
Ordinal Theory for Expressiveness of Well

Structured Transition Systems

R. Bonnet1, A. Finkel1, S. Haddad1★, F. Rosa-Velardo2★★

1 Ecole Normale Supérieure de Cachan, LSV, CNRS UMR 8643, Cachan, France
E-mail: {remi.bonnet,alain.finkel,serge.haddad}@lsv.ens-cachan.fr

2 Sistemas Informáticos y Computación, Universidad Complutense de Madrid
E-mail: fernandorosa@sip.ucm.es

Abstract. To the best of our knowledge, we characterize for the first
time the importance of resources (counters, channels, alphabets) when
measuring expressiveness of WSTS. We establish, for usual classes of
wpos, the equivalence between the existence of order reflections (non-
monotonic order embeddings) and the simulations with respect to cov-
erability languages. We show that the non-existence of order reflections
can be proved by the computation of order types. This allows us to solve
some open problems and to unify the existing proofs of the WSTS clas-
sification.

1 Introduction

WSTS. Infinite-state systems appear in a lot of models and applications: stack
automata, counter systems, Petri nets or VASSs, reset/transfer Petri nets, fifo
(lossy) channel systems, parameterized systems. Among these infinite-state sys-
tems, a part of them, called Well-Structured Transition Systems (WSTS) [7]
enjoys two nice properties: there is a well partial ordering (wpo) on the set of
states and the transition relation is monotone with respect to this wpo.

The theory of WSTS has been successfully applied for the verification of
safety properties of numerous infinite-state models like Lossy Channel Systems,
extensions of Petri Nets like reset/transfer and Affine Well Nets [8], or broadcast
protocols. Most of the positive results are based on the decidability of the cov-
erability problem (whether an upward closed set of states is reachable from the
initial state) for WSTS, under natural effectiveness hypotheses. The reachability
problem, on the contrary, is undecidable even for the class of Petri nets extended
with reset or transfer transitions.

Expressiveness. Well Structured Languages [9] were introduced as a measure

of the expressiveness of subclasses of WSTS. More precisely, the language of an

★ Authors partially supported by the Agence Nationale de la Recherche, AVERISS
(grant ANR-06-SETIN-001) and AVERILES (grant ANR-05-RNTL-002).

★★ Author partially supported by the MEC Spanish project DESAFIOS10 TIN2009-
14599-C03-01, and the CAM program PROMETIDOS S2009/TIC-1465.

instance of a model is defined as the class of finite words accepted by it, with
coverability as accepting condition, that is, generated by traces that reach a state
which is bigger than a given final state. Convincing arguments show that the
class of coverability languages is the right one. For instance, though reachability
languages are more precise than coverability languages, the class of reachability
languages is RE for almost all Petri Nets extensions containing Reset Petri Nets
or Transfer Petri Nets.

The expressive power of WSTS comes from two natural sources: from the
structure of the state space and from the semantics of the transition relation.
These two notions were often extremely interwined in the proofs. We propose
ourselves to separate them in order to have a formal and generalizable method.

The study of the state space is related to the relevance of resources: A natural
question when confronted to an extension of a model is whether the additional
resources actually yield an increase in expressiveness. For example, if we look at
Timed Automata, clocks are a strict resource: Timed Automata with k clocks
are less expressive that Timed Automata with k + 1 clocks [4]. Surprisingly,
no similar results exist for well-known models like Petri Nets (with respect to
the number of places) or Lossy Channel Systems (with respect to the number
of channels, or number of symbols in the alphabet) except in some particular
recent works [6].

Ordinal theory for partial orders. Ordinals are a well-known representation
of well-founded total orders. Thanks to de Jongh, Parikh, Schmidt ([10], [16])
and others, this representation has been extended to well partial orders. We
are mainly interested in the order type of a wpo, which can be understood as
the “size” of the order. The order types of the union, product, and finite words
have been computed since de Jongh and Parikh. Recently, Weiermann [17] has
completed this view by computing the order type for multisets.

Contribution. First, we introduce order reflections, a variation of order em-
beddings that are allowed to be non-monotonic. We define a notion of witnessing,
that reflects the ability of a WSTS to recognize a wpo through a coverability
language. We establish the equivalence between the existence of order reflections
and the simulations with respect to coverability languages, modulo the ability
of the WSTS classes to witness their own state space.

Second, we show how to use results from the theory of ordinals, and more
precisely the properties of maximal order types, studied by de Jongh and Parikh
[10] and Schmidt [16] to easily prove the absence of reflections.

Last, we study Lossy Channel Systems and extensions of Petri Nets. We show
that most of known classes of WSTS are self-witnessing. This allows us to unify
and simplify the existing proofs regarding the classification of WSTS, also solving
the open problem [14] of the relative expressiveness of two Petri Nets extensions
called �-Petri Nets and Data Nets, also yielding that the number of unbounded
places for these Petri Nets extensions and the size of the alphabet for Lossy
Channel Systems are relevant resources when considering their expressiveness.

Related work. Coverability languages have been used to discriminate the ex-
pressive power of several WSTS, like Lossy Channel Systems or several mono-

tonic extensions of Petri Nets. In [9] several pumping lemmas are proved to
discriminate between extensions of Petri Nets. In [1, 2] the expressive power of
Petri Nets is proved to be strictly below that of Affine Well Nets, and Affine
Well Nets are proved to be strictly less expressive than Lossy Channel Systems.
Similar results are obtained in [14], though some significant problems are left
open, like the distinction between �-Petri Nets [13] and Data Nets [12] that we
solve here.

Outline. The rest of the paper is organized as follows. In Section 2 we introduce
wpos, WSTS and ordinals. Then in Section 3 we develop the study of reflections
and its links with expressiveness of WSTS. Afterwards in Section 4 we apply
our result to the classical models of Petri Nets and Lossy Channel Systems.
Section 5 presents the extension of our results applicable to more recent models
of WSTS. Finally we conclude and give perspectives to this work in Section 6.
Appendices that will be omitted in the final version include the complete proofs
of our results.

2 Preliminaries and WSTS

Well Orders. (X,≤X) is a quasi-order (qo) if ≤X is a reflexive and transitive
binary relation on X. For a qo we write x <X y iff x ≤X y and y ∕≤X x. A partial
order (po) is an antisymmetric quasi-order. Given any qo (X,≤X), the quotient
set X/ ≡≤X

is a po where x ≡≤X
y is defined by x ≤X y ∧ y ≤X x. Hence, in

all the paper, we will suppose that (X,≤X) is a po.
The downward closure of a subset A ⊆ X is defined as ↓A = {x ∈ X ∣ ∃x′ ∈

A, x ≤ x′}. A subset A is downward closed iff ↓A = A. A po (X,≤X) is a well
partial order (wpo) if for every infinite sequence x0, x1, . . . ∈ X there are i and
j with i < j such that xi ≤ xj . Equivalently, a po is a wpo when there are no
strictly decreasing (for inclusion) sequences of downward closed sets.

We will shorten (X,≤X) toX when the underlying order is obvious. Similarly,
≤ will be used instead of ≤X when X can be deduced from the context.

If X and Y are wpos, their cartesian product, denoted X×Y is well ordered
by (x, y) ≤X×Y (x′, y′) ⇐⇒ x ≤X x′ ∧ y ≤Y y′. Their disjoint union, denoted
X ⊎ Y is well ordered by:

z ≤X⊎Y z′ ⇐⇒

{

z, z′ ∈ X
z ≤X z′

or

{

z, z′ ∈ Y
z ≤Y z′

A po (X,≤) is total (or linear) if for any x, x′ ∈ X either x ≤ x′ or x′ ≤ x. If
(Xi,≤i) are total po for i ∈ ℕ we can define the (irreflexive) total order <lex in
∪

k X1 × ...×Xk by (x1, ..., xp) <lex (x′
1, ..., x

′
q) iff there is i ∈ {1, ...,min(p, q)}

such that xj = x′
j for j < i and xi <i x

′
i or (x1, ..., xp) = (x′

1, ..., x
′
p) and q > p.

Then ≤lex given by x ≤lex x′ iff x = x′ or x <lex x′ is a total order.

Functions. Given a partial function (shortly: function) f : X → Y , the domain
of f is defined by dom(f) = {x ∈ X ∣ ∃y ∈ Y, f(x) = y} and its range
by range(f) = {y ∈ Y ∣ ∃x ∈ X, f(x) = y}. A function f is surjective if
range(f) = Y and it is total if dom(f) = X. Total functions are called mappings.

