
Lumping partially symmetrical stochastic models

S. Baarir2, M. Beccuti2, C. Dutheillet1, G. Franceschinis2, S. Haddad3, J.M. Ilié4
,

1LIP6 2Dip. di Informatica 3LAMSADE 4LIP6
Université Paris 6 Univ. Piemonte Orientale Université Paris-Dauphine IUT Paris 5

claude.dutheillet@lip6.fr {baarir,beccuti,franceschinis}@mfn.unipmn.it haddad@lamsade.dauphine.fr Jean-Michel.Ilie@lip6.fr

Abstract

Performance and dependability evaluation of complex
systems by means of dynamic stochastic models may be im-
paired by the combinatorial explosion of their state space.
Among the possible methods to cope with this problem,
symmetry-based ones can be applied to systems including
several similar components. Often however these systems
are only partially symmetric: occasionally similar compo-
nents behavior may diverge from the usual symmetrical one.

In this paper two methods to efficiently analyse partially
symmetrical models are presented in a general setting and
the requirements for their efficient implementation are dis-
cussed. A complex realistic case study is presented to show
the methods effectiveness and their applicative interest.

1 Introduction
As software systems and hardware architectures are

more and more complex, their verification and evaluation
become critical issues. Analysis methods are often subject
to the problem of combinatorial explosion due to the in-
creasing system complexity. Several approaches have been
undertaken to cope with this problem: decomposition meth-
ods take advantage of the modular structure of the sys-
tem; for performance evaluation, approximate and bound-
ing methods substitute a simpler system to the original one;
diagram decision based methods symbolically manage sets
of states rather than representing states explicitly, etc.Here
we present symmetry-based methods that exploit the pres-
ence of several similar components in the system.

The general principle of these methods consists to sub-
stitute to the state graph a quotient graph w.r.t. some
equivalence relation. This relation considers two states as
equivalent if they can be obtained from each other per-
muting equivalent components. These methods have been
first introduced in order to check safeness properties (see
e.g. [10, 11]), then generalized in order to check tempo-
ral logic formulae (see e.g. [6]) and also adapted to perfor-

mance evaluationvia the quantitative counterpart of sym-
metry, i.e. lumpability (see e.g. [4,?, ?]). It should be
stressed that the requirements w.r.t. lumpability are gener-
ally stronger than the ones that ensure equivalence between
qualitative (symmetrical) behaviors and thus the design of
such methods needs more elaboration.

In order to successfully exploit symmetries it is required
to (1) define in a generic way, at the conceptual level, what
method can be used to reduce the state space through sym-
metries (2) select a formalism where symmetries are auto-
matically detected (3) define how the method can be effi-
ciently implemented in practice. The design at the concep-
tual level is based on the operations of a permutation group;
the formalism must allow a simple way to express similar
components; the implementation should be based on a sym-
bolic representation of set of states and transitions and their
efficient manipulation.

However the systems seldom have completely symmet-
ric behavior (for example in distributed algorithms we of-
ten have a symmetric specification, together with some
symmetry-breaking criteria - e.g. based on unique process
identity - to solve conflicts, deadlocks, etc.) so it is useful to
define and implement methods to deal with partial symme-
tries. In the literature partial symmetry methods have been
proposed for qualitative analysis [1, 7, 8, 9].

In this paper we propose two generic methods to apply
lumping in partially symmetrical models, and discuss how
they can be efficiently implemented in the context of the
Stochastic Well-Formed Net (SWN) formalism [4]. The
first one, called DS method, starts from a completely sym-
metric Markov chain (MC) and an additional automata de-
scribing the asymmetries: in this case a lumped MC satisfy-
ing the exact lumpability condition is built. The second one,
called TLS method, instead starts from an over-aggregated
MC from which a lumped MC can be derived by applying a
refinement algorithm: it can use either the strong lumpabil-
ity or the exact lumpability condition (which have different
impact on the type of performance indices that can be com-

puted and may lead to different degrees of aggregation).
The two methods can be efficiently applied to SWNs1

models, in fact this formalism is designed so that symme-
tries can be automatically detected and exploited. How-
ever here they are presented in a general setting so that
they could be adapted to other kinds of high level stochastic
models. One of the main differences between the two meth-
ods is that the TLS (Two-Levels Symmetry) method uses
two different aggregation criteria depending on the current
phase of the behavior (symmetric or asymmetric), while
the DS (Dynamic Symmetry) method aggregates states in a
more dynamic way, possibly using several different aggre-
gation criteria which may correspond to a more articulated
classification of the behavior phases: symmetric behavior
or one among several asymmetric behaviors.

We have implemented our methods in the GreatSPN
tool [5] allowing us to perform several experiments. A sig-
nificant case study is presented in the paper, describing a
remote service system modeled by means of the SWN for-
malism: the goal of the study is to evaluate the impact of
accounting for different priority user classes, by comput-
ing the overall service throughput and other related perfor-
mance indices. The two methods are applied to compute
such indices: besides providing the measures of interest,
the experimental results show that relevant savings in the
state space size can be achieved through both approaches,
and that they can be alternatively applied in the most appro-
priate situations.

The paper unifies and extends two results presented
in [2, 3], revisiting them in a more general setting; a par-
ticular emphasis is given to the case study. It is organized
as follows: in Sec. 2 some basic notions on MC and lumpa-
bility are defined, in Sec. 3 the TLS and DS methods are
presented; in Sec. 4 a discussion on their implementation
(including a comparison) is presented, finally in Sec. 5 a
significant case study is presented and analyzed. We con-
clude in Sec. 6.

2 Markov chain lumpability

2.1 Strong, weak and exact lumpability

The quantitative evaluation of dynamic systems pro-
posed in this paper implies the following three steps (a) the
specification of the stochastic process representing the tar-
get system, (b) the definition of the required performance
(or dependability) indices and (c) the possibility of applying
efficient algorithms for transient or steady state measures
computation.

The analysis of stochastic processes in general is an hard
problem, in fact often simulation is the only viable option,

1SWNs are high level stochastic Petri nets with a restricted syntax for
expressing color domains of places and transitions, arc functions and tran-
sition guards.

while in some cases algorithms for the computation of ap-
proximations or bounds on the desired measures can be ap-
plied.

When the dynamic system behavior can be described
through a finite Discrete Time MC (DTMC) or Continuous
Time MC (CTMC), the solution is conceptually simpler,
however, in realistic case studies, it is still computationally
expensive; for this reason state space reduction techniques
have been studied, such as the so called MClumpingtech-
nique.

Lumping of (finite) MCs is a useful method for dealing
with large chains [12]. The principle is simple: substituteto
the MC an “equivalent” one, where each state of the lumped
chain is a set of states of the original one. There are different
versions of lumpability related to the fact that the lumpa-
bility condition holds for every initial distribution (strong
lumpability) or for at least one (weak lumpability). First,
we briefly introduce MCs. Due to space constraints, we
only deal with CTMCs. However our methods also apply
to DTMCs and we indicate later on the interest of dealing
with DTMCs even in a continuous time setting.

Definition 1 (Markov Chains) A CTMCC = 〈S, π0, π0〉
is defined by a state spaceS, an infinitesimal generatorQ
(that is aS×S matrix whose off-diagonal elements are non
negative reals, while each diagonal element is defined as
Q[s, s] = −

∑
s6=s′ Q[s, s′], andπ0, an initial probability

distribution overS. We note{Xt}t∈IR≥0

the associated
stochastic process.

Notation. S0 denotes the subset of “initial” states, i.e.,
S0 = {s ∈ S | π0(s) > 0}.

We now introduce lumpability concepts.

Definition 2 Let C be a CTMC and{Si}i∈I be a partition
of the state space. LetYt be a random variable defined by
Yt = i ⇔ Xt ∈ Si. Then:
• Q is strongly lumpablew.r.t. {Si}i∈I

iff ∀π0, {Yt}t∈IR≥0

is a CTMC,

• Q is weakly lumpablew.r.t. {Si}i∈I

iff ∃π0 s.t.{Yt}t∈IR≥0

is a CTMC.

Whereas the characterization of strong lumpability w.r.t.
the infinitesimal generator is straightforward, checking for
weak lumpability is much harder [13]. Here, we introduce
the exact lumpability, a simpler case of weak lumpability.

