
International Journal of Performability Engineering, Vol. XX, No. XX, XXX, pp. XX-XX.
© RAMS Consultants
Printed in India

MDWNsolver: a framework to design and
solve Markov Decision Petri Nets

MARCO BECCUTI*1, GIULIANA FRANCESCHINIS2 AND SERGE HADDAD3

Affiliations: 1Univ. di Torino, Italy - beccuti@di.unito.it
2Univ.del Piemonte Orientale, Italy - giuliana.franceschinis@di.unipmn.it

 3LSV, ENS Cachan, France - haddad@lsv.ens.cachan.fr

(Received on XXX, revised XXX)

Abstract: MDWNsolver is a framework for system modeling and optimization of
performability measures based on Markov Decision Petri Net (MDPN) and Markov
Decision Well-formed Net (MDWN) formalisms, two Petri Net extensions for high level
specification of Markov Decision Processes (MDP). It is integrated in the GreatSPN suite
which provides a GUI to design MDPN/MDWN models. From the analysis point of view,
MDWNsolver uses efficient algorithms that take advantage of system symmetries, thus
reducing the analysis complexity. In this paper the MDWNsolver framework features and
architecture are presented, and some application examples are discussed.

Keywords: Markov Decision Process, dependability optimization tool, Markov Decision
Well-Formed Nets.

1. Introduction

The Markov Decision Process (MDP) formalism [12] can be used for modeling systems
which exhibit both non deterministic and probabilistic behavior (e.g. distributed systems,
resource management systems, …). Being a low level formalism, it is rather hard to
directly use MDPs to model complex systems. Some high level MDP specification
formalisms have been proposed in the literature to overcome this problem (e.g. Stochastic
Transition Systems [9], Dynamic Decision Network [10], Reactive Modules [1], …); in
this context, the originality of Markov Decision Petri Net (MDPN) and Markov Decision
Well-formed Net (MDWN) [5] high level formalisms is that they allow to describe the
system in terms of its components and their interactions. As a consequence, the models
are more compact and manageable; in particular, it is possible to define a complex non
deterministic or probabilistic behavior as a composition of simpler non deterministic or
probabilistic steps (that take zero time). From the analysis point of view, the MDWN
formalism inherits the efficient algorithms originally devised for WNs, allowing to
automatically take advantage of the model symmetries to reduce the analysis complexity.

This paper presents a framework, integrated in the GreatSPN suite [14]:
MDPN/MDWN models can be designed using the GreatSPN GUI, and solved by means
of specific new modules integrated in the distribution. These modules transform an
MDPN/MDWN model expressed as a pair of non-deterministic and probabilistic subnets
plus a reward function specification into an MDP model and then solve such MDP
deriving an optimal strategy.

The paper is organized as follows: Sec.2 briefly recalls the MDP, MDPN and
MDWN formalisms. In Sec.3 the main features of the framework are explained, and its
architecture is outlined. In Sec. 4 and 5 some examples of MDPN and MDWN models are

__
Communicating author’s email: beccuti@di.unito.it 123

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

presented, together with some analysis results obtained with the MDWNsolver and some
considerations on the efficiency of the MDWN solution. Sec. 6 concludes the paper.

2. Background

In this section we recall briefly the MDP, MDPN and MDWN formalisms which will be
used in this paper; the reader can find more details in [5].

2.1 Markov Decision Process

MDP [12] is a well-know formalism providing a simple mathematical model to express
optimization problems in random environments. In particular, a discrete time finite MDP1

is an extension of a Markov Chain which allows non deterministic choices/actions, and a
reward function expressing a target function to be minimized/maximized. For every non
deterministic action allowed in a given state a reward/cost and a transition probability
distribution are defined. Hence, the evolution of an MDP can be described as an
alternation of non deterministic transitions (actions) and probabilistic transitions.

Solving an MDP consists in finding an optimal strategy (optimal action to be
chosen in each state) w.r.t a given reward function.

2.2 Markov Decision Petri Net and Markov Decision Well-formed net formalisms

MDPN was first introduced in [5] as a high level formalism to specify MDPs. The main
features of MDPNs are the possibility to specify the general behavior as a composition of
the behavior of several concurrent components (some of which are subject to local non
deterministic choice, and are thus called controllable, while the others are called non
controllable); moreover any non deterministic or probabilistic transition of an MDP can
be composed by a set of non deterministic or probabilistic steps, each one involving a
subset of components.