A mapping f is injective if for all x, x′, f(x) = f(x′) =⇒ x = x′. Finally, let
us consider a mapping f : if X and Y are ordered, f is increasing (resp. strictly
increasing) if x ≤X y =⇒ f(x) ≤Y f(y) (resp. if x <X y =⇒ f(x) <Y f(y));
f is an order embedding (shortly: embedding) if f(x) ≤Y f(x′) ⇐⇒ x ≤X x′. A
bijective order embedding is called an order isomorphism (shortly: isomorphism).

Multisets. Given a set X, we denote by X⊕ the set of finite multisets of
X, that is, the set of mappings m : X → ℕ with a finite support sup(m) =
{x ∈ X ∣ m(x) ∕= 0}. We use the set-like notation {∣...∣} for multisets when
convenient, with {∣xn∣} describing the multiset containing x n times. We use +
and − for multiset operations. If X is a wpo then so is X⊕ ordered by ≤⊕ defined
by {∣x1, . . . , xn∣} ≤⊕ {∣x′

1, . . . , x
′
m∣} if there is an injection ℎ : {1, . . . , n} →

{1, . . . ,m} such that xi ≤X x′
ℎ(i) for each i ∈ {1, . . . , n}.

Words. Given a set X, any u = x1 ⋅ ⋅ ⋅xn with n ≥ 0 and xi ∈ X, for all
i, is a finite word on X. We denote by X∗ the set of finite words on X. If
n = 0 then u is the empty word, which is denoted by �. A language L on X is
a subset of X∗. Given L and L′ two languages on X∗, we define the language
LL′ = {uv ∣ u ∈ L, v ∈ L′}. If X is a wpo then so is X∗ ordered by ≤X∗ which is
defined as follows: x1 . . . xn ≤X∗ x′

1 . . . x
′
m if there is a strictly increasing mapping

ℎ : {1, . . . , n} → {1, . . . ,m} such that xi ≤X x′
ℎ(i) for each i ∈ {1, . . . , n}.

Ordinals below �0. In this paper, we shall work with set theoretical ordinals.
Let us recall a few properties of these objects. The class of ordinals is totally
ordered by inclusion, and each ordinal � is equal to the set of ordinals {� ∣ � <
�} below it. Every total well order (X,≤X) is isomorphic to a unique ordinal
ot(X,≤X), called the order type of X.

In the context of ordinals, we define 0 = ∅, n = {0, ..., n − 1} and ! = ℕ,
ordered by the usual order. Moreover, given � and �′ ordinals, we define �+ �′

as the order type of ({0} × �) ∪ ({1} × �′) ordered by ≤lex. In the same way,
� ∗ �′ is defined as the order type of �′ × � ordered by ≤lex. Note that these
operations are not commutative: we have 1 + ! = ! ∕= ! + 1. This definition
of + and ∗ coincides with the usual operations on ℕ for ordinals below ! and

we have � +
k
⋅ ⋅ ⋅ + � = � ∗ k. Exponentiation can be similarly defined, but for

simplicity of presentation, we let this definition outside this short introduction
to ordinals. Note that the most important properties of exponentiation can be
obtained from the ordering on Cantor’s Normal Forms (CNF) that we develop
below.

In this paper, we will work with ordinals below �0, that is, those that can

be bounded by a tower !!⋅⋅
⋅!

. These can be represented by the hierarchy of
ordinals in CNF that is recursively given by the following rules:

C0 = {0}.
Cn+1 =

{

!�1 + ⋅ ⋅ ⋅+ !�p ∣ p ∈ ℕ, �1, . . . , �p ∈ Cn and �1 ≥ ⋅ ⋅ ⋅ ≥ �p

}

ordered
by

!�1 + ⋅ ⋅ ⋅+ !�p ≤ !�′
1 + ⋅ ⋅ ⋅+ !�′

q ⇐⇒ (�1, . . . , �p) ≤lex (�′
1, . . . , �

′
q)

Each ordinal below �0 has a unique CNF. If � = !�1 + ⋅ ⋅ ⋅+ !�n , we denote
by Cantor(�) the multiset {∣�1, . . . , �n∣}.

WSTS. A Labelled Transition System (lts) is a tuple S = ⟨X,�,→⟩ where
X is the set of states, � is the labelling alphabet and →⊆ X × (� ∪ {�}) ×X

is the transition relation. We write x
a
−→ x′ to say that (x, a, x′) ∈→. This

relation is extended for u ∈ �∗ by x
u
−→ x′ ⇐⇒ x

a1−→ x1...xk−1
ak−→ x′ and

u = a1a2 ⋅ ⋅ ⋅ ak (note that some ai’s can be �). A Well Structured Transition
System (shortly a WSTS) is a tuple S = (X,�,→,≤), where (X,�,→) is an
lts, and ≤ is a wpo on X, satisfying the following monotonicity condition: for all
x1, x2, x

′
1 ∈ X,u ∈ �∗, x1 ≤ x′

1, x1
u
−→ x2 implies the existence of x′

2 ∈ X such

that x′
1

u
−→ x′

2 and x2 ≤ x′
2. For a class X of wpos, we will denote by WSTSX

the class of WSTS with state space in X, or just WSTSX for WSTS{X}.

Coverability and Reachability Languages. Trace languages, reachability
languages and coverability languages are natural candidates for measuring the
expressive power of classes of WSTS. Given a WSTS S and two states x0 and
xf , the reachability language is LR(S, x0, xf) = {u ∈ �∗ ∣ x0

u
→xf} while the

coverability language is L(S, x0, xf) = {u ∈ �∗ ∣ x0
u
→x, x ≥ xf}. Let us remark

that all trace languages are coverability languages in taking xf =⊥ where ⊥ is
the least element of X.

The class of reachability languages is the set of recursively enumerable lan-
guages for almost all Petri nets extensions containing reset Petri nets or transfer
Petri nets. Thus such a criterium does not discriminates sufficiently . One could
consider infinite coverability languages. A sensible accepting condition in this
case could be repeated coverability, that is, the capacity of covering a given
marking infinitely often, in the style of Büchi automata. However, analogously
to what happens with reachability, repeated coverability is generally undecid-
able, which makes !-languages a bad candidate to study the relative expressive
power of WSTS. In conclusion, we will use the class of coverability languages,
as in [9, 1, 2, 14]

For two classes of WSTS, S1 and S2, we write S1 ⪯ S2 whenever for every
language L(S1, x1, x

′
1) with S1 ∈ S1, and x1, x

′
1 two states of S1, there exists

another system S2 ∈ S2 and two states x2, x
′
2 of S2 such that L(S2, x2, x

′
2) =

L(S1, x1, x
′
1). When S1 ⪯ S2 and S2 ⪯ S1, one denotes the equivalence of classes

by S1 ≃ S2. We write S1 ≺ S2 for S1 ⪯ S2 and S2 � S1.

The Lossy semantics. The lossy semantics Sl of a WSTS S with space X
is the original system S completed by all �-transitions x

�
→y, for all x, y ∈ X

such that y < x. We observe that Sl satisfies the monotonicity condition, hence
Sl is still a WSTS; and moreover, due to the lossy semantics, one has: for all
x1, x2 ∈ X,u ∈ �∗, x1

u
→x2 implies x1

u
→x′

2 for all x′
2 ≤ x2. For any x0, xf , we

have: L(S, x0, xf) = L(Sl, x0, xf)

3 A method for comparing WSTS

In this section we propose a method to compare the expressiveness of WSTS
mainly based on their state space. We will prove some results that will provide
us with tools to establish strict relations between classes of WSTS.

3.1 A new tool: order reflections

Definition 1. Let (X,≤X) and (Y,≤Y) be two partially ordered sets. A mapping
' : X → Y is an order reflection (shortly: reflection) if '(x) ≤Y '(x′) implies
x ≤X x′ for all x, x′ ∈ X.

We will write X ⊑ Y if there is an embedding from X to Y and X ⊑refl Y if
there is a reflection from X to Y . We will use ∕⊑ and ∕⊑refl for their negation and
< and <refl for their antisymmetric version (i.e. X < Y ⇐⇒ X ⊑ Y ∧Y ∕⊑ X).
Here are some basic properties of reflections we will use throughout the paper:
for any set X, any injective mapping to (X,=) is a reflection; every reflection is
injective; the composition of two reflections is a reflection (so ⊑refl is a qo).

