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Abstract. Modal transition system specifications has been first intro-
duced in [6] as transition systems with modalities may and must that
explicitly distinguish between allowed transitions and required ones. Use
of modalities is a way to loose specifications definitions as a set of allowed
transitions is specified and the decision is delayed to an advance step.
Thus this model can be commonly used for both specifications and im-
plementations: a possible implementation is a specification in which all
decisions has been taken i.e all transitions are required. Thus a possible
implementation is considered as a simulation of the original specification.
Modal specifications can be combined together to model complex systems
due to composition process. Existing works are limited to synchronous
composition as they deal with only finite systems. Actually, asynchronous
composition introduces a delay between the actions of sending and re-
ceiving a message between the communication partners which involves
infinite systems. We propose in this paper a Petri net based approach
to deal with asynchronous communication. We first syntactically define
modal Petri nets to model infinite systems and introduce modal Petri
net asynchronous composition. Then we propose a procedure to decide
whether, in one hand, an implementation simulates a specification and
on an another hand whether a composition specification simulates a third
one.

Key words: Modal specification, implementation, simulation, Petri nets,
infinite systems, asynchronous composition

1 Introduction

Specification in component-based software products. In component based
software, specification is a mandatory phase of components’ life cycle. It aims to
produce a formal description, a specification, of the component’s desired proper-
ties and behavior. A specification can be presented either in terms of transition
systems or in terms of logic, which cannot be processed by a machine. Thus an
implementation phase is required to produce concrete executable programs.
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Modal specifications. Modal specification have been introduced in [6] as a
common formal model for specifications and implementations. A modal spec-
ification explicitly distinguish between required actions and allowed ones. Re-
quired actions, denoted with the modality must, are compulsory in all possible
implementations while allowed actions, denoted with the modality may, are not
necessary. An implementation is seen as a specific specification in which all ac-
tions are required. Modal specification is adequate for loose specification as de-
cisions could be delayed to a later step of the component lifecycle. Two different
modal formalisms have been adopted in the literature, the first is a system-based
model introduced in [3] and defines modal transition system while the second is
a language-based model introduced in [10] and defines modal language specifica-
tion. For consistency reason, both formalisms assume that every required action
is also an allowed one. In order to be able to express conflicting behaviors of
a single specification the authors consider specifications that relax the consis-
tency condition by defining mized specification (or pseudo-modal specification)
for which the existence of an implementation is not guaranteed and if it does
not exist, the model is said to be inconsistent.

Modal specification refinement and composition. A consistent modal
specification admits an implementation that could be obtained by transform-
ing some allowed actions into required ones or omitting other allowed actions. A
transformation step is called a refinement and produces a specification that is
more precise i.e. with less possible implementations. It follows that the set of im-
plementations of a refinement is included in the set of possible implementations of
the original specification. Usually specifications are not exploited separately but
are combined in order to describe complex systems. Thus composition operators
have been proposed to combine abstract system definitions and reflect composi-
tion of independently developed implementations. Raclet et al. have proposed a
synchronous product for pseudo-modal language specification composition in [10]
and Larsen et al. have proposed a composition operator for modal transition sys-
tems in [5]. The operator proposed by Larsen et al. was supposed to garantee the
property of independent implementability of the composed systems but Raclet
et al. have found a counterexample and proposed a correction in [11]. Along with
the composition, Raclet et al. proposed a quotient operator which is the dual
of the composition operator. Given a global specification of a two-components
system, the aim of quotienting operation is to construct the specification of one
of the component assuming that the other specification is realized by a given
component.

Computational issues. While dealing with modal specifications, three main
decision problems have been raised:

— (C) Consistency problem: deciding whether a specification is consistent i.e
deciding whether it admits an implementation. Consistency is guaranteed for
modal transition systems by definition [6] as every required transition is also
an allowed one. Whereas in case of mixed transition systems, consistency
decision problem is EXPTIME-complete in the size of the specification [2].
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A better result is obtained with modal languages since a polynomial time
algorithm has been proposed in [10].

— (CI) Common implementation: deciding whether & > 1 modal specifica-
tions have a common implementation. Deciding common implementation of
k modal transition systems is PSPACE-hard in the sum of the sizes of the
k specifications [1] while it is EXPTIME-complete when dealing with mixed
modal transition systems|2].

