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Abstract:  MDWNsolver is  a  framework  for  system  modeling and  optimization  of 
performability  measures  based  on  Markov  Decision  Petri  Net  (MDPN)  and  Markov 
Decision Well-formed Net (MDWN) formalisms, two Petri Net extensions for  high level 
specification of Markov Decision Processes (MDP). It is integrated  in the GreatSPN suite 
which provides a GUI to design MDPN/MDWN models. From the analysis point  of view, 
MDWNsolver uses efficient algorithms that take advantage of system symmetries, thus 
reducing  the analysis complexity. In this paper the MDWNsolver framework features and 
architecture are presented, and some application examples are discussed.

Keywords: Markov Decision Process, dependability optimization tool,  Markov Decision 
Well-Formed Nets.

1. Introduction

The Markov Decision Process (MDP) formalism [12] can be used for modeling systems 
which exhibit both non deterministic and probabilistic behavior (e.g. distributed systems, 
resource  management  systems,  …).  Being  a low level  formalism,  it  is  rather  hard  to 
directly  use  MDPs  to  model  complex  systems.  Some  high  level  MDP specification 
formalisms have been proposed in the literature to overcome this problem (e.g. Stochastic 
Transition Systems [9], Dynamic Decision Network [10], Reactive Modules [1], …); in 
this context, the originality of Markov Decision Petri Net (MDPN) and Markov Decision 
Well-formed Net (MDWN) [5] high level formalisms is that they allow to describe the 
system in terms of its components and their interactions. As a consequence, the models 
are more compact and manageable; in particular, it is possible to define a complex non 
deterministic or probabilistic behavior as a composition of simpler non deterministic or 
probabilistic steps (that  take zero time).  From the analysis point of view,  the MDWN 
formalism  inherits  the  efficient  algorithms  originally  devised  for  WNs,  allowing  to 
automatically take advantage of the model  symmetries to reduce the analysis complexity.

This  paper  presents  a   framework,  integrated  in  the  GreatSPN suite  [14]: 
MDPN/MDWN models can be designed using the GreatSPN GUI, and solved by means 
of  specific  new  modules  integrated  in  the  distribution.  These  modules  transform  an 
MDPN/MDWN model expressed as a pair of non-deterministic and probabilistic subnets 
plus  a  reward  function specification into an MDP model  and then  solve  such  MDP 
deriving  an optimal strategy.

The paper is organized as follows:  Sec.2 briefly recalls the MDP, MDPN and 
MDWN formalisms. In Sec.3 the main features of the framework are explained, and its 
architecture is outlined. In Sec. 4 and 5 some examples of MDPN and MDWN models are 
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presented, together with some analysis results obtained with the MDWNsolver and some 
considerations on the efficiency of the MDWN solution. Sec. 6 concludes the paper.

2. Background 

In this section we recall briefly the MDP, MDPN and MDWN formalisms which will be 
used in this paper;  the reader can find more details in [5].

2.1 Markov Decision Process

MDP [12] is a well-know formalism  providing a simple mathematical model  to express 
optimization problems in random environments. In particular, a discrete time finite MDP1 

is an extension of a Markov Chain which allows non deterministic choices/actions, and a 
reward function expressing a target function to be minimized/maximized. For every non 
deterministic action allowed in a given state a reward/cost  and a transition probability 
distribution   are  defined.  Hence,  the  evolution  of  an  MDP  can  be  described  as  an 
alternation of non deterministic transitions (actions) and probabilistic transitions.

Solving an MDP consists in finding an optimal strategy (optimal action to be 
chosen in each state) w.r.t a given reward function.

2.2 Markov Decision Petri Net and Markov Decision Well-formed net formalisms

MDPN was first introduced in [5] as a high level formalism  to specify  MDPs. The main 
features of MDPNs are the possibility to specify the general behavior as a composition of 
the behavior of several concurrent  components (some of which are subject to local non 
deterministic  choice,  and are thus  called  controllable,  while  the others  are called non 
controllable); moreover any non deterministic or probabilistic transition of an MDP can 
be composed by a set of non deterministic or probabilistic steps, each one involving a 
subset of components.

