Binf and Bsup
be the bounds on the probabilities for Ssuccess states. The
verification depends on the comparison operator, in the case
/ is ≤:
• if Bsup ≤ p then we can decide that formula F is checked

(YES).
• if Binf > p then we can decide that formula F is not

checked (NO).
• otherwise it is not possible to decide with these bounding

values (DON’T KNOW).
This approach has been applied in order to reduce the

complexity of the underlying Markov chains. In [21], the state
space is reduced by applying bounded aggregations to study
PCTL state formulas. In [4], bounding models which have
closed-form solutions to compute transient and the steady-state
distributions to check CSL formulas have been considered.
Since the underlying formulas are checked by means of closed-
form solutions for underlying distributions, the complexity is
largely reduced.

VI. CONCLUSION

Stochastic comparison has demonstrated its usefulness to
overcome the complexity of state based performance evalua-
tion methods. Here we have proposed to apply it for model
checking PCTL formulas over IMCs. To this aim, we have
designed a semi-decision procedure. This procedure has three
advantages: its efficiency (the complexity of known exact
algorithms is in PSPACE), its scope (previous algorithms do
not deal with the mean reachability time operator) and the
kinds of answers (it includes the partial answers ∃+,∃−).

The main practical problem for methods based on stochastic
comparison is the appropriate choice of the order over states.
In our case the order may be different during every operator
evaluation step and thus is the critical factor for accuracy
of the bounds. So we plane to develop a prototype for high
level models of IMCs (SANs, Stochastic Petri nets, etc.) and
experiment heuristics that rely on the structure of this model.
The specification of intervals associated with an IMC are
usually derived from the uncertainty about transitions of the
high level model. So the number of different intervals in the
IMC is very small w.r.t. the size of the chain. We want to take
into account this feature in order to improve the efficiency
and/or the accuracy of our method.

ACKNOWLEDGEMENT

This work is partially supported by French ANR project
ANR06-SETIN-002, CheckBound.

REFERENCES

[1] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model Checking
Continuous Time Markov Chains. ACM Trans. on Comp. Logic, 1(1),
pages 162-170, 2000.

[2] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, M. Siegle. Model Checking
Action- and State-Labelled Markov Chains. In DSN 2004:, pages 701-710,
2004.

[3] C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-Checking
Algorithms for Continuous-Time Markov Chains. In IEEE Trans. Soft-
ware Eng. 29(6), pages 524-541, 2003.

[4] M. Ben Mamoun, N. Pekergin and S. Younès. Model checking of
continous-time markov chains by closed-form bounding distributions. In
QEST2006, pages 199-211, 2006.

[5] A. Bianco, L. de Alfaro. Model Checking of Probabilistic and Nondeter-
ministic Systems. In FST TSC95, LNCS 1026, pages 499-513, Springer
1995.

[6] P. Buchholz. An improved method for bounding stationary measures of
finite Markov Processes. Performance Evaluation, 62(1-4) pages 349-365,
2005

[7] K. Chatterjee, K. Sen and T. A. Henzinger. Model-Checking omega-
Regular Properties of Interval Markov Chains. In Proc. FoSSaCS08, LNCS
4962, pages 302-317, Springer 2008.

[8] R. Chadha, M. Viswanthan and R. Viswanthan. Least upper bounds for
probability measures and their applications to abstractions. In CONCUR
2008 - 19th International Conference on Concurrency Theory, LNCS5201,
pages 264-278. Springer, 2008.

[9] P.J. Courtois and P. Semal. Computable bounds on conditional steady-
state probabilities in large Markov chains and queueing models. IEEE
Journal on Selected Areas in Communications, 4(6), pages 926-937, 1986.

[10] S. Donatelli, S. Haddad, J. Sproston. CSLTA: an Expressive Logic for
Continuous-Time Markov Chains. In QEST 2007, pages 31-40, 2007.

[11] H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic
systems. In Proceedings of 13th International SPIN Workshop on Model
Checking of Software (SPIN’06) LNCS 3925, pages 71 - 88, Springer
2006.

[12] J.M. Fourneau and N. Pekergin. An algorithmic approach to stochastic
bounds. In LNCS 2459, Performance evaluation of complex systems:
Techniques and Tools, pages 64-88, 2002.

[13] S. Haddad and P. Moreaux. Sub-stochastic matrix analysis for bounds
computationTheoretical results. European Journal of Operational Re-
search, 176(0), pages 999-1015, 2007.

[14] S. Haddad and P. Moreaux. Sub-stochastic matrix analysis and perfor-
mance bounds. Research Reprt RAP-CReSTIC-1, CReSTIC, Universit de
Reims Champagne-Ardenne, France, 2004.

[15] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing 6, pages 512-535, 1994.

[16] B. Jonnson and K.G. Larsen. Specification and refinement of probabilis-
tic processes. In Proceedings of the IEEE Symp. on Logic in Computer
Science, pages 266-277, 1991.

[17] J. P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstrac-
tion for continuous-time Markov chains. In Proc. CAV07, LNCS 4590).
pages 311-324, Springer 2007.

[18] I.O. Kozine and L.V. Utkin. Interval-valued finite Markov chains.
Reliable Computing, 8(2) pages 97-113, 2002.

[19] F. Laroussinie, J. Sproston. Model Checking Durational Probabilistic
Systems. In FOSSACS’05, LNCS 3441, pages 140-154, Springer 2005.

[20] A. Muller and D. Stoyan, Comparison Methods for Stochastic Models
and Risks, Wiley, New York, 2002.

[21] N. Pekergin, S. Younès. Stochastic Model Checking with Stochastic
Comparison. In Proc. EPEW 2005, LNCS 3670, pages 109-123, Springer
2005.

[22] N. Pekergin, T. Dayar and D. Alparslan. Componentwise bounds for
nearly completely decomposable Markov chains using stochastic com-
parison and reordering. European Journal of Operational Research, 165,
pages 810-825, 2005.

[23] K. Sen, M. Viswanathan, G. Agha. Model-Checking Markov chains in
the presence of uncertainties. In Proc. Tacas06, LNCS 3920, pages 394-
410, Springer 2006.

[24] K. Trivedi. Probability and Statistics with Reliability, Queuing and
Computer Science Applications Wiley, New York 2002.

[25] L. Truffet. Near Complete Decomposability: Bounding the error by
Stochastic Comparison Method. Advances in Applied Probability, pages
830-855, 1997.