— (TR) Thorough refinement: deciding whether one modal specification S thor-
oughly refines another modal specification S’ i.e deciding whether the set of
possible implementations of S is included in the set of possible implemen-
tations of S’. The problem is also PSPACE-hard if S and S’ are modeled
with modal transition systems and is EXPTIME-complete when they are
modeled with mixed modal transition systems.

Limits of the existing formalisms. Both formalisms consider finite-state
systems. This restriction limits the existing approaches to synchronous compo-
sition. In fact asynchronous composition introduces a delay between the actions
of sending and receiving a message between the communication partners. There-
fore, assuming for instance that the sender is always active while the receiver is
always blocked, naturally leads to infinite state systems.

Our contribution. We aim in this paper to deal with asynchronous composi-
tion of modal specifications while keeping most of the problems decidable. Petri
nets seem to be an appropriate formalism to our needs. Automata with queues
might also be an alternative for modeling infinite state systems but all signifi-
cant problems (e.g. the reachability problem) are known to be undecidable. We
also followed a language approach for the advantages mentioned above and use
deterministic Petri nets as a device to generate deterministic languages in the
same way as Raclet et al used deterministic finite transition systems as a device
to generate regular languages. We are mainly interested in the following issues:

1. decide whether a given implementation is a refinement of a given specification
i.e decide whether the implementation simulates the specification,

2. decide whether the composition of two specifications is consistent, i.e. can
be turned in a modal specification.

In order to do this, we introduce modal Petri nets by adding modalities to Petri
net transitions and extend the modal language refinement to languages generated
by Petri nets. We then define an asynchronous composition operator.

Outline of the paper. We proceed by reviewing in section 2 modal language
specification formalism and its associated notions of refinement and composi-
tion. In section 3 we first review basic definitions related to Petri net theory and
then introduce our formalism of modal Petri net, refinement relation and asyn-
chronous composition operator. Finally in section 4, we describe our decision
algorithms for closure under composition and refinement relation.
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2 Modal Language Specifications

Modal specification was first introduced by Larsen and Thomsen in [6] with
finite state modal transition systems by defining restrictions on specifications
transitions by the mean of may (allowed) and must (required) modalities. This
notion has then been adapted by Raclet in his PhD thesis who applied it to reg-
ular languages. Finite transition systems are low level models based on states,
which limits the level of abstraction of the specification. They also lead to state
number explosion while composing systems with an important number of states.
Moreover, the complexity of the decision problems discussed above are better
with modal languages than with modal transition systems. Besides, modal re-
finement is sound and complete with the language-based formalism while it is
non-complete with transition system based formalism [4]. So a language approach
is more convenient to deal with modal specification issues. Next we review the
definition of modal language specification and its related notions of refinement
and synchronous composition as introduced in [10].

Definition 1 (Modal language specification). A modal language specifi-
cation S over an alphabet X is a triple (L,may, must) where L C X* is a
prefiz-closed language over X and may, must : L — P(X) are partial functions.
For every trace u € L,

— a € may(u) means that the action a is allowed after u,
— a € must(u) means that the action a is required after u,
— a ¢ may(u) means that a is forbidden after u.

1

The modal language specification S is consistent if the following two conditions
hold:

(C1)V u € L must(u) C may(u)

(C2)V ue L may(u)={a€ X |uaecL}

Ezxample 1. Let us consider the example of a message producer and a message
consumer represented in figure 2.

In the producer system, transition s — s; is allowed but not required
(dashed line) while transition s; ~ s is required (continuous line). In consumer
model, all transitions are required. The languages associated with the the pro-
ducer is L = (in.m)* 4+ in.(m.in)*. The associated modal language specification
is then (L, may, must) with:

—Vu € (in.m)* must(u) =0 Amay(u) = {in}
— YV u €in.(m.in)* must(u) = {m} Amay(u) = {m}

Similarly, the modal language specification associated with the consumer is
((m.out)* + m.(out.m)*, may, must) with:

! If must(u) contains more than one element, this means that any correct imple-
mentation must have after the trace u (at least) the choice between all actions in
must(u).
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Fig. 1. Modal transition systems for a producer (a) and a consumer (b)

- VYu € (m.out)* must(u) = {m} Amay(u) =m
— YV u € m.(out.m)* must(u) = out A may(u) = out

A particular class of modal language specifications can be represented by
modal finite state transition systems. These languages are called regular modal
specification.