An MDPN model is composed of two parts, both specified using the PN
formalism with priorities associated with transitions: the PNnd subnet and the PNpr subnet
(describing the non deterministic (ND) and probabilistic (PR) behavior respectively). The
two subnets share the set of places, while having disjoint transition sets. In both subnets
the transitions are partitioned into run and stop subsets, and each transition has an
associated set of components involved in its firing (in the PNnd only controllable
components can be involved). Transitions in PNpr have a “weight” attribute, used to
compute the probability of each firing sequence. Firing of run transitions represent
intermediate steps in an ND/PR transition at the MDP level, while stop transitions
represent the final step in an ND/PR MDP transition, for all components involved in it.
An MDPN model behavior alternates between ND transition sequences and PR transition
sequences, initially starting from an ND state. The PR sequences are determined
according to the PNpr structure, start with a PR state reached by an ND state, and include
exactly one stop transition for each component; the ND sequences are determined by the
PNnd structure, start from an ND state reached by a PR state, and include exactly one stop
transition for each controllable component plus possibly a global stop transition.

Moreover, in the MDPN formalism we can specify a reward/cost function, called
rs() associated with every system state and one, called rt(), associated with every non

1 In the rest of this paper we will use MDP to indicate a discrete time finite MDP.

MDWNsolver: a framework to design and solve Markov Decision Petri Nets

deterministic transition; the global reward function is obtained by summing up a state
reward function and an action reward function.

The generation of the MDP corresponding to a given MDPN has been described
in [5]: it consists of (1) a composition step, merging the two subnets in a single net, (2)
the generation of the RG of the composed net, (3) two reduction steps transforming each
PR and ND sequence in the RG into a single MDP transition.

MDWN [5] extends the MDPN formalism with color: the PNpr and PNnd subnets
are specified using Well-formed Nets (WN) [7] and a subset of the color classes is used
to represent the system components. The transitions are still partitioned into run and stop
subsets (with the same semantics defined in the MDPN), and each transition firing
involves a set of components identified by the transition color instance. MDWNs
enable the modeler to specify in a concise way similar components, obtaining a more
compact and readable model; it is always possible to derive an equivalent MDPN
applying an unfolding algorithm. From an analysis point of view, the generation of the
MDP corresponding to an MDWN follows the same two steps already explained for
MDPN, but in this case the Symbolic Reachability Graph (SRG) [7] approach developed
for the WN formalism can be adapted to produce a smaller MDP w.r.t. the original one.

3. MDWNsolver features and architecture

MDWNsolver consists of a module that builds the MDP corresponding to a given MDWN
or MDPN model, and produces an output suitable for the MDP analysis by means of an
MDP solver built upon the graphMDP library [13]; it may be adapted to interact (at the
MDP analysis level) with other tools like e.g. ZMDP, allowing to derive both optimal and
suboptimal strategies, or PRISM, featuring the computation of properties expressed in
PCTL through efficient model checking algorithms.

The architecture of MDWNsolver is depicted in Figure 1. The user must specify
two subnets (Prob_net and ND_net) by means of the GreatSPN GUI, representing the
probabilistic and non deterministic behavior of the model. A special annotation is used to
associate sets of components with transitions, and to distinguish between run and stop
transitions. In case MDWN models are used, the components are represented by means of
a color class: this is useful when the system under study comprises several similarly
behaving components, and should be used when the system structure and behavior exhibit
a certain degree of symmetry that can be exploited to achieve a more compact
representation, and - what is most important - to reduce the model transformation cost as
well as the MDP solution cost. Different priorities can be assigned to transitions: this
allows to avoid useless interleavings when deriving the MDP model, and to force a
correct ordering of probabilistic or non deterministic intermediate (immediate) steps. In
addition the RewardSpec file must be prepared: it is a textual file where the reward
function to be optimized is specified according to a given grammar.

