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Abstract models have been proposed, for instance Suspension Auto-
mata [17], Hierarchical Timed Automata [12], Task Auto-
Interrupt Timed Automata (ITA) have been introduced to mata [14] or Interrupt Timed Automata (ITA) [5]. We con-
model multi-task systems with interruptions. They form a sider here the ITA model, specifically adapted to the de-
subclass of stopwatch automata, where the real valued vari-scription of multi-task systems with hierarchical intgytu
ables (with rated) or 1) are organized along priority levels.  levels in a single processor environment, like operatirgg sy
While reachability is undecidable with usual stopwatches, tems. As proved in [5], untiming languages accepted by
the problem was proved decidable for ITA. ITA yields regular languages with the effective constroiati
In this work, after giving answers to some questions left of a class graph generalizing the region automaton from [2].
open about expressiveness, closure, and complexity for ITA  While untimed properties like reachability GTL model
our main purpose is to investigate the verification of real checking [13, 19, 11] are useful for such models, real time
time properties over ITA. While we prove that model check- verification allows to obtain more precise results, for in-
ing a variant of the timed logi@CTL is undecidable, we stance quantitative response time properties. Therefore,
nevertheless give model checking procedures for two rel-timed extensions o TL have been defined, leading to dif-
evant fragments of this logic: one where formulas contain ferent versions of TimedTL (TCTL) [1, 16] for which
only model clocks and another one where formulas have aseveral tools on TA have been developed [4, 9].

single external clock. Contribution.  Starting with studying closure properties

and settling an expressiveness conjecture from [5], we im-
. prove complexity of reachability on ITA. We then focus on
1 Introduction the verification of real time properties for ITA. These prop-
erties are expressed WCTL,, a timed extension o€ TL
Context. Scheduling problems in multi-task systems are where formulas involve model clocks as well as external
usually modeled with stopwatchese. variables which  clocks. This logic is a variant of the one in [16], also stadie
evolve with rate0 or 1 and can be tested and updated |ater from the expressivity point of view [8]. Unfortunagel
when discrete transitions are fired. Thus stopwatches mode{ye prove here that, contrary to reachability, model chagkin
clocks that can be suspended and restarted with their formemCTL,. over ITA is undecidable. The result holds for a fixed
value, which makes them useful to express delay accu-two-clock formula, showing its robustness (which is not al-
mulation. However, adding such variables to finite auto- ways the case in similar proofs). However, we propose two
mata yields the powerful model of Stopwatch Automata fragments for which decidability procedures can be found.
(SwA) [15, 10] where reachability has been proved un- |n the first one, only model clocks are involved and we can
decidable. On the other hand, reachability is PSPACE- express properties likéP1) a safe state is reached before
complete in the now classical model of Timed Automata spending 3 t.u. in handling some interruptioBecidabil-
(TA) [2, 3], where all variables are clocks, with single rate ity is obtained by a generalized class graph construction in
L. 2-EXPSPACE (PSPACE if the number of clocks is fixed).
Restricting SwA to gain decidability, while retaining part - Since the corresponding fragment cannot refer to global
of the power of stopwatches, is a difficult problem. A few time, we consider a second fragment in which it is possible
*Work partially supported by projects CoChaT (Digiteo 2GIRHD) to reason on minimal or maximal delays. Properties like
and DOTS (ANR-06-SETI-003) (P2) the system is error free for at least 50 tar.(P3) the




system will reach a safe state within 7 taan be expressed. Given a set of tasks with different priority levels, a higher
In this case, the decidability procedure relies on a new spe-level task represents an interruption for a lower level task
cific technique involving infinite runs. At a given level, exactly one clock is active (rdtg while

Outline. Section 2 gives definitions for ITA, expressive- the clocks for tasks of lower levels are suspended (iate
ness, closure, and complexity results. We prove in Section 3and the clocks for tasks of higher levels are not yet activate
that model checkingd CTL. over ITA is undecidable and and thus contain value. The mechanism is illustrated in

Section 4 presents model checking procedures for two frag-Figure 1. o o _ _
ments ofTCTL... We extend the definition by associating with states a tim-

ing policy which indicates whether time may (Lazy, de-
fault), may not (Urgent) or must (Delayed) elapse in a state.
This feature could not be enforced by additional clock con-
straints like in TA and is needed to obtain the translation
Notations. The sets of natural, rational and real numbers from ITA to ITA_ (see below). We also add a labeling of
are denoted respectively B, Q andR. For a finite setX states with atomic propositions, in view of interpretingito

of clocks, a linear expression ovar is a term of the form  formulas on these automata.