An  MDPN  model  is  composed  of  two  parts,  both  specified  using  the  PN 
formalism with priorities associated with transitions: the PNnd  subnet and the PNpr subnet 
(describing the non deterministic (ND) and probabilistic (PR) behavior respectively). The 
two subnets share the set of places, while having disjoint transition sets. In both subnets 
the  transitions  are  partitioned  into  run and  stop subsets,  and  each  transition  has  an 
associated  set  of  components  involved  in  its  firing  (in  the  PNnd  only  controllable 
components  can be involved).  Transitions  in  PNpr   have a  “weight”  attribute,  used  to 
compute  the  probability  of  each  firing  sequence.   Firing  of  run transitions  represent 
intermediate  steps  in  an  ND/PR  transition  at  the  MDP  level,  while  stop transitions 
represent the final step in an ND/PR MDP transition, for all components involved in it. 
An MDPN model behavior alternates between ND transition sequences and PR transition 
sequences,  initially  starting  from  an  ND  state.  The  PR  sequences  are  determined 
according to the PNpr structure, start with a PR state reached by an ND state, and include 
exactly one stop transition for each component; the ND sequences are determined by the 
PNnd structure, start from an ND state reached by a PR state, and include exactly one stop 
transition  for  each controllable  component  plus  possibly  a    global stop transition.  

Moreover, in the MDPN formalism we can specify a reward/cost function, called 
rs() associated  with every system state and one, called  rt(), associated  with every non 

1 In the rest of this paper we will use  MDP to indicate a discrete time finite MDP.
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deterministic transition; the global reward function is obtained by summing up a state 
reward function and an action reward function.

The generation of the MDP corresponding to a given MDPN has been described 
in [5]: it consists of (1) a composition step, merging the two subnets in a single net, (2) 
the generation of the RG of the composed net, (3) two reduction steps transforming each 
PR and ND sequence in the RG into a single MDP transition.

MDWN [5] extends the MDPN formalism with color: the PNpr and PNnd subnets 
are specified using Well-formed Nets (WN) [7] and  a subset of the color classes is used 
to represent the system components. The transitions are still partitioned into run and stop 
subsets  (with  the  same  semantics  defined  in  the  MDPN),  and  each  transition  firing 
involves a set of components identified by the transition color instance. MDWNs 
enable the modeler to specify in a concise way similar components,  obtaining a more 
compact  and  readable  model;  it  is  always   possible  to  derive  an  equivalent  MDPN 
applying an unfolding algorithm. From an analysis point of view, the generation of the 
MDP corresponding to an  MDWN  follows the same two steps already explained  for 
MDPN, but in this case the Symbolic Reachability Graph (SRG) [7] approach developed 
for the WN formalism  can be adapted to produce a smaller MDP w.r.t. the original one.

3. MDWNsolver  features and architecture 

MDWNsolver consists of a module that builds the MDP corresponding to a given MDWN 
or MDPN model, and produces an output suitable for the MDP analysis by means of an 
MDP solver built upon the graphMDP library [13]; it may be adapted to interact (at the 
MDP analysis level) with other tools like e.g. ZMDP, allowing to derive both optimal and 
suboptimal strategies,  or PRISM, featuring the computation of properties  expressed in 
PCTL through efficient model checking algorithms. 

The architecture of MDWNsolver is depicted in Figure 1. The user must specify 
two subnets (Prob_net and  ND_net) by means of the  GreatSPN GUI, representing the 
probabilistic and non deterministic behavior of the model. A special annotation is used to 
associate sets of  components  with transitions, and to distinguish between run and stop 
transitions. In case MDWN models are used, the components are represented by means of 
a  color  class:  this is  useful  when the  system under  study comprises  several  similarly 
behaving components, and should be used when the system structure and behavior exhibit 
a  certain  degree  of  symmetry  that  can  be  exploited  to  achieve  a  more  compact 
representation, and - what is most important - to reduce the model transformation cost as 
well as the MDP solution cost.  Different  priorities can be assigned to transitions: this 
allows  to  avoid  useless  interleavings  when  deriving  the  MDP model,  and  to  force  a 
correct ordering of probabilistic or non deterministic intermediate (immediate) steps.  In 
addition  the  RewardSpec file  must  be prepared:  it  is  a  textual  file  where  the  reward 
function to be optimized is specified according to a given grammar.