Definition 3 Let C be a CTMC and{Si}i∈I be a partition
of the state space. LetYt be a random variable defined by
Yt = i ⇔ Xt ∈ Si. Then:
• An initial distributionπ0 is equiprobable w.r.t.{Si}i∈I

if ∀i ∈ I, ∀s, s′ ∈ Si, π0(s) = π0(s
′).

• Q is exactly lumpablew.r.t. {Si}i∈I iff
∀π0 equiprobable w.r.t.{Si}i∈I {Yt}t∈IR≥0

is a CTMC.

Exact and strong lumpability have easy characteriza-
tions [17] given by the following proposition.

Proposition 4 LetC be a CTMC and{Si}i∈I be a partition
of the state space. Then:
• Q is strongly lumpable w.r.t.{Si}i∈I iff ∀i 6= j ∈ I,
∀s, s′ ∈ Si,

∑
s′′∈Sj

Q(s, s′′) =
∑

s′′∈Sj
Q(s′, s′′),

• Q is exactly lumpable w.r.t.{Si}i∈I iff ∀i, j ∈ I,
∀s, s′ ∈ Si,

∑
s′′∈Sj

Q(s′′, s) =
∑

s′′∈Sj
Q(s′′, s′).

The following corollary establishes a sufficient condition
for exact lumpability in CTMCs which will be useful in or-
der to check the correctness of one of our methods.

Corollary 5 Let C be a CTMC and{Si}i∈I be a partition
of the state space. ThenQ is exactly lumpable w.r.t.{Si}i∈I

if:
1. ∀i 6= j ∈ I, ∀s, s′ ∈ Si,∑

s′′∈Sj
Q(s′′, s) =

∑
s′′∈Sj

Q(s′′, s′).
2. ∀i ∈ I, ∀s, s′ ∈ Si,∑

s′′ 6=s∈Si
Q(s′′, s) =

∑
s′′ 6=s′∈Si

Q(s′′, s′).
3. ∀i ∈ I, ∀s, s′ ∈ Si, Q(s, s) = Q(s′, s′).

When the strong lumpability condition holds the in-
finitesimal generator of the lumped chain can be directly
computed from the original generator as expressed by the
following proposition.

Proposition 6 Let C be a CTMC that is strongly lumpable
w.r.t. a partition of the state space{Si}i∈I . LetQlp be the
generator associated with this lumped CTMC, then:

∀i, j ∈ I, ∀s ∈ Si, Q
lp(i, j) =

∑
s′∈Sj

Q(s, s′).

As for strong lumpability, also in case of exact lumpa-
bility the infinitesimal generator of the lumped chain can
be directly computed from the original generator. Observe
that starting with the probability mass equidistributed onthe
states of every subset of the partition, the distribution atany
time is still equidistributed. Consequently, if the CTMC is
ergodic, its steady-state distribution is equidistributed be-
tween states of every subset of the partition. In other words,
with the knowledge of the lumped chain generator, one may
compute its steady-state distribution, and deduce (bylocal
equidistribution) the steady-state distribution of the original
chain. It must be emphasized that this last step is impossible
with strong lumpability since it does not ensure equiproba-
bility of the states in an aggregate.

Proposition 7 Let C be a CTMC that is exactly lumpable
w.r.t. a partition of the state space{Si}i∈I . LetQlp be the
generator associated with this lumped CTMC, then:
• ∀i, j ∈ I, ∀s ∈ Sj,

Qlp(i, j) = (
∑

s′∈Si
Q(s′, s)) × (|Sj |/|Si|)

• If ∀i ∈ I, ∀s, s′ ∈ Si, π0(s) = π0(s
′) then∀t ∈ IR≥0,

∀i ∈ I, ∀s, s′ ∈ Si, πt(s) = πt(s
′),

whereπt is the probability distribution at timet.
• If Q is ergodic andπ is its steady-state distribution

then∀i ∈ I, ∀s, s′ ∈ Si, π(s) = π(s′).

2.2 Dealing with DTMCs.

As said before, very similar results hold for DTMCs.
Furthermore even in a continuous time setting, there are
two situations where using DTMCs is useful. Some
semi-Markovian processes are analyzablevia anembedded
DTMC which only takes into account state changes. This
DTMC could be lumpable thus enlarging this technique to
semi-Markovian processes. Furthermore, it may happen
that even in a case of CTMC, the embedded DTMC has
a greater reduction factor by lumpability. We have experi-
enced this phenomenon when benchmarking our methods.

2.3 Computation of performance indices.

Let us now recall how it is possible to characterize
the performance index (or indices) of interest on a given
CTMC, and then discuss the implications of lumping on its
computability.

The performance indices of interest can be computed in
a transient or steady state setting. Examples of performance
indices are the steady state availability of a server, the prob-
ability that a given connection be active at time instantτ , or
the average number of clients being served in a system.

A general way of defining performance indices on
CTMCs is through the use ofreward functions: their do-
main is the setS of CTMC states while the co-domain is
IR. In fact, a functionr can be seen as a performance in-
dex and, given a (steady state or transient) state probability
distributionπ, the (average or instantaneous) performance
index measure can be expressed as:

∑
s∈S π(s) · r(s).

If the reward functionr expressing the performance in-
dex of interest is constant within each aggregate, then the
probability distribution of the aggregates is enough to com-
pute the value of the performance index (we can say that the
reward function is compatible with the aggregation). How-
ever if this is not the case, only exact lumpability still gives
us the possibility to compute the performance index value.

Finally observe that the efficient computation of perfor-
mance indices corresponding to unconstrained reward func-
tions in the exact lumpability case requires a way of effi-
ciently computing the cardinality of each aggregate, and of
the subset of states within the aggregate characterized by
the same reward function value.

3 The DS and TLS methods

3.1 Lumpability of partially symmetrical MCs

This section presents theDynamic Symmetry(DS)
method: it is applied to partially symmetrical MCs.

Partially symmetrical CTMCs. The model of partially
symmetrical systems that we develop here is defined as a

Figure 1. A labeled CTMC and its control au-
tomaton

CTMC obtained by some synchronized product between a
(symmetrical) CTMC and a control automaton. Let us first
formalize this product. Synchronizing the behavior of the
two components requires to “label” the CTMC with events.

Notation. Let C be a CTMC, we associate with each pair
of statess 6= s′ a label in some alphabetΣ ∪ {ε}, denoted
Λ(s, s′). We require thatΛ(s, s′) = ε iff Q(s, s′) = 0.

Since the automaton is introduced in order to modify the
behavior of the CTMC, the label of each edge is a predi-
cate that selects the events allowed to occur in the current
location of the automaton.

Definition 8 LetC be a CTMC, thenA = 〈L, l0,→〉 a con-
trol automaton ofC is defined by:
• L, the set of automaton locations,
• l0, the initial location,
• →⊆ L × 2Σ × L, the transitions of the automaton.

A transition(l, γ, l′) will be denoted byl
γ
−→ l′.

Furthermore, ifl
γ
−→ l′ andl

γ′

−→ l′ with γ 6= γ′

thenγ ∩ γ′ = ∅.

In standard automata, the last requirement can be easily
ensured by merging the two transitions into a single one
labeled byγ ∪ γ′. However the interest of letting distinct
the two transitions will be discussed later.

Fig.1 represents a CTMC and its control automaton.
Standard letters are labels, while Greek letters represent
transition rates. The initial distribution is:π(r0) = 1.

In the synchronized product defined below, the CTMC is
the “active” component whereas the automaton is the “pas-
sive” component waiting for a transition of the CTMC in
order to synchronize it with one of its transitions. Conse-
quently, the rates (resp. the initial distribution) associated
with the product depends only on the rates (resp. the initial
distribution) of the CTMC.