Furthermore, if ' is an embedding from X to Y then X is isomorphic to
'(X) and hence can be identified to it. Clearly, existence of embeddings are a
stronger requirement than the existence of reflections. In particular, it can be
the case that a wpo X cannot be embedded in another wpo Y , even if there are
reflections from X to Y , as implied by the following result.

Proposition 1. The following properties hold:
- ℕk ⊑refl ℕ⊕, for any k > 0.
- ℕk ∕⊑ ℕ⊕ for any k ≥ 3 (but ℕ2 ⊑ ℕ⊕).

Proof. See Appendix A, propositions 16, 17 and 18.

3.2 Expressiveness of WSTS and order reflections

Reflections are more appropriate than embeddings for the comparison of WSTS.
In particular, the existence of a reflection implies the relation between the cor-
responding classes of WSTS.

Theorem 1. Let X and Y be two wpo. We have:
X ⊑refl Y =⇒ WSTSX ⪯ WSTSY

This is easily shown by taking a WSTS of state space X, looking at its lossy
equivalent through the order reflection, and realizing this is another WSTS which
recognizes the same language. The detailed proof is in Appendix A.

We would like to obtain the converse of the previous result: X ∕⊑refl Y =⇒
WSTSX ∕⪯ WSTSY . First, we only present this result for “simple” state spaces.
The case of more complex state spaces will be handled in later sections.

Given an alphabet � = {a1, ..., ak}, we define � by � = {a1, ⋅ ⋅ ⋅ , ak} where
ai’s are fresh symbols (i.e. � ∩ � = ∅). This notation is extended to words by
u = a1 ⋅ ⋅ ⋅ ak for u = a1 ⋅ ⋅ ⋅ ak ∈ �∗. In the same way, given L ⊆ �∗, we have
L = {u ∣ u ∈ L} ⊆ �

∗
.

Definition 2. Let X be a wpo and � a finite alphabet. A surjective partial func-
tion from �∗ to X is called a �-representation of X. Given a �-representation
 of X, we define L = {uv ∣ u, v ∈ dom() and (v) ≤ (u)}. A language

L ∈ (� ∪ �̄)∗ is a -witness (shortly: witness) of X if L∩ dom()dom() = L .

In particular, L is a witness of X for any �-representation of X. Intu-
itively, given a witness L of X, the fact that a WSTS can recognize L witnesses
that the WSTS can represent the structure of X: it is capable of accepting all
words starting with some u (representing some state (u)), followed by some
v that represents (v) ≤ (u). Witness languages are useful in proving strict
relations between classes of WSTS:

Theorem 2. Let L be a witness of X. If X ∕⊑refl Y then there are no y0, yf ∈ Y
and no S ∈ WSTSY such that L = L(S, y0, yf).

Proof. Assume by contradiction that L is a covering language of a WSTS S
whose state space is Y with y0 and yf as initial and final states, respectively.
For each x ∈ X, let us take ux ∈ �∗ such that (ux) = x. The word uxux is

recognized by S, hence we can find yx and y′x such that y0
ux−−→ yx

ux−−→ y′x ≥ yf .
We define '(x) = yx. Let us see that ' is an order reflection from X to Y ,

thus reaching a contradiction. Assume that '(x) ≤ '(x′). Since S is a WSTS
any sequence fireable from '(x) is also fireable from '(x′) and the state reached
by this subsequence is greater or equal than the one reached from '(x). Hence,
the state reached after ux′ux is bigger than the one reached after uxux, which
means that ux′ux ∈ L ∩ dom()dom(), implying x ≤ x′, so that ' is an order
reflection.

The simple state spaces we mentioned before, will be the ones produced by
the following grammar:

� ::= Q (finite set with equality)
∣ ℕ (naturals with the standard order)
∣ �∗ (words on a finite set with the order defined in Section 2)
∣ � × � (cartesian product with the order defined in Section 2)

As ℕ is isomorphic to �∗ when � is a singleton, any set produced by � is
isomorphic to a set Q×�∗

1 × ⋅ ⋅ ⋅ ×�∗
k where Q and each �i are finite sets.

Proposition 2. Let X be a set produced by the grammar � . Then, there is a
witness of X that is recognized by a WSTS of state space X.

When a WSTS can recognize a witness of its own state space the following
holds:

Proposition 3. Let X be a wpo produced by � and Y any wpo. Then,
X ⊑refl Y ⇐⇒ WSTSX ⪯ WSTSY

Proof. The direction from left to right is given by Theorem 1. For the converse,
let us prove that X ∕⊑refl Y ⇒ WSTSX � WSTSY . We can find a witness L
of X recognized by a WSTS of state space X (Prop. 2). By Theorem 2, this
language can not be recognized by a WSTS of state space Y , hence the result.

3.3 Self-witnessing WSTS classes

The reason we were able to build our equivalence between the existence of a
reflection from X to Y and WSTSX ⪯ WSTSY for any wpo X produced by �
was Prop. 2. However, we conjecture that for any state space X that embeds
ℕ⊕, there is no WSTS of state space X that can recognize a witness of X. This
prompts us to define a new notion:

Definition 3. Let X be a class of wpos and S a class of WSTS whose state
spaces are included in X. (X,S) is self-witnessing if, for all X ∈ X, there exists
S ∈ S that recognizes a witness of X.

We will shorten (X,S) as S when the state space is not explicitly needed.
We extend the relation ⊑refl to classes of wpo by X ⊑refl X

′ if for any X ∈ X,
there exists X ′ ∈ X′ such that X ⊑refl X

′.

Proposition 4. Let (X,S) be a self-witnessing WSTS class and S′ a WSTS
class using state spaces inside X′. Then, S ⪯ S′ =⇒ X ⊑refl X

′.
Moreover, if S′ = WSTSX′ , S ⪯ S′ ⇐⇒ X ⊑refl X

′.

Proof. Let us show the first implication. Let X ∈ X. Since (X,S) is self-
witnessing, there is S ∈ S that recognizes L, a witness of X. Because S ⪯ S′,
there is S ′ ∈ S′ recognizing L. S ′ has state space X ′ ∈ X′, and by Theorem 2,
X ⊑refl X

′.
For the second implication, for any X ∈ X, we have X ′ ∈ X′ such that

X ⊑refl X
′. Because of Theorem 1, WSTSX ⪯ WSTSX′ . Hence, WSTSX ⪯

WSTSX′ .

We will see in sections 4 and 5 that many usual classes of WSTS, even those
outside the algebra � , are self-witnessing.

3.4 How to prove the non-existence of reflections?

Because of Prop. 3 and Prop. 4, the non existence of reflections will be a powerful
tool to prove strict relations between WSTS. We provide here a simple way from
order theory. Let us recall that a linearization of a po ≤X is a linear order ≤′

X

on X such that x ≤X y =⇒ x ≤′
X y. A linearization of a wpo is a well total

order, hence isomorphic to an ordinal. We extend the definition of order types
to non-total wpos:

Definition 4. Let (X,≤X) be a wpo. The maximal order type (shortly: order
type) of (X,≤X) is ot(X,≤X) = sup {ot(X,≤′

X) ∣ ≤′
X linearization of ≤X}.

The existence of the sup comes from ordinal theory. de Jongh and Parikh
[10] even show that this sup is actually attained. Let Down(X) be the set of
downward closed subsets of X. Then, another well-known characterization of
the maximal order type is the following (proofs of propositions 5 and 6 are in
Appendix A):

Proposition 5. ot(X)+1 = sup {� ∣ ∃f : � → Down(X), f strictly increasing}

This leads us to the proposition that we use to separate many classes of WSTS:

Proposition 6. [17] Let X and Y be two wpos. X ⊑refl Y =⇒ ot(X) ≤ ot(Y).

The order types of the usual state spaces used for WSTS are known. We
will recall some classic results on these order types, but we need the following
definitions of addition and multiplication on ordinals to be able to characterize
the order types of X ⊎ Y and X × Y . Remember (Section 2) that an ordinal �
below "0 is uniquely determined by Cantor(�), hence the validity of the following
definition.

