
Real Time Properties
for Interrupt Timed Automata ∗

Béatrice B́erard† Serge Haddad‡ Mathieu Sassolas†

†Universit́e Pierre & Marie Curie,
LIP6/MoVe, CNRS UMR 7606, Paris, France

‡École Normale Suṕerieure de Cachan,
LSV, CNRS UMR 8643, Cachan, France

Abstract

Interrupt Timed Automata (ITA) have been introduced to
model multi-task systems with interruptions. They form a
subclass of stopwatch automata, where the real valued vari-
ables (with rate0 or 1) are organized along priority levels.
While reachability is undecidable with usual stopwatches,
the problem was proved decidable for ITA.

In this work, after giving answers to some questions left
open about expressiveness, closure, and complexity for ITA,
our main purpose is to investigate the verification of real
time properties over ITA. While we prove that model check-
ing a variant of the timed logicTCTL is undecidable, we
nevertheless give model checking procedures for two rel-
evant fragments of this logic: one where formulas contain
only model clocks and another one where formulas have a
single external clock.

1 Introduction

Context. Scheduling problems in multi-task systems are
usually modeled with stopwatches,i.e. variables which
evolve with rate0 or 1 and can be tested and updated
when discrete transitions are fired. Thus stopwatches model
clocks that can be suspended and restarted with their former
value, which makes them useful to express delay accu-
mulation. However, adding such variables to finite auto-
mata yields the powerful model of Stopwatch Automata
(SwA) [15, 10] where reachability has been proved un-
decidable. On the other hand, reachability is PSPACE-
complete in the now classical model of Timed Automata
(TA) [2, 3], where all variables are clocks, with single rate
1.

Restricting SwA to gain decidability, while retaining part
of the power of stopwatches, is a difficult problem. A few

∗Work partially supported by projects CoChaT (Digiteo 2009-27HD)
and DOTS (ANR-06-SETI-003)

models have been proposed, for instance Suspension Auto-
mata [17], Hierarchical Timed Automata [12], Task Auto-
mata [14] or Interrupt Timed Automata (ITA) [5]. We con-
sider here the ITA model, specifically adapted to the de-
scription of multi-task systems with hierarchical interrupt
levels in a single processor environment, like operating sys-
tems. As proved in [5], untiming languages accepted by
ITA yields regular languages with the effective construction
of a class graph generalizing the region automaton from [2].

While untimed properties like reachability orCTL model
checking [13, 19, 11] are useful for such models, real time
verification allows to obtain more precise results, for in-
stance quantitative response time properties. Therefore,
timed extensions ofCTL have been defined, leading to dif-
ferent versions of TimedCTL (TCTL) [1, 16] for which
several tools on TA have been developed [4, 9].

Contribution. Starting with studying closure properties
and settling an expressiveness conjecture from [5], we im-
prove complexity of reachability on ITA. We then focus on
the verification of real time properties for ITA. These prop-
erties are expressed inTCTLc, a timed extension ofCTL
where formulas involve model clocks as well as external
clocks. This logic is a variant of the one in [16], also studied
later from the expressivity point of view [8]. Unfortunately,
we prove here that, contrary to reachability, model checking
TCTLc over ITA is undecidable. The result holds for a fixed
two-clock formula, showing its robustness (which is not al-
ways the case in similar proofs). However, we propose two
fragments for which decidability procedures can be found.
In the first one, only model clocks are involved and we can
express properties like(P1) a safe state is reached before
spending 3 t.u. in handling some interruption. Decidabil-
ity is obtained by a generalized class graph construction in
2-EXPSPACE (PSPACE if the number of clocks is fixed).
Since the corresponding fragment cannot refer to global
time, we consider a second fragment in which it is possible
to reason on minimal or maximal delays. Properties like
(P2) the system is error free for at least 50 t.u.or (P3) the

system will reach a safe state within 7 t.u.can be expressed.
In this case, the decidability procedure relies on a new spe-
cific technique involving infinite runs.

Outline. Section 2 gives definitions for ITA, expressive-
ness, closure, and complexity results. We prove in Section 3
that model checkingTCTLc over ITA is undecidable and
Section 4 presents model checking procedures for two frag-
ments ofTCTLc.

2 Interrupt Timed Automata

Notations. The sets of natural, rational and real numbers
are denoted respectively byℕ, ℚ andℝ. For a finite setX
of clocks, a linear expression overX is a term of the form∑

x∈X ax ⋅ x + b whereb and theaxs are inℚ. We denote
by C(X) the set of constraints obtained by conjunctions of
atomic propositions of the formC ⊳⊲ 0, whereC is a linear
expression overX and⊳⊲∈ {>,≥,=,≤, <}. The subset
C0(X) of C(X) contains constraints of the formx+ b ⊳⊲ 0.
An update overX is a conjunction of assignments of the
form x := C for a clockx ∈ X and a linear expressionC
overX. The set of all updates overX is writtenU(X), with
U0(X) for the subset containing only assignments of the
form x := 0 (reset) or of the formx := x (no update). For
a linear expressionC and an updateu containingx := Cx,
the expressionC[u] is obtained by substitutingx by Cx in
C.