Definition 9 Let C be a CTMC andA some control au-
tomaton ofC. The synchronized product ofC andA, CA =

〈S × L, π′
0, Q

′〉 is a CTMC defined by:
• ∀s, π′

0(s, l0) = π0(s) ∧ ∀l 6= l0, π
′
0(s, l) = 0

• ∀s 6= s′ ∈ S, ∀l, l′ ∈ L, if l
γ
−→ l′ ∧ Λ(s, s′) ∈ γ

thenQ′((s, l), (s′, l′)) = Q(s, s′)
elseQ′((s, l), (s′, l′)) = 0

• ∀s ∈ S, ∀l 6= l′ ∈ L, Q′((s, l), (s, l′)) = 0

Remarks. Due to the constraint on the labeling function
Λ, a transition with null rate cannot be synchronized with
an automaton transition. The requirement related to transi-
tions of the control automaton ensures that given a current
location l, a possible next locationl′ and a labelα ∈ Σ
(triggered by a transition of the CTMC) there is at most one
transition of the automaton that reachesl′ from l accepting
labelα. In realistic applications, the control automaton is
only used in order to restrict the behavior of the original
CTMC. However observe that the outgoing transition rate
of a state(s, l) can be greater than the one ofs. Take for

instanceΛ(s, s′) = α, l
{α}
−−→ l′ andl

{α}
−−→ l′′ and assume

thatQ(s, s) = −Q(s, s′) (i.e.,s′ is the only successor ofs).
ThenQ((s, l), (s, l)) = 2Q(s, s) due to the two automaton
arcs. We choose this more general setting since for specific
applications, it could be useful.

In the example of Fig.1, the control automaton actually
forbids transitions that are not labeled witha or b. Hence,
CA is obtained fromC by removing the dotted arcs.
Formally, the states ofCA are pairs(si, l) but as there is
only one location in the automaton, we will omit it in the
representation of states throughout the example.

From a theoretical point of view, the specification of the
system symmetries relies on group theory, applied to the
states and the events of the system. The next definition re-
calls the appropriate notions.

Definition 10 Let G be a group, with neutral elementid
and whose internal operation is denoted (•). LetE be a set.
• Anoperationof G onE is a mapping fromG × E

to E s.t. the image of(g, e), denoted byg.e, fulfills:
∀e ∈ E, id.e = e ∧ ∀g, g′ ∈ G, (g • g′).e = g.(g′.e)

• Theisotropy subgroupof a subsetE′ ⊆ E is defined by:
GE′ = {g ∈ G | ∀e ∈ E′, g.e ∈ E′}

• LetH be a subgroup ofG, theorbit of e byH
denotedH.e, is defined by:{g.e | g ∈ H}.
The set of orbits byH defines a partition ofE.

We simultaneously introduce the notions of symmetrical
and partially symmetrical CTMCs. Informally, a CTMC
is symmetricalw.r.t. some group if the operation of the
group on the state space preserves its initial distributionand
stochastic behavior. A CTMC ispartially symmetricalif it
is a synchronized product of a symmetrical CTMC with a
(non symmetrical) control automaton.

Definition 11 A CTMCC is symmetrical w.r.t.G a group
operating onS andΣ iff: ∀g ∈ G, ∀s 6= s′ ∈ S, π0(g.s) =
π0(s) ∧ Q(g.s, g.s′) = Q(s, s′) and Λ(g.s, g.s′) =
g.Λ(s, s′).

Let C be symmetrical w.r.t.G andA be a control au-
tomaton ofC, thenCA is said to be partially symmetrical
w.r.t. G.

We associate with eachγ occurring in a transition ofA
a subgroupHγ ⊆ G defined by:g ∈ Hγ iff ∀a ∈ Σ, a ∈
γ ⇔ g.a ∈ γ.

The size of the subgroupHγ is an indicator of the
symmetry of the associated edge. WhenHγ = G, the
edge is “fully” symmetrical whilst whenHγ = {id}, the
edge is “fully” asymmetrical. Here we see the interest of
keeping distinct transitions of the control automaton with
same sources and destinations. Indeed when merging them,
the subgroup associated with the new transition could be
smaller than one of (or even both) the subgroups associated
with the original transitions.

Back to the example of Fig.1, letG be the group of per-
mutations of{1, 2, 3} generated by binary permutationspi,j

which exchangei andj. The operations ofG on S andΣ
are defined by:
∀pi,j , pi,j .r0 = r0 ∧ pi,j .a = a
∀pi,j , pi,j .si = sj ∧ pi,j .ti = tj
∀pi,j , pi,j .sj = si ∧ pi,j .tj = ti
∀pi,j , k /∈ {i, j}, pi,j.sk = sk ∧ pi,j .tk = tk
p1,2.b = c ∧ p1,2.c = b ∧ p1,2.d = d
p1,3.b = d ∧ p1,3.c = c ∧ p1,3.d = b
p2,3.b = b ∧ p2,3.c = d ∧ p2,3.d = c

It is easy to verify that the CTMC is symmetrical w.r.t.
G. The subgroups associated with the labels ofA are
Hγ1

= G andHγ2
= {id, p2,3}. Observe that if instead

we had merged the transitions, the group would have been
{id, p2,3} and thus the full symmetry of the edgeγ1 would
have been lost.
A subset construction for lumpability. Given a partially
symmetrical CTMCCA, our method builds a smaller (but
equivalent) CTMC based on the building of some “subset”
reachability graph that we callGA. Algorithm 1 describes
its construction.

Let us detail how it works. The nodes of this graph are
pairs consisting in a location ofA and a subset of states ofC
which equivalently denotes a subset of statesCA with same
location. An edge of this graph is labeled by a transition
l

γ
−→ l′ of A and it represents a (non empty) set of transitions

of CA. More precisely, such a transition links some state of
the source subset to some state of the destination subset that
can be reached usingl

γ
−→ l′.

The key idea of this construction is the following: along
any path of this graph (and independently on the instants
of transition firings corresponding to the arcs of this path)

Algorithm 1 : Building of GA

1: nodes = ∅; edges = ∅;
2: PartitionS0 = ⊎n0

i=1S0,i

s.t. everyS0,i is the orbit of somesi ∈ S0 by G;
3: add ⊥ to nodes;
4: for i ∈ {1, . . . , n0} do

5: push(stack ,⊥
init
−−→ (l0, S0,i));

6: end for
7: while stackis not emptydo
8: (l, R)

γ
−→ (l′, R′) = pop(stack);

9: ComputeΓ = {γ′ | ∃l′
γ′

−→ l′′, ∃s′ ∈ R′,
∃s′′ ∈ S, Λ(s′, s′′) ∈ γ′};

10: ComputeH = GR′ ∩
⋂

γ′∈Γ Hγ′ ;
11: PartitionR′ = ⊎m

i=1Ri

s.t. everyRi is the orbit of someri ∈ R′ by H ;
12: for i ∈ {1, . . . , m} do
13: if (l′, Ri) ∈ nodes then
14: add(l, R)

γ
−→ (l′, Ri) to edges;

15: else
16: add(l′, Ri) to nodes;
17: add(l, R)

γ
−→ (l′, Ri) to edges;

18: for l′
γ′

−→ l′′ do
19: ComputeSET S = {H.s∗ | Λ(ri, s

∗) ∈ γ′};
20: for S′ ∈ SET S do
21: push(stack , (l′, Ri)

γ′

−→ (l′′, S′));
22: end for
23: end for
24: end if
25: end for
26: end while

starting from the initial distribution, the occurrence proba-
bility of all states of the subset associated with the last node
of this path are identical.

In fact, the construction maintains the following invari-
ants: (1) The graph represents all possible behaviors except
the ones that start from some node of the graph with an
edge that is present in the stack. (2) The nodes (i.e., the
corresponding subset of states) of the graph fulfill all the
conditions of corollary 5. (3) The subsets which are desti-
nation of an edge in the stack fulfill the two first conditions
of corollary 5.

Thewhile loop extracts an edge from the stack (line 8).
Then it splits the destination subsetR′ (lines 9-11) in order
to ensure the third condition of corollary 5 since inside a
subsetRi, the states allow the same transitions of the con-
trol automaton. Furthermore,ri ∈ Ri is selected. IfRi is a
node of the graph (lines 13-14) then one adds the edge to the
graph (while preserving the conditions of corollary 5). Oth-
erwise one createsRi as a new node and the corresponding

incoming edge and one computes the outgoing edges ofRi

(lines 18-24). The variableSET S contains orbits w.r.t.H
reachable fromRi using a transition whose label belongs to
γ′. These edges are pushed onto the stack. Again by con-
struction, the destination subsets of states fulfill the twofirst
conditions of corollary 5. Furthermore, the choice of theri

(line 19) is irrelevant sinceRi is the orbit underH of any of
its item. So whatever the choice, the set of subsetsSET S
will be identical.