Definition 2 (Regular modal specification). 4 modal language specification
S = (L, must, may) over an alphabet X is regular if its language L is regular
and for all event a € X, the language

Lo ={u€L|acmust(u)} is regular

Modal language specifications are related by a refinement relation that trans-
lates the degree of specialization. One can obtain a possible refinement by either
removing some allowed events or changing them to required events. So we review
the formal definition of modal language specification refinement.

Definition 3 (Modal language specification refinement).

Let § = (L,may,must) and S’ = (L', may’, must’) be two consistent modal
language specifications. S is a modal language specification refinement of S’,
denoted by S Crs S, if:

—Lcr,
— for every u € L, must'(u) C must(u), i.e every required action after the
trace uw in L' is a required action after u in L.

The synchronous composition (synchronous product) of modal language spec-
ifications is a generalization of the synchronous product of languages over the
same alphabet.

Definition 4 (Synchronous composition of modal language specifica-
tions). The composition of two modal language specifications S1 and Sy is
the modal language specification S = S1 ® Sy whose associated language L =
L(Sl) n L(Sg) and:

musts,gs,(u) = mustg, (u) N mustg,(u)

Yu € L(Sl) ﬂL(SQ), {may51®5‘2(u) _ maysl(u) N may52(u)
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3 Modal Petri Nets and their Generated Language
Specifications

The previous approach deals with finite state systems and finite modal transition
systems have been used as a device to generate modal languages. In the same
perspective we introduce modal Petri nets to model infinite state systems and use
it as a device to generate languages which are our basic tool for the refinement
and composition issues. Before introducing modal Petri nets and their generated
languages we review basic definition of Petri net theory.

3.1 Basics of Petri Net Theory

Definition 5 (Marked labeled Petri net). A marked labeled Petri net over
an alphabet X is a tuple N = (P, T, W~ ,WT, X\ mg) where:

— P is a finite set of places,

— T is a finite set of transitions with PNT = (),

— W~ (W™ resp.) is a matriz indexed by P x T with values in N;
W= (W resp.) is called the backward (forward) incidence matrix,

— A : T — X is a transition labeling function, and

— mg : P — N is an initial marking.

A marking is a mapping m : P — N. The labeling function is exrtended to
sequences of transitions o = tite...t,, € T* where Mo) = A(t1)A(t2)...A\(ty).
For each t € T, *t (t* resp.) denotes the set of input (output) places of t. i.e.
‘t={peP|W(pt) >0} t*={pe P | Wt(pt) > 0} resp.). Likewise
for each p € P, *p (p®) denotes the set of input (output) transitions of p i.e.
p={teT |WT(p,t)>0} p*={teT|W (pt) >0} resp.).

In the sequel marked labeled Petri nets are simply called Petri nets.

The previous definition is limited to the system structure, but transitions are
active elements of a Petri net: they consume tokens from theirs input places and
produce others in output places. This dynamicity is captured by specifying a
marking that characterizes the system state by describing the token distribution
over the net places and the action of firing a transition that moves the system
from state to another.

Definition 6 (Firing rule). Let N be a Petri net. A transition t € T is firable
in a marking m, denoted by m[t), iff Vp € *t, m(p) > W~ (p,t). The set of
firable transitions in a marking m is defined by firable(m) = {t € T | Vp €
*t. m(p) > 0}. For a marking m and t € firable(m), the firing of t from m
leads to the marking m’, denoted by m[t) m’ and defined by Vp € P,m/(p) =
m(p) = W~ (p,t) + WH(t,p).

Definition 7 (Firing sequence). Let N be a Petri net with the initial marking
mo. A finite sequence o € T™* is firable in a marking m and leads to a marking
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m’, also denoted by mlo)ym’, iff either o0 = € or 0 = o1.t with t € T and

Imy such that mlo1)my and mq[tym’. We write Reach(N,mo)= {m | Jo €
T*such that mo[o)m} for the set of reachable markings.

The reachable markings of a Petri net correspond to the reachable states of
a modeled system. Since the capacity of places are not restricted, the set of the
reachable markings of the Petri nets considered here may be infinite. Thus, Petri
nets can model infinite state systems. Now, let us define the language generated
by a Petri net.