A clock valuation is a mappingv : X 7→ ℝ and we
denote by0 the valuation with value0 for all clocks. The
set of all clock valuations isℝX and we writev ∣= ' when
valuationv satisfies the clock constraint'. For a valuation
v, a linear expressionC and an updateu, the valuev(C) is
obtained by replacing eachx in C by v(x) and the valuation
v[u] is defined byv[u](x) = v(Cx) for x in X if x := Cx

is the update forx in u.

Interrupt timed automata and timed automata. Inter-
rupt Timed Automata (ITA) were introduced in [5] to model
multi-task systems with interruptions.

lev. 1 x1 := 0

lev. 2

lev. 3

lev. 4

x3 := 0
x2 := 0

x4 := 0

. . .

Figure 1. Interrupt levels and clocks in an ITA.

Given a set of tasks with different priority levels, a higher
level task represents an interruption for a lower level task.
At a given level, exactly one clock is active (rate1), while
the clocks for tasks of lower levels are suspended (rate0),
and the clocks for tasks of higher levels are not yet activated
and thus contain value0. The mechanism is illustrated in
Figure 1.

We extend the definition by associating with states a tim-
ing policy which indicates whether time may (Lazy, de-
fault), may not (Urgent) or must (Delayed) elapse in a state.
This feature could not be enforced by additional clock con-
straints like in TA and is needed to obtain the translation
from ITA to ITA− (see below). We also add a labeling of
states with atomic propositions, in view of interpreting logic
formulas on these automata.

Definition 1. An interrupt timed automatonis a tuple
A = ⟨Σ, AP,Q, q0, F, pol,X, �, lab,Δ⟩, where:

∙ Σ is a finite alphabet,AP is a set of atomic proposi-
tions

∙ Q is a finite set of states,q0 is the initial state,F ⊆ Q

is the set of final states,

∙ pol : Q → {Lazy, Urgent,Delayed} is the timing
policy of states,

∙ X = {x1, . . . , xn} consists ofn interrupt clocks,

∙ the mapping� : Q→ {1, . . . , n} associates with each
state its level, andlab : Q → 2AP labels each state
with a subset ofAP of atomic propositions,

∙ Δ ⊆ Q× [C(X)× (Σ ∪ {"})× U(X)]×Q is the set
of transitions. We callx�(q) the active clock in state

q. Let q
',a,u
−−−→ q′ in Δ be a transition withk = �(q)

and k′ = �(q′). The guard' contains only clocks
from levels less than or equal tok: it is a conjunction
of constraints of the form

∑k
j=1 ajxj + b ⊳⊲ 0. The

updateu is of the form∧n
i=1xi := Ci with:

– if k′ < k, i.e. the transition decreases the level,
thenCi is of the form

∑i−1
j=1 ajxj + b or Ci =

xi (unchanged clock value) for1 ≤ i ≤ k′ and
Ci = 0 otherwise;

– if k′ ≥ k thenCi is of the form
∑i−1

j=1 ajxj + b

or Ci = xi for 1 ≤ i ≤ k, Ci = 0 for k < i.

The class ITA− is the subclass of ITA where updates are
restricted as follows. For a transitionq

',a,u
−−−→ q′ of an auto-

matonA in ITA−, with k = �(q) andk′ = �(q′), there is
no update (i.e. xi := xi for all i) if k′ < k and ifk′ ≥ k, the
updateu is of the form∧n

i=1xi := Ci with Ck of the form∑k−1
j=1 ajxj + b or Ck = xk, Ci = 0 if k < i andCi = xi

if i < k. Thus, in an ITA−, the only non trivial update (i.e.

not enforced by the semantics of the model) is an update of
the clock of the current level, when the transition does not
decrease the level.

A configuration of the system consists of a state of
the ITA, a clock valuation and a boolean value expressing
whether time has elapsed since the last discrete transition.

Definition 2. The semantics of an ITAA is defined by the
transition systemTA = (S, s0,→). The setS of config-
urations is{(q, v, �) ∣ q ∈ Q, v ∈ ℝX , � ∈ {⊤,⊥}},
with initial configuration(q0,0,⊥). The relation→ on S
consists of two types of steps:

Time steps: Only the active clock in a state can evolve, all
other clocks are suspended. For a stateq with active
clockx�(q), a time step of durationd > 0 is defined by

(q, v, �)
d
−→ (q, v′,⊤) with v′(x�(q)) = v(x�(q)) + d

and v′(x) = v(x) for any other clockx. A time step
of duration0 leaves the systemTA in the same config-
uration. Whenpol(q) = Urgent, only time steps of
duration0 are allowed fromq.