The transformation process consists of four steps: (1) the non deterministic and
probabilistic subnets are modified by the MDWN2WN module that adds some places and
two (timed) transitions; (2) the resulting new subnets (Prob_netM and ND_netM) are
composed through the algebra module of GreatSPN; (3) from the obtained PN/WN the
(S)RG is generated using the module MDWN(S)RG, that produces also two files
containing the list of the non deterministic transition sequences (the MDP actions) and
markings description (the MDP states), needed to compute the value of the reward
function associated with the MDP states and actions; (4) module RG2MDP, generates the

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

final MDP: the states of the MDP correspond to the tangible states produced by the
previous module, the MDP actions and the subsequent probabilistic transitions,
correspond to the maximal immediate non deterministic/probabilistic paths respectively,
departing from the non deterministic/probabilistic tangible markings and reaching
probabilistic/non deterministic tangible markings. In order to make the MDP solution
more efficient, the reduction algorithm selects among the actions that connect the same
tangible states, that with minimal (or maximal, depending on the optimization problem)
reward value. The MDP file is produced in an efficient format which is accepted in input
by the MDP solver module (based on the graphMDP library), that produces the optimal
strategy and corresponding optimal reward value.

Figure 1. MDWNsolver architecture.

The implementation of the MDWN(S)RG module derives from the WN(S)RG
module of GreatSPN: the main difference is that it performs already the first step of
probabilistic paths reduction, so that the resulting (S)RG does not contain the
intermediate probabilistic markings: large part of the code is reused from WN(S)RG,
hence future improvements in WN(S)RG will be inherited. In particular, the SRG
approach is applied to MDWN to reduce the number of generated states (and hence the
size of the final MDP): it exploits the model symmetries, without introducing any
approximation, thanks to the lumpability property of the MDP corresponding to the
ordinary RG.

A detailed example of model specification and solution procedures are presented
in Sec.4 on a simple example; the state space reduction due to the exploitation of
symmetries is shown on more complex examples in Sec.5.

4. A simple example of MDPN and MDWN

In this section we show how the MDWNsolver works on a simple example; more complex
examples are discussed in the next section. Let us consider a system with two identical
components, that can be in service (UP) or out of service (DOWN), and a centralized
recovery system (decision maker), that can apply different repair policies. The recovery
system must decide whether a given down component must be assigned a repair resource
(to restore it to the UP state) or not. We consider the case where there is only one repair
resource, so that the components cannot be repaired in parallel. The goal of the study is to
find the optimal strategy that reduces the costs incurred by the system when the

MDWNsolver: a framework to design and solve Markov Decision Petri Nets

components break down: a penalty (Cpenalty) is paid at each time unit if both components
are down, moreover each time a repair activity starts, a repair cost (Crepair) is charged.

Figs. 2 and 3 show an MDPN model for this system. In particular the former
shows the probabilistic behavior of the two identical components; while the latter shows
the possible actions of the centralized recovery system (assigning or not the repair
resources to DOWN components).

Figure 2. Example of MDPN probabilistic net.

Figure 3. Example of MDPN non deterministic net.

The component lists are specified through the GreatSPN GUI by defining appropriate
parameters with reserved names: a two letters prefix distinguishes among controllable
(CC), non controllable (NC) and global (GL) components (in the example CC1 and CC2
are defined). By properly annotating the model, stop and run transitions can be identified,
and the components involved in each firing are specified: these annotations are integrated
in the “tag” attribute of transitions, concatenated to the transition name after the |
separator. For example the annotation StartRep2|<Run,CC2,> means that transition
StartRep2 is a run transition involving only controllable component CC2, while the
annotation Fail1|<Stop,CC1,> means that transition Fail1 is a stop transition involving
component CC1. Since places can be shared between the non deterministic and
probabilistic subnet, these must be identified through a common label (concatenated with
the place name) in the two models: in the example this is the case for places

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

AvailableRes, AssignResi, and Downi, i=1,2 identified as shared places by the suffixes |
AR, |ARi, |Di respectively. Places with these labels appear in both subnets.

A token in place Upi, i=1,2 means that component i is in service. The firing of
transition Faili with probability 1-Pwork corresponds to component i failure and moves the
token in Downi|Di. The repair of component i starts firing the run transition StartRepi

when the decision maker has assigned a repair resource to that component putting a token
into place AssignResi|ARi. In each time unit an ongoing repair process can finish,
represented by the firing of stop transition EndRepi, with probability 1-Prepair, or can go
on, represented by the firing of stop transition ContRepi, with probability Prepair.

