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ABSTRACT

State explosion is a fundamental problem in the analysis and synthesis of discrete
event systems. Continuous Petri nets can be seen as a relaxation of the corresponding
discrete model. The expected gains are twofold: improvements in complexity and in
decidability. In the case of autonomous nets we prove that liveness or deadlock-freeness
remain decidable and can be checked more efficiently than in Petri nets. Then we intro-
duce time in the model which now behaves as a dynamical system driven by differential
equations and we study it w.r.t. expressiveness and decidability issues. On the one hand,
we prove that this model is equivalent to timed differential Petri nets which are a slight
extension of systems driven by linear differential equations (LDE). On the other hand,
(contrary to the systems driven by LDEs) we show that continuous timed Petri nets are
able to simulate Turing machines and thus that basic properties become undecidable.

Keywords: Petri nets, Dynamical systems, Reachability, Liveness, Expressiveness, De-
cidability

1. Introduction

Autonomous continuous systems. State explosion problems represent a

main drawback in the study of heavily loaded discrete event dynamic systems,

modeled for example as Petri nets. Trying to alleviate these problems, different

relaxations have been used. One main relaxation consists in considering “fractions”
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of a (unit) event to occur. This naturally leads to a continuous state space (in-

cluding the discrete state space). Furthermore such systems often allow a simpler

introduction of continuous time in their behaviour.

Hybrid and (timed) continuous systems. Dynamic systems can be classi-

fied depending on the way time is represented. Generally, trajectories of discrete-

time systems are obtained by iterating a transition function whereas the ones of

continuous-time systems are often solutions of a differential equation. When a

system includes both continuous and discrete transitions it is called a hybrid sys-

tem [8]. A special kind of hybrid systems where the trajectories are continuous

(w.r.t. standard topology) and right-differentiable functions of time have been in-

tensively studied. They are defined by a finite number of regions and associated

ordinary differential equations (ODEs) such that inside a region r, a trajectory ful-

fills the equation ẋd = fr(x) where x is the trajectory and ẋd its right derivative.

These additional requirements are not enough to limit their expressiveness. For

instance, the model of [3] has piecewise constant derivatives inside regions which

are polyhedra and it is Turing equivalent if its space dimension is at least 3.

Differentiable systems. A more stringent requirement consists in describing the

dynamics of the system by a single ODE ẋ = f(x) where f is continuous, thus

yielding continuously differentiable trajectories. We call such models, differentiable

systems. In [4], the author shows that differentiable systems in R
3 can simulate

Turing machines. The corresponding ODE is obtained by extrapolation of the

transition function of the Turing machine over every possible configuration. Indeed

such a configuration is represented as a point in the first dimension of the ODE (and

also in the second one for technical reasons) and the third dimension corresponds

to the time evolution. The explicit local ODE around every representation of a

configuration is computed from this configuration and its successor by the Turing

machine. Thus the explicit equations of the ODE are piecewise defined inside an

infinite number of regions which is far beyond the expressiveness of standard ODE

formalisms used for the design and analysis of dynamical systems. So the question

to determine which (minimal) set of operators in an explicit expression of f is

required to obtain Turing machine equivalence, is still open.

Our contribution. Our contribution is related to (timed) continuous Petri nets.

Continuous Petri nets is the model obtained from Petri nets by allowing fractions of

firings to occur. Several decidability results have been established for this model (see

e.g. [10]). Here, we extend these results to two fundamental behavioural problems:

the liveness and the deadlock freeness of a net.

Then we study two ways of introducing time in the model yielding to timed

continuous Petri nets (TCPNs) and timed differential Petri nets (TDPNs). In the

former model the firing speed of a transition is determined by the current marking

of its input places together with the weight of the input arcs. In the latter model,

an additional speed control matrix together with the global current marking deter-

mines this speed. We show that the two models are equivalent and exhibit optimal

translations. We also point out simplified but equivalent models with only a linear

increasing of the size of the model.
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At last, we make more precise the boundary between decidability and unde-

cidability in differentiable systems by showing that TDPNs can simulate Turing

machines. Indeed the ODE ruling this model is particularly simple. First its ex-

pression is a linear expression enlarged with the “minimum” operator. Second, it

can be decomposed into a finite number of linear LDEs ẋ = M ·x (with M a matrix)

inside polyhedra. The other side of the boundary is given by the decidability of the

reachability problem in systems of linear differentiable equations [7].

The structure of the papera is as follows: in Section 2 (autonomous) continuous

Petri nets are introduced with previous results and then the decidability of liveness

or deadlock-freeness of the model is established. Section 3 deals with the timed

model, proving that timed continuous Petri nets and timed differentiable Petri nets

are equivalent with essentially optimal translations. Finally in Section 4, we es-

tablish that timed continuous Petri nets can simulate Turing machine and deduce

undecidability of basic properties.

2. Continuous Petri Nets

2.1. Syntax and Semantics

We assume that the reader is familiar with Petri nets (PNs) (for notation we use

the standard one, see for instance [13]). The structure of (autonomous) continuous

Petri nets (CPNs not to be confused with coloured Petri nets) is the same as the

structure of discrete PNs.

Definition 1 (CPN Syntax) N = 〈P, T,Pre,Post〉 a continuous Petri net is

defined by :

• P a finite set of places,

• T a finite set of transitions with P ∩ T = ∅,

• Pre and Post are |P | × |T | sized, natural valued, pre- and post- incidence

matrices.

Notations. C = Post − Pre the token-flow matrix. •t = {p ∈ P | Pre[p, t] > 0}

(resp. t• = {p ∈ P | Pre[p, t] > 0}) is the set of input (resp. output) places of t.

The notations are extended to sets by •Θ =
⋃

x∈Θ
•x and Θ• =

⋃

x∈Θ
x•. Let M

be |P | × |T | matrix then M[P, t] denotes the column vector of M indexed by t.