The initial stage consists in partitioning the initial states
(S0) w.r.t. G (line 2). Since there is no incoming edge the
two first conditions of corollary 5 are satisfied. We have
added a fictitious node⊥ in order to handle theS0,i subsets
in the main loop (lines 3-6).

In order to prove the soundness of this construction, we
first introduce a CTMCCG

A, which is bigger thanCA.
In CG

A, states ofCA are replicated in instances, and in-
stances are organized w.r.t. the subsets associated with the
nodes ofGA. By construction, all the instances that belong
to the same subset have the same associated location of the
automaton. We will denote(s, l, R) the instance of(s, l) s.t.
s belongs to such a subsetR. In the next definition,nodes
(resp.edges) refers to the nodes (resp. edges) ofGA.

Definition 12 LetCA be partially symmetrical CTMC w.r.t.
G, then the CTMCCG

A = 〈S′′, π′′
0 , Q′′〉 is defined by:

• The set of statesS′′ is defined by:
S′′ = {(s, l, R) | (l, R) ∈ nodes ∧ s ∈ R}.

• ∀i ∈ {1, . . . , n0}, ∀R s.t.R is an item of the partition
of S0,i, ∀s ∈ R, π′′

0 (s, l0, R) = π′
0(s, l0)(= π0(s)).

For every other(s, l, R) ∈ S′′, π′′
0 (s, l, R) = 0.

• ∀(s, l, R) 6= (s′, l′, R′) ∈ S′′, If ∃(l, R)
γ
−→ (l′, R′)

is in edges thenQ′′((s, l, R), (s′, l′, R′)) = Q(s, s′).
OtherwiseQ′′((s, l, R), (s′, l′, R′)) = 0.

The stochastic process we want to build is obtained by
forgetting the instances and only memorizing the subsets.

Definition 13 Let CA be partially symmetrical w.r.t. G,
then the stochastic process(CG

A)lp is defined by:X lp
t =

(R, l) iff X ′′
t ∈ {(s, l, R)}.

The next proposition is the theoretical core of our
method. It states that(CG

A)lp is obtained fromCA by the
inverse of a strong followed by an exact lumping.

Proposition 14 Let CA be partially symmetrical w.r.t.G,
then:
• Denoting(s0, l0) . . . , (sn, ln) the state space ofCA,
CA is a strong lumping ofCG

A w.r.t. the partition
⊎

sli
wheresli = {(si, li, R) ∈ S′′}.

• Denoting{(R0, l0), . . . , (Rk, lk)} the state space of
(CG

A)lp, (CG
A)lp is an exact lumping ofCG

A w.r.t. the
partition

⊎
Rli whereRli = {(s, li, Ri) ∈ S′′}.

Proof
Let (s, l) be a state ofCA and let(s, l, R) be an instance
of this state inCG

A, we show that there is a bijective map-
ping from the transitions out of(s, l) onto the transitions
out of (s, l, R). So we can suppose thats is examined when
looking for successors of(l, R). Then∃s′, ∃l

γ
−→ l′ s.t.

Λ(s, s′) ∈ γ ⇔ ∃R′, ∃s′ ∈ R′, ∃l
γ
−→ l′ s.t. Λ(s, s′) ∈ γ

with (l′, R′) a successor of(l, R). Since this mapping pre-
serves the rate of the transitions the condition of Prop. 4 for
strong lumpability is fulfilled.

Let (s1, l, R) and(s2, l, R) be two states ofCG
A , we show

that there is a bijective mapping from the input transitions
of (s1, l, R) onto the input transitions of(s2, l, R). Let
(v1, l

′, R′) be such that∃l′
γ
−→ l andΛ(v1, s1) ∈ γ. Let

H be the group of line 10 related tol′, R′, then∃g ∈ H ⊆
GR′ ∩ Hγ s.t. s2 = g.s1. Now definev2 = g.v1, then
v2 ∈ R′ and Λ(v2, s2) ∈ γ. This implies the existence
of the required mapping. Since this mapping preserves the
rates of transitions, the two first conditions of corollary 5
for exact lumpability are fulfilled. The third one is ensured
by the splitting of line 11 which has produced(l, R). ♦

Figure 2. CTMC (CG
A)lp

Illustration. We illustrate the algorithm on the CTMC of
Fig. 1. The lumped CTMC(CG

A)lp is given in Fig. 2. We
have represented inside each node the states corresponding
to the subset associated with that node. Let us describe
the first steps of the algorithm. We push on the stack the

edge⊥
init
−−→ (l0, {r0}). When we pick it, we determine

that only the automaton transition labeled bya can be syn-
chronized. Thus the subgroup of line 10,H is equal toG.
The transition(r0, l)

a
−→ (s1, l) (resp. (r0, l)

a
−→ (t1, l))

yields to push on the stack an edge whose destination set is
{s1, s2, s3} (resp.{t1, t2, t3}). When the edge with desti-
nation{s1, s2, s3} is popped, the two transitions of the au-
tomaton can be synchronized and thus the groupH of line

10 becomes{id, p2,3}. The orbits of{s1, s2, s3} w.r.t. H
are{s1} and{s2, s3}. At the end, observe that statesti ap-
pear twice: in{t1, t2, t3} and in some orbit of{id, p2,3}.
We can intuitively explain it as follows. When the CTMC
reaches directly the statesti from r0 then their occurrence
is equiprobable which is only the case fort2 andt3 when
going throughsi.

Our generic method can now be described. Assume first
that the CTMCCA associated with the high-level modelM
we want to analyze is partially symmetrical. Assume also
that we are able to compute directly(CG

A)lp from M. Note

πt the unknown distribution ofCA at time t andπ
(lp)
t the

(computed) distribution of(CG
A)lp at timet. Thenπt(s, l) =∑

s∈R(1/|R|)×π
(lp)
t (R, l). The equality also holds for the

steady-state distributions.
Although theoretically difficult, we can give some hints

of how the space complexity decreases using our approach.
In the lumped CTMC, the original states have been sub-
stituted by subsets. Note that these subsets may intersect.
However these subsets are always the orbit of a state by a
subgroup ofG. Thus, the larger these subgroups, the better
the method. Note that each time a new subset is built, the
group is reduced (by intersection with some groupsHγ) and
then is enlarged by implicitly substituting to these intersec-
tions, the isotropy subgroup of the subset. Interpreting this
phenomenon at the model level, we deduce that the com-
plexity reduction factor is high whenever the effect of an
asymmetrical event is forgotten in a close future. Experi-
mentations will illustrate this interpretation.

3.2 Lumpability of Almost Symmetrical MCs

In this section we shall define the second method for
the (strong or exact) lumpability of a finite CTMC, called
Two-Levels Symmetry(TLS) method: in this case the start-
ing point is a CTMC and an initial indication of partition
of states into aggregates that could potentially already sat-
isfy the lumpability conditions; we call such CTMC and
initial partition almost symmetrical CTMC specification. A
lumpability check algorithm must be applied to such struc-
ture, to return a possibly refined partition satisfying the
strong and/or exact lumpability conditions.

The almost symmetrical CTMC specificationcontains
state transition arcs at two different abstraction levels:the
generic arcs, expressing transitions between state aggre-
gates, and the instantiated arcs, expressing transitions be-
tween CTMC states. Observe that the presence of generic
arcs make the symmetries present in the model explicit. Ob-
serve also that an efficient implementation of the proposed
method must rely on some compact (symbolic) representa-
tion of both generic arcs and of state aggregates, that allows
to avoid the explicit representation of the corresponding in-
stantiated arcs and states. Of course a way of retrieving such
explicit representation must be given, to be used if needed

during the refinement.

Definition 15 (Almost symmetrical CTMC) An almost
symmetrical specification of a CTMCC = 〈S, π0, Q〉 is
defined by:

• a partition of the state space{Si}i∈I such thatS =
⊎i∈I{Si}

• two types of state transition arcs:

generic arcs: i
λ,f
−−→ j wherei, j ∈ I are the source

and destination,λ ∈ IR>0 is a rate, andf is a function
f : Si → 2Sj , such that

1. ∀s, s′ ∈ Si, |f(s)| = |f(s′)|, and

2. ∀s, s′ ∈ Sj |f−1({s})| = |f−1({s′})|

instantiated arcs: s
λ
−→ s′ wheres ands′ are states

andλ ∈ IR>0 is a rate.