> wex @z - T+ bwhereb and thea, s are inQ. We denote o _ _ _

by C(X) the set of constraints obtained by conjunctions of Definition 1. Aninterrupt timed automatois a tuple

atomic propositions of the form@' <t 0, whereC'is alinear A = (X, AP, Q, qo, F', pol, X, A, lab, A), where:

expression oveX and<ie {>,>,=,< <}. The subset

2 Interrupt Timed Automata

e Y is a finite alphabetAP is a set of atomic proposi-

Co(X) of C(X) contains constraints of the form+ b < 0.

An update overX is a conjunction of assignments of the

form x := C for a clockz € X and a linear expressiafl
overX. The set of all updates ovéf is writtenZ{(X), with

tions

e () is afinite set of stategy is the initial state,F’ C Q)

is the set of final states,

Up(X) for the subset containing only assignments of the . o
form z := 0 (reset) or of the form: := = (no update). For e pol : Q — {Lazy,Urgent, Delayed} is the timing
a linear expressiofi' and an update containingz := C., policy of states,
tcr}e expressioi'[u] is obtained by substituting by C., in e X = {a1,...,,} consists of interrupt clocks,
A clock valuation is a mapping : X — R and we e the mapping\: Q@ — {1,...,n} associates with each
denote by0 the valuation with valu@ for all clocks. The state its level, andab : Q — 24% labels each state
set of all clock valuations i®* and we writev |= ¢ when with a subset ofA P of atomic propositions,
valuationv satisfies the clock constraipt For a valuation
v, a linear expressio@' and an update, the valuev(C') is
obtained by replacing eaahin C by v(x) and the valuation
v[u] is defined byv[u](x) = v(C,) for z in X if 2 := C,
is the update fox: in u.

e ACQXIC(X)x (ZU{e}) xU(X)] x Qisthe set
of transitions. We calk,, the active clock in state
q. Letqg 2% ¢/ in A be a transition withk = \(q)
and &’ = A(¢’). The guardy contains only clocks
from levels less than or equal fo it is a conjunction
of constraints of the fornzf:1 a;z; +b o< 0. The

Interrupt timed automata and timed automata. Inter- ) !
updateu is of the formn\}_; z,; := C; with:

rupt Timed Automata (ITA) were introduced in [5] to model

multi-task systems with interruptions. — if k¥ < k, i.e. the transition decreases the level,

thenC; is of the formy_"_} aja; + b or C; =
x; (unchanged clock value) fdr < 7 < k&’ and
C; = 0 otherwise;

— if k" > k thenCj is of the forij;l1 a;T; +b
orC;,=x;for1 <i<k,C;=0fork < i.

lev. 4 xy =0

lev. 3

The class ITA is the subclass of ITA where updates are
restricted as follows. For a transitign=2"; ¢’ of an auto-
matonA in ITA_, with k = A(q) andk’ = A(¢'), there is
no updatei(e. z; := z; forall <) if ¥’ < kandifk’ > k, the
updateu is of the formA}_, z; := C; with C}, of the form
St aga;+borCy =y, C; = 0if k < iandC; = z;
if 2+ < k. Thus, in an ITA_, the only non trivial update.€.

lev. 2

Figure 1. Interrupt levels and clocks in an ITA.



not enforced by the semantics of the model) is an update ofas in an ITA and the set of transitionds C @ x Co(X) X
the clock of the current level, when the transition does not ¥ x Uy(X) x @, with guards inCy(X) and updates in
decrease the level. Up(X).