Discrete steps:A discrete step(q, v, �)
a
−→ (q′, v′,⊥) can

occur if there exists a transitionq
',a,u
−−−→ q′ in Δ such

that v ∣= ' andv′ = v[u]. Whenpol(q) = Delayed

and� = ⊥, discrete steps are forbidden.

An ITA A1 is depicted in Figure 2(a), with two interrupt
levels (and two interrupt clocks), with a geometric view of
a possible trajectory in Figure 2(b).

q0, 1 q1, 2 q2, 2

x1 < 1,
a,

(x2 := 0)
x1 + 2x2 = 2,

b

(a) An ITA A1 with two interrupt levels

x1

x2

0 2

1

1a

b

(b) A possible trajectory inA1

Figure 2. An example of ITA and a possible
execution.

We now briefly recall the classical model of timed auto-
mata (TA) [3] (in which timing policies can be enforced by
clock constraints).

Definition 3. A timed automatonis a tuple A =
⟨Σ, Q, q0, F,X,Δ⟩, whereΣ, Q, q0, F , andX are defined

as in an ITA and the set of transition isΔ ⊆ Q× C0(X)×
Σ × U0(X) × Q, with guards inC0(X) and updates in
U0(X).

The semantics of a timed automaton is also defined as a
timed transition system, with the setQ× ℝX of configura-
tions (no additionnal boolean value). Discrete steps are sim-
ilar to those of ITA but in time steps, all clocks evolve with

same rate1: (q, v)
d
−→ (q, v′) iff ∀x ∈ X, v′(x) = v(x)+d.

A run of an automatonA in TA or in ITA is a path in
the associated timed transition system, where time steps
and discrete steps alternate. Anaccepting runis a finite
run ending in a state ofF . For such a run with label
d1a1d2 . . . dnan, we say that the word(a1, d1)(a2, d1 +
d2) . . . (an, d1 + ⋅ ⋅ ⋅ + dn) (where" actions are removed)
is accepted byA. The setℒ(A) contains the timed words
accepted byA. Interrupt Timed Languages or ITL (resp.
Timed Languages or TL) denote the family of timed lan-
guages accepted by an ITA (resp. a TA). We also consider
maximal runswhich are either infinite or such that no dis-
crete step is possible from the last configuration. We use the
notion of (totally ordered) positions (which allow to con-
sider multiple discrete actions simultaneously) along a max-
imal run [16]: for a run�, we denote by<� the strict order
on positions and for position� along�, the corresponding
configuration is denoted bys�.

Expressiveness, closure, and complexity results.We
end this section by closing some questions left open in [5]
and improve complexity bounds for the reachability prob-
lem on ITA. In particular, while it was known that ITL is
not contained in TL, the converse was not proved. We have:

Proposition 1. The families TL and ITL are incomparable.
ITL is neither closed under complementation, nor under in-
tersection.

These proofs rely on a specificpumping lemmafor ITA.
Note that incomparability of languages accepted by TA and
ITA also proves that ITA are not in the same class than Hier-
archical Timed Automata (HTA) from [12], since it was also
proved that these HTA can be flattened into a network of
TA.
Finally, we prove that ITA and ITA− have the same express-
ive power:

Proposition 2. Any ITA can be translated into an ITA− ac-
cepting the same language, with the same set of clocks. The
number of states and transitions is doubly exponential in the
number of clocks.

This transformation allows to reduce reachability for ITA
to the same problem for ITA−, where it is solved by bound-
ing the length of a minimal path. The bound is exponential
for ITA−, but stays only doubly exponential for ITA, due to
the conservation of the number of clocks. Thus, we have:

Proposition 3. Reachability on ITA can be done in 2-
NEXPTIME and in NP when the number of clocks is fixed.

These results improve the ones of [5] where the upper
bounds were in 2-EXPSPACE and in PSPACE when the
number of clocks is fixed.

Detailed proofs for these results can be found in [6].

3 Model checkingTCTL over ITA

3.1 Timed logicTCTLc.

At least two different timed extensions of the branching
time logicCTL have been proposed. The first one [1] adds
subscripts to theU operator while the second one considers
formula clocks [16]. Model checking of timed automata
was proved decidable in both cases and compared express-
iveness has been revisited later on [8].

In the variant below,CTL is enriched with both model
clocks (setX), used in linear constraints, and formula
clocks (setY disjoint fromX), used only in comparisons
to constants and resets. Such linear constraints yield a more
expressive logic, which raises the question of decidability
both for TA and ITA.

Definition 4. Formulas of the timed logicTCTLc are
defined by the following grammar:

 ::= p ∣ y + b ⊳⊲ 0 ∣
∑

i∈I

ai ⋅ xi + b ⊳⊲ 0 ∣ y. ∣

A U ∣E U ∣ ∧ ∣ ¬

wherep ∈ AP is an atomic proposition,y ∈ Y is a formula
clock,xi are model clocks,ai and b are rational numbers
such that(ai)i∈I has finite supportI ⊆ ℕ, and⊳⊲∈ {>,≥
,=,≤, <}.