• the infinitesimal generatorQ, defined as:

∀s ∈ Si, ∀s′ ∈ Sj , Q[s, s′] =
∑

i
λ,f
−−→j,s′∈f(s)

λ+
∑

s
µ
−→s′

µ

If there are only generic arcs, then with respect to the
given partition, strong lumpability is ensured by condition
(1) on generic arcs, while exact lumpability is ensured by
condition (2) on generic arcs plus the following initial con-
dition ∀i ∈ I, ∀s, s′ ∈ Si, π0(s) = π0(s

′). In the gen-
eral case a refinement is required to ensure exact or strong
lumpability.

In the sequel an algorithm to check strong/exact lumpa-
bility of almost symmetrical CTMCs is given: it is based
on (an adaptation of) the Paige and Tarjan’s partition re-
finement algorithm [14, 15] and exploits the properties of
generic arcs whenever possible to reduce the number of
checks to be performed. It should be emphasized that the
achieved lumpable CTMC could have more aggregates than
the one obtained without an initial partition constraint, how-
ever in the case where the initial aggregates cannot anyway
be lumped, then the number of steps of the present algo-
rithm is less than the number of steps required when ap-
plying Paige and Tarjan’s algorithm directly on the origi-
nal CTMC. Observe that the reason for imposing an initial
partition is due to the efficient (implicit and symbolic) rep-
resentation of macrostates used in practice to represent the
almost symmetrical CTMC, moreover it can be related to
the way performance indices are specified (e.g. through a
reward function that is forced to have uniform value for all
states within the same initial aggregate).

Algorithm 2 : Algorithm for the exact lumpability
check
A, X : Set Of Sets of States (SSS);1

B, D : Set Of States (SS);2

Lel : Set of tuples 〈real, integer, S〉;3

PartLel : Set of tuples 〈SS, real, integer〉;4

X.Create(AS CTMC);5

A = X.PreSplit();6

while X 6= A do7

D = X.Remove() s.t.∀Ai ∈ A, Ai 6= D;8

B = A.P ick(D) s.t.∃B ⊆ D ⇒ ∀Ai ⊆9

D, |B| > |Ai|;
X.Insert(B);10

X.Insert(D \ B);11

Lel = CompAllSucc(B, Parta);12

PartLel = Partition wrt rate A(Lel);13

A.Split(PartLel) ;14

return A;15

Algorithm 3 : SSSM :: Split(PartLel)

Set, Ai : SSM ;1

for 〈S, rate, i〉 ∈ PartLel do2

Set = ∅;3

Ai = GetElement(i);4

Set = Ai \ S;5

Substitute(i, Set);6

Add(S);7

The algorithm for checking exact lumpability A map-
ping between thestability conditionof Paige and Tarjan’s
algorithm and the strong or exact lumpability condition is
possible. This is easy for strong lumpability condition,
since the stability condition is implied by it. In fact the
stability condition requires that all elements in each aggre-
gate reach the same set of destination aggregates, while the
strong lumpability condition also requires that they do so
with the same rate.

Instead for the exact lumpability the mapping requires to
consider the arcs as if they were reversed: when considering
reversed arcs, again the stability condition is weaker than
the exact lumpability condition. In fact the “reversed arcs”
stability condition requires that all elements in each aggre-
gate are reached by the same set of source aggregates while
the exact lumpability condition also requires that they do so
with the same rate; moreover it is required that the global
output rate of states in the same aggregate must be equal.

Like the Paige and Tarjan’s Partition refinement algo-
rithm, our extension uses the following data structures:

• A (called Q in the original algorithm, and renamed
here to avoid clash with the symbol used for the
CTMC infinitesimal generator) is the current partition
of states2; every element of the list will be called
block. A single block contains a set of elements of
type Node. Moreover aNodecan be a single state
iff it represents only one state; or “macrostate” iff it
represents an aggregate.

• X represents another possible partition into aggre-
gates, such thatA is a refinement ofX andA satisfies
the lumpability condition with respect to every block
of X .

Algorithm 2 shows the pseudo-code of the algorithm. It
has two main phases: the initialization (lines 5-6) and the
iterative refinement (lines 7-14).

(1) The initial phase.Create initializes the set ofX on
the basis of the initial partition of the almost symmetrical
CTMC specification: for each aggregate having only
generic input and output arcs, a new block is inserted into
X , containing only one element of type “macrostate”.
For each aggregate having also instantiated input and/or
output arcs a new subset is inserted intoX , containing
as many elements of type “state” as the states contained
in this aggregates. In the simple example of Fig. 3(a),
X initially contains three blocks, two of which contain a
single element of type “macrostate” (aggregatesS0, S2),
the third contains three elements of type ’state’ (statess1,
s2 ands3 of aggregateS1). The notation used in the sequel
for X is: X = {x0{S0}, x1{s1, s2, s3}, x2{S2}}.

PreSplit (line 6) returns a refinement set ofX , such
that each element in this refinement set satisfies the exact
lumpability condition with respect to each element ofX .

∀s1, s2 ∈ Ai,
∑

sk∈Xj

wk,1 =
∑

sk∈Xj

wk,2 (1)

wherewk,i represent the rate associated with the arc fromsk

to si. Observe that this condition will be also the invariant
of the interactive refinement phase.

The new refinement set is performed by splitting those
sets ofX that are reached by one or more instantiated arcs
and/or one or more instantiated arcs depart from it. Its split-
ting is performed considering the weights and source aggre-
gates of the ingoing instantiated transitions, plus the global
output rate of each state3. Finally (line 6), the new refine-
ment set is stored inA.

2It will be clarified later how the initial partition is chosenand how the
iterated refinement steps leading to each successive refinement work.

3This is sufficient to assure the previous condition in 1, because the

In the simple example theA andX sets after the pre-
splitting are:A = {a0{S0}, a1{s1}, a2{S2}, a3{s2, s3}}

(2) The iterative refinement phase.The algorithm core con-
sists of repeating arefinement stepuntil X converges toA
(X = A). The so-called refinement step is performed as
follows :

In the partitionX , an elementD that has been refined in
a previous step is selected (line 8), then the largest4 element
B ∈ A s.t.B ⊆ D is chosen (line 9). Finally,X is updated
by replacingD with B andD \ B (lines 10-11). In the
example,X blockx1 is chosen and theA blocka3 is chosen
in the role ofB.

All successors ofB are computed and the following in-
formation are stored inLel (line 12): the successor, the
rate with which it is reached and theA-element index
containing it. Then, the functionPartition wrt rate A
performs a partitioning ofLel grouping the tuples with
the same second and third element. In particular all the
found “macrostate” elements are instantiated, so that the
“macrostate” elements will be substituted by all the states
that represent and the generic arcs are instantiated using
function f . In the example the “macrostate”S2, reached
by blocka3, is instantiated ins4, s5 ands6, andPartLel
is {p1〈{s5, s6}, β, a2〉} (there is only one set of states, be-
longing to blocka2, reached bya3 with rateβ).
At this point,A must be refined according to the new par-
tition represented byPartLel, as described in Algo 3. In
Algo 3, for each element〈rate, i, S〉 ∈ PartLel, we re-
move the elements ofS from Ai. Line 6 replaces the old
representation ofAi, while line 7 insertsS as a new set in
A.

In the example the blocka2 is split in two
blocks a2{s4} and a4{s5, s6}, so that list A is
{a0{S0}, a1{s1}, a2{s4}, a3{s2, s3}, a4{s5, s6}}, while
list X is {x0{S0}, x1{s1}, x2{s4, s5, s6}, x3{s2, s3}}.
The refinement is repeated choosing blocka4 in the role of
B. This does not cause any new splitting: the final partition
is the one ofA above as illustrated in Fig. 3(b).

Observe that the algorithm may have to instance some
states and arcs that will be aggregated again in the final
CTMC, so that the peak of memory usage during execu-
tion exceeds the size of the final lumped CTMC, and may
limit the applicability of the method.