Definition 5. (Hessenberg 1906, [10]) The natural addition, denoted ⊕, and the
natural multiplication, denoted ⊗, are defined by:

Cantor(�⊕ �′) = Cantor(�) + Cantor(�′)
Cantor(�⊗ �′) = {∣� ⊕ �′ ∣ � ∈ Cantor(�), �′ ∈ Cantor(�′)∣}

We already know that the order type of a finite set (with any order) is its
cardinality and that the order type of ℕ is !. De Jongh and Parikh [10], and
Schmidt [16] have shown a way to compose order types with the disjoint union,
the cartesian product, and the Higman ordering. A more recent and difficult
result, by Weiermann [17], provides us with the order type of multisets. These
results are summed up here:

Proposition 7. ([10], [16], [17])

– ot(X ⊎ Y) = ot(X)⊕ ot(Y)
– ot(X × Y) = ot(X)⊗ ot(Y)

– ot(X∗) =

{

!!ot(X)−1

if X finite

!!ot(X)

otherwise (for ot(X) < �0)

– ot(X⊕) = !ot(X) for ot(X) < �0

Formulas exist even for ot(X) ≥ �0. We refer the interested reader to [10] and
[17] for the complete formulas. With these general results we can obtain many
strict relations between wpo.

Corollary 1. The following strict relations hold for any k > 0:

(1) ℕk
<refl ℕk+1 (4) ℕk

<refl ℕ⊕

(2) (ℕk)⊕<refl (ℕk+1)⊕ (5) ℕk
<refl �

∗ (for ∣�∣ > 1)
(3) (ℕk)∗<refl (ℕk+1)∗

Proof. The non-strict relations in (1), (2) and (3) are clear, and for (4) this is
Prop. 1. For (5), '(n1, . . . , nk) = an1b . . . bank is a reflection. Strictness follows
from Prop. 6 and the following order types, obtained according to the previous

results: ot(ℕk) = !k, ot((ℕk)⊕) = !!k

, ot((ℕk)∗) = !!!k

, and ot(�∗) = !!∣�∣−1

.

4 Vector Addition Systems and Lossy Channel Systems

The state spaces described by Prop. 3 are exactly those of Petri Nets and Lossy
Channel Systems. We will look more closely at these systems to see the impli-
cation of this theorem regarding their expressiveness.

4.1 Vector Addition Systems and Petri nets

We work with Vector Addition Systems with States (VASS), which are equivalent
to Petri nets. A VASS of dimension k is a tuple (Q, T, �,�, �), where Q is a finite
(and non-empty) set of control sates, T is a finite set of transitions, � : T →
Q×ℤk×Q, � is the finite labelling alphabet, and � : T → �∪{�} is the mapping
which labels transitions. Transition t is enabled in (p, x) if �(t) = (p, y, q) for
some q ∈ Q and some y ∈ ℤk with x ≥ −y, in which case t can occur, reaching
state (q, x + y). VASS are WSTS by taking (p, x) ≤ (q, y) iff p = q and x ≤ y.
The transition relation → of the WSTS associated with the VASS is defined by:
((p, x), a, (q, x+ y)) ∈→ if there is a transition t ∈ T which is enabled in (p, x)
such that �(t) = (p, y, q) and �(t) = a.

Let us denote by VASSk the class of VASS with dimension k. Notice that
the state space of any VASS with dimension k is in Xk = {Q × ℕk ∣ Q finite}.
Then we have the following:

Theorem 3. For any k > 0, VASS k ∕⪯ WSTSXk−1
.

Proof. We remark that the WSTS defined in the proof of Prop. 2 is actually
a lossy VASS when X = Q × ℕk. This induces that we can take the non-lossy
version of this VASS, which is still a WSTS. Hence, VASS k is self-witnessing,
and therefore so is WSTSXk

. Since ℕk ∕⊑refl Q× ℕk−1 for all finite Q (indeed,
ot(ℕk) = !k ∕≤ !k−1 ∗ ∣Q∣ = ot(Q × ℕk−1)), we have Xk ∕⊑refl Xk−1 and by
Prop. 4 we conclude.

We remark that even the class of lossy VASS with dimension k is not included
in the class of WSTS with state space in Xk−1. Moreover, if we consider Affine
Well Nets (AWN) (an extension of Petri nets with whole-place operations like
transfers or resets), and denote by AWN k the class of AWN with k unbounded
places (therefeore, with state space in Xk), we can obtain from the previous
result the following simple consequences.

Corollary 2. VASS k ≺ VASSk+1 ∕⪯ AWN k for all k ≥ 0.

4.2 Lossy Channel Systems

Let Op denote any vector of k operations on a (fifo) channel such that for every
i ∈ {1, . . . , k}, Op(i) is either a send operation !a on channel i, a receive operation
?a from channel i (a ∈ A), a test for emptyness �? on channel i or a null operation
nop. Let us denote OPk the set of operations Op.

A Lossy Channel System (LCS)3 with k channels is a tuple (Q,A, T, �,�, �)
where Q is a finite (and non-empty) set of states, A is the finite set of messages, T
is a finite set of transitions, � : T → Q×OPk×Q, � is the labelling alphabet and
� : T → �∪{�} is the mapping which labels transitions. The set of configurations
is Q× (A∗)k.

For (non lossy) channel systems, transition t is enabled in (p, u1, . . . , uk) if
�(t) = (p,Op, q) for some q ∈ Q and some Op ∈ OPk, and for all i ∈ {1, . . . , k},
if Op(i) = nop then ui = u′

i, if Op(i) = �? then ui = u′
i = �, if Op(i) =!a then

u′
i = uia and if Op(i) =?a then ui = au′

i, in which case t can occur, reaching
state (q, u′

1, . . . , u
′
k).

The semantics of LCS is given as the lossy version of the previous semantics,
when considering the canonic order in Q× (A∗)k for which LCS are WSTS.

If �p is defined by �p = {�1, ..., �p} where �i’s are constant symbols, we
define LCS(k, p) as the subclass of LCS with k channels and set of messages
�p. We have:

Theorem 4. LCS(k, p) ≺ LCS(k + 1, p) ≺ LCS(1, p+ 1)

Proof. LCS(k, p) ⪯ LCS(k+1, p) clearly holds. The proof that LCS(k+1, p) ⪯
LCS(1, p+ 1) is based on the well-known fact that one can simulate the k + 1
channels by inserting a new symbol k times as delimiters. A proof is available
in Appendix B. For the strictness, we remark again that the WSTS introduced
in the proof of Prop. 2 is actually a LCS, that is, given a state space X =
Q × (�∗

p)
k, we can find S in LCS(k, p) and a witness L of X such that S

recognizes L. This implies that LCS(k, p) is self-witnessing. For all k and p,

ot(Q× (�∗
p)

k) = !!p−1∗k ∗ ∣Q∣. This implies that (�∗
p)

k+1 ∕⊑refl Q× (�∗
p)

k and

�∗
p+1 ∕⊑refl Q×(�∗

p)
k for all Q. To conclude we only need to apply proposition 4.

Moreover, in [2] the authors prove that AWN ≺ LCS. We can easily get back
this result:

Proposition 8. LCS(1, 2) ∕⪯ AWN.

Proof. As in the previous result, we remark that LCS(1, 2) and AWN are self-
witnessing. Thus, we only need to apply Prop. 4, considering that for any k > 0,
�∗

2 ∕⊑refl ℕk (Cor. 1).

This result is tight: LCS(0, p) ≃ FA (Finite Automata), LCS(k, 1) ≃ VASSk.

5 Petri Nets extensions with data

Many extensions of Petri nets with data have been defined in the literature to
gain expressive power for better modeling capabilities. Data Nets (DN) [12] are
a monotonic extension of Petri nets in which tokens are taken from a linearly

3 This definition is a slight variation of the usal one in order to uniformise presentation
of VASS and LCS without effect on their expressive power.

a

c0

c1

c1

d0

d0

d1
d1

b

d2

q1q1 q2q2 p1p1

stst

aq1
aq2

a1

āq1
āq2

ā1

a

aa

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x�

x

x

xxy

y

Fig. 1. Net in �-PN 1 recognizing a witness of (Q× ℕ)⊕ with ∣Q∣ = 2

ordered and dense domain, and transitions can perform whole place operations
like transfers, resets or broadcasts. A similar model, in which tokens can only
be compared with equality, is that of �-Petri Nets (�-PN) [13]. The relative
expressive power of DN and �-PN has been an open problem since [14]. In this
section we prove that �-PN ≺ DN . We work with the subclass of DN without
whole place operations, called Petri Data Net (PDN), since DN ≃ PDN [2].