LetA = ⟨Σ, AP,Q, q0, F, pol,X, �, lab,Δ⟩ be an inter-
rupt timed automaton andS = {(q, v, �) ∣ q ∈ Q, v ∈
ℝX , � ∈ {⊤,⊥}}, the set of configurations. The for-
mulas ofTCTLc are interpreted over extended configura-
tions of the form(q, v, �, w), also written as(s, w), where
s = (q, v, �) ∈ S andw ∈ ℝY is a valuation of the formula
clocks1. The notions of (maximal) run and position are ex-
tended to these configurations in a natural way: the clock
valuationw becomesw + d in a time step of delayd and is
unchanged in a discrete step. We denote byExec(s, w) the
set of maximal runs starting from(s, w).

The semantics ofTCTLc is defined as follows.
For atomic propositions and a configuration(s, w) =

1The boolean value in the configuration is not actually used. The logic
could be enriched to take advantage of this boolean, to express for example
that a run lets some time elapse in a given state.

(q, v, �, w):

(q, v, �, w) ∣= p iff p ∈ lab(q)
(q, v, �, w) ∣= y + b ⊳⊲ 0 iff w ∣= y + b ⊳⊲ 0
(q, v, �, w) ∣=

∑
i≥1 ai ⋅ xi+b ⊳⊲ 0

iff v ∣=
∑

i≥1 ai ⋅ xi + b ⊳⊲ 0

and inductively:

(s, w) ∣= y. iff y ∈ Y and(q, v, w[y := 0]) ∣=

(s, w) ∣= A'U iff ∀� ∈ Exec(s, w), � ∣= 'U

(s, w) ∣= E'U iff ∃� ∈ Exec(s, w) s. t.� ∣= 'U

with � ∣= 'U iff there is a position� ∈ � s. t. s� ∣=

and∀�′ <� �, s�′ ∣= ' ∨

the cases for boolean operators are omitted.

3.2 Undecidability of TCTLc model checking.

We now prove that model checkingTCTLc over ITA is
undecidable. More precisely, letTCTLext

c be the fragment
of TCTLc containing only formula clocks, we have:

Theorem 1. Model checkingTCTLext
c over ITA is undecid-

able.

The first step of the proof is the construction of auto-
matonAℳ, as a synchronized product between an interrupt
timed automaton and a timed automaton, to simulate a two
counter machineℳ. In the second step, aTCTLc formula
with two external clocks is built to simulate the timed auto-
maton part of the product. This formula does not depend on
the two counter machine.

First step. We consider the class ITA×TA of automata
built as a synchronized product between an interrupt timed
automaton and a timed automaton over the same alphabet.
Note that if accepted languages are considered, the lan-
guage of such an automaton is the intersection of the lan-
guage of an ITA and the language of a TA.

Lemma 1. Reachability is undecidable in the class
ITA×TA.

Sketch.We build an automaton in ITA×TA which simu-
lates a deterministic two counter machine. Recall that such
a machineℳ consists of a finite sequence of labeled in-
structionsL, which handle two countersc andd, and ends
at a special instruction with labelHalt. The other instruc-
tions have one of the two forms below, wheree ∈ {c, d}
represents one of the two counters:

∙ e := e+ 1; gotoℓ′

∙ if e > 0 then(e := e− 1; gotoℓ′) else gotoℓ′′

Without loss of generality, we may assume that the coun-
ters have initial value zero. The behaviour of the machine
is described by a (possibly infinite) sequence of configura-
tions: ⟨ℓ0, 0, 0⟩⟨ℓ1, n1, p1⟩ . . . ⟨ℓi, ni, pi⟩ . . ., whereni and
pi are the respective counter values andℓi is the label, after
the itℎ instruction. The problem of termination for such a
machine (“is theHalt label reached?”) is known to be un-
decidable [18].

The automatonAℳ = ⟨Σ, AP,Q, q0, F, pol,X ∪
Y, �, lab,Δ⟩ is built to reach its final locationHalt if and
only if ℳ stops. It is defined as follows:

∙ Σ consists of one letter per transition,AP is defined in
the sequel.

∙ Q = L ∪ (L × {k0}) ∪ (L × {k1, k2, r1, . . . , r5} ×
{>,<}), q0 = ℓ0 (the initial instruction ofℳ) and
F = {Halt}.

∙ pol : Q → {Urgent, Lazy,Delayed} is such that
pol(q) = Urgent iff either q ∈ L or q = (ℓ, q2, ⊳⊲),
andpol(q) = Lazy in most other cases: some states
(ℓ, ki, ⊳⊲) areDelayed, as shown on Figure 4.

∙ X = {x1, x2, x3} is the set of interrupt clocks and
Y = {yc, yd} is the set of standard clocks with rate1.

∙ � : Q → {1, 2, 3} is the interrupt level of each state.
All states inL are at level1; so do all states corres-
ponding tok0, k1, k2 andr1. States corresponding to
r2 andr3 are in level2, while the ones corresponding
to r4 andr5 are in level3.