Algorithm for strong lumpability check. It is easy to
adapt the previous algorithm to check the strong lumpability
condition instead of the exact lumpability one. In fact only
a small part of the previous algorithm must be modified.
First we need to modify slightly the pre-splitting phase. In

subset that are not reached by one or more instantiated arcs and/or one
or more instantiated arcs depart from it do not need refinement, already
satisfy 1

4In terms of number of contained elements.

f1 : f1(s0) = {si, i = 1, 2, 3})

f2 : f2(si) = {si+3}

f3 : f3(si) = {s0}, i = 4, 5, 6

Figure 3. A simple example of almost symmet-
rical CTMC (a) and the result of exact (b) and
strong (c) lumpability algorithm application.

line 6 the new refinement set is performed by splitting those
sets ofX where one or more instantiated arcs depart from
them. Fig. 3(a) the pre-split phase for strong lumpability
provides the same result as the one already presented for
exact lumpability.

In the refinement step only the following change is nec-
essary: after selecting the blockB and updatingX , for ev-
ery Node element inB we compute the elements reaching
it, and the following information are stored inLel (line 12):
the predecessor, the rate with which predecessor reaches it
and theA-element index containing predecessor.

After this, the refinement step works similarly to the ex-
act lumpability version.

In the examplea3 is chosen again in the role ofB but
now the listPartLel is: PartLel = {p1〈{s0}, α, a0〉}.
This step requires the instantiation of aggregateS0 and of
the generic arc labeledα, f1. SinceS0 contains onlys0 no
split is performed and the algorithm ends. The final parti-
tion as illustrated in Fig.3(c)

Comparing the two final partitions (obtained using the
two algorithms) we can observe that the strong lumpa-
bility condition for this example requires to instance less
“macrostate” w.r.t to the exact one. This is not always true,
it depends on the characteristics of the model to be studied.
For selecting the better one w.r.t. a particular model a first
choice must be driven by the performance measures that we
want to compute. If probabilities of individual markings
(SMs) are needed, then the strong lumpability cannot be
used since it only gives the probabilities of aggregates In-
stead if the performance measures can be expressed at the
level of aggregates, then both approaches are available and
an heuristic rule for defining the approach minimizing the
number of instanced “macrostate” can be used.

Lumped Markov chain generation. In this section, we
explain how to generate the lumpedCTMC from the refined
structure. Let us start with the case of a refined structure
satisfying the strong lumpability condition; theQlp(i, j) is
computed as follows (see Proposition 6):

Qlp(i, j) = (
∑

Si

λ,f
−−→Sj

λ|f(s)|) + (
∑

s′∈Sj :s
µ
−→s′

µ)

wheres, in both terms, denotes any state belonging to ag-
gregateSi.

The computation of the infinitesimal generator of the
lumped CTMC in the case of exact lumpability is instead
performed as follows (see Proposition 7):

Qlp(i, j) = (
|Sj |

|orig(Sj)|

∑

Si

λ,f
−−→Sj

λ|f(s)|)

+(
|Sj |

|Si|

∑

s∈Si:s
µ
−→s′

µ)

wheres ∈ Si ands′ ∈ Sj , andorig(Sj) denotes the ag-
gregate to which states inSj belonged in the initial almost
symmetrical CTMC. This is needed because there might
be generic arcs connecting a non split aggregate to an ag-
gregate that has been split (there will be a replica of such
generic arc for each refined aggregate substituting the orig-
inal one).

In the examples of Figg. 3(b) and 3(c) the instantiated
arcs created during the algorithm execution are shown in-
stead of the arcs in the final lumped CTMC, to illustrate the
algorithm operation and the memory peak problem. There
will be only one arc between each pair of aggregates in the
lumped CTMC, whose rate can be easily derived from the
above formulae: e.g. in Fig. 3(b) the rate fromS0 to S4 is
2α, the rate fromS3 to S4 is β, in Fig. 3(c) the rate fromS0

to S2 is 3α, fromS2 to S0 is θ, fromS0 to S3 is 2α.

4 Implementation issues and comparison
Both methods handle sets of states which require a sym-

bolic representation to efficiently manage them and a sym-
bolic computation of the set of successors. Decision Dia-
grams (DD) could be used to this aim. However DD would
not take into account that these sets are somewhat special
since they are orbits of subgroups. By contrast, some for-
malisms are tailored to take advantage of the symmetries
during the modeling and the analysis stages.

Thus we have implemented our methods using the SWN
formalism [4], a kind of high-level Petri nets that has been
the starting point of numerous efficient symmetry-based
analysis methods already implemented in the tool Great-
SPN [5]. Here we only describe the main features of SWNs.
In a SWN, acolor domainis associated with places and
transitions. The colors of a place label the tokens contained
in this place, whereas the colors of a transition define dif-
ferent ways of firing it. In order to specify these firings, a
color functionis attached to every arc which, given a color
of the transition connected to the arc, determines the col-
ored tokens that will be added to or removed from the cor-
responding place. Finally the initial marking is defined by
a multi-set of colored tokens in each place. A color do-
main is a Cartesian product ofcolor classeswhich may be
viewed as primitive domains. A class can be divided into
static subclasses. The colors of a class have the same nature

(e.g. processes) whereas the colors inside a static subclass
have the same potential behavior (e.g. batch processes). A
color function is built by standard operations (linear com-
bination, composition, etc.) on predefined basic functions.
In the case study, we use a single kind of basic function: a
projection which selects an item of a tuple and is denoted
by a typed variable (e.g.,x, y). Transitions can be guarded
by expressions. An expression is a Boolean combination of
predefined atomic predicates like[x 6= y].

The implicit symmetry of an SWN, obtained by its re-
strictive syntax, leads to a groupG operating on color
classes (and by extension on markings and firing instances).
G is the intersection of the isotropy subgroups of static sub-
classes. In other words, any permutation inG maps any
static subclass onto itself. Given a markingm and a permu-
tationg of G, the behavior of the net from the markingg.m
is the same as the behavior fromm up to permutationg.
The Symbolic Reachability Graph (SRG) construction lies
on symbolic markings, namely a compact representation for
a set of equivalent ordinary markings. A symbolic marking
is a generic representation, where the actual identity of to-
kens is forgotten and only their distributions among places
are stored. Tokens with the same distribution and belonging
to the same static subclass are grouped into a so-calleddy-
namic subclass. Then, the SRG can be automatically built
using a symbolic firing rule that directly applies on sym-
bolic markings [4].

The critical factor for efficiency of the SRG method is
the partition of a class into static subclasses. Finer is the
partition, less effective is the reduction of space. Thus the
implementation of both DS and TLS methods aims at keep-
ing this partition as coarse as possible.

In order to implement the DS method for a par-
tially symmetrical CTMC, we specify this chain as the
synchronized product of an SWN without static sub-
classes (so,G is the group of all permutations on color
classes) representing the symmetrical MC, and a control
automaton whose labels are set of instances of transitions
like {t(a, b), t(b, b), t(a, a), t(b, a)} equivalently denoted∨

x,y∈{a,b} t(x, y). Thus the isotropy subgroup of a transi-
tion may be represented by a “local partition” in static sub-
classes (e.g.{a, b}, {c, d} for the label described above).
The symbolic representation of a state of the lumped MC is
then given by a local partition of color classes (roughly cor-
responding to the isotropy subgroup of the set of associated
states), a symbolic marking w.r.t. this partition, and a state
of the automaton. The symbolic firing rule is close to the
original one except that a refinement w.r.t. to the partitions
of the synchronized transitions must bea priori performed,
and a merging of static subclasses must bea posterioriper-
formed in order to represent the isotropy subgroup of the
new set of states. The graph which is built is called Dynam-
ical SRG (DRSG), emphasizing that the partition in static

subclasses depends on each node.
In order to implement the TLS method for an almost

symmetrical CTMC, we specify this chain as an SWN
where the transitions are split in symmetrical transitions,
whose specification does not depend on static subclasses,
and asymmetrical ones whose specification depends on
them. An almost symmetrical CTMC is then generated
from this specification. It corresponds to the Extended SRG
(ESRG) [9] whose main feature is that a node has a two-
level representation. At the higher level, a node is a sym-
bolic marking w.r.t. the SWN without static subclasses: this
symbolic marking is enough to check and fire symmetrical
transitions. At the lower level, the symbolic marking is a
substituted by a set of symbolic markings taking into ac-
count the static subclasses partitions allowing to check and
fire asymmetrical transitions. These two representations
correspond to the same set of ordinary markings. The aim
of the ESRG construction is to avoid developing the lower
level representation for nodes as often as possible. This can
be done when all ordinary makings of the node are known to
be reachable and when none allows an asymmetrical firing
(these conditions can be symbolically checked). Thus, the
ESRG is the starting point of our adaptation of the Paige-
Tarjan algorithm where some avoided lower level represen-
tations are now developed in order to meet the lumpability
requirements.