Now we briefly define �-PN . The definition of PDN is in Appendix C. We
consider an infinite set Id of names, a set Var of variables and a subset of special
variables � ⊂ Var for fresh name creation. A �-PN is a tupleN = (P, T, F,�, �),
where P and T are finite disjoint sets, F : (P × T) ∪ (T × P) → Var⊕, � is the
finite labelling alphabet, and � : T → (� ∪ {�}) labels transitions.

A marking is a mapping M : P → Id⊕. A mode is an injection � : Var(t) →
Id . A transition t can be fired with mode � for a marking M if for all p ∈ P ,
�(F (p, t)) ⊆ M(p) and for every � ∈ � , �(�) /∈ M(p) for all p. In that case we

have M
�(t)
→M ′, where M ′(p) = (M(p)− �(F (p, t))) + �(F (t, p)) for all p ∈ P .

Markings can be identified up to renaming of names. Thus, markings of a
�-PN with k places can be represented as elements in (ℕk)⊕, each tuple repre-
senting the occurrences in each place of one name [15]. E.g., if P = {p1, p2} and
M is such that M(p1) = {∣a, a, b∣} and M(p2) = {∣b∣}, then we can represent M
as {∣(2, 0), (1, 1)∣}.

The i-th place of a �-PN is bounded if every tuple (n1, ..., nk) in every reach-
able marking satisfies ni ≤ b, for some b ≥ 0. Therefore, a bounded place may
contain arbitrarily many names, provided each of them appears a bounded num-
ber of times.

Let us denote by �-PN k the class of �-PN with k unbounded places. If a net
in �-PN k has m places bounded by some b ≥ 0, then we can use as state space
(Q×ℕk)⊕ with Q = {0, ..., b}m (finite and non-empty). Thus, the state space of
nets in �-PN k is in X⊕

k = {(Q×ℕk)⊕ ∣ Q finite}. Analogously, the class PDN k

of PDN with k unbounded places has X∗
k = {(Q×ℕk)∗ ∣ Q finite} as set of state

spaces. Moreover, we take X⊕ = {(ℕk)⊕ ∣ k > 0} and X∗ = {(ℕk)∗ ∣ k > 0}.

Proposition 9. For every k ≥ 0, �-PN k and PDN k are self-witnessing.

Proof. The proof for PDN k is in Appendix C. Let us see it for �-PNk. Let
(Q× ℕk)⊕ ∈ X⊕

k . We consider an alphabet � = {aq ∣ q ∈ Q} ∪ {a1, ..., ak} and

we define : �∗ → (Q× ℕk)⊕ by

(aq1a
n1
1

1 ...a
nk
1

kaqla
n1
l

1 ...a
nk
l

k) = {∣(q1, n
1
1, ..., n

k
1), ..., (ql, n

1
l , ..., n

k
l)∣}

Let us build N in �-PNk such that L(N) ∩ dom()dom() = L . Assume Q =
{q1, ..., qr}. Fig. 1 shows the case with k = 1 and r = 2.

The only unbounded places of N are p1, ..., pk (hence N ∈ �-PN k). We
consider q1, ..., qr as places, a place st that stores all the names that have been
used (once each name, hence bounded), and places c0, c1, ..., ck containing one
name in mutual exclusion. When the name is in c0 it is non-deterministically
copied in some q (action labelled by aq), and moved to c1. For every, 1 ≤ i ≤ k,
when the name is in ci it can be copied arbitrarily often to pi (labelled by ai).
At any time, this name can be transferred to ci+1 when i < k or to st for i = k
(labelled by �). In the last case a fresh name is put in c0 (thanks to � ∈ �).

The second phase is analogous, with control places d0, d1, ..., dk+1, marked
in mutual exclusion with names taken from st. At any point, the name in dk+1

can be removed, and one name moved from st to d0 (labelled by �). That name
must appear in some q. Thus, for each q we have a transition that removes the
name from d0 and q and puts it in d1 (labelled by āq). For each 1 ≤ i ≤ k, the
name in di can be removed zero or more times from pi (labelled by āi). At any
point, the name is transferred from di to di+1 (labelled by �).

The initial and final marking is that with a name in c0 and another name in
dk+1 (and empty elsewhere). It holds that L(N) ∩ dom()dom() = L , so we
conclude.

Notice that since �-PN k and PDN k are self-witnessing for every k ≥ 0, so
are �-PN and PDN .

Proposition 10. X∗
1 ∕⊑refl X

⊕, X⊕
k+1 ∕⊑refl X

⊕
k and X∗

k+1 ∕⊑refl X
∗
k for all k.

Proof. X∗
1 ∕⊑refl X

⊕ holds because ot(ℕ∗) = !!!

∕≤ !!k

= ot((ℕk)⊕), so that
ℕ∗ ∕⊑refl (ℕk)⊕ for all k. The others are obtained similarly, considering that

ot((Q× ℕk)⊕) = !!k∗∣Q∣ and ot((Q× ℕk)∗) = !!!k∗∣Q∣

.

Corollary 3. �-PN ≺ PDN . Moreover, PDN 1 ∕⪯ �-PN .

Proof. �-PN ⪯ PDN is from [14]. PDN 1 ∕⪯ �-PN is a consequence of Prop. 4,
considering that both classes are self-witnessing, and that X∗

1 ∕⊑refl X
⊕.

We can even be more precise in the hierarchy of Petri Nets extensions.

Proposition 11. For any k ≥ 0, �-PN k ≺ �-PN k+1 and PDN k ≺ PDN k+1.

Proof. Clearly �-PN k ⪯ �-PN k+1 and PDN k ⪯ PDN k+1 for any k ≥ 0. For the
converses, again we can apply Prop. 4, considering that all the classes considered
are self-witnessing and that X⊕

k+1 ∕⊑refl X
⊕
k and X∗

k+1 ∕⊑refl X
∗
k hold.

Finally, we can strengthen the result AWN ≺ �-PN proved in [14] in a very
straightforward way.

Proposition 12. �-PN 1 ∕⪯ AWN

Proof. Both AWN and �-PN 1 are self-witnessing, and X⊕
1 ∕⊑refl {ℕk ∣ k > 0}

because ℕ⊕ ∕⊑refl ℕk for all k (indeed, ot(ℕ⊕) = !! ∕≤ !k = ot(ℕk)). By Prop. 4
we conclude.

Again, the previous result is tight. Indeed, a �-PN with no unbounded places
can be simulated by a Petri net, so that �-PN 0 ≃ VASS .

6 Conclusion and Perspectives

To show a strict hierarchy of WSTS classes, we have proposed a generic method
based on two principles: the ability of WSTS to recognize some specific wit-
ness languages linked to their state space, and the use of order theory to show
the absence of order reflections from one wpo to another. This allowed us to
unify some existing results, while also solving open problems. We summarize
the current picture on expressiveness of WSTS below w.r.t number of resources
and type of resources. On the other hand, showing equivalence between WSTS
classes is a problem deeply linked to the semantics of the models, and hence that
remains to be solved on a case-by-case basis.

Quantitative results. (All results are new.)
For every k ∈ ℕ VASSk ≺ VASS k+1 ∕⪯ AWN k

For every k, p ∈ ℕ LCS(k, p) ≺ LCS(k + 1, p) ≺ LCS(1, p+ 1)
For every k ∈ ℕ �-PN k ≺ �-PN k+1 and PDN k ≺ PDN k+1

Qualitative results. (New results are �-PN ≺ DN and PDN ≃ TdPN)
VASS ≺ ℳ ≺ DN ≃ PDN ≃ TdPN
where ℳ is either �-PN or LCS

TdPN [3] are Timed Petri nets and we have proved the related result in a companion report [5].

An interesting case that remains open is the relative expressiveness of LCS
and �-PN . Their state space are quite distinct but their order type are the same
for some values of their parameters. We conjecture that there is no reflection
from one to the other, but such a proof would require more than order type
analysis.

As all the models that we have studied in this paper use a state space whose
order type is bounded by �0, it is tempting to look at WSTS that would use
a greater state space. It is known that the Kruskal ordering has an order type
greater than �0 [16], even for unlabelled binary trees. However, studies of WSTS
based on trees have been quite scarce [11]. We believe some interesting problems
might lie in this direction.