∙ lab will be defined in the second step of the proof.

∙ Δ is defined through basic modules in the sequel.

The transitions ofAℳ are built within small modules,
each one corresponding to one instruction ofℳ. The value
n of c (resp.p of d) in a state ofL is encoded by the value
1− 1

2n of clockyc (resp.1− 1
2p of yd).

The idea behind this construction is that for any standard
clocky, it is possible to mimic the copy of the value ofk−y
in an interrupt clockxi, for some constantk, provided the
value ofy never exceedsk. To achieve this, we start and
reset the interrupt clock, then stop it wheny = k. Note that
by the end of the copy, the value ofy has changed. Con-
versely, in order to copy the content of an interrupt clock
xi into a clocky, we interruptxi by xi+1 and resety at the
same time. Whenxi+1 = xi, clock y has the value ofxi.
Remark that the form of the guards onxi+1 allows us to
copy any linear expression on{x1, . . . , xi} in y.

For instance, consider an instruction labeled byℓ incre-
mentingc then going toℓ′, with the respective valuesn of
c andp of d, from a configuration wheren ≥ p. The cor-
responding moduleAc++

c≥d (ℓ, ℓ
′) is depicted on Figure 3. In

(ℓ, r1, >)
1, L

(ℓ, r2, >)
2, U

(ℓ, r3, >)
2, L

(ℓ, r4, >)
3, L

(ℓ, r5, >)
3, L

ℓ′

1, U

yc = 1
b1ℓ

b2ℓ
x2 := x1

yd = 1
b3ℓ

yc := 0

x3 = x2 −
x1
2

b4ℓ
yd := 0

x3 = 1 −
x1
2

b5ℓ

Figure 3. Module Ac++
c≥d (ℓ, ℓ

′) incrementing the
value of c when c ≥ d.

this module, interrupt clockx1 is used to record the value
1
2n whilex2 keeps the value12p . Assuming thatyc = 1− 1

2n ,
yd = 1 − 1

2p andx1 = 0 in state(ℓ, r1, >), the unique run
in Ac++

c≥d (ℓ, ℓ
′) will end in stateℓ′ with yc = 1 − 1

2n+1 and
yd = 1− 1

2p .
The module on Figure 3 can be adapted for the case

of decrementingc by just changing the linear expressions
in guards forx3, provided that the final value ofc is still
greater than the one ofd. It is however also quite easy to ad-
apt the same module whenn < p: in that case we store12p
in x1 and 1

2n in x2, sinceyd will reach1 beforeyc. We also
need to startyd beforeyc when copying the adequate values
in the clocks. The case of decrementingc while n ≤ p is
handled similarly. In order to choose which module to use
according to the ordering between the values of the coun-
ters, we use the module of Figure 4 which represents the
case when at labelℓ we have an increment ofc, or a similar
one for decrementation. In that last case the value ofc is
compared not only to the one ofd, but also to0, in order to
know which branch of theif instruction is taken. Note that
only one of the branches can be taken until the end of the
module2. Instructions involvingd are handled in a symmet-
rical way.

Aℳ is obtained by joining the modules described above
through the states ofL. The automatonAℳ can actually be
viewed as the product of an ITAℐ and a TAT , synchron-
ized on actions. It can be seen in all the modules described
above that guards never mix a standard clock with an inter-
rupt one. Since each transition has a unique label, keeping
only guards and resets on either the clocks ofX or on those
of Y yields an ITA and a TA whose product isAℳ.

Note that another notion of synchronized product
between ITA and TA leads to the class ITA+ where reach-
ability is decidable [5].

2State policies are used to treat the special cases,e.g.yc = yd = 0.

ℓ

1, U
(ℓ, k0)
1, L

(ℓ, r1, >)
1, L

(ℓ, r1, <)
1, L

(ℓ, k1, >)
1, L

(ℓ, k1, <)
1, D

(ℓ, k2, >)
1, L

(ℓ, k2, <)
1, L

a0
ℓ

x1 := 0

yc = 1
a1
ℓ,>

yc := 0

yd = 1
a1
ℓ,<

yd := 0

yd = 1
a2
ℓ,>

yd := 0

yc = 1
a2
ℓ,<

yc := 0

x1 = 1
a3
ℓ,>

x1 := 0

x1 = 1
a3
ℓ,<

x1 := 0

Figure 4. Module taking into account the or-
der between the values of c and d when incre-
menting c.

Second step. To prove Theorem 1, we build from the
automatonAℳ above a formula' in TCTLc simulating
the TA T , so that the ITAℐ satisfies' iff ℳ terminates.
Formula' expresses that (1) there is a run inℐ reaching the
Halt state, and (2) for each module ofℐ, this run satisfies
the constraints on the clocksyc andyd of T .

The full proofs that the above construction is correct (ℳ
halts iffAℳ reaches theHalt state) and for this second step
are given in [7]. Observe that state policies allow an encod-
ing with two TA clocks; an additional one would be needed
to simulate policies.