We can compare the proposed methods w.r.t. different
criteria. The size of the lumped chain is generally smaller
with the TLS method as it is based on the minimization of
a MC w.r.t. lumpability. However the TLS method requires
to explicitly develop “asymmetrical” set of states during
the refinement process thus facing the problem of a peak
in memory usage, contrary to the DS method. On the one
hand, when a model is efficiently handled by the methods,
the final sizes are of the same magnitude order. On the
other hand, when the asymmetry of the model propagates
throughout the state space, it may yield a combinatorial ex-
plosion and the size of the lumped chain of the DS method
may become bigger than the original one. This cannot hap-
pen by construction with the TLS method. Finally, the DS
method is parametrized in the following sense: as lumping
is based on labels the modeler can freely change the numeri-
cal values associated with labels without need to recompute
the graph associated with the lumped chain; only the numer-
ical values have to be updated. In order for the TLS method
to support such a parametrization the refinement algorithm
must be based on transition labels instead of rate values.

5 Case study

5.1 Modeling a client-server architecture

In this section a client-server architecture model is in-
troduced: the goal is to evaluate the impact of introducing
and managing different priorities among user classes on the

efficiency of the system. Users in different classes behave
similarly: the asymmetry is only due to the priority rules
described later. Fig. 4 shows an SWN model of the system
with priority among user classes; however except for one
subnet, all parts of the model with or without priority are
identical. So we will explain how a completely symmetric
model can be derived from that of Fig. 4. Shaded boxes, la-
beledNi, highlight the main parts. In the sequel these labels
are used to refer to each subnet.

The system is composed of a finite number of terminals
and a Remote Terminal Server (RTS). In subnetN1, the ini-
tial marking of placeClients corresponds to the number of
terminals. Via a terminal, a client tries to open a connection
with the RTS. This connection is accepted if the maximum
load of the RTS has not been reached yet, then it is authen-
ticated. The maximum load is given by the initial marking
of placeMaxReq. The authentication is performed within
subnetN2. Variablex associated with transitionAuthOk,
memorizes theuser classof the client.

Once authenticated, a client asks for a service that can
be non-critical (e.g. a read transaction) orcritical (e.g.
a write transaction). Non-critical services can be handled
simultaneously (inside subnetN3) while a critical service
must be performed in mutual exclusion with any other ser-
vice. The system ensures a weak priority for non-critical
services based on awavemechanism. The wave consists
of the clients currently accepted by the RTS. Once a client
chooses a critical service (transitionChCs) accepted by the
RTS (transitionAccCs), no more clients can join the wave
(inhibitor arc from placeWave to transitionAccR). Crit-
ical services are performed only when there are no more
clients in the authentication stage or in a non-critical service
execution. PlaceNbReq is used to control this requirement.
When the last critical service of the wave completes, a new
wave can start.

SubnetN3 models the handling of a non-critical service.
A service identity (variablei) is attached to the two parallel
tasks that perform the service in order for them to synchro-
nize at the end (transitioneNCs).

For efficiency reasons, during a wave the RTS accepts
a limited number of different concurrent user classes (ini-
tial marking of placeMaxQueues) in the critical services.
This management is modeled by subnetN4. A critical ser-
vice request related to a user class not already in compe-
tition (i.e., without its colour in placeQueues) is rejected
(transitionRej) if the maximum number of concurrent user
classes has been reached.

A critical service is divided into two sequential stages: a
preprocessing step that can be performed concurrently and
a main step that is performed in mutual execution (see sub-
netN6). If a priority rule is applied then the requests access
the critical section following the order of the user classes.
Observe that in this case the first critical service that has

achieved its preprocessing step must wait if it does not be-
long to the highest priority user class in competition (see
subnetN5). If there is no priority between user classes then
the access to the critical section is granted as soon as pos-
sible after having completed the preprocessing phase. This
can be represented by a fully symmetric net obtained by
deleting subnetN5.

From a modeling point of view, the priority among user
classes is managed inN5 using aswapmechanism based on
the asymmetricallyguarded ([y < x]) transitionSwap. It
ensures that placeElected always contains the highest user
class of the remaining critical services requests. In order
to guarantee thatSwap is always performed before allow-
ing the next critical section entry, transitionSwap is given
the highest priority (this is denotedprio3: we consider nets
with different transition priorities). In order to apply the
the DS method we model this guard by acontrol automaton
with one state and two loops: one for all transition instances
exceptSwap and one labeled by the set{Swap(c, c′)} with
c < c′. With respect to the partition of transitions related to
the TLS method the only asymmetrical transition isSwap
(whose guard is actually expressed as a boolean formula in-
volving basic predicates based on the partition of the users
color class into cardinality one static subclasses).

From a quantitative point of view, the expected perfor-
mance behavior of the system with priorities is a decrease
of the global throughput of the system (w.r.t. the version
without priorities), due to the fact that the users in the high-
est priority class must be served first when they require a
critical service; on the other hand we expect that the high
priority user class will experience a smaller critical-service
time than in the symmetric system. Hence we are interested
to evaluate the throughput vs. service time trade off.

5.2 Performance analysis

To study and compare the two discussed service policies,
we must introduce and compute some performance indices:
the throughput of the server (XCS+NS); the average ser-
vice time for Non-critical Service requests (TNS); the aver-
age service time for Critical Service requests of theith user
class (TCSi

). Then, we compare the global (resp. the user
class dependent) average critical service time of the RTS
according to each policy (with or without priority).

As long as we perform the analysis on a lumped MC
based on the exact lumpability condition, there is no loss
of information on the state probabilities. Hence, we can
compute not only the global performance indices, but also
the user class dependent ones. In this context Lumped MCs
can be obtained either applying DS or TLS.

Besides computing the performance indices according to
the initial goal, we compare the behavior (in terms of mem-
ory consumption) of the two methods and of the traditional

Figure 4. SWN of the Client/Server System.

SRG-based lumping technique5 Also, a reference point is
given by the size of the Ordinary MC (OMC).

Table 1 shows some of the computed performance in-
dices for different configurations, expressed by the values
of four parameters:Cli, maxR, maxQandPrio (listed in the
first columns). (Cli) is the initial markings of placeClients
(the numbers of clients); (maxR) the initial marking of place
MaxReq (the maximum load of the RTS); (maxQ) the ini-
tial marking of placeMaxQueues (the maximum allowed
number of different user classes). ColumnPrio gives the
number of user classes. The maximum number of non-
critical service requests that can be concurrent in the server
is fixed to3 (not explicitly represented).

The other columns are each labeled with the correspond-
ing performance index introduced earlier in this section.
The pairs of values in the column labeledgain/loss(%)
represents the gain (resp. loss) for the highest (resp. low-
est) priority user class on the average critical service time
in the asymmetric model w.r.t the symmetric one. As ex-
pected, the decrease of the throughput and the increase of
the average critical service time in the asymmetric RTS is
counterbalanced by an acceleration in the treatment of the
highest priority user class. This phenomenon is emphasized
when increasing the number of the clients, and the number
of user classes.

Table 2 summarizes some results on the state space re-
duction induced by different analysis methods, obtained on
our asymmetric system with different values of the param-

5We recall here that the SRG satisfies both strong and exact lumpability
conditions.

eters. The first columns express again the parameter values
(Cli, maxR, maxQandPrio). Again the maximum num-
ber of non-critical service requests that can be concurrent
in the server is3. For each method, columnSt. (resp. T.)
gives the number of states (resp. the computation time) of
the (lumped) MC.6 ColumnPeak represents the maximum
number of intermediate states constructed while applying
the TLS method.

We observe a significant reduction (exponential savings)
achieved by our two methods w.r.t. the OMC and the SRG.
Moreover, we remark that DS and TLS behave similarly,
in the sense that the number of constructed states using DS
is always situated between the final number of states and
the peak of TLS. It is worth noting that the (premature) ex-
plosion for the TLS method is not caused by its intrinsic
behavior: for the shown cases, it was impossible to gen-
erate thealmost symmetrical CTMCconstituting its input
(i.e., the ESRG structure). Actually, the ESRG construction
algorithm suffers from a memory peak problem similar to
that discussed for the TLS method.