In the non deterministic net the stop transitions AssignedResi and
NoAssignedResi model the choice to activate or not the repair of a down component.

Figure 4. Example of MDWN probabilistic net (A) and non deterministic net (B).

The reward function associated with this model, defining the optimization problem, is:
T AssignedRes1 -1
T AssignedRes2 -1
F -100 (Down2|D1 = 1 && Down2|D2 = 1)
where the first two items represent the cost associated with each repair action, while the
last item expresses the penalty paid for the whole system being inactive (all components
down). The MDWNsolver expects to find the reward function in a separate file,
expressed according to a given grammar (see the manual in [16]).

When the system comprises sets of identical components, as is the case in the
example, the MDWN formalism should be preferred since it allows a more compact and
parametric definition of the model, since the behavior of each component type appears
only once in the model. In Fig. 4 the MDWN model for this system is depicted, where the
list of controllable components contains only one element, CC1, that is associated with
the color class C containing the identifiers of the two identical components. The
annotations of the MDWN models are a bit more complex because it is required to
specify the (tuple of) transition color elements (variables) that are used to identify one
component within a set of identical ones. In the example of Fig. 4 variable is x and the
transition annotation must specify a component type followed by the variable(s) that are

MDWNsolver: a framework to design and solve Markov Decision Petri Nets

instantiated upon transition firing to select one specific component of that type; e.g. the
tag StartRep|<Run,CC1,x,> denotes a run transition involving component x among the
components of type CC1. Special annotations can be used to associate more than one
component in the same class with a given transition.

From the two models we can derive an MDP and solve it, activating the
sequence of modules described in Sec.2. For each MDP state, the corresponding optimal
action is reported as a sequence of non deterministic transition instances (e.g.
NoAssignedRes(a1); NoAssignedRes(a2)). The size of the final MDP in general is smaller
when the MDWN model is used, due to the exploitation of symmetries (SRG). The gain
increases with the cardinality of the classes of similarly behaving components. As a
consequence, the optimal strategy encoding is more compact and parametric (expressed
using the symbolic markings and symbolic transition instances notation, representing
equivalence classes of states and transitions). For instance, symbolic action
NoAssignedRes(C1); AssignRes(C2) in a state where place Up contains <C2> and place
Down contains <C1> represents the decision of assigning the repair resource to the
component that is Down: different assignments of actual component identifiers to
parameters C1 and C2 allow to obtain specific states and corresponding optimal action.

5. Interesting applications of MDPN and MDWN

In this section we present some interesting MDPN/MDWN application examples, giving
a flavor of the type of optimization problems that can be dealt with this formalism, and
discussing the model sizes that the tool can currently manage.

The first example, presented in [2], concerns a Wireless Sensor Network (WSN)
monitoring system, that has to track a moving object within a building composed of F
floors; each floor is partitioned in Z zones, each containing a fixed number S of sensors.

In this context, the MDWN was used to find an optimal trade off between the
power consumption and the object tracking reliability; the power saving was achieved by
periodically powering off some of the nodes for a given time interval (up to C time units
long). The cost function to be optimized includes both the penalty due to losing track of
the monitored object, and the cost of battery consumption; the possible non deterministic
actions correspond to the choice of a set of nodes to be powered off and the respective
sleeping time. The number of states is quite large, even for a relatively small system: to
mitigate the complexity, the optimization problem has been solved on several simplified
models, each representing only one floor in details; the computed optimal power
management strategy has been simulated on a complete and more detailed model, to
estimate the interesting performability measures, including energy consumption.

Tab.1 shows the state space size and solution time as a function of the system
parameters (S, Z, C) for a three floors model: the solution is feasible only for a limited
number of sensors. In details, the first column reports the experiment parameters, the
second, third and fourth columns report the number of ordinary states (RG size – derived
from the SRG, not from direct computation) and symbolic states (SRG size), and the SRG
generation time. The last two columns show the number of states of the reduced MDP and
its generation and solution time. The results shown in this table shows the effectiveness of
the SRG method in mitigating the state space explosion: a good level of reduction is
achieved (e.g. for case 4,3,1 the reduction factor (|RG|/|SRG|) is 131), moreover the SRG
growth is smoother than the RG one (e.g. moving from configuration 2,3,3 to 3,3,3 the
SRG size grows by a factor 24 while the RG by factor 164.).