Definition 8 (Petri net language). Let N be a Petri net over the alphabet
Y. The language generated by N is:

LN)={ue X*|ToeT* and m s.t A(o) = u and mglo)ym} .
Since no accepting states are defined the language L(N') is prefiz-closed.

Some issues with Petri nets, such as language inclusion problem, are not
decidable in the general case while they are with deterministic Petri nets. So we
limit ourselves to deterministic Petri nets.

Definition 9 (Deterministic Petri net and its generated language). A
labeled Petri net with labeling function A : T — X is deterministic, if for each
reachable marking m and for each label a € X there is at most one transition
t € T with A\(t) = a such that t € firable(m). The language generated by a
deterministic Petri net is also called deterministic Petri net language and fulfills
the following property. For each w € L(N) there is a single sequence o € T*
such that A(c) = u

Next we define the synchronous composition of two Petri nets that we will
use further.

Definition 10 (Synchronous composition of two Petri nets). The syn-
chronous composition of two Petri nets N' = (P, T,W~, W* X\, mgy) and N" =
(P, T' W' = W'+ XN, m}) is a Petri net N"" = (P",T",W"= , W"+ X' ml})) =
N || N where,

— P"=PWP (weassume that P and P' are disjoint),
ST () e T X T | A(D) = N (),
— W~ is defined for each p € P" and (t,t') € T" by:

17— Ny W_(pﬂf) iprP
14 (pa (t7t )) - { V[/'/_(p7 tl) otherwise

— W"T s defined for each p € P" and (t,t') € T" by:
Wt(t,p) ifpeP
"+ ’ _ )
W), p) = {W T(t', p) otherwise
— N((t, 1) = A(t) = N (),
— my is defined, for each place p € P", by
m ifpe P
"(p) :{ o(p) ifp

Mo mg(p) otherwise
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3.2 Modal Deterministic Petri Nets

Here we introduce modal deterministic Petri nets which extend, similarly to
modal language specifications, deterministic Petri nets with modalities may and
must on its transitions.

Definition 11 (Modal deterministic Petri net). A modal deterministic
Petri net M over an alphabet X is a pair M = (N, Tg) where N = (P, T,W ™,
W, X\, mo) is a deterministic Petri net over X and Tn C T is a set of must (re-
quired) transitions. The set of may (allowed) transitions is the set of transitions

T.

Ezample 2. Let us consider the same example of a message producer and a
message consumer.

in m m out

(a) (b)

Fig. 2. Modal interface Petri nets for a producer (a) and a consumer (b)

The consumer may receive an input in (white transition) but must produce a
message m (black transition). The consumer must receive an input message m
and produce an output out.

Any modal deterministic Petri net gives rise to the construction of a modal
language specification. The definition of this language is based on the definitions
of modal language specifications (definition 1) and the generated language of a
deterministic Petri net (definition9).

Definition 12 (Modal deterministic Petri net language specification).
Let M = (N, Th) be a modal deterministic Petri net over an alphabet 2. M gen-
erates the modal language specification ML(M) = (L(N), may, must) where:

— L(N) is the language generated by the deterministic net N,
— Yu € L(N), let m be the marking and o € T* be the sequence of transitions
such that AM(o) = u and mglo)m,
o may(u) = {a € X | 3t € firable(m) such that A(t) = a}
o must(u) = {a € X' | 3t € firable(m) such thatt € Tp and A(t) = a}.
Lemma 1. Any modal deterministic Petri net language specification is a con-
sistent modal language specification.

The proof of this lemma is straightforward.
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3.3 Refinement and asynchronous composition

Likewise modal language specifications introduced in section 2, modal determin-
istic Petri net language specifications are related by a refinement relation.

Definition 13 (Modal Petri net language specification refinement). Let
S = (L, may, must) and S' = (L', may’, must’) be two modal language specifica-
tions generated respectively by a modal deterministic Petri net M and a modal
Petri net M’. 8’ is a modal language specification refinement of S denoted by
S' Cus S, if,

- (1)L cCcc
— (2) for every u € L', must(u) C must’'(u), i.e every required action after the
trace u in L is a required action after u in L.