4 Decidable fragments

4.1 Model checkingTCTLint
c

In this section we consider formulas with only model
clocks, the corresponding fragment being denoted by
TCTLint

c . For example propertyP1 in the introduction is
expressed byAx2 ≤ 3U safe. Model checking is achieved
by adapting a class graph construction for untiming ITA and
adding information relevant to the formula. The problem
is thus reduced to aCTL model checking problem on this
graph.

Theorem 2. Model checkingTCTLint
c on interrupt timed

automata can be done in2-EXPSPACE, and in PSPACE
when the number of clocks is fixed.

Proof. The proof relies on a refinement of the class graph
construction in [5], each class being divided into subclasses
corresponding to truth values of comparisons in the given
formula. Thus each comparison can be represented by a
fresh propositional variable. The final step of the algorithm
consists in applying standardCTL model-checking proced-
ure.

Let ' be a formula inTCTLint
c andA an ITA with n

levels. In order to build the finite class graph, the first step

consists in computingn sets of expressionsE1, . . . , En.
Each setEk is initialized to {xk, 0} and expressions in
this set are those which are relevant for comparisons with
the current clock at levelk. The sets are then com-
puted top down fromn to 1. In that process, we use
the k-normalization operator: for an expressionC =∑

i≥1 aixi+b, if ak = 0, thennorm(C, k) =
∑k−1

i=1 aixi+

b, otherwisenorm(C, k) = xk +
∑k−1

i=1
ai

ak
xi +

b
ak

.

∙ At level k, we may assume (by normalization) that ex-
pressions in guards of an edge leaving a state are of the
form �xk +

∑
i<k aixi + b with � ∈ {0, 1}. We add

−
∑

i<k aixi − b toEk.

∙ To take into account the constraints of formula', we
add the following step: For each comparisonC ⊳⊲ 0
in ', and for eachk, with norm(C, k) = �xk +∑

i<k aixi + b (� ∈ {0, 1}), we also add expression
−
∑

i<k aixi − b toEk.

∙ Then we iterate the following procedure until no new
term is added to anyEi for 1 ≤ i ≤ k.

1. Letq
',a,u
−−−→ q′ with �(q′) ≥ k and�(q) ≥ k. If

C ∈ Ek, then we addC[u] toEk.

2. Let q
',a,u
−−−→ q′ with �(q′) ≥ k and�(q) < k.

ForC,C ′ ∈ Ek, we computeC ′′ = norm(C[u]−
C ′[u], �(q)). If C ′′ = �x�(q)+

∑
i<�(q) aixi+b

with � ∈ {0, 1}, then we add−
∑

i<�(q) aixi−b
toE�(q).

The proof of termination for this construction is similar to
the one in [5].

Consider the ITAA1 (Figure 2(a)) and the formula'1 =
E⊤U (q1 ∧ (x2 > x1)). We assume thatq1 is a propos-
itional property true only in stateq1. Initially, the set of
expressions areE1 = {x1, 0} andE2 = {x2, 0}. First the
expression− 1

2x1 + 1 is added intoE2 sincex1 + 2x2 = 2
appears on the guard in the transition fromq1 to q2. Then
expression1 is added toE1 becausex1 − 1 < 0 appears
on the guard in the transition fromq0 to q1. Finally ex-
pressionx1 is added toE2 sincex2 − x1 > 0 appears in
'1. After iteration, we obtainE1 = {x1, 0, 1,

2
3 , 2} and

E2 = {x2, 0,−
1
2x1 + 1, x1}. Remark that knowing the

order betweenx1 and 2
3 will allow us to know the order

between− 1
2x1 + 1 andx1.

The next step is to build the class graph as the trans-
ition systemGA whose set of configurations are the classes
R = (q, {⪯k}1≤k≤�(q)), whereq is a state and⪯k is a total
preorder overEk. The classR describes the set of valu-
ations[[R]]= {(q, v) ∣ ∀k ≤ �(q) ∀(g, ℎ) ∈ Ek, g[v] ≤ ℎ[v]
iff g ⪯k ℎ}. The set of transitions is defined by discrete and
successor steps, whose details are developed in [5]. Just
remark that the way the set of expressions is computed,

and more notably the inclusion of all differences between
other expressions (up to normalization details), will enable
us to know for each level the preorder between expres-
sions after firing a discrete transition increasing the inter-
rupt level. The transition systemGA is finite and time ab-
stract bisimilar toTA. Moreover, the truth value of each
comparisonC =

∑
i≥1 ai ⋅ xi + b ⊳⊲ 0 appearing in' can

be set for each classR. Indeed, since for everyk, both0

and
∑k−1

i≥1 ai ⋅ xi + b are in the set of expressionsEk, the
truth value ofC ⊳⊲ 0 does not change inside a class. There-
fore, introducing a fresh propositional variableqC for the
constraintC ⊳⊲ 0, each classR can be labeled with a truth
value for eachqC . Deciding the truth value of' can then be
done by a classicalCTL model-checking algorithm onGA.