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

Table 1. The state space size of the WSN monitoring model in [2] where S is the number of
sensors/zone, Z the number of zones/floor, C the maximum sleep time; number of floors F=3.

Another interesting application of MDWNsolver is the computation of the
optimal repair policy of systems specified by means of Non deterministic Repairable
Fault Trees (NdRFT) or Parametric NdRFT (ParNdRFT), indeed an NdRFT/ParNdRFT
model can be automatically translated into an MDPN/MDWN [4,6].
Here we present a model inspired to the Multiprocessors system in [8]. The system
structure is shown Fig. 5(top left): it comprises two parts: the disk access (DA) and the
CPU-Memory (CM) subsystem. The former unit is composed by two disks D1, D2 in
mirroring (RAID-1) and a bus (DBUS); while the latter unit comprises two processing
units: PU1 and PU2. Each processing unit includes a processor Pi and three redundant
banks of local memory Mi1-3. Moreover, the two processing units share a global memory
SM composed by two redundant memory banks R1, R2.

Fig. 5(right) shows the NdRFT model for this system: the Fault Tree structure
represents the Boolean function specifying which combinations of basic fault events
(leaves) lead to the fault of each subsystems (internal nodes) and of the whole system
(root - TE). In particular, the system (TE) fails if the DA or the CM subsystem fails. The
DA fails if both disks or the bus fail; while the CM fails if both PU1 and PU2 fail. Each
PUi fails if its processor or all its local memory banks and the global memory fail. Finally
SM fails if both memory banks are not accessible (due to a faulty memory or bus).

MDWN MDP (SRG)

S,Z,C |RG| |SRG| TimeSRG States Time

2,3,1 19,253 6,356 5s 144 0s

2,3,2 80,272 24,475 56s 380 5s

2,3,3 229,661 67,001 75s 825 26s

2,3,4 527,768 149,708 341s 1,575 6m

2,3,5 1,050,757 292,324 609s 2,744 20m

3,3,1 920,981 55,508 119s 420 6s

3,3,2 7,818,304 379,840 992s 1,600 17m

3,3,3 37,737,589 1,623,725 52m 4,725 34m

4,3,1 45,246,989 345,200 862s 975 201s

MDWNsolver: a framework to design and solve Markov Decision Petri Nets

Figure 5. Example of NdRFT for a multiprocessors system.

The NdRFT model includes information on the fault rates (downward arrows)
and on the possible repair actions that can be performed on the system components, and
their rates (upward arrows): five basic components of the multiprocessors system can be
repaired: R1, B1, D1, D2, DBUS. Their repair process can be activated either upon
detection of an SM fault (R1 and B1), or when a fault is detected in DA, (D1 and D2 or
DBUS), but also immediately when a fault is detected in a disk Di. In our case study we
suppose that only one repair resource is available and only one resource is required to
perform each repair process.

In [4,6] it has been shown how an NdRFT can be automatically translated into an
MDPN, where the cost function may include both the cost for the system (or subsystem)
being down per time unit, and the repair cost. The dashed part at the bottom left of Fig. 1
shows the software components that allow to design the NdRFT model (DrawNet GUI)
and to translate it into an MDPN. The PNpr and PNnd subnets resulting from the
translation of the multiprocessor NdRFT have 26 places 24 transitions overall; the PNpr

subnet models the system components behavior, while the PNnd subnet represents the
choice of which failed component has to be repaired at any time. For this model we have
computed the optimal repair policy that minimizes the TE probability at time t (defining a
constant positive cost per time unit for all the states where the whole system has failed,
and no repair cost). The RG of the MDPN model obtained from the NdRFT has 586.826
states and it has been generated in 88 seconds, while the underlying MDP has 8.875
states and it has been generated and solved in 11 minutes (Intel Centrino Duo 2.4GHz,
2GiB RAM).