The transformation process consists of four steps:  (1)  the non deterministic and 
probabilistic subnets  are modified by the MDWN2WN module that adds some places and 
two (timed) transitions; (2) the resulting new subnets (Prob_netM and  ND_netM) are 
composed through the algebra module of  GreatSPN; (3) from the obtained PN/WN the 
(S)RG  is  generated  using  the   module  MDWN(S)RG,  that  produces  also  two  files 
containing the list of the  non deterministic transition sequences (the MDP actions) and 
markings  description  (the  MDP  states),  needed  to  compute  the  value  of  the  reward 
function associated with the MDP states and actions; (4) module RG2MDP, generates the 
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final  MDP:  the states  of  the  MDP correspond to  the  tangible states  produced  by the 
previous  module,  the  MDP  actions  and  the  subsequent  probabilistic  transitions, 
correspond to the maximal immediate non deterministic/probabilistic paths  respectively, 
departing  from  the  non  deterministic/probabilistic  tangible  markings  and  reaching 
probabilistic/non deterministic  tangible  markings.  In  order  to  make the  MDP solution 
more efficient, the reduction algorithm selects among the actions that connect the same 
tangible states, that with minimal (or maximal, depending on the optimization problem) 
reward value. The MDP file is produced in an efficient format which is accepted in input 
by the MDP solver module (based on the graphMDP library), that produces the optimal 
strategy and corresponding optimal reward value.

Figure 1. MDWNsolver architecture.

The implementation of the  MDWN(S)RG module derives  from the  WN(S)RG 
module of  GreatSPN:  the main difference  is  that  it  performs already the first  step  of 
probabilistic  paths  reduction,  so  that  the  resulting  (S)RG  does  not  contain  the 
intermediate  probabilistic  markings:  large  part  of  the  code  is  reused  from  WN(S)RG, 
hence  future  improvements  in   WN(S)RG will  be  inherited.  In  particular,  the  SRG 
approach  is applied to MDWN to reduce the number of generated states (and hence the 
size  of  the  final  MDP):  it  exploits  the  model  symmetries,  without  introducing  any 
approximation,  thanks  to  the  lumpability  property  of  the  MDP  corresponding  to  the 
ordinary RG. 

A detailed example of model specification and solution procedures are presented 
in  Sec.4  on  a  simple  example;  the  state  space  reduction  due  to  the  exploitation  of 
symmetries is shown on more complex examples in Sec.5. 

4. A simple example of MDPN and MDWN 

In this section we show how the MDWNsolver works on a simple example; more complex 
examples are discussed in the next section. Let us consider a system with two identical 
components,  that can be in service (UP) or out of service (DOWN), and a centralized 
recovery system (decision maker), that can apply different repair policies. The recovery 
system  must decide whether a given down component must be assigned a repair resource 
(to restore it to the UP state) or not. We consider the case where there is only one repair 
resource, so that the components cannot be repaired in parallel. The goal of the study is to 
find  the  optimal  strategy  that  reduces  the  costs  incurred  by  the  system  when  the 
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components break down: a penalty (Cpenalty) is paid at each time unit if both components 
are down, moreover each time a repair activity starts, a repair cost  (Crepair) is charged.

Figs. 2 and 3 show an  MDPN model for this system. In particular  the former 
shows the probabilistic behavior of the two identical components; while  the latter shows 
the  possible  actions  of  the  centralized  recovery  system  (assigning  or  not  the  repair 
resources to DOWN components).

Figure 2. Example of MDPN probabilistic net.

Figure 3. Example of MDPN non deterministic net.