On the example, we obtain the states in whichq1∧(x2 >
x1) is trueand conclude that'1 is trueonA1.

The complexity of the procedure is obtained by bounding
the number of expressions for each levelk bymax(2, ∣Δ∣+

∣'∣)2
n(n−k+1)+1, thus obtaining a triple exponential bound

for the size of the graph, by storing the orderings. The 2-
EXPSPACE complexity results in a standard way from a
non deterministic search in this graph.

Due to the linear constraints we conjecture that model
checkingTCTLint

c on TA is undecidable. This would en-
force the incomparability of TL and ITL from a decidability
point of view.

4.2 Model checking a fragment of TCTL

The decidability of model-checking TCTLc formulas
over ITA has been studied above for two cases: (1) when
there are2 formula clocks, in which case the problem is
undecidable (Theorem 1) and (2) when there is no formula
clock, in which case the problem is decidable (Theorem 2).

The remaining case concerns formulas with only1 for-
mula clock, which can measure elapsing of global time. In
this section, we prove the decidability of model checking
ITA for a strict subset of this logic. TCTLp is the set of
formulas where satisfaction of anuntil modality over pro-
positions can be parameterized by a time interval. Formulas
of TCTLp are defined by the following grammar:

'p := p∣'p ∧ 'p∣¬'p and
 := 'p∣A'p U⊳⊲a 'p∣E'p U⊳⊲a 'p∣ ∧ ∣¬

wherep ∈ AP is an atomic proposition,a ∈ ℚ+, and
⊳⊲∈ {>,≥,≤, <} is a comparison operator. This lo-
gic is indeed a subset ofTCTLc with only one formula
clock since a formula, sayA pU>ar, can be rewritten as
y.(A pU (r ∧ (y > a))). PropertiesP2 andP3 from in-
troduction are expressed respectively asA¬errorU≥50 ⊤
andA⊤U≤7 safe. Since ITA can be translated into ITA−,

the problem can be simplified by focusing on the subclass
ITA−. We prove that:

Theorem 3. Model checking TCTLp on ITA is decidable.

The proof consists in establishing procedures dedicated
to the 4 different subcases for ITA−: (1) E pU≤a r and
E pU<a r, (2) E pU≥a r andE pU>a r, (3) A pU≤a r and
A pU<a r and (4)A pU≥a r andA pU>a r, wherep andr
are boolean combinations of atomic propositions. Detailed
proofs can be found in [7]. First, we have:

Lemma 2. a. Model checking formulasE pU≤a r and
E pU<a r over ITA− is decidable in NEXPTIME and NP
when the number of clocks is fixed.

b. Model checking a formulaE pU≥a r and E pU>a r on
an ITA− is decidable in NEXPTIME and NP when the
number of clocks is fixed.

c. Model checking a formulaA pU≤a r andA pU<a r on
an ITA− is decidable in co-NEXPTIME and co-NP when
the number of clocks is fixed.

Sketch.The main idea underlying these procedures for
cases 1 and 2 is to obtain a maximal (exponential in the
number of clocks) size for the runs on which it is sufficient
to test the formula. Then the decision procedure is as fol-
lows. It non deterministically guesses a path in the ITA−

whose length is less than or equal to the bound. In order to
check that this path yields a run, it builds a linear program
whose variables are{xji}, wherexji is the value of clockxi
after thejth step, and{dj} wheredj is the amount of time
elapsed during thejth step, whenj corresponds to a time
step. The equations and inequations are deduced from the
guards and updates of discrete transitions in the path and the
delay of the time steps.

The satisfaction of the formula can be checked by separ-
ately verifying on one side that the run satisfiespU r, and
on the other side, that the sum of all delaysdj satisfies the
constraint in the formula.

The size of this linear program is exponential w.r.t. the
size of the ITA−. As a linear program can be solved in poly-
nomial time [20], we obtain a procedure in NEXPTIME. If
the number of clocks is fixed the number of variables is now
polynomial w.r.t. the size of the problem.

For formulas in case 3, a specific procedure can
be avoided: the result of case 2 can be reused since
A pU≤a r = (A pU r) ∧ ¬(E¬rU>a ⊤), andA pU<a r =
(A pU r) ∧ ¬(E¬rU≥a ⊤).

While a counterexample is a finite path in the three pre-
vious cases, it is potentially infinite in case 4. Therefore,the
proof is more difficult and the decidability procedure relies
on a specific technique.

Lemma 3. Model checking a formulaA pU≥a r and
A pU>a r on an ITA− is decidable.

Sketch.We start by noticing that formulaA pU≥a r is true
on a configuration of an ITA− A if all the following condi-
tions hold for paths starting in this configuration:

∙ all paths do satisfypU r,

∙ there is no path such that from a certain point where
the time elapsed is strictly less thana, propositionr is
falseuntil bothp andr are,

∙ there is no path such that from a certain point where
the time elapsed is strictly less thana, propositionr is
alwaysfalse.