The computed optimal repair policy is not trivial even if the system has only five
repairable components, since when more repairable components have failed, their repair
order must be dynamically chosen according to the whole system state.
The optimal repair policy is shown in Tab. 2 ; where the first three columns represent the
state of subsystems CM, DA, and SM, while the last column shows the corresponding
optimal repair order. For instance if all subsystems have failed then the optimal repair

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

order is B1, R1, DBUS, D1, D2, while if only CM is working then the optimal repair
order is DBUS, D1, B1, R1, D2.

Table 2. The repair order corresponding to the optimal repair policy
CM DA SM Repair order

Working Failed Failed/Working DBUS,D1,D2,B1,R1

Failed/Working Working Failed B1,R1,D1,D2

Working Failed Failed DBUS,D1,B1,R1,D2

Failed Failed Failed B1,R1,DBUS,D1,D2

In order to illustrate the performance of the optimal repair strategy we have
computed the corresponding TE probability at time t solving the DTMC obtained from the
MDP by fixing the action to take in every state according to the computed optimal
strategy and we have compared it with that obtained using the following state
independent repair strategies: 1) always repair first all the failed components in
subsystem CM; 2) always repair first all the failed components in subsystem DA.
The obtained TE probabilities at time t with 400≤t<10000 are plotted in Fig. 6; as
expected the curve representing the TE probability associated with the optimal strategy
lays below those obtained when applying the state independent repair strategies.

Figure 6. TE probability at time t for different repair strategies.
It is interesting to observe that despite the multiprocessor model is structurally symmetric,
the symmetry is not reflected in the failure and repair rates, as a consequence in this case
it is not possible to apply the SRG state space reduction method.
When instead also the fault/repair rates are uniform for replicated components, the SRG
technique can be applied (the ParNdRFT formalism has been defined to represent in a
compact and parametric form systems with symmetric structure and rates). In [6] an
MDWN model automatically generated from a ParNdRFT model is illustrated: it
represents an Active Heat Rejection System composed by a parametric number of
thermal units, each composed by one source and one heat component. Each thermal unit
belongs to one of three types (U1, U2 or U3) that have different parameters concerning
fault occurrence probability and repair costs, and different possible repair actions. The
failure of a thermal unit occurs when its source or its heat component fail; while the
whole system fails when all its thermal units fail. The MDWN model of this example has

MDWNsolver: a framework to design and solve Markov Decision Petri Nets

been used to compute the repair strategy minimizing the probability of a system fault at
time t.

Tab.2 shows the state space size and solution time for this MDWN model, as a
function of the number of thermal units for each type. The first column shows the
experiment parameters, while the following two groups of four columns refer to the RG-
versus SRG approach. For each approach the state space size, its generation time, the
corresponding MDP size and its generation and solution time are reported.

Table 2. State space size and computation time of the Active Heat Rejection System model in [4]
varying the number of sub-components of types U1,U2,U3.

RG approach SRG approach
|U1|,|U2|,|U3| |RG| TimeRG |MDPRG| TimeMDP |SRG| TimeSRG |MDPSRG| TimeMDP

1,1,1 3,189 0s 389 0s 1,572 1s 389 0s
2,1,1 35,555 5s 937 5s 15,246 47s 579 0s
2,2,1 453,257 230s 7,754 11m 228,917 168s 3,143 4s
2,2,2 2,919,999 67m 32,558 2h 784,945 200s 16,222 3m
2,2,3 83,524,010 --- --- --- 10,280,241 5h 52.271 2h