The component lists are specified through the  GreatSPN GUI by defining appropriate 
parameters  with reserved names:  a two letters  prefix  distinguishes among controllable 
(CC), non controllable (NC) and global (GL) components (in the example CC1 and CC2 
are defined). By properly annotating the model, stop and run transitions can be identified, 
and the components involved in each firing are specified: these annotations are integrated 
in  the  “tag”  attribute  of  transitions,  concatenated  to  the  transition  name  after  the  | 
separator.  For  example  the  annotation  StartRep2|<Run,CC2,> means  that  transition 
StartRep2 is  a  run transition  involving  only  controllable  component  CC2,  while  the 
annotation  Fail1|<Stop,CC1,> means that transition  Fail1 is a  stop transition involving 
component  CC1.  Since  places  can  be  shared  between  the  non  deterministic  and 
probabilistic subnet, these must be identified through a common label (concatenated with 
the  place  name)  in  the  two  models:  in  the  example  this  is  the  case  for  places 
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AvailableRes, AssignResi,  and Downi, i=1,2 identified as shared places by the suffixes |
AR, |ARi, |Di respectively. Places with these labels appear in  both subnets.

A token in place  Upi, i=1,2 means that component i is in service. The firing of 
transition Faili with probability 1-Pwork corresponds to component i failure and moves the 
token in  Downi|Di. The repair of component  i starts  firing the  run transition  StartRepi 

when the decision maker has assigned a repair resource to that component putting a token 
into   place  AssignResi|ARi.  In  each  time  unit  an  ongoing  repair  process  can  finish, 
represented by the firing of  stop transition  EndRepi, with probability  1-Prepair, or can go 
on, represented by the firing of stop transition ContRepi, with probability Prepair.

In  the  non  deterministic  net  the  stop transitions  AssignedResi and 
NoAssignedResi model the choice to activate or not the repair of a down component. 

Figure 4. Example of MDWN probabilistic net (A)  and non deterministic net (B).

The reward function associated with this model, defining the optimization problem, is:
T AssignedRes1 -1
T AssignedRes2 -1
F -100 (Down2|D1 = 1 &&  Down2|D2 = 1)
where the first two items represent the cost associated with each repair action, while the 
last item expresses the penalty paid for the whole system being inactive (all components 
down).  The  MDWNsolver expects  to  find  the  reward  function  in  a  separate  file, 
expressed according to a given grammar (see the manual in  [16]).

When the system comprises sets of identical components, as is the case in the 
example, the MDWN formalism should be preferred since it allows a more compact and 
parametric  definition of the model, since the behavior of each component type appears 
only once in the model. In Fig. 4 the MDWN model for this system is depicted, where the 
list of controllable components contains only one element,  CC1, that is associated with 
the  color  class  C containing  the  identifiers  of  the  two  identical  components.  The 
annotations  of  the  MDWN models  are  a  bit  more  complex  because  it  is  required  to 
specify the (tuple of) transition color elements (variables) that are used to identify one 
component within a set of identical ones. In the example of Fig. 4 variable is  x and the 
transition annotation must specify a component type followed by the variable(s) that are 
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instantiated upon transition firing to select one specific component of that type; e.g. the 
tag  StartRep|<Run,CC1,x,> denotes a run transition involving component x among  the 
components of type  CC1.  Special annotations can be used to associate  more than one 
component in the same class with a given transition. 

From the  two models  we  can  derive   an   MDP and  solve  it,  activating  the 
sequence of modules described in Sec.2. For each MDP state, the corresponding optimal 
action  is  reported  as   a  sequence  of  non  deterministic  transition  instances  (e.g. 
NoAssignedRes(a1); NoAssignedRes(a2)). The size of the final MDP in general is smaller 
when the MDWN model is used, due to the exploitation of symmetries (SRG). The gain 
increases  with  the  cardinality  of  the  classes  of  similarly  behaving  components.  As  a 
consequence, the optimal strategy encoding is more compact and parametric (expressed 
using the symbolic  markings and  symbolic  transition instances  notation,  representing 
equivalence  classes  of  states  and  transitions).  For  instance,  symbolic  action 
NoAssignedRes(C1); AssignRes(C2) in a state where place Up contains <C2> and place 
Down contains  <C1>  represents  the decision of  assigning the  repair resource  to  the 
component  that  is  Down:  different  assignments  of  actual  component  identifiers  to 
parameters C1 and C2 allow to obtain specific states and corresponding optimal action. 