Given two modal language specifications S = (£, may, must) and S’ =
(L', may’,must’) generated respectively by the modal deterministic Petri net
M = (P, T,W~, W+, mg) and the Petri net M’ = (P", T/, W' =, W'+ X m}),
we aim to decide whether S’ is a modal language specification refinement of S.
The decision problem will be discussed in the next section.

Before defining asynchronous composition of modal Petri nets we should
specify a composability condition to ensure that the composed components are
able to collaborate correctly.

Definition 14 (Composability condition). Let X' = inx Uouts and X/ =
inyg Uoutsy be two alphabets partitioned into inputs and outputs. X and X' are
composable if X NX' C (ing N outs)U (inx: N outy).

Two Petri nets are composable if their alphabets are composable.

Observe that for composable alphabets inx Nins: = 0, outs Nouts = (.

Definition 15 (Composition of compatible alphabets). Let X = iny U
outy and X' = inxg: Uouts: be two composable alphabets. The composition of X
and X' is the alphabet X" = inxn Uoutsr Uint sy where:

—intgr ={*xa|x€ {1} anda e X NX'}
— outyn = (Outg \ ing‘/) ] (outg/ \’Lng‘)
— mxr = (ing\outg/) (] (ing/ \Outg)

Definition 16 (Concrete asynchronous composition). Let My = (N, T1),
N1 = (P, Th, W[, Wl"', A1, mi,) be a modal Petrinet over Xy and My = (Na, Tay),
Ny = (Py, Ta, Wy , Wy, Ao, ma,) be a modal Petri net over Xo. My and My are
composable if PLN Py =0, T'NTy = 0 and if X1 and X5 are composable. In this
case, their concrete asynchronous composition M., also denoted by My ® Ms, is
the modal Petri net over X. defined as follows:

— P.=PiUP,W{p, | a€ XN} (the p, are new place identifiers)
- Tc = Tl (] T2 and Tcﬁg = Tl[] (] TQD
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— Wo (resp. W) is the P. x T, backward (resp. forward) incidence matriz
defined by:
e foreachpe PLUP;, teTy,

Wi (p,t)ifpe Prandt €Ty
W (p,t) =< Wy (p,t) if p€ Py and t € Ty
0 otherwise

Wfr(pﬂf) ifpe P andteT)
Wi(p,t) =< Wyt(p,t)ifpe Py andt € Ty
0 otherwise

o for each p, € P.\ {P1 U P2} with a € X1 N Yy and for each t € T; with
ie€{1,2},

_ _Jlifa=X\(t) €ing, Nouts, with i # j
We (past) = {O otherwise

1ifa=X\(t) €ing, Nouts, withi #j
+ — g J i
We(part) = {O otherwise

— Ae: T, — X, is defined, for allt € T, and for i € {1,2}, by

Ae(t) = q 2Ai(t) if t € Ty, Ai(t) € ing, Nouts, with i # j
"Ni(t) if t € Ty, Ni(t) €ing, Nouts, with i # j

— My, is defined, for each place p € P., by

mlo(p) pr epP
Mey (p) = § M2, (p) pr eh
0 otherwise

Ezample 3. The composition of the producer and consumer Petri nets of figure 2
is shown in figure 3. Its alphabet has the input set {in}, the output set {out}
and the set of internal actions is {?m, !m}. The Petri net composition describes
an infinite state system whose generated language is no more regular.

The next proposition shows that the concrete asynchronous composition is
well defined.

Proposition 1. The concrete asynchronous composition of two modal specifi-
cations is a

The following proposition We are now looking for an abstraction of the com-
posed system which hides the internal asynchronous communication.

Definition 17. Let My = (Ni,Ti,), N1 = (P, Ty, Wy , Wit Ai,ma,) be a
modal Petri net over Xy, My = (Na,Tpy), Ny = (Pg,Tg,W{,W;,)\g,mgo)
be a modal Petri net over Xo. Assume that My and Mo are composable and de-
note M. by their asynchronous composition. Then their abstract asynchronous
composition of M1 and Mas, denoted by M,, is defined by:
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in out

(a) (b)

Fig. 3. Composition of the producer and consumer Petri nets

— The language of M, is the projection of the language on the inputs and the
outputs of M.