Using maximal paths, which are either infinite or finite but
ending in a state from which no transition can be taken, is
necessary for this last condition.

5 Conclusion and related work

Several restrictions of stopwatch automata have been
proposed to gain decidability results. For the model of sus-
pension automata [17], reachability is decidable when stop-
watches have value zero if suspended and satisfy some ad-
ditional bounds. In the case of preemptive scheduling, the
clocks in task automata from [14] can be updated by sub-
traction, which can be viewed as a kind of stopwatch simu-
lation. Checking schedulability is proved decidable for sev-
eral scheduling policies (and undecidable in general).

In this work we consider interrupt timed automata, where
stopwatches are organized along hierarchical levels. Al-
though model checkingTCTL formulas with explicit clocks
is undecidable, we obtain decidability for two subsets of
real time properties: when only model clocks are used in
the formula, with a complexity in 2-EXPSPACE, and for
a subset ofTCTL with subscripts. The case of formulas
with internal clocks and only one external clock, remains
open. We also plan to extend these results to ITA+ which
subsumes both TA and ITA.
Acknowledgments. We wish to thank the anonymous re-
viewers for their insightful comments and suggestions.

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checkingin
dense real-time.Information and Computation, 104:2–34,
1993.

[2] R. Alur and D. L. Dill. Automata for modeling real-time
systems. InProc. of the 17th Int. Colloquium on Automata,
Languages and Programming, pages 322–335, New York,
NY, USA, 1990. Springer-Verlag New York, Inc.

[3] R. Alur and D. L. Dill. A theory of timed automata.Theor-
etical Computer Science, 126:183–235, 1994.

[4] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
UPPAAL. In Formal methods for the design of real-time sys-
tems (SFM-RT’04), volume 3185 ofLNCS, pages 200–236.
Springer, 2004.

[5] B. Bérard and S. Haddad. Interrupt Timed Automata. In
Proc. of the 12th Int. Conf. on Foundations of Software Sci-
ence and Computation Structures (FoSSaCS’09), volume
5504 ofLNCS, pages 197–211. Springer, 2009.

[6] B. Bérard and S. Haddad. Interrupt Timed Automata: A step
further. Technical Report LSV-09-1, Lab. Specification and
Verification, ENS de Cachan, Cachan, France, Jan. 2009. 24
pages.

[7] B. Bérard, S. Haddad, and M. Sassolas. Verification on In-
terrupt Timed Automata. Technical Report LSV-09-16, Lab.
Specification and Verification, ENS de Cachan, Cachan,
France, July 2009. 27 pages.

[8] P. Bouyer, F. Chevalier, and N. Markey. On the express-
iveness of TPTL and MTL. InProc. 25th Conf. on Founda-
tions of Software Technology and Theoretical Computer Sci-
ence (FSTTCS’05), volume 3821 ofLNCS, pages 432–443.
Springer, Dec. 2005.

[9] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and
S. Yovine. KRONOS: A Model-Checking Tool for Real-
Time Systems. InFTRTFT, pages 298–302, 1998.

[10] F. Cassez and K. G. Larsen. The impressive power of stop-
watches. InProc. of concur 2000: concurrency theory,
pages 138–152. Springer, 1999.

[11] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. InProc. International Conference on
Computer-Aided Verification (CAV 2002), volume 2404 of
LNCS, pages 241–268. Springer, 2002.

[12] A. David.Hierarchical Modeling and Analysis of Timed Sys-
tems. PhD thesis, Uppsala University, November 2003.

[13] E. A. Emerson and J. Y. Halpern. Decision procedures
and expressiveness in the temporal logic of branching time.
In Proc. 14th annual ACM Symp. on Theory of Computing
(Stoc’82), pages 169–180. ACM, 1982.

[14] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task auto-
mata: schedulability, decidability and undecidability.Inf.
Comput., 205(8):1149–1172, 2007.

[15] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata?Journal of Com-
puter and System Sciences, 57(1):94–124, 1998.

[16] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.Sym-
bolic model checking for real-time systems.Information
and Computation, 111(2):193–244, 1994.

[17] J. McManis and P. Varaiya. Suspension automata: a decid-
able class of hybrid automata. InProc. 6th Int. Conf. Com-
puter Aided Verification (CAV’94), pages 105–117. Springer,
1994.

[18] M. L. Minsky. Computation: finite and infinite machines.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1967.

[19] J.-P. Queille and J. Sifakis. Specification and verification of
concurrent systems in cesar. InProc. of the 5th colloquium
on international symposium on programming, pages 337–
351, London, UK, 1982. Springer-Verlag.

[20] C. Roos, T. Terlaky, and J.-P. Vial.Theory and Algorithms
for Linear Optimization. An Interior Point Approach. Wiley-
Interscience, John Wiley & Sons Ltd, 1997.

