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Abstract mance evaluationia the quantitative counterpart of sym-

metry, i.e. lumpability (see e.qg. [47?, ?]). It should be
Performance and dependability evaluation of complex stressed that the requirements w.r.t. lumpability are gene
systems by means of dynamic stochastic models may be inally stronger than the ones that ensure equivalence between
paired by the combinatorial explosion of their state space. qualitative (symmetrical) behaviors and thus the design of
Among the possible methods to cope with this problem,such methods needs more elaboration.

symmetry-based ones can be applied to systems including | order to successfully exploit symmetries it is required
several similar components. Often however these systemg, (1) define in a generic way, at the conceptual level, what
are only partially symmetric: occasionally similar compo-  athod can be used to reduce the state space through sym-
nents behavior may diverge from the usual symmetrical one.qatries (2) select a formalism where symmetries are auto-
In this paper two methods to efficiently analyse partially maically detected (3) define how the method can be effi-
symmetrical models are presented in a general setting a”dciently implemented in practice. The design at the concep-
the requirements for their efficient implementation are dis 4] |evel is based on the operations of a permutation group;
cussed. A complex realistic case study is presented to Showe formalism must allow a simple way to express similar
the methods effectiveness and their applicative interest. components: the implementation should be based on a sym-
bolic representation of set of states and transitions agid th

1 Introduction efficient manipulation.

As software systems and hardware architectures are HOWwever the systems seldom have completely symmet-
more and more complex, their verification and evaluation "¢ behavior (for example in distributed algorithms we of-
become critical issues. Analysis methods are often subjecf€n have a symmetric specification, together with some
to the problem of combinatorial explosion due to the in- Symmetry-breaking criteria - e.g. based on unique process
creasing system complexity. Several approaches have beelfl€ntity - to solve conflicts, deadlocks, etc.) so itis usefu
undertaken to cope with this problem: decomposition meth- d&fine and implement methods to deal with partial symme-
ods take advantage of the modular structure of the Sys_trles. In the I|terat_ure_ partial sy_mmetry methods have been
tem; for performance evaluation, approximate and bound-Proposed for qualitative analysis [1, 7, 8, 9].
ing methods substitute a simpler system to the original one; In this paper we propose two generic methods to apply
diagram decision based methods symbolically manage setéumping in partially symmetrical models, and discuss how
of states rather than representing states explicitly,léce they can be efficiently implemented in the context of the
we present symmetry-based methods that exploit the presStochastic Well-Formed Net (SWN) formalism [4]. The
ence of several similar components in the system. first one, called DS method, starts from a completely sym-

The general principle of these methods consists to sub-metric Markov chain (MC) and an additional automata de-
stitute to the state graph a quotient graph w.r.t. somescribing the asymmetries: in this case a lumped MC satisfy-
equivalence relation. This relation considers two stages a ing the exact lumpability condition is built. The second pne
equivalent if they can be obtained from each other per- called TLS method, instead starts from an over-aggregated
muting equivalent components. These methods have beeMC from which a lumped MC can be derived by applying a
first introduced in order to check safeness properties (seeefinement algorithm: it can use either the strong lumpabil-
e.g. [10, 11]), then generalized in order to check tempo- ity or the exact lumpability condition (which have diffeten
ral logic formulae (see e.g. [6]) and also adapted to perfor-impact on the type of performance indices that can be com-



puted and may lead to different degrees of aggregation).  while in some cases algorithms for the computation of ap-

The two methods can be efficiently applied to SWNs proximations or bounds on the desired measures can be ap-
models, in fact this formalism is designed so that symme- plied.
tries can be automatically detected and exploited. How- When the dynamic system behavior can be described
ever here they are presented in a general setting so thathrough a finite Discrete Time MC (DTMC) or Continuous
they could be adapted to other kinds of high level stochasticTime MC (CTMC), the solution is conceptually simpler,
models. One of the main differences between the two meth-however, in realistic case studies, it is still computadibyn
ods is that the TLS (Two-Levels Symmetry) method uses expensive; for this reason state space reduction techsique
two different aggregation criteria depending on the curren have been studied, such as the so calledIi@pingtech-
phase of the behavior (symmetric or asymmetric), while nique.
the DS (Dynamic Symmetry) method aggregates states ina Lumping of (finite) MCs is a useful method for dealing
more dynamic way, possibly using several different aggre- with large chains [12]. The principle is simple: substitide
gation criteria which may correspond to a more articulated the MC an “equivalent” one, where each state of the lumped
classification of the behavior phases: symmetric behaviorchain is a set of states of the original one. There are diftere
or one among several asymmetric behaviors. versions of lumpability related to the fact that the lumpa-