A marking m of a CPN is a non negative real amount of tokens m(p) in every

place p, i.e. m ∈ (R≥0)
|P |. A marked CPN 〈N ,m0〉 is thus given by N a CPN

equipped with m0 an initial marking. The usual PN system, 〈N ,m0〉, will be

said to be discrete so as to distinguish it from a continuous PN system, in which

m0 ∈ (R≥0)
|P |. The main difference between both formalisms is in the evolution

rule, since in continuous PNs firing is not restricted to be done in integer amounts.

As a consequence the marking is not forced to be integer. We could also consider

the incidence matrices as rational valued without changing any of the results but

we want to emphasize the fact that CPNs can be viewed as an abstraction of Petri

nets obtained by relaxation.

aThis paper combines the results presented in [6] and [11].
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Figure 1: This system is not reversible as discrete, or as continuous with finite
number of firings, but it is lim-reversible.

Definition 2 (CPN Semantics) Let N be a continuous Petri net, m be marking

of N and t be a transition. Then :

• The enabling degreeb of t at m is enab(t,m) = minp∈•t{m[p]/Pre[p, t]}

• t is enabled at m iff enab(t,m) > 0

• If t is enabled at m then for every real α s.t. 0 < α ≤ enab(t,m) the α-firing

of t leads to a new marking m′ = m + α · C[P, t]. We denote this firing by

m αt
−→m′.

Let us illustrate the dynamics of a CPN by the example depicted Figure 1.

p1 +p5
t1−→p3 +p5
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p3 + 1

2
p5
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2
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2
p4 + 1

2
p5

1

2
t3

−→
1

2
p1 + 1

2
p3 + 1

2
p5 is

a possible firing sequence. This interleaving semantic is appropriate when viewing

CPNs as a relaxation of Petri nets. However it is interesting from a continuous

point of view to extend it with a notion of limit (see next paragraph).

2.2. Properties of a CPN: specification and previous results

As in PNs, there are two kinds of properties: structural and behavioural ones.

One goal of the net analysis is to relate behavioural properties to structural ones.

Our work shows that this connexion is closer in CPNs than in PNs. Let us recall

first basic structural properties of a CPN.

Definition 3 (Structural properties) Let N be a CPN, then:

• Let x be a vector over places (resp. over transitions) then x is a P-semiflow

(resp. T-semiflow) if x ·C = 0 (resp. C · x = 0).

• N is said to be conservative (resp. consistent) if there exists x a P-semiflow

(resp. T-semiflow) such that x > 0 where the inegality is defined pointwise

(i.e. ∀a x[a] > 0).

• A set of places Θ is a trap (resp. a siphon) iff Θ• ⊆ •Θ (resp. •Θ ⊆ Θ•).

In continuous PNs the reachability concept is not so immediate as in discrete

nets. For example, in a continuous net it may happen that the marking of a place

can be done smaller and smaller, but never reaches 0. This idea of getting as close

as desired to a marking, even if it is never reached with a finite firing sequence leads

in [12] to the definition of (pointwise) limit reachability, further refined in [10].

bObserve that the enabling degree may be infinite if t has no input places.
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Definition 4 Let 〈N ,m0〉 be a continuous system. We define two reachability

sets:

• RS(N ,m0) = { m ∈ (R≥0)
|P | | a finite fireable sequence σ = α1ta1

. . . αktak

exists such that m0

α1ta1−→m1

α2ta2−→ . . .
αktak−→ mk = m with ti ∈ T and αi ∈ R≥0}.

• lim-RS(N ,m0) = {m ∈ (R≥0)
|P ||a sequence of reachable markings {mi}i≥1

exists verifying m0

σ1−→m1
σ2−→m2 · · ·mi−1

σi−→mi · · · and lim
i→∞

mi = m}.

The set of reachable (and lim-reachable) markings in continuous PNs satisfies

some properties that do not hold for discrete nets. For example, the reachability set

(and the lim-reachability set) of a continuous system is a convex set [12]. Many basic

properties of discrete PNs can be extended to continuous PNs and also adapted to

take into account the lim-reachability concept.

Definition 5 Let 〈N ,m0〉 be a continuous system.

• 〈N ,m0〉 is (lim-) deadlock-free iff for every m ∈ (lim-) RS(N ,m0) there

exists t ∈ T such that enab(t,m) > 0.

• 〈N ,m0〉 is (lim-) live iff for every m ∈ (lim-) RS(N ,m0) and for every

t ∈ T there exist m′ ∈ (lim-) RS(N ,m) such that enab(t,m′) > 0.

• 〈N ,m0〉 is (lim-) reversible iff for every m ∈ (lim-) RS(N ,m0) then m0 ∈

(lim-) RS(N ,m).

The support of a vector v ≥ 0 will be denoted as ‖v‖ and represents the set of

positive elements of v

Besides the situation in which the properties of the discrete and the continuous

net are not related, it also happens that some properties of discrete PN cannot be

observed in continuous systems, as mutex relationships. Moreover, the distinction

between two properties may be lost in the continuous model. For example, un-

der broad conditions, lim-liveness and lim-reversibility are equivalent. Indeed, the

following result is a straightforward reformulation of Theorem 21 in [10].

Theorem 1 〈N ,m0〉 is consistent and lim-live iff it is lim-reversible and every

transition is fireable at least once.

However, liveness and consistency are not sufficient conditions for reversibility in

discrete systems, and neither are for continuous net systems if finite firing sequences

are considered. For example, the system in Fig. 1 is consistent and live as discrete,

however once t1 has fired it is impossible to get back to the initial marking. In the

continuous net system, to go back to the initial marking from m = [0, 0, 1, 0, 1], an

infinite sequence 1

2
t4

1

2
t2,

1

2
t3,

1

4
t4,

1

4
t2,

1

4
t3, . . .