A configuration of the system consists of a state of
the ITA, a clock valuation and a boolean value expressing
whether time has elapsed since the last discrete transition

The semantics of a timed automaton is also defined as a
timed transition system, with the s@tx R¥ of configura-
tions (no additionnal boolean value). Discrete steps ane si
Definition 2. The semantics of an ITA is defined by the ilar to those of ITA but in time steps, all clocks evolve with

transition systen¥,4 = (.5, sg,—). The setS of config- same raté: (g, v) 4, (q,v")iff Yz € X, v/(x) = v(x)+d.

ur_ati(_)n_s_ is{(q,p,ﬂ) |_ geQ,veRX B € {T,L1}}, A run of an automatord in TA or in ITA is a path in
with initial configuration(go,0, 1). The relation— on S the associated timed transition system, where time steps
consists of two types of steps: and discrete steps alternate. Ancepting runis a finite

run ending in a state of’. For such a run with label
dyayds . . .dpa,, we say that the wordaq, d;)(as2,d; +
ds)...(an,d1 + -+ + dy) (wheree actions are removed)
a ) o is accepted byd. The setL(.A) contains the timed words
(¢,0,8) = (g, 0", T) with o' (z(g)) = ”(xx_(q)) +d accepted byA. Interrupt Timed Languages or ITL (resp.
andv'(z) = v(x) for any other clock:. Atime step  Timed Languages or TL) denote the family of timed lan-
of dgratlon() leaves the systeff in the same config- guages accepted by an ITA (resp. a TA). We also consider
uration. Whenpol(q) = Urgent, only time steps of  mayimal runswhich are either infinite or such that no dis-
duration0 are allowed from. crete step is possible from the last configuration. We use the
Discrete steps:A discrete stefiq, v, 3) = (¢,v', L) can nption of _(totaII_y ordered) posi_tions (which allow to con-
occur if there exists a transition ~“% ¢’ in A such §|dermult|plg discrete actions simultaneously) glong a-ma
thatv = ¢ andv’ — vfu]. Whenpol(q) = Delayed imal run [16]: for a runp, we denote by<, the strict order

and3 = 1, discrete steps are forbidden. on p_03|t|or_15 gnd for position alongp, the corresponding
configuration is denoted by .

Time steps: Only the active clock in a state can evolve, all
other clocks are suspended. For a statevith active
clockz ), a time step of duratiod > 0 is defined by

An ITA A, is depicted in Figure 2(a), with two interrupt
levels (and two interrupt clocks), with a geometric view of Expressiveness, closure, and complexity results.We

a possible trajectory in Figure 2(b). end this section by closing some questions left open in [5]
and improve complexity bounds for the reachability prob-
Ty <1, lem on ITA. In particular, while it was known that ITL is
@, r1 + 200 = 2, not contained in TL, the converse was not proved. We have:
(z2:=0) ~— b iy . .
@ q1,2 —@—» Proposition 1. The families TL and ITL are incomparable.
N ITL is neither closed under complementation, nor under in-
(@) AnITA A; with two interrupt levels tersection.
T2 These proofs rely on a specifiwmping lemméor ITA.

Note that incomparability of languages accepted by TA and
ITA also proves that ITA are not in the same class than Hier-

1 b archical Timed Automata (HTA) from [12], since it was also
proved that these HTA can be flattened into a network of
TA.
0 o1 5 1 Finally, we prove that ITA and ITA have the same express-
(b) A possible trajectory itd; Ve power:
Figure 2. An example of ITA and a possible Proposition 2. Any ITA can be translated into an ITAac-
execution. cepting the same language, with the same set of clocks. The

number of states and transitions is doubly exponentialén th
number of clocks.
We now briefly recall the classical model of timed auto-
mata (TA) [3] (in which timing policies can be enforced by
clock constraints).

This transformation allows to reduce reachability for ITA
to the same problem for ITA, where it is solved by bound-
ing the length of a minimal path. The bound is exponential
Definition 3. A timed automatonis a tuple A = for ITA _, but stays only doubly exponential for ITA, due to
(%,Q,q, F, X,A), whereX, Q, qo, F, and X are defined the conservation of the number of clocks. Thus, we have:



Proposition 3. Reachability on ITA can be done in 2-
NEXPTIME and in NP when the number of clocks is fixed.