We have implemented our methods in the GreatSPN bility condition holds for every initial distributionsfrong
tool [5] allowing us to perform several experiments. A sig- lumpability) or for at least onevieak lumpability. First,
nificant case study is presented in the paper, describing ave briefly introduce MCs. Due to space constraints, we
remote service system modeled by means of the SWN for-only deal with CTMCs. However our methods also apply
malism: the goal of the study is to evaluate the impact of t0 DTMCs and we indicate later on the interest of dealing
accounting for different priority user classes, by comput- With DTMCs even in a continuous time setting.
ing the overall service throughput and other related perfor _ )

Definition 1 (Markov Chains) A CTMCC = (S, m, 7o)

mance indices. The two methods are applied to compute; . D
such indices: besides providing the measures of interest!S defined by a state spact an infinitesimal generatog

the experimental results show that relevant savings in the(thatis a5 .S matrix whose off-diagonal elements are non

state space size can be achieved through both approache@gative reals, while ea,ch diagonal element is defined as
and that they can be alternatively applied in the most appro-Q_[s’_s] = = Doy Qls, 8], andm, an initial probability
priate situations. distribution overS. We note{Xt}th20 the associated
The paper unifies and extends two results presentedStochastic process.
in [2, 3], revisiting them in a more general setting; a par-
ticular emphasis is given to the case study. It is organized
as follows: in Sec. 2 some basic notions on MC and lumpa-
bility are defined, in Sec. 3 the TLS and DS methods are

presented; in Sec. 4 a discussion on their implementationyqfinition 2 LetC be a CTMC and S;}:c; be a partition
(including a comparison) is presented, finally in Sec. 5 a ¢ the state space. Lat be a randorﬁ variable defined by
significant case study is presented and analyzed. We cony. _; o X, € S,. Then:

clude in Sec. 6. e ( is strongly lumpablav.r.t. {S;}ics

2 Markov chain lumpability it vmo, {Yikier.,, 1S @ CTMC,
3 e () isweakly lumpablewv.r.t. {S;};cr
2.1 Strong, weak and exact lumpability iff 3o s.t. {Y:},. .. is a CTMC.
2 >0

The quantitative evaluation of dynamic systems pro-
posed in this paper implies the following three steps (a) the
specification of the stochastic process representing the ta
get system, (b) the definition of the required performance
(or dependability) indices and (c) the possibility of appty

efficient algorithms for transient or steady state MeASUreSy toiion 3 et be a CTMC and S} 1 be a partition
1 1€

cor11_1r;])utat|oln. is of hasti . l h f the state space. Lé&f be a random variable defined by
e analysis of stochastic processesin generalisanhard, _ ; .. v 5. Then:

problem, in fact often simulation is the only viable option,

Notation. Sy denotes the subset of “initial” states, i.e.,
So={s eS| m(s)>0}.
We now introduce lumpability concepts.

Whereas the characterization of strong lumpability w.r.t.
the infinitesimal generator is straightforward, checkiog f
weak lumpability is much harder [13]. Here, we introduce
the exact lumpability, a simpler case of weak lumpability.

e An initial distributionm is equiprobable w.r.t{.S; };cr

H - / X _ /
ISWNss are high level stochastic Petri nets with a restricsedas for i W €1, V;s,ls < Szt;lﬁo (5) = mo(s )ff
expressing color domains of places and transitions, atifums and tran- i Q IS exa.Ct y lumpablev.r.t. {Si}iel I )
sition guards. Vo equiprobable w.rt{S;}icr {Yi}, g, isaCTMC.




Exact and strong lumpability have easy characteriza-
tions [17] given by the following proposition.

Proposition 4 LetC be a CTMC and S; };¢s be a partition
of the state space. Then:
e () is strongly lumpable w.r.t{S; }icr iff Vi # j € I,
Vs, s' € S;, Zs”esj Q(s,s") Zs”esj Q(s',s"),
e Q is exactly lumpable w.r.t{S; ;7 iff Vi, j € I,
Vs, s € S;, Es”esj Q(s",s) = Es”esj Q(s",s).

The following corollary establishes a sufficient condition
for exact lumpability in CTMCs which will be useful in or-
der to check the correctness of one of our methods.

Corollary 5 LetC be a CTMC and S;};c be a partition
of the state space. Théhis exactly lumpable w.r.{.S; }icr
if:
1.Vi#£jel, Vs, s es;,
ES”ESJ' Q(s",s) = Es”eSj Q(s",s").
2.Vie I, Vs,s' €5,
Zs”?’fsesi Q(S”’ 8) = Zs”#s’ESi Q(S”’ Sl)-
3.VieI,Vs,s' €5;,Q(s,s) =Q(s,5).