— Given a word w of this language and a letter a, a belongs to must(w) iff
for every sequence in M., o such that mo[oym, A(o) = w, there is a “must”
transition t € T W Toy with A(t) = a and mt).

The previous definition is more involved since asynchronous composition re-
quires to hide the transitions related to communications and thus yield a non
deterministic behaviour. The interpretation of the must mappings is that an
event a is required after a word w of the language if for every behaviour whose
observation is w a “must” transition labelled by a may be fired. This is consistent
with the intuitive meaning of a must event.

Decision problems. Since asynchronous composition is a way to obtain a more
refined specification and is not a prior: a deterministic Petri net, we want solve
the following problems (to be handled in the next section).

— Is a Petri net deterministic? Since we have now silent transitions, we need
to adapt definition 9.

— Whatever the answer to the first question, the composition of two (or more)
component specifications is a more precise specification than a global one.
So given a Petri net A and a deterministic Petri net A" does N refine N'?

For example, figure 4 presents an initial specification of producer/consumer
system and the composition depicted in figure 3 refines this specification while
not being deterministic.

4 Decision Algorithms

4.1 Deterministic Petri net membership

First we introduce a new definition of deterministic Petri net that takes into
account the silent transition. On says that a transition is visible if its labels
belongs to Y. One denotes € the empty word which now may label transitions.
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in out

0

Fig. 4. A more abstract specification of a producer/consumer system

Definition 18 (Deterministic Petri net with silent transitions). A la-
beled Petri net with labeling function A : T — X' W {e} is deterministic, if:

— It is non divergent. There does not exist a finite sequence o and an infinite
sequence o' with A\(o’) = & such that mgloc’).

— It is marking deterministic. Let o and ¢’ be two firing sequences molo)ym
and molo)m’ such that A(c) = X(o") and the last transitions of o and o’ are
visible. Then: m =m/.

Discussion. The first condition means that the net must after firing a finite
number of silent transitions either stop or fire a visible transition. This condi-
tion is relevant for a specification since divergence is related to an undesirable
behaviour. The second condition is a relaxation of the previous definition: we
do not require uniqueness of the firing sequence that generates a given word.
Rather we require that the visible markings (the ones reached after the firing of
a visible transition) reached by two sequences related to the same word must be
the same.

Proposition 2. Let N be Petri net, then it is decidable whether N is determin-
istic. Furthermore if N is deterministic, the mazimal number of silent transitions
consecutively fireable is computable.

Proof. In order to decide whether A/ is divergent, we build a net N as follows.

— First we add three places run, check and count. run has initially one token
while check and count are empty.

— Then we duplicate every silent transition ¢t becoming ¢, and ¢.. ¢, includes an
additional loop with run (i.e. W~ [run,t,] = W*[run,t.] = 1) , t. includes
an additional loop with check and produces a token in count.

— A visible transition ¢ includes an additional loop with run.

— Finally one adds a transition switch that transfers the token from run to
check.

The behaviour of N’ is the following one: it mimics A but can switch at any
time to a behaviour when only silent transitions of A are possible and their
firing are counted in place count.

Then one builds G.(N’) the covering graph of A’. If in an w-marking m of
G.(N7), the component of place count is w then N is divergent. Otherwise, the
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maximal value occurring in this component corresponds to the maximal number
of silent transitions consecutively fireable.

In order to check whether the net is marking deterministic, one builds a net N/
as follows.

— We duplicate every place p becoming p; (P, denotes the set of these places)
and p, (P, denotes the set of these places) with the same initial marking.
Furthermore we add two places stable and unstable. stable has initially one
token while unstable is empty.

— Then we duplicate every silent transition ¢ into four transitions ¢; s, t;,4, trs,
tr. Transitions ¢, and t; s have for inputs and outputs the ones of ¢ with
places p; substituted for p. ¢;, includes an additional loop with unstable
while ¢; s transfers the token from stable to unstable. Transitions ¢, ,, and ¢, s
have for inputs and outputs the ones of ¢ with places p, substituted for p.
t,. includes an additional loop with unstable while ¢, s transfers the token
from stable to unstable.

— For every pair of visible transitions ¢,t’ such that A(t) = A(¢’), one defines
two transitions (¢,t')s and (¢,t’),. Transitions (¢,t')s and (¢,t), have for
inputs and outputs the ones of ¢ with places p; substituted for p and the
ones of t’ with places p, substituted for p. (¢,t’)s includes an additional loop
with stable while (¢,t'),, transfers the token from unstable to stable.