These results improve the ones of [5] where the upper (q,v, 8,w) =

(Q7U7/B7 w):

(q,v,8,w) Ep iff p € lab(q)
y

+bx0 iff wkEy+b0

bounds were in 2-EXPSPACE and in PSPACE when the (g,v,8,w) = Y ;o  a;i - 2;+b>0

number of clocks is fixed.
Detailed proofs for these results can be found in [6].

3 Model checkingTCTL over ITA

3.1 Timed logicTCTL..

K2

iff o= s a2 +ba0
and inductively:

(s,w) Fyv  iff y €Y and(q, v, wly :=0]) =4
(s,w) = Ap Uit ¥p € Bxec(s,w), p = ¢ U
(s,w) EEpUq iff 3p € Exec(s,w)s. t.p= Uy

At least two different timed extensions of the branching with p = ¢ U« iff there is a positionr € ps. t.s; = ¢

time logicCTL have been proposed. The first one [1] adds
subscripts to thé) operator while the second one considers
formula clocks [16]. Model checking of timed automata

was proved decidable in both cases and compared expres

iveness has been revisited later on [8].
In the variant belowCTL is enriched with both model

clocks (setX), used in linear constraints, and formula

clocks (sety” disjoint from X), used only in comparisons

to constants and resets. Such linear constraints yield e mor
expressive logic, which raises the question of decidabilit thagrem 1. Model checking’ CTLe

both for TA and ITA.

Definition 4. Formulas of the timed logicTCTL,. are
defined by the following grammar:

Yu=ply+bx0| Zai-xi+bl>40\y.¢|
iel

AYUPIEQUD [P AP

wherep € AP is an atomic propositiony € Y is aformula
clock, z; are model clocksg; andb are rational numbers
such that(a;);cr has finite supporf C N, and<e€ {>, >

) :7 S? <}'

LetA = (3, AP, Q, qo, F, pol, X, A\, lab, A) be an inter-
rupt timed automaton anfl = {(¢,v,5) | ¢ € @, v €
RX, 3 € {T,1}}, the set of configurations. The for-

mulas of TCTL, are interpreted over extended configura-

tions of the form(q, v, 8, w), also written ags, w), where
s = (q,v,B) € Sandw € RY is a valuation of the formula

andvr’ <, m, sy =@V

the cases for boolean operators are omitted.

3.2 Undecidability of TCTL. model checking.

We now prove that model checkigCTL, over ITA is
undecidable. More precisely, IFCTL® be the fragment
of TCTL. containing only formula clocks, we have:

over ITA is undecid-
able.

The first step of the proof is the construction of auto-
maton.A ., as a synchronized product between an interrupt
timed automaton and a timed automaton, to simulate a two
counter machineM. In the second step, BCTL. formula
with two external clocks is built to simulate the timed auto-
maton part of the product. This formula does not depend on
the two counter machine.

First step. We consider the class ITATA of automata
built as a synchronized product between an interrupt timed
automaton and a timed automaton over the same alphabet.
Note that if accepted languages are considered, the lan-
guage of such an automaton is the intersection of the lan-
guage of an ITA and the language of a TA.

Lemma 1. Reachability is undecidable in the class
ITAXTA.

clocks. The notions of (maximal) run and position are ex- Sketch.We build an automaton in ITATA which simu-
tended to these configurations in a natural way: the clocklates a deterministic two counter machine. Recall that such

valuationw becomesu + d in a time step of delay and is
unchanged in a discrete step. We denotdbyc(s, w) the
set of maximal runs starting frofs, w).

The semantics of TCTL,. is defined as follows.
For atomic propositions and a configuratide, w) =

1The boolean value in the configuration is not actually usew: [6gic
could be enriched to take advantage of this boolean, to sxfioe example
that a run lets some time elapse in a given state.

a machineM consists of a finite sequence of labeled in-
structionsL, which handle two countersandd, and ends
at a special instruction with labélalt. The other instruc-
tions have one of the two forms below, wheres {c, d}
represents one of the two counters:

e ¢:=c+1;gotol

e if ¢ > 0then(e:= e — 1; goto?’) else gota?”