When the strong lumpability condition holds the in-
finitesimal generator of the lumped chain can be directly

computed from the original generator as expressed by thet

following proposition.

Proposition 6 LetC be a CTMC that is strongly lumpable
w.r.t. a partition of the state spades; };c7. LetQ'? be the
generator associated with this lumped CTMC, then:

Vi,j € 1,Vs € 85, Q(i, ) = Y yes, Qls, ).

As for strong lumpability, also in case of exact lumpa-
bility the infinitesimal generator of the lumped chain can
be directly computed from the original generator. Observe
that starting with the probability mass equidistributedios
states of every subset of the partition, the distributioargt
time is still equidistributed. Consequently, if the CTMC is
ergodic, its steady-state distribution is equidistriloube-
tween states of every subset of the partition. In other words

wherer, is the probability distribution at time.
o If O is ergodic andr is its steady-state distribution
thenVi € 1,Vs,s' € S;,n(s) = n(s').

2.2 Dealing with DTMCs.

As said before, very similar results hold for DTMCs.
Furthermore even in a continuous time setting, there are
two situations where using DTMCs is useful. Some
semi-Markovian processes are analyzaflideanembedded
DTMC which only takes into account state changes. This
DTMC could be lumpable thus enlarging this technique to
semi-Markovian processes. Furthermore, it may happen
that even in a case of CTMC, the embedded DTMC has
a greater reduction factor by lumpability. We have experi-
enced this phenomenon when benchmarking our methods.

2.3 Computation of performance indices.

Let us now recall how it is possible to characterize
the performance index (or indices) of interest on a given
CTMC, and then discuss the implications of lumping on its
computability.

The performance indices of interest can be computed in
a transient or steady state setting. Examples of perforenanc
indices are the steady state availability of a server, thb-pr
ability that a given connection be active at time instanr
he average number of clients being served in a system.

A general way of defining performance indices on
CTMCs is through the use oéward functions their do-
main is the setS of CTMC states while the co-domain is
IR. In fact, a functionr can be seen as a performance in-
dex and, given a (steady state or transient) state protyabili
distribution, the (average or instantaneous) performance
index measure can be expressedas, ¢ 7(s) - 7(s).

If the reward function- expressing the performance in-
dex of interest is constant within each aggregate, then the
probability distribution of the aggregates is enough to eom
pute the value of the performance index (we can say that the
reward function is compatible with the aggregation). How-
ever if this is not the case, only exact lumpability still g
us the possibility to compute the performance index value.

with the knowledge of the lumped chain generator,one may  Finally observe that the efficient computation of perfor-

compute its steady-state distribution, and deducddbsl
equidistribution) the steady-state distribution of thigioal
chain. It must be emphasized that this last step is impassibl
with strong lumpability since it does not ensure equiproba-
bility of the states in an aggregate.

Proposition 7 Let C be a CTMC that is exactly lumpable
w.r.t. a partition of the state spades; };cr. LetQ' be the
generator associated with this lumped CTMC, then:
oVi,jeclVseS;,
QP(i,) = (Lues, Q' 5)) x (181/15:])
o If Viec I,Vs,s' € S;,m(s) = mo(s") thenVt € IR>o,
Vi e I,Vs, s € S, m(s) =m(s'),

mance indices corresponding to unconstrained reward func-
tions in the exact lumpability case requires a way of effi-
ciently computing the cardinality of each aggregate, and of
the subset of states within the aggregate characterized by
the same reward function value.

3 The DS and TLS methods

3.1 Lumpability of partially symmetrical MCs

This section presents th®ynamic SymmetryDS)
method: it is applied to partially symmetrical MCs.

Partially symmetrical CTMCs. The model of partially
symmetrical systems that we develop here is defined as a



(S x L,m,Q") isa CTMC defined by:
o Vs, (s,lo) = mo(s) AVL # o, m((s,1) =0
oVs#s € SV, e Lifl L1 AAN(s,s) €~
thenQ’((s,1), (s',1")) = Q(s, s)
n = {a} elseQ’((s, 1), (s',1")) =0
eVVse SVIAU € L, Q'((s,1),(s,0') =0

Remarks. Due to the constraint on the labeling function
A, a transition with null rate cannot be synchronized with
an automaton transition. The requirement related to transi
tions of the control automaton ensures that given a current
location, a possible next locatiol and a labek € ©
(triggered by a transition of the CTMC) there is at most one
transition of the automaton that reaclieom [ accepting
label .. In realistic applications, the control automaton is