5. Interesting applications of MDPN and MDWN

In this section we present some interesting MDPN/MDWN application examples, giving 
a flavor of the type of optimization problems that can be dealt with this formalism, and 
discussing the model sizes that the tool can currently manage.

The first example, presented in  [2], concerns a Wireless Sensor Network (WSN) 
monitoring system, that has to track a moving object within a building composed of  F 
floors; each floor is partitioned in Z zones, each containing a fixed number S of sensors.

In this context, the MDWN was used to  find an optimal trade off between the 
power consumption and the object tracking reliability; the power saving was achieved by 
periodically powering off some of the nodes for a given time interval (up to C time units 
long). The cost function to be optimized includes both the penalty due to losing track of 
the monitored object, and the cost of battery consumption; the possible non deterministic 
actions correspond to the choice of a set of nodes to be powered off and the respective 
sleeping time. The number of states is quite large, even for a relatively small system: to 
mitigate the complexity, the optimization problem has been solved on several simplified 
models,  each  representing  only  one  floor  in  details;  the  computed  optimal  power 
management  strategy  has  been  simulated  on a  complete  and  more  detailed  model,  to 
estimate the interesting performability measures, including energy consumption. 

Tab.1 shows the state space size and solution time as a function of the system 
parameters (S, Z, C) for a three floors model: the solution is feasible only for a limited 
number of sensors.  In details,  the first  column reports the experiment  parameters,  the 
second, third and fourth columns report the  number of ordinary states (RG size – derived 
from the SRG, not from direct computation) and symbolic states (SRG size), and the SRG 
generation time. The last two columns show the number of states of the reduced MDP and 
its generation and solution time. The results shown in this table shows the effectiveness of 
the SRG method in mitigating the state space explosion:  a good level  of reduction is 
achieved (e.g. for case 4,3,1 the reduction factor  (|RG|/|SRG|) is 131), moreover the SRG 
growth is smoother  than the RG one (e.g. moving from  configuration 2,3,3 to 3,3,3 the 
SRG size grows by a factor 24 while the RG by factor 164.).



Marco Beccuti, Giuliana Franceschinis and Serge Haddad

Table 1.  The state space size of  the WSN monitoring model in [2] where S  is  the  number of  
sensors/zone, Z the number of zones/floor, C the maximum sleep time; number of floors F=3. 

Another  interesting  application  of  MDWNsolver  is  the  computation  of  the 
optimal  repair  policy of  systems  specified  by means  of  Non deterministic  Repairable 
Fault Trees (NdRFT) or Parametric NdRFT (ParNdRFT), indeed an NdRFT/ParNdRFT 
model can be automatically translated into an MDPN/MDWN [4,6]. 
Here  we present  a  model  inspired  to  the  Multiprocessors  system in  [8].   The system 
structure is shown Fig. 5(top left): it  comprises two parts: the disk access (DA) and the 
CPU-Memory (CM) subsystem. The former unit is composed by two disks  D1, D2 in 
mirroring (RAID-1) and a bus (DBUS); while the latter unit comprises two processing 
units:  PU1 and PU2. Each processing unit  includes a processor  Pi and three redundant 
banks of local memory Mi1-3. Moreover, the two processing units share  a global memory 
SM composed by two  redundant memory banks R1, R2. 

Fig. 5(right) shows the NdRFT model for this system: the Fault Tree structure 
represents  the  Boolean  function  specifying  which  combinations  of  basic  fault  events 
(leaves) lead to the fault of each subsystems (internal nodes) and of  the whole system 
(root - TE). In particular, the system (TE) fails if the DA or the CM subsystem fails.  The 
DA fails if both disks or the bus fail; while the CM  fails if both PU1 and PU2 fail.  Each 
PUi fails if its processor or all its local memory banks and the global memory fail. Finally 
SM fails if both memory banks are not accessible (due to a faulty memory or bus).