Although theoretically difficult to prove, we can intu-
itively say that the two methods are complementary and
their respective efficiency heavily depends on the presence
of strong synchronization pointsbetween symmetric and
asymmetric behaviors of the system. These are regeneration
points w.r.t the consequences of any asymmetric transition
occurrence and block the propagation of states instantiation
and splitting in the algorithms.

6The construction time of OMC is not given because the resultsare
evaluated based on the SRG outputs.

Asymmetric model Symmetric model
gain/loss(%)

Cli maxR maxQ Prio XCS+NS T NS TCS XCS+NS TNS T CS

3 2 2 3 0.51305 2.5 2.782178 0.51570 2.5 2.726234 (1.42, -5,52)
3 2 2 5 0.53829 2.5 2.819253 0.54189 2.5 2.750577 (1.74, -6.73)
3 2 2 8 0.55373 2.5 2.842139 0.55795 2.5 2.766257 (1.93, -7.41)
3 3 3 3 0.53508 2.5 2.963033 0.53816 2.5 2.902267 (1.97, -6,16)
3 3 3 5 0.55919 2.5 2.986704 0.56324 2.5 2.913987 (2.25, -7.24)
3 3 3 8 0.57336 2.5 2.994600 0.57800 2.5 2.915846 (2.33, -7.72)
8 2 2 3 0.55206 2.5 2.971734 0.55636 2.5 2.887827 (1.94, -7.75)
8 2 2 5 0.57223 2.5 3.022436 0.57814 2.5 2.915278 (2.45, -9.80)
8 2 2 8 0.58430 2.5 3.054844 0.59132 2.5 2.932937 (2.77, -11.08)
8 3 3 3 0.63419 2.5 3.682498 0.64124 2.5 3.566985 (4.83, -11.26)
8 3 3 5 0.65524 2.5 3.779566 0.66459 2.5 3.633744 (6.19, -14.06)
8 3 3 8 0.66833 2.5 3.842901 0.67916 2.5 3.678659 (7.04, -15.86)

Table 1. Performance indices for asymmetrical and symmetri cal models

OMC SRG DS TLS
Cli maxR maxQ Prio St. St. T. St. T. St. Peak T.

3 3 2 3 16547 4533 1.59 1071 1.47 998 1160 0.14
3 3 2 5 69638 17708 9.38 1217 2.11 998 1727 0.20
3 3 2 8 269732 65268 48.75 1436 4.30 998 3185 0.50
8 4 2 3 529061 122771 61.88 24156 45.51 23457 25221 0.77
8 4 2 5 3591686 759796 592.02 26884 69.93 24787 32725 1.72
8 4 2 8 21835811 4358051 5143.14 28981 101.66 24787 48601 5.59
8 5 3 3 2241462 496618 282.09 94593 187.98 92600 96088 3.04
8 5 3 5 23568689 4788499 4206.34 134553 492.49 110376 159104 13.98
8 5 3 8 – – – 193401 4321.32 – – –
8 5 4 3 2241462 496618 282.09 94593 187.98 92600 96088 3.04
8 5 4 5 23656834 4838244 4226.15 153180 649.24 114442 178690 21.09
8 5 4 8 – – – 346649 39063.66 – – –
8 6 3 3 7168981 1543595 952.74 280296 574.6 276658 282250 7.31
8 6 3 5 111146711 21863821 21235.84 438194 1724.53 388521 483119 32.22
8 6 3 8 – – – 563975 10535.30 – – –

Table 2. Benchmark model showing the efficiency of the differ ent methods.

6 Conclusion and future work
In this paper the DS and TLS methods have been pre-

sented: their goal is to generate a lumped CTMC from a
partially symmetrical and almost symmetrical CTMC spec-
ification respectively. They can be efficiently applied only
if the MCs on which they operate can be handled symbol-
ically, exploiting the a priori known presence of symme-
tries: this happens when they are derived from a higher level
model, such as SWNs, where the presence of similarly be-
having components is made explicit. Implementation issues
have also been discussed referring to SWNs. A realistic per-
formance evaluation case study has been presented and the
effectiveness of the two methods was illustrated through it.

In perspective, it is interesting to achieve a characteriza-
tion of the type of models that can fully exploit the poten-
tial of the presented methods, possibly based on structural
properties of the high level model. Another possible line of
development is to complement these methods with the pos-
sibility of computing bounds on the performance indices by
transforming the partially symmetrical MC into a symmet-
rical one, and using stochastic ordering arguments.

Finally the presentation of the methods in a general set-
ting can be a good starting point to extend their application
to other high level formalisms able to highlight the presence
of similarly behaving components.

References
[1] S. Baarir, S. Haddad, and J.-M. Ilié. Exploiting Partial

Symmetries in Well-formed nets for the Reachability and
the Linear Time Model Checking Problems. InProc. of
WODES’04, Reims - France, 2004. Springer Verlag.

[2] Baarir S., Dutheillet C., Haddad S., and Ilié J-M. On theuse
of exact lumpability in partially symmetrical well-formed
nets. InProc. of QEST’05, pages 23–32, Torino - Italy, Sept.
2005. IEEE C.S. press.

[3] M. Beccuti, S. Baarir, G. Franceschinis, and J.-M. Iliè. Ef-
ficient lumpability check in partially symmetric systems. In
3rd International Conference on Quantitative Evaluation of
Systems (QEST’06), pages 211–221, Riverside, CA, USA,
September 2006. IEEE Computer Society.

[4] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Had-
dad. Stochastic well-formed coloured nets for symmetric
modelling applications.IEEE Transactions on Computers,
42(11):1343–1360, nov 1993.

[5] G. Chiola, G. Franceshinis, R. Gaeta, and M. Ribaudo.
GreatSPN1.7: GRaphical Editor and Analyzer for Timed
and Stochastic Petri Nets.Performance Evaluation, North
Holland Journal, 24, 1997.

[6] E. Emerson and A. Prasad Sistla. Symmetry and Model
Checking.FMSD’96, 9:307–309, 1996.

[7] E. A. Emerson and R. J. Trefler. From Asymmetry to Full
Symmetry: New Techniques For Symmetry Reduction in
Model Checking. InProc. of CHARME’99, LNCS, pages
142–156, Bad Herrenalb - Germany, Sept. 1999. Springer
Verlag.

[8] S. Haddad, J. Ilié, and K. Ajami. A model checking
method for partially symmetric systems. InProceedings
of FORTE/PSTV’00, pages 121–136, Pisa, Italy, Oct. 2000.
Kluwer Academic Publishers.

[9] S. Haddad, J. Ilié, M. Taghelit, and B. Zouari. Symbolic
Reachability Graph and Partial Symmetries. InProc. of the
16th ICATPN, volume 935 ofLNCS, pages 238–257, Turin,
Italy, June 1995. Springer Verlag.

[10] Huber P., J. Jepsen L.O., and Jensen K. Towards Reachabil-
ity Trees for High Level Petri Nets. InProc. of EWATPN,
Aarhus, Denmark, June 1984.

[11] C. N. Ip and D. L. Dill. Better verification through symme-
try. FMSD, 9(1/2):41–75, 1996.

[12] J. Kemeny and J. Snell. Finite Markov chains. New York,
NY, 1960. D. Van Nostrand-Reinhold.

[13] J. Ledoux. Weak lumpability of finite markov chains and
positive invariance of cones. Technical report, IRISA, 1996.

[14] R. Paige and R. E. Tarjan. Three partition refinement algo-
rithms. SIAM J.Comput., 16 (6)(6):973–989, 1987.

[15] S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal
State-Space Lumping in Markov Chains.Information Pro-
cessing Letters, 87 n.6(6):309–315, 2003.

[16] W. Sanders and J. Meyer. Reduced Base Model Construction
Methods for Stochastic Activity Networks. InProc. Inter-
national Conference on Petri Nets and Performance Models,
pages 74–84, Kyoto,Japan, December 1989.

[17] P. J. Schweitzer. Aggregation methods for large Markov
chains. InProc. of IWCPR, pages 275–286. North-Holland,
1984.