Without loss of generality, we may assume that the coun-
ters have initial value zero. The behaviour of the machine
is described by a (possibly infinite) sequence of configura-
tions: <1€0, 0, 0> <1€1, TL1,p1> Ce <‘€7,7 TL“;DZ> ..., wheren; and
p; are the respective counter values dnib the label, after
thei*" instruction. The problem of termination for such a
machine (“is theHalt label reached?”) is known to be un-
decidable [18].

The automaton.A (3,AP,Q, qo, F,pol, X U
Y, A, lab, A) is built to reach its final locatiod alt if and
only if M stops. It is defined as follows:

e Y consists of one letter per transitiod P is defined in
the sequel.

Q = LU (L X {ko}) @] (L X {kl,kQ,Tl,...,Tg,} X
{>,<}), 90 = ¥o (the initial instruction of M) and
F = {Halt}.

pol : @ — {Urgent, Lazy, Delayed} is such that
pol(q) = Urgent iff either ¢ € L orq = (¢, q2,),
andpol(q) = Lazy in most other cases: some states
(¢, k;,>) areDelayed as shown on Figure 4.

X = {z1,x2,23} is the set of interrupt clocks and
Y = {y., ya} is the set of standard clocks with rate

A @Q — {1,2,3} is the interrupt level of each state.
All states inL are at levell; so do all states corres-
ponding toky, k1, k; andr,. States corresponding to
ro andrsz are in level2, while the ones corresponding
tor, andrs are in level3.

e [ab will be defined in the second step of the proof.

e A is defined through basic modules in the sequel.

The transitions ofd ,, are built within small modules,
each one corresponding to one instructiop\vdf The value
n of ¢ (resp.p of d) in a state ofL is encoded by the value
1 — &= of clocky, (resp.1 — =& of y,).

The idea behind this construction is that for any standard
clocky, it is possible to mimic the copy of the valueiof y
in an interrupt clocke;, for some constant, provided the
value ofy never exceeds. To achieve this, we start and
reset the interrupt clock, then stop it whegs= k. Note that
by the end of the copy, the value gfhas changed. Con-
versely, in order to copy the content of an interrupt clock
x; into a clocky, we interruptz; by z;,, and resey at the
same time. When;; = x;, clocky has the value of;.
Remark that the form of the guards en,; allows us to
copy any linear expression 1, ..., z;} in y.

For instance, consider an instruction labeled/bycre-
mentingc then going tof’, with the respective values of
c andp of d, from a configuration where > p. The cor-
responding modulel“Z (¢, ¢') is depicted on Figure 3. In

c++
c>d

value of cwhen ¢ > d.

Figure 3. Module ASI7 (¢,¢') incrementing the

this module, interrupt clock:; is used to record the value
5= While z, keeps the valug. Assuming thay. = 1— 5,
Yyg = 1— 2%7 andz; = 0 in state(¢, r1, >), the unique run
in AST(¢,0") will end in state’ with y. = 1 — 55 and
Ya=1- 5.

The module on Figure 3 can be adapted for the case
of decrementing: by just changing the linear expressions
in guards forzs, provided that the final value of is still
greater than the one df It is however also quite easy to ad-
apt the same module when< p: in that case we stor%
inxq andz% in x4, sinceyy will reach1 beforey.. We also
need to stary, beforey. when copying the adequate values
in the clocks. The case of decrementing/hile n < pis
handled similarly. In order to choose which module to use
according to the ordering between the values of the coun-
ters, we use the module of Figure 4 which represents the
case when at labélwe have an increment ef or a similar
one for decrementation. In that last case the value isf
compared not only to the one df but also td), in order to
know which branch of thé instruction is taken. Note that
only one of the branches can be taken until the end of the
modulé. Instructions involving are handled in a symmet-
rical way.

A is obtained by joining the modules described above
through the states df. The automatom o, can actually be
viewed as the product of an ITA and a TAT, synchron-
ized on actions. It can be seen in all the modules described
above that guards never mix a standard clock with an inter-
rupt one. Since each transition has a unique label, keeping
only guards and resets on either the clockX'adr on those
of Y yields an ITA and a TA whose product.i§. O

Note that another notion of synchronized product
between ITA and TA leads to the class ITAvhere reach-
ability is decidable [5].