1

2k t4,
1

2k t2,
1

2k t3, . . . has to be fired.

The idea under continuization is that it leads to “easier to analyze” models. For

that, we need to ensure that properties can be analyzed at least.

In [10], a characterization of reachability and lim-reachability is presented.

Theorem 2 Let 〈N ,m0〉 be a CPN system and m be a marking. m ∈ RS(N ,m0)

iff ∃σ ∈ (R≥0)
|T | such that:

1. m = m0 + C · σ
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2. ‖σ‖ ∈ FS(N ,m0)

3. no trap in P \ ‖m‖ intersects with ‖m0‖ ∪ ‖σ‖•

where FS(N ,m0) is the set of the supports of sequences fireable from m0, which is

a finite set that can be effectively constructed.

A marking m ∈ lim-RS(N ,m0) iff it verifies conditions (1) and (2).

For the computation of FS(N ,m0), first add all the combinations of transitions

that are enabled at m0. Then, take one of these sets and fire all the transitions,

but in an amount smaller than the enabling degree. This will possibly enable other

transitions, so new sets are added to FS. Repeat the procedure until all the sets in

FS have been checked.

The only difference between reachability and lim-reachability is on traps, which

can be emptied in the limit, but not with a finite sequence. In [10], decidability of

reachability is proved. This result can be generalized to lim-reachability.

Corollary 1 Reachability and lim-reachability are decidable for CPN systems.

2.3. Analysis

We now show that the characterization of (lim-)reachability allows to address

the (lim-)deadlock freeness and (lim-)liveness problems.

Theorem 3 For CPN systems deadlock-freeness and lim-deadlock-freeness are de-

cidable and belong to co-NP.

Proof. Let us see that checking deadlock-freeness can be reduced to solving a set

of linear programming problems.

Let DP = {DPi}i∈I be the set of all the sets of places that have at least one

input place per transition. Hence applying Theorem 2, m = m0+C·σ is a deadlock

iff there exist DPi ∈ DP and FSj ∈ FS such that

m0[DPi] + C[DPi, FSj ] · σ[FSj ] = 0 (1)

m0[P \ DPi] + C[P \ DPi, FSj ] ·σ[FSj ] > 0 (2)

σ[FSj ] > 0 (3)

For every trap Θ ⊆ DPi, (‖m0‖ ∪ FSj
•) ∩ Θ = ∅ (4)

Applying the characterization of traps in [15], (4) is equivalent to checking

whether the solution of the following linear programming problem is zero,

maximize εi,j

subject to: y · CΘ ≥ 0

y ≥ 0

y[P \ DPi] = 0
∑

p∈‖m0‖∪FSj
•

y[p] ≥ εi,j

(5)

where CΘ is the token flow matrix of the net NΘ = 〈P, T,Pre,PostΘ〉 with

PostΘ[p, t] = 0 iff Post[p, t] = 0, and PostΘ[p, t] ≥
∑

p′∈•t Pre[p′, t].
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Equations (1), (2) and (3) are equivalent to:

maximize δi,j

subject to: m0[DPi] + C[DPi, FSj ] ·σ[FSj ] = 0

m0[P \ DPi] + C[P \ DPi, FSj ] ·σ[FSj ] ≥ δi,j · 1

σ[FSj ] ≥ δi,j · 1

(6)

Therefore, to prove that the system has a deadlock, check that there exist

DPi ∈ DP and FSj ∈ FS such that (5) has no positive solution and (6) has a

positive solution. The guesses and the linear problem computations can be done in

polynomial time. So this leads to the complexity stated in the theorem.

Regarding lim-deadlock-freeness, the only difference is that there is no restriction

with respect to the traps, so clearly it is also decidable with the same complexity.

�

Theorem 4 Liveness and lim-liveness are decidable for CPN systems and belong

to co-NP.

Proof. Let us study liveness first. For continuous PNs, a transition t is not fireable

for any successor of m iff there exists an empty siphon in m that contains a place

p ∈ •t (Lemma 11 in [10]). Hence, the system is non live iff there exist FSj ∈ FS

and a siphon Σ such that

m = m0 + C[P, FSj ] · σ[FSj ] (7)

m ≥ 0 (8)

σ[FSj ] > 0 (9)

m[Σ] = 0 (10)

For any trap Θ such that (‖m0‖ ∪ FSj
•) ∩ Θ = ∅, ∃p ∈ Θ with m[p] = 0 (11)

Let {Σi}i∈I be the set of minimal siphons (i.e., siphons that are not contained

in other siphons), and let {Θk}k∈K be the set of traps. Then for each FSj ∈ FS,

each trap Θk verifying (‖m0‖∪FSj
•)∩Θk 6= ∅, and each siphon Σi, check whether

the following linear programming problem has a positive solution:

maximize εi,j

subject to: m = m0 + C[P, FSj ] ·σ[FSj ]

m ≥ 0

m[Σi] = 0

σ[FSj ] ≥ εi,j · 1

m[p] = 0

Since solving linear programming is done in polynomial time, the stated complexity

bound is obtained. Regarding lim-liveness, notice that in fact it is equivalent that

a transition is not fireable from any reachable marking or from any lim-reachable

marking. Then, the lim-liveness problem is analogous, changing the reachability
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condition, which amounts to forgetting the traps, and removing the last equation

(m[p] = 0) in each one of the linear programming problems. �

The deadlock-freeness and the liveness problems are EXPSPACE-hard for Petri

nets and PSPACE-complete for safe Petri nets. Thus, as claimed above, problems

in CPNs can be solved more efficiently.