CTMC obtained b hronized product b only used in order to restrict the behavior of the original
obtained by some synchronized product between a1y, However observe that the outgoing transition rate

(symm_etncgl) CTMC and a contrql automaton. L_et us first ¢ o state(s, ) can be greater than the one ©f Take for
formalize this product. Synchronizing the behavior of the

. {a} {a}
two components requires to “label” the CTMC with events. instanceA(s, s’) = a,l — I"andl — [ and assume
thatQ(s, s) = —Q(s, s') (i.e., s’ is the only successor 6j.
Notation. LetC be a CTMC, we associate with each pair ThenQ((s, 1), (s,1)) = 2Q(s, s) due to the two automaton
of statess # 5" a label in some alphab&tu {<}, denoted  arcs. We choose this more general setting since for specific
A(s, s"). We require that (s, s') = e iff Q(s,s") =0. applications, it could be useful.

Since the automaton is introduced in order to modify the | the example of Fig.1, the control automaton actually
behavior of the CTMC, the label of each edge is a predi- forbids transitions that are not labeled wittor b. Hence,
cate that selects the events allowed to occur in the curren , is obtained fromC by removing the dotted arcs.
location of the automaton. Formally, the states of 4 are pairs(s;, ) but as there is

Definition 8 LetC be a CTMC, thetd = (L, I, —) a con- only one location in the automaton, we will omit it in the
trol automaton of. is defined t;y' Y representation of states throughout the example.

e L, the set of automaton locations,

e [y, the initial location,

e —C L x 2% x L, the transitions of the automaton.
A transition(l,~, ') will be denoted by - I’.

Furthermore, ifl -5 1" andl 2> I’ with y # ~/
theny Ny = 0. Definition 10 Let G be a group, with neutral elemend
)pnd whose internal operation is denoted.(Let £ be a set.
e Anoperationof G on E' is a mapping fronG x E
to F s.t. the image ofg, ¢), denoted by;.e, fulfills:
Ve € Ejide=eAVg,g €G, (geg').e=g.(¢ €)
e Theisotropy subgroupf a subsefs’ C FE is defined by:
Gp ={geG|Veec E' gecEY}
e Let H be a subgroup of7, theorbit of e by H
denotedH..e, is defined by{g.e | g € H}.
The set of orbits by? defines a partition oF.

72 = {b} -

Figure 1. A labeled CTMC and its control au-
tomaton

From a theoretical point of view, the specification of the
system symmetries relies on group theory, applied to the
states and the events of the system. The next definition re-
calls the appropriate notions.

In standard automata, the last requirement can be easil
ensured by merging the two transitions into a single one
labeled byy U v/. However the interest of letting distinct
the two transitions will be discussed later.

Fig.1 represents a CTMC and its control automaton.
Standard letters are labels, while Greek letters represent
transition rates. The initial distribution ig:(r¢) = 1.

In the synchronized product defined below, the CTMC is
the “active” component whereas the automaton is the “pas-
sive” component waiting for a transition of the CTMC in
order to synchronize it with one of its transitions. Conse- . .
qguently, the rates (resp. the initial distribution) asatel and partially symmetrical CTMCs. Informally, a CTMC

with the product depends only on the rates (resp. the initial Is symmetricalw.i.t. some group if_th(_a _o_pergtio_n O.f the
distribution) of the CTMC. group on the state space preserves its initial distribugiomh

stochastic behavior. A CTMC igartially symmetricaif it
Definition 9 Let C be a CTMC andA4 some control au- is a synchronized product of a symmetrical CTMC with a
tomaton ofC. The synchronized product 6fand.A, C4 = (non symmetrical) control automaton.

We simultaneously introduce the notions of symmetrical



Definition 11 A CTMCC is symmetrical w.r.t.G a group Algorithm 1: Building of G 4
operating onS andX iff: Vg € G,Vs # s’ € S,m(g.5) =

mo(s) N Q(g.5,9.8) = Q(s,s) and A(g.s,g.s") = 1: nodes = 0; edges = 0);
g-A(s,8). 2: PartitionSy = W}, Sy ;

Let C be symmetrical w.r.t.G' and A be a control au- s.t. everySy ; is the orbit of some; € Sy by G;
tomaton ofC, thenC 4 is said to be partially symmetrical 3: add 1 tonodes
w.rt. G. 4 forie{1,...,n0} do