2State policies are used to treat the special casgsy. = yq = 0.



consists in computing: sets of expressiongy, ..., E,.
Each setE), is initialized to {zj,0} and expressions in
this set are those which are relevant for comparisons with
the current clock at levek. The sets are then com-
puted top down fromn to 1. In that process, we use
the k-normalization operator: for an expressigh =

> s @iz +b, if ap = 0, thennorm(C, k) = Zf;ll a;T; +

b, otherwisenorm(C, k) = j, + S F ! Sig, 4+ L

i=1 ap ag”

e Atlevel k, we may assume (by normalization) that ex-
pressions in guards of an edge leaving a state are of the

Figure 4. Module taking into account the or- form axy, + 3., aiz; + bwith o € {0,1}. We add
der between the values of c¢and d when incre- I Jb<to E,.
menting c. = ' ’

e To take into account the constraints of formylawe
add the following step: For each comparigon= 0
in ¢, and for eachk, with norm(C,k) = ax, +

Second step. To prove Theorem 1, we build from the S a4+ b (a € {0,1}), we also add expression
<k 1 I )

automatonA,, above a formulap in TCTL,. simulating

. . ; - i — bto Ey.
the TA T, so that the ITAZ satisfiesy iff M terminates. Dick Ol b
Formulay expresses that (1) there is a rur¥imeaching the e Then we iterate the following procedure until no new
Halt state, and (2) for each module f this run satisfies term is added to ang; for 1 < < k.
the constraints on the clocls andy, of 7. pan )
The full proofs that the above construction is corre'et ( 1. Letq —— ¢/ with A(¢') > k andA(q) > k. If
halts iff A, reaches thelalt state) and for this second step C € Ey, then we add’[u] to Ej.
are gi_ven in [7]. Observe that state policies allow an encod- 2. Letq 2% ¢ with M(¢') > k andA(q) < k.
ing ywth two TA glocks; an additional one would be needed ForC,C' € Ey, we compute” = norm(C[u]—
to simulate policies. C'[u), A(q)). If C" = azx(g)+ i (g @i +b
_ with o € {0, 1}, thenwe add- 3, _, ) a;zi —b
4 Decidable fragments to E)(g)- !
4.1 Model checkingTCTL™ The proof of termination for this construction is similar to

the onein [5].

Consider the ITAA; (Figure 2(a)) and the formula; =
ETU(q¢1 A (xa > x1)). We assume thap; is a propos-
itional property true only in state;. Initially, the set of
expressions ar&; = {z1,0} andEy; = {x9,0}. First the
d expression—%xl + 1 is added intaEy sincex; + 2x5 = 2
appears on the guard in the transition frgmto ¢. Then
expressionl is added toF; becauser; — 1 < 0 appears
on the guard in the transition fromy to ¢;. Finally ex-
pressionz; is added toFs sincex, — x; > 0 appears in
Theorem 2. Model checkingTCTL!™ on interrupt timed ;. After iteration, we obtainZ; = {z1,0,1, 2,2} and
automata can be done i2-EXPSPACE, and in PSPACE FE, = {xQ,O,—%xl + 1,z1}. Remark that knowing the
when the number of clocks is fixed. order between:; and% will allow us to know the order

between-1z; + 1 andz;.

In this section we consider formulas with only model
clocks, the corresponding fragment being denoted by
TCTL™. For example property’1 in the introduction is
expressed by z» < 3 U safe Model checking is achieved
by adapting a class graph construction for untiming ITA an
adding information relevant to the formula. The problem
is thus reduced to €TL model checking problem on this
graph.