3. Timed Continuous Petri Nets

3.1. Syntax and Semantics

A simple and interesting way to introduce time in discrete PNs is to assume that

all the transitions are timed with exponential probability distribution functions. For

the timing interpretation of continuous PNs we will use a first order (or determinis-

tic) approximation of the discrete case, assuming that the delays associated to the

firing of transitions can be approximated by their mean values. These mean delays

will be assumed to be positive, i.e., immediate transitions are not allowed.

Definition 6 A Timed Continuous Petri Net (TCPN) is a continuous PN s.t. ∀t ∈

T, |•t| ≥ 1 together with a vector λ ∈ R
|T |
>0.

A TCPN with an initial marking 〈N , λ,m0〉 will be denoted a TCPN system.

Since it is an interpretation of the autonomous net, the evolution of a TCPN has

to fulfill the state equation: m(τ) = m(0) + C · σ(τ), where m and σ now depend

on τ , the actual time. Deriving, ṁ(τ) = C · σ̇(τ) (with ṁ(τ) = dm
dτ

(τ)). σ̇(τ), the

flow obtained by firing the transitions, depends only on the current marking and

thus can be rewritten as σ̇(τ) = f(m(τ)). Different semantics have been used to

define the flow function f , the two most important being infinite server (or variable

speed) and finite server (or constant speed) [1, 14]. Here infinite server semantics

will be considered.

Like in purely markovian discrete net models, under infinite server seman-

tics, the flow through a timed transition t is the product of the speed, λ[t], and

enab(t,m), the instantaneous enabling of the transition, i.e.,

f(m)[t] = λ[t] · enab(t,m) = λ[t] · min
p∈•t

{m[p]/Pre[p, t]}.

For the flow to be well defined, every transition must have at least one input place,

hence the restriction included in the definition of TCPNs. To summarize, the dif-

ferential equations ruling the behaviour of a TCPNs are:

∀p ∈ P ṁ[p] =
∑

t∈T

C[p, t] · λ[t] · min
p′∈•t

{m[p′]/Pre[p′, t]}

Notice that the flow is a piecewise linear function. The change of behavior

happens when in a synchronization the place representing the minimum changes.

Hence, the switching among the linear systems is given by an internal event. A

system without synchronizations (i.e., for every t |•t| = 1) would be linear.

Let us introduce the concept of configurations : a configuration assigns to a

transition one place that for some markings will control its firing rate. Thus the
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number of configurations is at most Πt∈T |•t|. The reachability space can be divided

into regions according to the configurations. These regions are polyhedrons, and

are disjoint, except on the borders. Inside each polyhedron, the evolution of the

system is defined by a linear differential equation.

3.2. Timed Differentiable Petri nets

The structure and equations of TCPN were somehow inherited from those of

discrete Petri nets. Petri nets are based on a production/consumption logic, and

it is the flow of material that is mainly represented. However, these material flow

channels can also be used to simulate control flows, and self-loop structures appear.

This kind of structures can be used in continuous PNs to “force” behaviors.

Moreover, the information that appears in the structure of the net is redundant.

Assume a place-transition-place-transition subnet, and let us denote them as p1 −

t1 − p2 − t2. The marking evolution of p2 due to the output flow does not depend

on the weight of the arc (p2, t2), and its input flow really depends on the quotient

of the weights (p1, t1) and (t1, p2).

Hence, the notation of TCPN “looks cumbersome”, and the evolution rules seem

convoluted and counterintuitive in some cases. Trying to clarify the behavior, in [6],

a different way of introducing time in a PN structure was presented, in which two

different kinds of arcs are used: one to model the control, and the other to model

the marking evolution. This is similar to what is done in Forrester diagrams, in

which control and material flows are kept separate [5].

Definition 7 A Timed Differentiable Petri Net (TDPN) D = 〈P, T,C,W〉 is de-

fined by:

• 〈P, T,C〉, a pure PN (thus C is the incidence matrix),

• W, the speed control matrix: a mapping from P × T to R≥0 such that:

∀t ∈ T, ∃p ∈ P,W(p, t) > 0 and ∀t ∈ T, ∀p ∈ P,C(p, t) < 0 ⇒ W(p, t) > 0

A TDPN with an initial marking 〈D,m0〉 will be denoted a TDPN system.

The first requirement about W ensures that the firing rate of any transition is

defined, whereas the second one ensures that the marking remains non negative.

Notice that these weights are defined as real numbers, while in TCPN all the arc

weights are natural numbers.

We are now in position to give semantics to TDPNs.

Definition 8 Let D be a TDPN. A trajectory is a continuously differentiable map-

ping m from time (i.e., R≥0) to the set of markings (i.e., (R≥0)
P ) which satisfies

the following differential equation system:

ṁ = C · f(m)

f(m)[t] = min(W(p, t) ·m[p] | W(p, t) > 0)
(12)

Graphical notations. We extend the graphical notations of PN to take into

account W. These arcs are not oriented, since they are always defined as precondi-

tions of transitions. Like in Forrester diagrams, to help distinguishing the W arcs
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Figure 2: Graphical notations

from the Pre and Post arcs, W arcs will be drawn with dotted lines. To distin-

guish between the labels, W(p, t) will be drawn inside a box. There are four possible

patterns illustrated in Fig. 2. When W(p, t) = 0 ∧ C(p, t) > 0, place p receives

tokens from t and does not control its firing rate. When W(p, t) > 0 ∧ C(p, t) < 0,

place p provides tokens to t. So it must control its firing rate. Hence, the non

oriented arc between p and t is redundant, and we will not draw it and represent

only an oriented arc from p to t both labelled by −C(p, t) and W(p, t). When

W(p, t) > 0 ∧ C(p, t) > 0, place p receives tokens from t and controls its firing

rate. There is both an oriented arc from t to p and a non oriented arc between p

and t with their corresponding labels. When W(p, t) > 0 ∧ C(p, t) = 0, place p

controls the firing rate of t and t does not modify the marking of p, so there is a

non oriented arc between p and t. As usual, we omit labels when equal to 1.