References

1. P.A. Abdulla, G. Delzanno, and L. Van Begin. Comparing the Expressive Power
of Well-Structured Transition Systems. 21st Int. Workshop on Computer Science
Logic, CSL’07, LNCS vol. 4646, pp. 99-114. Springer, 2007.

2. P.A. Abdulla, G. Delzanno, and L. Van Begin. A Language-Based Comparison
of Extensions of Petri Nets with and without Whole-Place Operations. LATA’09,
LNCS vol. 5457, pp. 71-82. Springer, 2009.

3. P.A. Abdulla and A. Nylen. Timed Petri Nets and BQOs. 22nd Int. Conf. on appli-
cation and theory of Petri nets, ICATPN’01 LNCS vol. 2075, pp. 53-70 Springer,
2001.

4. R. Alur, C. Courcoubetis, and T. A. Henzinger. The Observational Power of Clocks.
Proceedings of the Fifth International Conference on Concurrency Theory (CON-
CUR), LNCS 836, Springer, 1994, pp. 162-177.

5. A. Finkel, R. Bonnet, S. Haddad, F. Rosa-Velardo. Comparing Petri Data Nets
and Timed Petri Nets. LSV Research Report 10-23 2010.

6. D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebelen. Ackermann and
Primitive-Recursive Bounds with Dickson’s Lemma. CoRR abs/1007.2989: (2010)

7. A. Finkel. A generalization of the procedure of karp and miller to well structured
transition systems. 14th Int. Colloquium on Automata, Languages and Program-
ming, ICALP’87, LNCS vol. 267, pp. 499-508. Springer, 1987.

8. A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework for
analysing petri net extensions. Information and Computation 195(1-2):1-29 (2004).

9. G. Geeraerts, J. Raskin, and L. Van Begin. Well-structured languages. Acta Infor-
matica, 44:249-288. Springer, 2007.

10. D. H. J. de Jongh, and R. Parikh. Well partial orderings and hierarchies. Indaga-
tiones Mathematicae (Proceedings), vol. 80, p. 195-207, 1977

11. O. Kouchnarenko, and Ph. Schnoebelen. A Formal Framework for the Analysis of
Recursive-Parallel Programs. In PaCT’97, LNCS 1277, pages 45-59. Springer, 1997

12. R. Lazic, T.C. Newcomb, J. Ouaknine, A.W. Roscoe, and J. Worrell. Nets with
Tokens Which Carry Data. Fund. Informaticae 88(3):251-274. IOS Press, 2008.

13. F. Rosa-Velardo and D. de Frutos-Escrig. Name creation vs. replication in Petri
Net systems. Fund. Informaticae 88(3). IOS Press (2008) 329-356.

14. F. Rosa-Velardo, and G. Delzanno. Language-Based Comparison of Petri Nets with
black tokens, pure names and ordered data. LATA’10, LNCS vol. 6031, pp. 524-535.
Springer, 2010.

15. F. Rosa-Velardo, and D. de Frutos-Escrig. Forward Analysis for Petri Nets with
Name Creation. PETRI NETS 2010, LNCS vol. 6128, pp. 185-205. Springer, 2010.

16. D. Schmidt. Well-partial orderings and their maximal order types. Fakultat fur
Mathematik der Ruprecht-Karl-Universitat Heidelberg. Habilitationsscrift, 1979.

17. A. Weiermann. A Computation of the Maximal Order Type of the Term Order-
ing on Finite Multisets. Mathematical Theory and Computational Practice, 5th
Conference on Computability in Europe, CiE 2009. LNCS vol. 5635, pp. 488-498.
Springer, 2009.

A Complements to section 3

We introduce first a few additional notations that we need for the proof of this
section.4

A.1 Preliminaries

Let A be a well-ordered set. X ⊆ A is a directed subset of A if ∀x, y ∈ X, ∃z ∈
X, x ≤ z∧y ≤ z. A downward closed directed subset of A is called an irreductible
ideal 5 of A. We denote by Idl(A) the set of irreductible ideals of A.

Proposition 13. Let A be a well-ordered set. Then any downward closed subset
of A is a finite union of irreductible ideals.

Note that �I : A → Idl(A) given by �I(x) = ↓x is an order-embedding.
Because of this, we will identify x with ↓x.

A.2 Representations of Idl(ℕk) and Idl(A⊕)

Proposition 14. Let I ∈ Idl(ℕk). I can be written as (x1, ..., xk) with xi ∈
ℕ ∪ {!}, and:

(y1, ..., yk) ∈ (x1, ..., xk) ⇐⇒ (∀i, xi ∈ ℕ =⇒ yi ≤ xi)

For example, (!, 4) denotes the subset of ℕ2 whose elements are those with
4 or lower as their second coordinate. This can be seen as an extension of the
classic ordinal representation, where ! = ℕ.

Proposition 15. Let I ∈ Idl(A⊕). I can be written as {I!1 , ⋅ ⋅ ⋅ , I
!
p , J1, ⋅ ⋅ ⋅ , Jq}

where I1, ..., Ip, J1, ..., Jq are irreductible ideals of A, and with

x ∈[[{I!1 , ⋅ ⋅ ⋅ , I
!
p , J1, ⋅ ⋅ ⋅ , Jq}]]

⇐⇒
⎧

⎨

⎩

x = x1 ∪ ... ∪ xp ∪ y1 ∪ ... ∪ yq
∀1 ≤ k ≤ p, a ∈ xk =⇒ a ∈ Ik
∀1 ≤ k ≤ q, yk = ∅ ∨ (yk = {a} ∧ a ∈ Jk)

For example {1!, 3} describes the subset of ℕ⊕ whose elements are those
that contain any number of 0 or 1, and at most one element equal to 2 or 3.
Note that an irreductible ideal has more than one possible representation. We
have for example {2!, 1} = {2!}.

4 Although the notations vary slightly from ”Forward Analysis for WSTS : Part I :
Completions” by A. Finkel and J. Goubault-Larrecq (STACS ’09), sections A.1 and
A.2 are straight rewriting of results from this paper.

5 Some authors have been using the term ’ideal’ as a shortcut for either a downward
closed subset, or for a directed one. To avoid any confusion, we will only speak of
irreductible ideals and of downward closed subsets.

A.3 Additional Proofs

Proof of theorem 1 Let X and Y be two wpo. We have:

X ⊑refl Y =⇒ WSTSX ⪯ WSTSY

Proof. Let L = L(S, x0, xf) for some WSTS S with state space X with initial
and final states x0 and xf , respectively. We can assume that S is a lossy WSTS.

Let ' be a reflection from X to Y . Since ' is an injection, we can consider
the following labelled transition system S', of states '(X) ⊆ Y , with initial and
final states '(x0) and '(xf), respectively, and whose transitions are defined by:

'(x)
u
→S''(x′) ⇐⇒ x

u
→Sx

′

It holds that S' ∈ WSTSY . Indeed, if we take '(x1), '(x
′
1) and '(x2) such that

'(x1)
u
→'(x′

1) and '(x2) ≥ '(x1), then we have by definition of S', and because

' is a reflection, that x1
u
→x′

1 and x2 ≥ x1, which means, by well-structure of

S, that there exists x′
2 ≥ x′

1 such that x2
u
→x′

2. By the lossiness property of S,

we have x2
u
→x′

1, and thus '(x2)
u
→'(x′

1). Moreover, S and S' clearly recognize
the same language, so that L = L(S', '(x0), '(xf)) with S' ∈ WSTSY , which
concludes our proof.

Proposition 16. ℕ2 ⊑ ℕ⊕.

Proof. ' : ℕ2 → ℕ⊕ given by '(a, b) = {∣a+ 2, 1b∣} is an order-embedding.

Proposition 17. ℕ3 ∕⊑ ℕ⊕

Proof. Assume ' is an order-embedding from ℕ3 to ℕ⊕.
We consider the following sets:

– Ax = {(n, 0, 0) ∣ n ∈ ℕ}
– Ay = {(0, n, 0) ∣ n ∈ ℕ}
– Az = {(0, 0, n) ∣ n ∈ ℕ}

For any � ∈ {x, y, z}, '(A�) is an infinite chain of ℕ⊕ with limit an element
of Idl(ℕ⊕). If this element is the entire set, for any element x of ℕ3, we can find
an element x′ of A� such that '(x) ≤ '(x′), contradicting the order embedding.