MDWN MDP (SRG)

S,Z,C |RG| |SRG| TimeSRG States Time

2,3,1 19,253 6,356 5s 144 0s

2,3,2 80,272 24,475 56s 380 5s

2,3,3 229,661 67,001 75s 825 26s

2,3,4 527,768 149,708 341s 1,575 6m

2,3,5 1,050,757 292,324 609s 2,744 20m

3,3,1 920,981 55,508 119s 420 6s

3,3,2 7,818,304 379,840 992s 1,600 17m

3,3,3 37,737,589 1,623,725 52m 4,725 34m

4,3,1 45,246,989 345,200 862s 975 201s
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Figure 5. Example of NdRFT for a multiprocessors system.

The NdRFT model includes information on the fault rates (downward arrows) 
and on the possible repair actions that can be performed on the system components, and 
their rates (upward arrows): five basic components of the multiprocessors system can be 
repaired:  R1,  B1,  D1,  D2,  DBUS. Their  repair  process  can  be  activated  either  upon 
detection of an SM fault (R1 and B1), or when a fault is detected in DA, (D1 and D2 or 
DBUS), but also immediately when a fault is detected in a disk Di. In our case study we 
suppose that only  one repair resource is available and only one resource is required to 
perform each repair process. 

In [4,6] it has been shown how an NdRFT can be automatically translated into an 
MDPN, where the cost function may include both the cost for the system (or subsystem) 
being down per time unit, and the repair cost. The dashed part at the bottom left of Fig. 1 
shows the software components that allow to design the NdRFT model (DrawNet GUI) 
and   to  translate  it  into  an  MDPN.  The  PNpr and  PNnd subnets  resulting  from  the 
translation of the multiprocessor NdRFT have 26 places 24 transitions overall; the  PNpr 

subnet  models  the  system components  behavior,  while  the  PNnd subnet  represents  the 
choice of which failed component has to be repaired at any time. For this model we have 
computed the optimal repair policy that minimizes the TE probability at time t (defining a 
constant positive cost per time unit for all the states where the whole system has failed, 
and no repair cost). The RG of the MDPN model obtained from the NdRFT  has 586.826 
states and it has been generated in 88 seconds,  while the underlying MDP has  8.875 
states and it has been generated and solved in 11 minutes (Intel Centrino Duo 2.4GHz, 
2GiB RAM). 

The computed optimal repair policy is not trivial even if the system has only five 
repairable components, since  when more repairable components have failed, their repair 
order must be dynamically chosen according to the whole system state. 
The  optimal repair policy is shown in Tab. 2 ; where the first three columns represent the 
state of subsystems  CM, DA, and  SM,  while the last column shows the corresponding 
optimal repair order.  For instance if all subsystems have failed then the optimal repair 
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order is  B1, R1, DBUS, D1, D2, while if only  CM is working then the optimal repair 
order is  DBUS, D1, B1, R1, D2.

Table 2. The repair order corresponding to the optimal repair policy
CM DA SM Repair order

Working  Failed Failed/Working DBUS,D1,D2,B1,R1

Failed/Working Working  Failed B1,R1,D1,D2

Working Failed  Failed DBUS,D1,B1,R1,D2

Failed  Failed  Failed B1,R1,DBUS,D1,D2

In  order  to  illustrate  the  performance  of  the  optimal  repair  strategy  we  have 
computed the corresponding TE probability at time t solving the DTMC obtained from the 
MDP by  fixing  the  action  to  take  in  every  state  according  to  the  computed  optimal 
strategy  and  we  have  compared  it   with  that  obtained  using  the  following  state 
independent  repair  strategies:  1)  always  repair   first  all  the  failed  components  in 
subsystem CM; 2) always repair first all  the failed components in  subsystem DA.
The obtained   TE probabilities  at  time  t with 400≤t<10000 are plotted  in Fig.  6;  as 
expected the curve representing the TE  probability associated with the optimal strategy 
lays below those obtained when applying the state independent repair strategies.