As an example, the equations in (13) correspond to the TDPN in Fig. 3.

ṁ[x1] = 2aω · min

{

m[x2]

2a
,m[y1]

}

− aω · min

{

m[x1],
m[pk]

a

}

ṁ[x2] = aω · min

{

m[y2],
m[pk]

a

}

− 2aω · min

{

m[x2],
m[x1]

2a

}

ṁ[y1] = aω · min

{

m[x1],
m[pk]

a

}

− 2aω · min

{

m[x2]

2a
,m[y1]

}

ṁ[y2] = 2aω · min

{

m[x2],
m[x1]

2a

}

− aω · min

{

m[y2],
m[pk]

a

}

(13)

This net has sixteen configurations. However, for 1 ≤ a ≤ b ≤ 2a−1, the system

never switches and always remains in the configuration defined by m0.

The Petri net structure of TCPN is similar to that of TDPN. Moreover, the

minimum operator appears related to the marking evolution. Hence, it would not

be surprising that both models are equivalent, as long as the elements of the speed

control matrix are in the rationals. To prove that, observe first that fractions in

the Pre and Post matrices do not pose a problem, since they can be easily avoided

multiplying the columns of the Pre and Post matrices by the right number (this

does not change the dynamics of the system).

Proposition 1 For any TCPN, a TDPN with the same number of places and tran-

sitions exists which has the timed evolution, and vice versa (as long as the weights

of the TDPN are rational numbers).

Proof. Let D = 〈P, T,C,W〉 be a TDPN, and let us construct a TCPN S =

〈P, T,Pre′,Post′, λ〉 with the same differential equations. For each t ∈ T , define

W∗(t) ≥ max(−C(p, t) · W(p, t) | C(p, t) < 0) (i.e., W∗(t) can be defined as any
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Figure 3: A periodic TDPN

value that fulfills this inequality). By definition it is greater than zero. For each

p ∈ P and t ∈ T , define

• Pre′(p, t) = W∗(t)/W(p, t) if W(p, t) 6= 0, and Pre′(p, t) = 0 otherwise.

• Post′(p, t) = C(p, t)+W∗(t)/W(p, t) if W(p, t) 6= 0, and Post′(p, t) = C(p, t)

otherwise.

• λ(t) = W∗(t)

Let now S = 〈P, T,Pre,Post, λ〉 be a TCPN, and let us construct a TDPN D =

〈P, T,C′,W〉 with the same differential equations. For each p ∈ P and t ∈ T , define

• C′(p, t) = Post(p, t) −Pre(p, t)

• W(p, t) = λ(t)/Pre(p, t) if p ∈ •t, and 0 otherwise.

�

The patterns appearing on the right of Fig. 2 represent situations in which a

place acts as a control place of a transition for which it is not an input place (in

the sense that the transition is not removing tokens from the place). That is, they

represent non-consuming control arcs. However, these patterns can be simulated

with the two ones on the left.

Proposition 2 Let D = 〈P, T,C,W〉 be a TDPN. Then another TDPN D′ =

〈P ′, T ′,C′,W′〉 can be defined, using only the two patterns on the left of Fig. 2,

with the same timed evolution as D but for some duplicated places. Moreover, the

transformation is linear in size, since it at most doubles the number of places and

transitions.

Proof. Define the new TDPN as follows:

• P ′ = {p−, p+ | p ∈ P}

11
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Figure 4: TCPN can always be transformed into pure nets.

• T ′ = {t−, t+ | t ∈ T}

• To define C′, distinguish two cases:

– If C(p, t) < 0 ∨ W(p, t) = 0 then

C′(p−, t−) = C′(p+, t+) = C(p, t) and C′(p−, t+) = C′(p+, t−) = 0

– If C(p, t) ≥ 0 ∧ W(p, t) > 0 then

C′(p−, t−) = C′(p+, t+) = −1 and C′(p−, t+) = C′(p+, t−) = C(p, t)+1

• W′(p−, t−) = W′(p+, t+) = W(p, t) and W′(p−, t+) = W′(p+, t−) = 0

�

The transformation that has been proposed doubles the number of places and

transitions. In practice, sometimes it is not necessary to duplicate all of them. A

similar transformation can also be applied to remove self-loop arcs in TCPN. Let

us see the idea in the case of one self-loop (see Fig. 4). The transformation replaces

the self-loop with two places and three transitions. These two places will have the

same marking the original place had, and the flow of the original transition is now

split into the flow of these three transitions. Any other input/output place of the

transition is input/output of all the transitions. Any input/output transition of the

place is now input/output of all the places. The rates of these new transitions are

defined so that the sum of their flows is equal to the flow of the original transition.

Again, this is a linear transformation. The procedure can be easily generalized to

the case in which several places are connected with self-loops to the same transition

(just duplicate each self-loop place and split the transition in three), or when one

place is engaged in several self-loops (duplicate the self-loop place and split each

transition in three).

Proposition 3 For any TCPN a pure TCPN can be defined which has the same

timed evolution, but for some duplicated places. Moreover, the transformation is

linear in size, since it at most doubles the number of places and triples the number

of transitions.

The results have been summarized in the schema in Fig. 5.

Theorem 5 The expressive power of TDPN, TDPN constrained to the use of the

two basic constructions (the two on the left in Fig. 2), TCPN and pure TCPN

are identical. Moreover, the transformations range from keeping the places and

transitions to a linear increase in size (see the diagram in Fig. 5).
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TCPN �
linear (equal size)

- TDPN

pure TCPN

linear
(|P ′| ≤ 2|P |
|T ′| ≤ 3|T |)

?