Thus, let {!k� , k′�
!} ∪B� be this element.

We remark that for any three pairs of integers, we can choose one of these
pairs that is less or equal than the lub of the two others.

This means, that we can find �, � and , such that :

(k�, k
′
�) ≤ (max{k� , k},max{k′� , k

′
})

Without loss of generality, we will assume � = x, � = y and = z. Then,
we define Ay,z[a] = {(a, n, n)∣n ∈ ℕ}.

In the same way as before, we have the image of Ay,z[a] an infinite chain of
ℕ⊕, with limit {!ky,z[a], (k′y,z[a])

!} ∪By,z [a]. Because ' is an order embedding,

for any a ∈ ℕ, this limit is greater than both {!ky , k′y
!}∪By and {!kz , k′z

!}∪Bz,
implying that :

∀a ∈ ℕ, kx ≤ ky,z [a] and k′x ≤ k′y,z [a]

As we have '(n, 0, 0) → !kx .k′x
!
.Bx, we can find an a0 such that '(a0, 0, 0) =

{p1, ⋅ ⋅ ⋅ , pkx
, q1, ⋅ ⋅ ⋅ , qr} ∪Bx with :

– r ∈ ℕ
– ∀1 ≤ i ≤ kx, pi ≥ max(k′x,M), where M is the greatest value in Bx

– ∀1 ≤ i ≤ r, qi ≤ k′x

We define P = {p1, ⋅ ⋅ ⋅ , pkx
} and Q = {q1, ⋅ ⋅ ⋅ , qr}. We have :

P ∪Q ∪Bx ≤ {!ky,z[a0], k′y,z [a0]
!
} ∪By,z[a0]

Elements of P are bigger than all elements in Q and B0, thus :

Q ∪Bx ≤ {!ky,z[a0]−kx , k′y,z [a0]
!
} ∪By,z [a0]

Because k′x ≤ k′y,z [a0], we have :

{k′x
!
} ∪Bx ≤ {!ky,z[a0]−kx , k′y,z [a0]

!
} ∪By,z[a0]

⇒ {!kx , k′x
!
} ∪Bx ≤ {!ky,z[a0], k′y,z [a0]

!
} ∪By,z [a0]

and because that means that each image of an element of Ax can be compared to
an element of Ay,z[a0], we get a contradiction that concludes the demonstration.

Proposition 18. For any k, there is an order reflection from ℕk to ℕ⊕

Proof. Let us take a fixed k ∈ ℕ. There is a finite number of possible relative
orders of x1, ..., xk. Let Nk be this number, and let ok be a mapping that as-
sociates with each tuple (x1, ..., xk) a number between 0 and Nk − 1 such that
ok(x1, ..., xk) = ok(x

′
1, ..., x

′
k) means that x1, ..., xk and x′

1, ..., x
′
k are in the same

relative order.
We define ac : ℕ → ℕ⊕ by ac(n) = {∣2Nk − (n + 1), n∣}. Note that ac(m)

and ac(n) are incomparable with respect to the multiset order if m and n are
different numbers between 0 and Nk − 1.

Now we define ' by :

'(x1, ...xk) = {∣(2Nk + x1), (2Nk + x2), ⋅ ⋅ ⋅ , (2Nk + xk)∣}+ ac(ok(x1, ...xk))

We claim this is an order reflection.

Indeed, let us take X = (x1, ..., xk) and X ′ = (x′
1, ..., x

′
k) and assume that

we have '(X) ≤ℕ⊕ '(X ′). Then, there is a bijective mapping � :

� : '(X) → '(X ′)

with :

'(X) = {∣2Nk + x1, ..., 2Nk + xk, 2Nk − (ok(X) + 1), ok(X)∣}

'(X ′) = {∣2Nk + x′
1, ..., 2Nk + x′

k, 2Nk − (ok(X
′) + 1), ok(X

′)∣}

∀x ∈ '(X). x ≤ �(x)

The cardinality of '(X) and '(X ′) are the same, and the elements of the
form 2Nk + xi can only be mapped to one of their counterpart, so :

�(2Nk − (ok(X) + 1)) = 2Nk − (ok(X
′) + 1)

�(ok(X)) = ok(X
′)

This means that ok(X) = ok(X
′). The components of X and X ′ are thus in

the same relative order. Without loss of generality, we will assume this order is
x1 ≤ x2 ≤ ... ≤ xk. Let us assume that there exists i such that xj ≤ x′

j for all
j > i and xi > x′

i. Then, we have xi ≤ x′
m for some m.

Two cases may occur :

– m > i : Then by cardinality, we have an element xp in {xi+1, ..., xk} that is
mapped to an element x′

p′ with p′ ≤ i. Thus, we have xi ≤ xp ≤ x′
p′ ≤ x′

i,
contradicting our hypothesis that x′

i < xi.
– m < i : Then, we have xi ≤ x′

m ≤ x′
i, contradicting again our hypothesis.

Thus, we have xi ≤ x′
i for all i, concluding our demonstration.

Proof of proposition 2 Let X be a set produced by the grammar � . Then,
there is a witness of X that is recognized by a WSTS of state space X.

Proof. We have X = Q×�∗
1 ×⋅ ⋅ ⋅×�∗

k , ordered by its canonic order ≤X (which
is the cartesian product of equality on Q and subword ordering on the alphabets
�∗

i for all i). Without loss of generality, we will assume that the �i’s are disjoint.
We also define �T =

∪

1≤i≤k �i and we choose arbitrarily a q0 ∈ Q. Finally, we
define �Q = {aq ∣ q ∈ Q}, also disjoint from �T .

We define a WSTS S = ⟨X,�,→,≤X⟩ by:

– � = �T ∪�Q ∪�T ∪�Q

– For a ∈ �T , (q, u1, ..., uk)
a
−→ (q′, u′

1, ..., u
′
k) ⇐⇒

⎧

⎨

⎩

q = q′

u′
i = uia if a ∈ �i

u′
j = uj otherwise

– For a ∈ �T , (q, u1, ..., uk)
a
−→ (q′, u′

1, ..., u
′
k) ⇐⇒

⎧

⎨

⎩

q = q′

ui = au′
i if a ∈ �i

uj = u′
j otherwise

– For aqs ∈ �Q, (q, u1, ..., uk)
aqs−−→ (q′, u′

1, ..., u
′
k) ⇐⇒

⎧

⎨

⎩

q = q0
q′ = qs
u′
i = ui

– For aqs ∈ �Q, (q, u1, ..., uk)
aqs−−→ (q′, u′

1, ..., u
′
k) ⇐⇒

⎧

⎨

⎩

q = qs
q′ = q0
u′
i = ui

– s
�
−→ s′ ⇐⇒ s′ ≤ s

We define (x) = (q, u1, ..., uk) iff x ∈ aq∥u1∥ ⋅ ⋅ ⋅ ∥uk, where ∥ denotes the
shuffling operation (i.e. z ∈ u∥v ⇐⇒ z = u1v1u2 ⋅ ⋅ ⋅upvp with u = u1u2 ⋅ ⋅ ⋅up

and v = v1v2 ⋅ ⋅ ⋅ vp, with ui, vi ∈ �∗). is a (�T ∪�Q)-representation of X.

We define L = L (S, (q0, �, ..., �), (q0, �, ..., �)) and we have:

L ∩ dom()dom() = {uv ∣ u, v ∈ dom() and (v) ≤ (u)}

This concludes the demonstration.

Proof of proposition 5

ot(X) + 1 = sup {� ∣ ∃f : � → Down(X), f strictly increasing}

Proof.
We first prove that ot(X)+1 ≤ sup {� ∣ ∃f : � → Down(X), f strictly increasing}

Let ≤′ be a linearization of ≤ of order type ot(X). Let ' be an isomorphism
from ot(X) to (X,≤′). We define f : ot(X) + 1 → Down(X) by:

f(�) = {x ∈ X ∣ x <′ '(�)} for � < ot(X)
f(ot(X)) = X

f is strictly increasing, which means that:
ot(X) + 1 ∈ {� ∣ ∃f : � → Down(X), f strictly increasing} and concludes the
first part of the proof.