Figure 6. TE probability at time t for different repair strategies.
It is interesting to observe that despite the multiprocessor model is structurally symmetric, 
the symmetry is not reflected in the failure and repair rates, as a consequence in this case 
it is not possible to apply the SRG state space reduction method. 
When instead also the fault/repair rates are uniform for replicated components, the SRG 
technique can be applied (the ParNdRFT formalism has been defined to represent in a 
compact  and  parametric  form systems  with  symmetric  structure  and  rates).  In  [6]  an 
MDWN  model  automatically  generated  from   a  ParNdRFT  model  is  illustrated:  it 
represents  an  Active  Heat   Rejection System  composed  by a parametric   number of 
thermal units, each composed by one source and one heat component. Each thermal unit 
belongs to one of three types (U1, U2 or U3) that have different parameters concerning 
fault occurrence probability and repair costs, and different  possible repair actions. The 
failure of a thermal unit  occurs when its  source or its heat  component  fail;  while the 
whole system  fails when all its thermal units fail. The MDWN model of this example has 
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been used to compute the repair strategy minimizing the probability of a system fault at 
time t.  

Tab.2 shows the state space size and solution time for this MDWN model, as a 
function  of  the  number  of  thermal  units  for  each  type.  The  first  column  shows  the 
experiment parameters, while the following two groups of four columns refer to the RG- 
versus SRG approach. For each approach the state  space size,  its generation time,  the 
corresponding MDP size and its generation and solution time are reported.

Table 2. State space size and computation time of the Active Heat  Rejection System model in [4] 
varying the number of sub-components of types U1,U2,U3.

RG approach SRG approach 
|U1|,|U2|,|U3| |RG| TimeRG |MDPRG| TimeMDP |SRG| TimeSRG |MDPSRG| TimeMDP

1,1,1 3,189 0s 389 0s 1,572 1s 389 0s
2,1,1 35,555 5s  937 5s 15,246 47s 579 0s
2,2,1 453,257 230s 7,754  11m 228,917 168s 3,143 4s
2,2,2 2,919,999 67m 32,558  2h 784,945 200s 16,222   3m
2,2,3 83,524,010 --- --- --- 10,280,241 5h 52.271 2h   

6. Conclusion

In this paper we have presented the MDWNsolver framework, able to generate an MDP 
from an  MDPN/MDWN specification:  this  contribution  extends  an  earlier  two pages 
communication  [3];  w.r.t.  that  prototype  several  optimizations  on  the  solver  have 
significantly improved its performance. The advantage of the proposed  MDWNsolver is 
the possibility to express in a quite easy way MDP models using a high level language, 
supporting a component based specification with the possibility to put in evidence and 
exploit symmetries, and a way of specifying multi-step actions (composed of component-
oriented sub-actions) and multi step probabilistic evolution. To the best of our knowledge 
the other tools supporting a high level specification language for MDPs do not include all 
the above mentioned features:  for instance PRISM [11] allows to specify a system by 
composition of  modules  (resembling our notion of component),  but  at  each time step 
there can be either a synchronized action of a subset of modules, followed by a one-step 
probabilistic  state  change,  or  an action  can be performed  by only one  module,  again 
followed by a probabilistic state change, so that modeling the concurrent  evolution of 
independent  components  within each time step  requires  some effort.  The experiments 
performed up to now with the MDWNsolver in different application domains have shown 
that the current prototype can handle models with RG or SRG of up to 10.000.000 states: 
in all the considered cases the resulting MDP structure had less than 55.000 states (which 
is also a limit to find the optimal strategy without running out of memory  with the current 
solver). These are at the moment the limit sizes that can be managed in reasonable time, 
and without running out of memory, on a machine with an Intel Core Duo T7500 2,20 
GHz processor and 2GiB  RAM, with Linux. Although the time required to generate and 
solve  the  MDP depends  on several  factors  (not  only  the  number  of  states)  the  time 
required in our experiments to generate the MDP from the MDPN/MDWN model and 
solve  it,  were  comprised  between  a  few  seconds  for  models  with  a  (S)RG of  a  few 
thousands states and an MDP of a few hundreds of states, to some hours, for models with 
a (S)RG of several millions of states and an MDP of up to fifty  thousand states. The 
MDWNsolver is  distributed with the GreatSPN tool: it can be downloaded from [15]. 
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	Figure 3. Example of MDPN non deterministic net.