Proof. The proof relies on a refinement of the class graph
construction in [5], each class being divided into subaass The next step is to build the class graph as the trans-
corresponding to truth values of comparisons in the givenition systemG 4 whose set of configurations are the classes
formula. Thus each comparison can be represented by ak = (g, { =<k }1<r<x(q)) Whereg is a state aney, is a total
fresh propositional variable. The final step of the algonith  preorder overEy. The classR describes the set of valu-
consists in applying standa@TL model-checking proced-  ations[R]= {(q,v) | Vk < A(q) V(g,h) € Ej, g[v] < h[v]
ure. iff ¢ < h}. The set of transitions is defined by discrete and
Let » be a formula inTCTL™ and A an ITA with n successor steps, whose details are developed in [5]. Just
levels. In order to build the finite class graph, the first step remark that the way the set of expressions is computed,



and more notably the inclusion of all differences between
other expressions (up to normalization details), will daab

us to know for each level the preorder between expres-

sions after firing a discrete transition increasing therinte
rupt level. The transition systegy is finite and time ab-
stract bisimilar to74. Moreover, the truth value of each
comparisorC' = > .., a; - x; + b > 0 appearing inp can
be set for each clasg. Indeed, since for every, both 0
and Zf;ll a; - ©; + b are in the set of expressioi;, the
truth value ofC' 1 0 does not change inside a class. There-
fore, introducing a fresh propositional variakje for the
constraintC' 1 0, each class? can be labeled with a truth
value for eaclyc. Deciding the truth value af can then be
done by a classic&TL model-checking algorithm o6 4.

On the example, we obtain the states in whjch (zo >
x1) istrueand conclude thap, is trueon A4;.

The complexity of the procedure is obtained by bounding
the number of expressions for each levdly max(2, |A| +
lp))2"" P+ thus obtaining a triple exponential bound
for the size of the graph, by storing the orderings. The 2-
EXPSPACE complexity results in a standard way from a
non deterministic search in this graph. O

Due to the linear constraints we conjecture that model
checkingTCTLI™ on TA is undecidable. This would en-
force the incomparability of TL and ITL from a decidability
point of view.

4.2 Model checking a fragment of TCTL

The decidability of model-checking TCTLformulas
over ITA has been studied above for two cases: (1) when
there are2 formula clocks, in which case the problem is
undecidable (Theorem 1) and (2) when there is no formula
clock, in which case the problem is decidable (Theorem 2).

The remaining case concerns formulas with ohffpr-
mula clock, which can measure elapsing of global time. In
this section, we prove the decidability of model checking
ITA for a strict subset of this logic. TCTLis the set of
formulas where satisfaction of amtil modality over pro-

positions can be parameterized by a time interval. Formulas

of TCTL,, are defined by the following grammar:

plep A gp|mpp and
‘Pp|A ©p Upaa 90;0|E§0p U<a @pW) N apl=ep

Pp
Y =
wherep ¢ AP is an atomic propositiong € QT, and
xe {>,> <,<} is a comparison operator. This lo-
gic is indeed a subset afCT' L. with only one formula
clock since a formula, sagjpU - ,r, can be rewritten as
y.(ApU(r A (y > a))). PropertiesP2 and P3 from in-
troduction are expressed respectivelyfaserror Ussg T
andA T U<y safe Since ITA can be translated into ITA

the problem can be simplified by focusing on the subclass
ITA_. We prove that:

Theorem 3. Model checking TCTLon ITA is decidable.

The proof consists in establishing procedures dedicated
to the 4 different subcases for ITA (1) EpU<,r and
EpU.ar, 2)EpUs,r andEpUs,r, 3) ApU<,r and
ApU.,rand (4)ApUs,r andApUs,r, wherep andr
are boolean combinations of atomic propositions. Detailed
proofs can be found in [7]. First, we have:

Lemma 2. a. Model checking formulapU<,r and
EpU.,rover ITA_ is decidable in NEXPTIME and NP
when the number of clocks is fixed.

b. Model checking a formul&pU>,r and Ep U, on
an ITA_ is decidable in NEXPTIME and NP when the
number of clocks is fixed.

c. Model checking a formulap U<, and ApU.,r on
an ITA_ is decidable in co-NEXPTIME and co-NP when

the number of clocks is fixed.

Sketch.The main idea underlying these procedures for
cases 1 and 2 is to obtain a maximal (exponential in the
number of clocks) size for the runs on which it is sufficient
to test the formula. Then the decision procedure is as fol-
lows. It non deterministically guesses a path in the ITA
whose length is less than or equal to the bound. In order to
check that this path yields a run, it builds a linear program
whose variables argr? }, wherez! is the value of clock;

after thejth step, andd; } whered; is the amount of time
elapsed during théth step, whenj corresponds to a time
step. The equations and inequations are deduced from the
guards and updates of discrete transitions in the path &nd th
delay of the time steps.