6. Conclusion

In this paper we have presented the MDWNsolver framework, able to generate an MDP
from an MDPN/MDWN specification: this contribution extends an earlier two pages
communication [3]; w.r.t. that prototype several optimizations on the solver have
significantly improved its performance. The advantage of the proposed MDWNsolver is
the possibility to express in a quite easy way MDP models using a high level language,
supporting a component based specification with the possibility to put in evidence and
exploit symmetries, and a way of specifying multi-step actions (composed of component-
oriented sub-actions) and multi step probabilistic evolution. To the best of our knowledge
the other tools supporting a high level specification language for MDPs do not include all
the above mentioned features: for instance PRISM [11] allows to specify a system by
composition of modules (resembling our notion of component), but at each time step
there can be either a synchronized action of a subset of modules, followed by a one-step
probabilistic state change, or an action can be performed by only one module, again
followed by a probabilistic state change, so that modeling the concurrent evolution of
independent components within each time step requires some effort. The experiments
performed up to now with the MDWNsolver in different application domains have shown
that the current prototype can handle models with RG or SRG of up to 10.000.000 states:
in all the considered cases the resulting MDP structure had less than 55.000 states (which
is also a limit to find the optimal strategy without running out of memory with the current
solver). These are at the moment the limit sizes that can be managed in reasonable time,
and without running out of memory, on a machine with an Intel Core Duo T7500 2,20
GHz processor and 2GiB RAM, with Linux. Although the time required to generate and
solve the MDP depends on several factors (not only the number of states) the time
required in our experiments to generate the MDP from the MDPN/MDWN model and
solve it, were comprised between a few seconds for models with a (S)RG of a few
thousands states and an MDP of a few hundreds of states, to some hours, for models with
a (S)RG of several millions of states and an MDP of up to fifty thousand states. The
MDWNsolver is distributed with the GreatSPN tool: it can be downloaded from [15].

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

References

[1] R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design, 15(1):7–
48, 1999.

[2] M. Beccuti, D. Codetta-Raiteri, and G. Franceschinis. Multiple abstraction levels in
performance analysis of WSN monitoring systems. In Proc. of the WSNperf (Satellite
Workshop of VALUETOOLS09), Pisa, Italy, October 2009. ICST.

[3] M. Beccuti, D. Codetta-Raiteri, G. Franceschinis, and S. Haddad. A framework to design
and solve Markov Decision Well-formed Net models. In Proc. of the 4th IEEE Int. Conf.
on Quantitative Evaluation of Systems (QEST’07), 165–166, Edinburgh, Scotland, UK,
September 2007. IEEE Computer Society Press.

[4] M. Beccuti, D. Codetta-Raiteri, G. Franceschinis, and S. Haddad. Non deterministic
Repairable Fault Trees for computing optimal repair strategy. In Proc. of the 3rd Int.
Conf. on Performance Evaluation, Methodologies and Tools (VALUETOOLS’08),
Athens, Greece, October 2008. ICST.

[5] M. Beccuti, G. Franceschinis, and S. Haddad. Markov Decision Petri Net and Markov
Decision Well-formed Net formalisms. Proc of the 28th Int. Conference on Applications
and Theory of Petri Nets and other Models of Concurrency. LNCS vol. 4546, 43-62. 2007

[6] M. Beccuti, D. Codetta-Raiteri, G. Franceschinis and S. Haddad. Parametric NdRFT for
the derivation of optimal repair strategies. Proceeding of the 39th International
Conference on Dependable Systems and Networks (DSN-2009), pages , Estoril, Lisbon,
Portugal, 29 June-2 July 2009. IEEE Computer Society Press.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Transactions on Computers,
42(11):1343–1360, nov 1993.

[8] D. Codetta-Raiteri. Extended Fault Trees Analysis supported by Stochastic Petri Nets.
PhD thesis, Univ. degli Studi di Torino, Torino,Italia, 2005.

[9] L. de Alfaro. Stochastic Transition Systems. In 9th Int. Conf. on Concurrency Theory,
LNCS vol 1466, 423–438. Springer, 1998.

[10] T. Dean and M. P. Wellman. Planning and Control. Morgan Kaufmann, 1991.
[11] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for Automatic

Verification of Probabilistic Systems. In 12th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, LNCS vol. 3920, 441–444. Springer, 2006.

[12] M.L. Puterman. Markov Decision Processes. Discrete Stochastic Dynamic Programming,
Wiley, Chichester (2005)

[13] GraphMDP Web Page. http://www.cert.fr/dcsd/cd/teichteil/.
[14] S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli and G. Franceschinis. The

GreatSPN Tool: Recent Enhancements. ACM Performance Evaluation Review Special
Issue on Tools for Performance Evalaluation, 36:(4): 4–9, 2009.

[15] GreatSPN Web Page: http://www.di.unito.it/~greatspn
[16] MDWNsolver Web page:

http://www.di.unito.it/~greatspn/MDWNsolver/

http://www.di.unito.it/~greatspn/MDWNsolver/
http://www.di.unito.it/~greatspn
http://www.cert.fr/dcsd/cd/teichteil/

	
	Figure 3. Example of MDPN non deterministic net.