We then prove that ot(X)+1 ≥ sup {� ∣ ∃f : � → Down(X), f strictly increasing}

Let � be an ordinal and f be a strictly increasing mapping from � to Down(X).
We define the quasi-order ≤f on X by:

x ≤f y iff ∀� < �, y ∈ f(�) =⇒ x ∈ f(�)

≤f is clearly reflexive and transitive. Let ≤tie be a linearization of ≤X . We define
the order ≤′

f by:

x ≤′
f y ⇐⇒

{

x ≤f y ∧ y ∕≤f x or,
x ≤f y ∧ y ≤f x ∧ x ≤tie y

≤′
f is clearly reflexive and antisymmetric. Let’s show transitivity. Assume that

x ≤′
f y and y ≤′

f z. If they are all three in the same equivalent class (resp. in
different equivalent classes) of ≡≤f

, x ≤′
f z comes from transitivity of ≤tie (resp.

≤f). If x and y are ≤f -equivalent, and y <f z we immediately get x <′
f z. The

last case is similar.

Let us prove that ≤′
f is a linear order. Pick any x and y. If they are equivalent

w.r.t. ≤f , we get the result by linearity of ≤tie. So assume by symmetry that

there exists �, x ∈ f(�) and y /∈ f(�). Then for any �′ such that y ∈ f(�′),
� < �′ since f is strictly increasing. Thus x ∈ f(�′). Since �′ is arbitrary, this
shows that x ≤′

f y.

Let us prove that ≤′
f is a linearization of ≤X . Pick any x ≤X y (and thus

x ≤tie y). Because for all �, f(�) is downward closed, we have x ≤f y, which
leads to x ≤′

f y.

Choose some xmax ∕∈ X, and X ′ = X ∪ {xmax}. We extend ≤′
f on X ′ by

x ≤′
f xmax for all x ∈ X. We define ' : � → (X ′,≤′

f) by:

'(�) = min
≤′

f

{x ∈ X ′ ∣ x ∕∈ f(�)}

The min is defined because X ′ is well-ordered and at least xmax ∕∈ f(�) for any
�. Because f is strictly increasing, ' is also strictly increasing.

Let us show that ' is an order embedding. Assume � < �′. Then there exists
y such that y ∈ f(�′) and y ∕∈ f(�). This means '(�) ≤′

f y. As y ∈ f(�′) and
f(�′) is downward closed, '(�) ∈ f(�′), which implies '(�) < '(�′).

We have an order embedding from � to (X ′,≤′
f) which means � ≤ ot(X ′) =

ot(X) + 1.

Lemma 1. Let X and Y be two wpos and ' a reflection from X to Y . Let
A ⊊ X with A = ↓A. Then ↓'(A) ⊊ Y

Proof. Let us assume that ↓'(A) = Y . Let us take x ∈ X, x ∕∈ A. Since '(x) ∈ Y
and ↓'(A) = Y , there is x′ ∈ A such that '(x) ≤ '(x′). Since ' is a reflection
we have x ≤ x′ and since A is downward closed x ∈ A, hence the contradiction.

Proof of proposition 6 Let X and Y be two wpos. X ⊑refl Y =⇒ ot(X) ≤
ot(Y).

Proof. Let ' : X → Y be a reflection and let us consider an ordinal � and a
mapping f : � → Down(X), strictly increasing. We define g : � → Down(Y) by
g(�) = ↓'(f(�)). By Lemma 1, g is strictly increasing. By the characterization
of order type in Prop. 5, we have ot(X) ≤ ot(Y).

B Complements to section 4

Proposition 19. Let S be a Lossy Channel System in LCS(k, p). There exists
a Lossy Channel System S ′ in LCS(1, p+ 1) such that L(S) = L(S ′).

Proof. We order the k channels of S, C1, . . . , Ck. We define recursively Ck+i =
Ci. We keep a notion of “active channel” through the control states. A state of
S ′ is (q, i, uiap+1ui+1ap+1 . . . ap+1ui+k−1) where q is the original control state of
S, 1 ≤ i ≤ k is the current channel and ui is the contents of channel Ci. Reading
a character in Ci requires i to be the active channel, writing a character in Ci

requires Ci+1 to be the active channel.
The system can change the active channel from Ci to Cj (j > i) at any time

by iterating j − i times the following sequence of �-transitions:

– Write ap+1

– Read a word in {a1, . . . , ap}
∗ and copy it to the end of the channel.

– Read ap+1

As long as exactly k − 1 separators ap+1 stay in the channel, the described
system simulate S. However, one can loose these separators. To remove spurious
traces, we add a final checking procedure, starting from the final states of S,
that reads k− 1 symbols ap+1 and, if successful, puts the system in its real final
state.

C Complements to section 5

C.1 Definition of Petri Data Nets

We denote by 0 the null vector in any ℕk and for a word w = x1 ⋅ ⋅ ⋅xn we write
∣w∣ = n and w(i) = xi. A PDN is a tuple N = (P, T, F,H, �) where P is a finite
set of places, T is a finite set of transitions, � : T → (� ∪ {�}) and for each
t ∈ T , Ft, Ht ∈ (ℕ∣P ∣)∗ with ∣Ft∣ = ∣Ht∣. A marking s of N is a finite sequence of
vectors in ℕ∣P ∣ ∖ 0. A marking s is the 0-contraction of a sequence s′ ∈ (ℕ∣P ∣)∗

if it can be obtained by removing all the occurrences of 0 from s′. We write

s1
�(t)
→ s2 for t ∈ T with ∣Ft∣ = ∣Ht∣ = n if:

– s1 is the 0-contraction of u0x1u1 ⋅ ⋅ ⋅un−1xnun with ui ∈ (ℕ∣P ∣ ∖ 0)∗ and
xi ∈ ℕ∣P ∣,

– xi ≥ Ft(i) and yi = (xi − Ft(i)) +Ht(i) for i ∈ {1, . . . , n},
– s2 is the 0-contraction of u0y1u1 ⋅ ⋅ ⋅un−1ynun

a

x < y < z

b

p1

p2

p3
x

z
y →

a

x < y < z

b

c

p1

p2

p3
x

z
y

Fig. 2. Firing of a Petri Data Net transition (assuming a < c < b)

A Petri Data Net can be graphically depicted similarly as �-PN , by con-
sidering that tokens carry data taken from a linearly ordered and dense do-
main, and arcs are labelled with variables (not in �) that are totally ordered.
If x1 < ... < xn are all the variables adjacent to a transition t, then Ft(i)
specifies the tokens that must be taken from each place carrying the datum
to which xi is instantiated (and analogously for Ht). For instance, Fig. 2 de-
picts a PDN with a single transition t given by Ft = (1, 0, 0)(0, 0, 0)(0, 1, 0) and
Ht = (0, 0, 0)(0, 0, 1)(0, 0, 0).

Finally, let us remark that we can work with an “extension” of PDN in
which variables adjacent to a transition are not necessarily totally ordered. Any
such PDN can be simulated by an ordinary PDN . For instance, we can simulate

a transition t in which two unrelated variables x and y appear by having a
non-deterministic choice between two transitions t1 and t2, the former assuming
x < y and the latter assuming y < x. Analogously, we can have variables x and y
so that x ≤ y, that can be simulated again by having a non-deterministic choice
between x = y (that is, actually using the same variable) and x < y.

C.2 Additional proofs

Proof of proposition 9 For every k ≥ 0, PDN k is self-witnessing.

Proof. The case of PDN k is analogous to that of �-PN k. Let (Q× ℕk)∗ ∈ X∗
k.

We define � = {aq ∣ q ∈ Q} ∪ {a1, ..., ak} and : �∗ → (Q× ℕk)∗ by

(aq1a
n1
1

1 ...a
nk
1

kaqla
n1
l

1 ...a
nk
l

k) = (q1, n
1
1, ..., n

k
1)...(ql, n

1
l , ..., n

k
l)

The net N in PDN k that we build is similar to the �-PN we built in the case
of �-PN k, except for two differences: On the one hand, whenever a fresh name
was put in c0, now we put a greater name (that is, we replace � by a variable y
such that x < y). On the other hand, whenever we took from st another name,
now we take a greater name (that is, we assume x < y). Finally, the initial and
final marking is that with one name in c0 and a smaller name in dk+1. Again, it
holds that L(N) ∩ dom()dom() = L , and we conclude.