The satisfaction of the formula can be checked by separ-
ately verifying on one side that the run satisfied r, and
on the other side, that the sum of all delayssatisfies the
constraint in the formula.

The size of this linear program is exponential w.r.t. the
size of the ITA_. As alinear program can be solved in poly-
nomial time [20], we obtain a procedure in NEXPTIME. If
the number of clocks is fixed the number of variables is now
polynomial w.r.t. the size of the problem.

For formulas in case 3, a specific procedure can
be avoided: the result of case 2 can be reused since
ApU<,r = (ApUr) A=(E-rUs, T), andApU_,r =
(ApUr)A=(E-rUs, T). O

While a counterexample is a finite path in the three pre-
vious cases, itis potentially infinite in case 4. Therefthe,
proof is more difficult and the decidability procedure rslie
on a specific technique.



Lemma 3. Model checking a formulaApUs,r and
ApUs,ronanITA is decidable.

Sketch.We start by noticing that formula p U, r is true
on a configuration of an ITA A if all the following condi-
tions hold for paths starting in this configuration:

¢ all paths do satisfy U r,

e there is no path such that from a certain point where

the time elapsed is strictly less thanpropositionr is
falseuntil bothp andr are,

e there is no path such that from a certain point where

the time elapsed is strictly less thanpropositionr is
alwaysfalse

Using maximal paths, which are either infinite or finite but
ending in a state from which no transition can be taken, is

necessary for this last condition. O

5 Conclusion and related work

Several restrictions of stopwatch automata have been

[4] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
UPPAAL. In Formal methods for the design of real-time sys-
tems (SFM-RT'04)volume 3185 oLNCS pages 200-236.
Springer, 2004.

[5] B. Bérard and S. Haddad. Interrupt Timed Automata. In
Proc. of the 12th Int. Conf. on Foundations of Software Sci-
ence and Computation Structures (FoSSaCS'@)ume
5504 ofLNCS pages 197-211. Springer, 2009.

[6] B.Bérard and S. Haddad. Interrupt Timed Automata: A step
further. Technical Report LSV-09-1, Lab. Specification and
Verification, ENS de Cachan, Cachan, France, Jan. 2009. 24
pages.

[7] B. Bérard, S. Haddad, and M. Sassolas. Verification on In-
terrupt Timed Automata. Technical Report LSV-09-16, Lab.
Specification and Verification, ENS de Cachan, Cachan,
France, July 2009. 27 pages.

[8] P. Bouyer, F. Chevalier, and N. Markey. On the express-
iveness of TPTL and MTL. IfProc. 25th Conf. on Founda-
tions of Software Technology and Theoretical Computer Sci-
ence (FSTTCS'05yolume 3821 oLNCS pages 432—-443.
Springer, Dec. 2005.

[9] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and
S. Yovine. KRONOS: A Model-Checking Tool for Real-
Time Systems. IFTRTFT, pages 298-302, 1998.

proposed to gain decidability results. For the model of sus- [10] F. Cassez and K. G. Larsen. The impressive power of stop-

pension automata [17], reachability is decidable when-stop

watches. InProc. of concur 2000: concurrency theory

watches have value zero if suspended and satisfy some ad-  pages 138-152. Springer, 1999.
ditional bounds. In the case of preemptive scheduling, the [11] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,

clocks in task automata from [14] can be updated by sub-
traction, which can be viewed as a kind of stopwatch simu-
lation. Checking schedulability is proved decidable far-se

eral scheduling policies (and undecidable in general).

In this work we consider interrupt timed automata, where
stopwatches are organized along hierarchical levels. Al-

though model checkin§CTL formulas with explicit clocks

is undecidable, we obtain decidability for two subsets of
real time properties: when only model clocks are used in
the formula, with a complexity in 2-EXPSPACE, and for
a subset ofTCTL with subscripts. The case of formulas
with internal clocks and only one external clock, remains

open. We also plan to extend these results tofhich
subsumes both TA and ITA.
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