TDPN without non-consuming control arcs

linear
(|P ′| ≤ 2|P |
|T ′| ≤ 2|T |)

?

Figure 5: Relationships between TDPN and TCPN and their versions without self-
loops or non-consuming control arcs

4. Undecidablity results for TDPNs

In this section, we study the expressiveness of TDPNs (equivalent to TCPNs as

shown in the previous section). More precisely we want to prove that TDPNs are

at least as expressive as Turing machines or any equivalent mechanism. However

such a result requires to formally define how a continuous (w.r.t. time and space)

system simulates a discrete one.

4.1. Dynamical systems and simulation

Definition 9 A deterministic dynamical system (X, T , f) is defined by:

− a state space X, a time space T (T is either N or R≥0),

− a transition function f from X × T to X fulfilling:

∀x ∈ X, ∀τ1, τ2 ∈ T , f(x, 0) = x ∧ f(x, τ1 + τ2) = f(f(x, τ1), τ2)

In the sequel, we will only deal with deterministic systems. In a discrete (resp.

continous) system X ⊆ N
d for some d (resp. X ⊆ (R≥0)

d) and T = N (resp.

T = R≥0). The simulation of a discrete system by a continuous one involves a

mapping from the set of states of the discrete system to the powerset of states

of the continuous systems and an observation epoch. A simulation ensures that,

starting from some state in the image of an initial state of the discrete system and

observing the state reached after some multiple n of the epoch, one can recover the

state of the discrete system after n steps. If the continuous system evolves in some

bounded subset of (R≥0)
d, the simulation is said bounded.

Definition 10 A continuous dynamical system (Y, R≥0, g) simulates a discrete dy-

namical system (X, N, f) if there is a mapping φ from X to 2Y and τ0 ∈ R>0 such

that:

− ∀x 6= x′ ∈ X, φ(x) ∩ φ(x′) = ∅

− ∀x ∈ X, ∀y ∈ φ(x), g(y, τ0) ∈ φ(f(x, 1))

The simulation is said bounded if Y ⊂ [0, K]d for some K ∈ R≥0.

Roughly speaking, a robust simulation is insensitive to small perturbations of

the simulation mapping and the observation instants. In order to define robust

simulation, we refine the notion of simulation. First, a two-level dynamical system

(Y = Y1 × Y2, R≥0, g) is such that g is defined by g1 from Y1 × R≥0 to Y1 and by

g2 from Y × R≥0 to Y2 as: g((y1, y2), τ) = (g1(y1, τ), g2((y1, y2), τ)). In words, the

behaviour of the first component depends only on its local state.
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Definition 11 A two-level continuous dynamical system (Y, R≥0, g) consistently

simulates a discrete dynamical system (X, N, f) if there is y0 ∈ Y1, a mapping φ

from X to 2Y2 and τ0 ∈ R>0 such that:

− ∀x 6= x′ ∈ X, φ(x) ∩ φ(x′) = ∅,

− g1(y0, τ0) = y0,

− ∀x ∈ X, ∀y ∈ φ(x), g2((y0, y), τ0) ∈ φ(f(x, 1)).

Note that the first part of component is a “fixed” part of the system since its

whole trajectory does not depend on the input of the simulated system.

Definition 12 A simulation (by a two-level system) is robust iff there exists δ, ε ∈

R>0 such that:

− ∀x 6= x′ ∈ X, dist(φ(x), φ(x′)) > 2ε

− ∀x ∈ X, ∀y2 ∈ Y2, ∀n ∈ N, ∀τ ∈ R≥0,

max(dist(y2, φ(x)), dist(τ, nτ0)) ≤ δ ⇒ dist(g2((y0, y2), τ), φ(f(y, n))) ≤ ε

where dist(Y, Y ′) = inf(|y − y′|∞ | y ∈ Y, y′ ∈ Y ′)

Thus, if the simulation is robust, starting with an initial state no more pertu-

bated than δ and delaying or anticipating the observation of the system by no more

than δ, the state of the simulated system can be recovered. For obvious reasons, the

simulation of an infinite-state system cannot be simultaneously robust and bounded.

4.2. Two counter machines

We will simulate two (non negative integer) counter machines (equivalent to

Turing machines [9]). Their behaviour is described by a set of instructions. An

instruction I may be one of the following kind with an obvious meaning (cptu is a

counter with u ∈ {1, 2}):

− I : goto I′;

− I : increment(cptu); goto I
′;

− I : decrement(cptu); goto I
′;

− I : if cptu = 0 then goto I′ else goto I”;

− I : STOP;

W.l.o.g. a decrementation must be preceded by a test on the counter and the

(possible) successor(s) of an instruction is (are) always different from it.

4.3. Basic principles of the simulation

4.3.1. Transition pairs.

In a TDPN, when a transition begins to fire, it will never stop. Thus we use

transition pairs in order to temporarily either move tokens from one place to another

one, or produce/consume tokens in a place.

Let us examine transitions thigh and tlow of figure 6. Their incidence is oppo-

site. So if their firing rate is equal no marking change will occur. Let us examine

W, all the items of W(thigh) and W(tlow) are equal except W(pk, tlow) = k and

W(pk, thigh) =⊥. Thus, if any other place controls the firing rate of tlow it will be

equal to the one of thigh. Place pk is a constant place meaning that its marking
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Figure 6: A transition pair

k-1

k

k+1

m(x )2

m(x )1

m(y )1

p time

=1

Figure 7: The behaviour of the clock subnet

will always be k. Summarizing:

− if winm(in) > k ∧ woutm(out) > k ∧ w1m(test1) > k ∧ w2m(test2) > k

then this pair transfers some amount of tokens from in to out,

− otherwise, there will be no marking change.