The behaviour of N’ is the following one: it mimics simultaneously twice the
behaviour of A keeping track whether both current markings (in the left and the
right simulation) are stable markings with the help of places stable and unstable.

Given a marking m, let us denote by m; (resp. m,) the submarking on P, (resp.
P,). In order to check whether A is not marking deterministic, one checks in
N the reachability of a marking m with m(stable) = 1 and m; # m,. The set
of such markings is a semi-linear set, so this problem is decidable (combining
the results of citeReachaPbMayer and [?]).

When a net is deterministic one can transform it into another one with the
same language but without silent transitions. Furthermore as the transformation
depicted in the proof of the next proposition relates a transition of the new net
to a visible transition of the original one the may/must information can be
preserved.

Proposition 3. Let N be a deterministic Petri net, then one can build another
deterministic net N without silent transitions such that LIN) = L(N7).

Proof. We first compute the number of maximal silent transitions consecutively
fireable in NV, say b. Then N is built as follows.

— TIts set of places is the one of N.

— For every sequence of transitions ¢i,...,%;,t;+1 such that (1) 0 < ¢ < b,
(2) t1,...,t; are silent transitions and ¢,11 is a visible transition one de-
fines (t1,...,t;,t;+1) a transition of N’. Backward and forward matrices
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Wi[ R (tl, R ti+1)] and WJr[ R (tl, eyt trL’Jrl)] are inductively defined
as usual (W is the incidence matrix):

Wi[pv (t17 s 7tjvtj+1)] = ma‘X(Wi[ ’ (t17 s 7tj)]7 Wi[pv tj+1] - W[p, (tlv B tj)])
Wip, (tr, - tj, t41)] = Wip, (b1, ..., )] + Wp, tj41]

W+[p, (t17 s 7tj7tj+1)] = Wﬁ[pa (t17 s 7tj7tj+1)] + W[p, (t17 s 7tj7tj+1)]

The set of reachable markings of A/’ is the set of stable reachable markings of
N and a firing sequence in N leading to a stable marking can be decomposed
into subsequences of silent transitions ended by a visible transition and so may
be simulated by a single transition in N’. The other direction is similar.

4.2 Specification refinement

We now address the problem of specification refinement when the initial spec-
ification is given by a deterministic Petri net while the possibly refining one is
given by an arbitrary Petri net.

Proposition 4. Let M be a modal Petri net specification with N its associated
deterministic Petri net and M’ be a modal Petri net specification with N’ its
associated Petri net. The problem of determining whether M’ is a refinement of

M s decidable.

Proof. First we check whether £(N”) C L(N). This is not the case if there is a
word w generated by N’ but not by A/. Due to proposition 3, w.l.og. we assume
that A has no silent transition. We look for a minimal word w, i.e. w = w’a
with a € X and w' € LIN') N LN).

We build a net N as follows.

— The set of places of N is the disjoint union of the ones of N" and N”.

— Every silent transition of N’ is inserted in A"/ with the same backward and
forward incidences.

— For every pair of transition t € T, t' € T” with A(t) = X (t') one defines a
transition (¢,¢') of N whose incidences are the “union” of incidences of ¢
and t'.

Observe that N/ generates exactly the words of L(N")NL(N). In this net we are
looking for a marking (say m such that mg[o)m) whose projection on P’ enables
a transition ¢’ labelled by some a € X but whose projection on P disables every
transition ¢ labelled by a. The set of such markings is a semi-linear set so this
problem is decidable. Moreover this procedure is sound since if we note w’ the
labelling of o, every sequence in A that is labelled w reaches the same marking
(determinism hypothesis).

Once this first cheking is performed, with A"/ we check the second condition
for refinement. More precisely we are looking for a marking (say m such that
mo[oym) whose projection on P enables a must transition ¢ labelled by some
a € X but whose projection on P’ cannot enable any must transition ¢ labelled
by a. The set of such markings is again a semi-linear set so this problem is
decidable.
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The part of the proof related to inclusion of languages is close to the results

of [8]. The difference lies in our definition of determinism which allows different
firing sequences for the same word (but leading to the same stable marking).
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