The clock subnet. The net that we build consists in two subnets: an instance

of the subnet of figure 3, called in the sequel the clock subnet, and another subnet

depending on the counter machine called the operating subnet. The clock subnet

has k as average value, 1 as amplitude and π as period (i.e. ω = 2). We recall

the behavioural equations of the place markings that will be used by the operating

subnet: m(x1)(τ) = k + sin(2τ),m(y1)(τ) = k − sin(2τ).

Figure 7 represents the evolution of markings for x1, y1 and x2 (the marking of

place y2 is symmetrical to x2 w.r.t. the axis m = k). Note that the mottled area is

equal to 1.

The marking changes of the operating subnet will be ruled by the places x1

and y1. An execution cycle of the net will last π. The first part of the cycle (i.e.

[hπ, hπ + π/2] for some h ∈ N) corresponds to m(x1) ≥ k and the second part of

the cycle (i.e. [hπ + π/2, (h + 1)π]) corresponds to m(y1) ≥ k. So, the period of

observation τ0 is equal to π.

Specialisation of the transition pairs pattern.

Using place x1 (or y1), we specialise transition pairs as illustrated in figure 8 (pk

is the constant place of the clock subnet). In this subnet, one of the test place is x1

and the control weights of the two test places (x1 and test) are 1. First due to the

periodical behaviour of m(x1), no tokens transfer will occur during the second part
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Figure 8: A specialised transition pair

of the cycle. Let us examine the different cases during a time interval [hπ, hπ+π/2].

We assume that within this interval m(test),m(in) and m(out) are not modified

by the other transitions.

− If m(test)(hπ) ≤ k then there will be no transfer of tokens.

− If m(test)(hπ) ≥ k +1∧win(m(in)(hπ)−n) ≥ k +1∧woutm(out)(hπ) ≥ k +1

then thigh will be controlled by x1 and tlow will be controlled by pk. Hence

(see the integral of figure 7) exactly n tokens will be transfered from in to

out.

− Otherwise, some amount of tokens in [0, n] will be transfered from in to out.

From a simulation point of view, one wants to avoid the last case. For the same

reason, when possible, we choose win and wout enough large so that it ensures that

in and out will never control thigh and tlow.

4.4. The operating subnet

Places of the operating subnet and the simulation mapping. Let us sup-

pose that the counter machine has l instructions {I1, . . . , Il} and two counters

{cpt1, cpt2}. The operating subnet has the following places: pc, qc, pn, qn, c1, c2.

The forth first places simulate the program counter whereas the last ones simulate

the counters. Furthermore by construction, the following invariants will hold for

every reachable marking m: m(pc) + m(qc) = l + 1 and m(pn) + m(qn) = l + 1.

We now define the simulation mapping φ. Assume that, in a state s of the counter

machine, Ii is the next instruction and the value of the counter cptu is vu. Then a

marking m ∈ φ(s) iff:

− The submarking corresponding to the clock subnet is its initial marking.

− m(pn) = i, m(qn) = l + 1 − i,

if 1 < i < l then

m(pc) ∈ [i − l/k, i + l/k] and m(qc) ∈ [l + 1 − i − l/k, l + 1 − i + l/k]

else if i = 1

m(pc) ∈ [1, 1 + l/k] and m(qc) ∈ [l − l/k, l]

else if i = l

m(pc) ∈ [l − l/k, l] and m(qc) ∈ [1, 1 + l/k]

− m(c1) = k − 1 + 3v1,m(c2) = k − 1 + 3v2.

Moreover, we choose k ≥ 6l2 for technical reasons.
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Figure 9: First stage: simulation of an unconditional jump

Principle of the instruction simulation. The simulation of an instruction Ii

takes exactly the time of the cycle of the clock subnet and is decomposed in two

parts (m(x1) ≥ k followed by m(y1) ≥ k).

The first stage is triggered by ((k + 3l)/i)m(pc) ≥ k + 1 ∧ ((k + 3l)/(l + 1 −

i)m(qc) ≥ k + 1 and performs the following tasks:

− updating m(pn) by producing (resp. consuming) j − i tokens if j > i

(resp. j < i) where Ij is the next instruction; simultaneously updating m(qn)

accordingly. If Ii is a conditional jump, this involves to find the appropriate

j. The marking of pn will vary from i to j and the one of qn from l + 1 − i

to l + 1 − j,

− updating the counters depending on the instruction.

The second stage is triggered by ((k + 3l)/j)m(pn) ≥ k + 1 ∧ ((k + 3l)/(l +

1 − j)m(qn) ≥ k + 1 and performs the following task: updating m(pc) and m(qc)

by a variable value in such a way that their marking still belong to the intervals

associated with the simulation mapping.

First stage: simulation of an unconditional jump. This part of the simulation

applies to both an unconditional jump, an incrementation and a decrementation.

The simulation of the counter updates is straightforward once this pattern is pre-

sented. For this kind of instructions, the next instruction say Ij is a priori known.

The subnet we build depends on the relative values of i (the index of the current

instruction) and j (the index of the next instruction). Here, we assume that i < j,

the other case is similar. The transition pair of figure 9 is both triggered by pc and

qc.

− Assume that the current instruction is Ii′ with i′ 6= i. If i′ < i then pc

disables the transition pair whereas if i′ > i then qc disables the transition

pair. We explain the first case. m(pc) ≤ i′ + l/k ≤ i − 1 + l/k; thus

((k + 3l)/i)m(pc) ≤ ((k + 3l)/i)(i− 1 + l/k) ≤ k − 1

(due to our hypothesis on k).

− Assume that the current instruction is Ii. Then both

((k + 3l)/i)m(pc) ≥ ((k + 3l)/i)(i− l/k) ≥ k + 2 and
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Figure 10: The first stage of a conditional jump (places are duplicated for readabil-
ity)

((k + 3l)/(l + 1− i))m(qc) ≥ ((k + 3l)/(l + 1 − i))((l + 1 − i) − l/k) ≥ k + 2.

Thus in the second case, the pair is activated and transfers j − i tokens from qn

to pn during the first part of the cycle as required.

Note that W(pn, tci,1) = W(pn, tci,2) = W(qn, tci,1) = W(qn, tci,2) = 2k en-

sures that places pn and qn do not control these transitions (since 2k ≥ k + 2 for k

enough large).

First stage: simulation of a conditional jump. The first stage for simu-

lating the instruction Ii : if cptu = 0 then goto Ij else goto Ij′ ; is illustrated in

figure 10 in case i < j < j ′ (the other cases are similar).

It consists in two transition pairs. Pair tci,1, tci,2 mimics the first stage of an

unconditional jump from Ii to Ij. It will transfer during the first part of the cycle

j− i tokens from qn to pn. Pair tci,3, tci,4 is triggered if cu ≥ k +1 (i.e. the counter

cptu is non null). If it is the case it will transfer j ′ − j tokens from qn to pn. Thus:

− If m(cu) = k − 1 then only the first pair is triggered and j − i tokens will be

transfered from qn to pn.

− otherwise m(cu) ≥ k + 2, the two pairs are simultaneously triggered and

j − i tokens will be transfered from qn to pn and j ′ − j from qn to pn.

Summing, j′ − i tokens will be transfered from qn to pn as required.

The second stage. This stage is the difficult part of this simulation. Due to the

fact that the ODE ruling a TDPN is a linear equation inside a configuration, we

cannot obtain a precise updating of m(pc) and m(qc). Roughly speaking it would

require to reach a steady state in finite time which is impossible with linear ODEs.

Thus the second stage consists in trying to make the marking of pc as close as

possible to j and the one of qc as close as possible to l + 1 − j.

It consists in two transition pairs depending whether the index i of the current

instruction is greater or smaller than j. The first case is illustrated in figure 11 (the

other case is similar).

The transition pair tnj,1, tnj,2 is activated if both m(pn) = j, m(qn) = l + 1− j
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Figure 11: The second stage

and m(pc) > j. If the rate of transition tnj,1 was controlled during the whole stage

by y1, pc would loose l tokens. But this means that at the beginning of the stage

m(pc) > j and at the end m(pc) ≤ j which is impossible since m(pc) must be greater

than j in order to trigger the transition pair and thus cannot reach the value j (see

our previous remark on linear differential equations). Thus during the second stage

pn must control the rate of this transition. Since m(y1) ≤ k+1, this means that, at

the end of the stage, (k/j)m(pc) ≤ k+1 which implies j ≤ m(pc) ≤ j+j/k ≤ j+l/k

and consequently l + 1− j − l/k ≤ m(qc) ≤ l + 1− j as required by the simulation.

The case i < j leads, at the end of the second stage, to j − l/k ≤ m(pc) ≤ j and

consequently l + 1 − j ≤ m(qc) ≤ l + 1 − j − l/k.

Theorem 6 is a consequence of our different constructions. The dimension of the

associated of ODE is obtained by recalling that the ODE of the clock subnet is 2

and that the following invariants hold in the operating subnet: m(pn) + m(qn) =

m(pc) + m(qc) = l + 1. The proof of robustness is omitted.

Theorem 6 Given a two counter machine M, one can build a TDPN D, with a

constant number of places, whose size is linear w.r.t. the machine, whose associated

ODE has dimension 6 and such that D robustly simulates M.

Using a more elaborated simulation of the counters described in [6], one obtains

a bounded simulation with an increase of the dimension for the associated ODE.

The additional complexity is due to the fact that the simulation of the counters by

bounded places is obtained via an inverse exponential mapping from values to place

markings.

Theorem 7 Given a two counter machine M, one can build a bounded TDPN D

with a constant number of places, whose size is linear w.r.t. the machine and whose

associated ODE has dimension 14 such that D simulates M.

4.5. Undecidability results

In this section, we apply the simulation results in order to obtain undecidability
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results. Proofs are omitted. Note that the status of the marking reachability prob-

lem is still open since in the simulation, places pc and qc are not required to take

precise values. However the steady-state analysis, a kind of ultimate reachability,

is undecidable.

Proposition 4 (Coverability and reachability) Let D be a (resp. bounded)

TDPN whose associated ODE has dimension at least 6 (resp. 14), m0,m1 be mark-

ings, p be a place and k ∈ N then:

− the problem whether there is a τ such that the trajectory starting at m0 fulfills

m(τ)(p) = k is undecidable.

− The problem whether there is a τ such that the trajectory starting at m0 fulfills

m(τ)(p) ≥ k is undecidable.

− The problem whether there is a τ such that the trajectory starting at m0 fulfills

m(τ) ≥ m1 is undecidable.

Proposition 5 (Steady-state analysis) Let D be a (resp. bounded) TDPN whose

associated ODE has dimension at least 8 (resp. 16), m0 be a marking. Then the

problem whether the trajectory m starting at m0 is such that limτ→∞ m(τ) exists,

is undecidable.

5. Conclusion

In this work, we have introduced continuous Petri nets and we have established

efficient algorithms for deadlock-freeness and liveness. Then in a timed framework,

we have shown their equivalence with time differentiable Petri nets and we have

designed a simulation of counter machines by these models. Using this simulation,

we have also proved that marking coverability, submarking reachability and the

existence of a steady-state are undecidable. We conjecture that the marking reach-

ability is undecidable and we will try to prove it. In order to obtain decidability

results, we also plane to introduce subclasses of continuous Petri nets where the

restrictions will be related to both the structure of the net and the associated ODE.
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