We associate with eachoccurring in a transition of4 5. push(stack, FILN (lo, S0,:));
a subgroupH, C G defined by:g € H, iff Va € ¥,a € 6: end for
v <& g.a €. 7. while stackis not emptydo

8 (I,R) 5 (I',R") = pop(stack);
The size of the subgroupl, is an indicator of the o Computel’ = {1/ | 3’ R " 3 e R,

symmetry of the associated edge. Whdn = G, the
edge is “fully” symmetrical whilst whed,, = {id}, the
edge is “fully” asymmetrical. Here we see the interest of
keeping distinct transitions of the control automaton with
same sources and destinations. Indeed when merging them,

ds” € S,A(s',s") € +'};
10. ComputeH = Gr' N ﬂwer H,,
11:  PartitionR’ = W™, R;
s.t. everyR; is the orbit of some; € R’ by H;

the subgroup associated with the new transition could be ig forifz(? {éf)' 6 ’ﬁgegﬁhen
smaller than one of (or even both) the subgroups associated ' o N
with the original transitions. 14 add(l, B) = (I', F;) to edges

Back to the example of Fig.1, |ét be the group of per- 12 elsedd(l/ R:) to node
mutations of 1, 2, 3} generated by binary permutations; : “ T ®
which exchange and;j. The operations off on S andX: 17 add(l, B) — (I', ;) to edges
are defined by: 18: for ! 2> 1" do
Vpi7j,p7;7j.7“0 =roApij.a=a 19: ComputaS&'TS = {HS* | A(TZ‘, S*) S ’y'};
Vpi,j,pi’j.si = Sj A\ pijti =t 20: for S’ € SETS do )
VDi g Dij-Sj = 8i Apijty =ti 21: push(stack, (I, R;) 2= (1", 5"));
Vpijok & {15}, pij-sk = sk A Pijte =tk 22: end for
pr2b=cApioc=bApiad=d 23: end for
p13.b=dApizc=cApi3d=> 24: end if
P23b=0Apasc=dApr3d=c 25.  end for

It is easy to verify that the CTMC is symmetrical w.r.t. 26: end while

G. The subgroups associated with the labelsbfare
H, = GandH,, = {id,ps3}. Observe that if instead

we had merged the transitions, the group would have beery, ing from the initial distribution, the occurrence pae

{id, p2,3} and thus the full symmetry of the edgewould iy of all states of the subset associated with the lagieno
have been lost. of this path are identical.
A subset construction for lumpability. ~ Given a partially In fact, the construction maintains the following invari-
symmetrical CTMCC 4, our method builds a smaller (but  ants: (1) The graph represents all possible behaviors excep
equivalent) CTMC based on the building of some “subset” the ones that start from some node of the graph with an
reachability graph that we call 4. Algorithm 1 describes  edge that is present in the stack. (2) The nodes (i.e., the
Its construction. corresponding subset of states) of the graph fulfill all the
Let us detail how it works. The nodes of this graph are conditions of corollary 5. (3) The subsets which are desti-
pairs consisting in a location of and a subset of states®f  nation of an edge in the stack fulfill the two first conditions
which equivalently denotes a subset of statgsvith same of corollary 5.
location. An edge of this graph is labeled by a transition  Thewhile loop extracts an edge from the stack (line 8).
1 L I’ of Aand it represents a (non empty) set of transitions Then it splits the destination subget (lines 9-11) in order
of C 4. More precisely, such a transition links some state of to ensure the third condition of corollary 5 since inside a
the source subset to some state of the destination subset thgubsetR;, the states allow the same transitions of the con-
can be reached usin]gl . trol automaton. Furthermore; € R; is selected. IiR; is a
The key idea of this construction is the following: along node of the graph (lines 13-14) then one adds the edge to the
any path of this graph (and independently on the instantsgraph (while preserving the conditions of corollary 5). Oth
of transition firings corresponding to the arcs of this path) erwise one create?; as a new node and the corresponding



incoming edge and one computes the outgoing edgés of
(lines 18-24). The variabl8E7 S contains orbits w.r.tH
reachable fronR; using a transition whose label belongs to

Proof
Let (s,1) be a state o€ 4 and let(s, [, R) be an instance
of this state incfj, we show that there is a bijective map-

+'. These edges are pushed onto the stack. Again by conping from the transitions out ofs, ) onto the transitions

struction, the destination subsets of states fulfill thefivad
conditions of corollary 5. Furthermore, the choice of the
(line 19) is irrelevant sinc&; is the orbit unde of any of
its item. So whatever the choice, the set of SuUb§&tg S
will be identical.

The initial stage consists in partitioning the initial st
(So) w.r.t. G (line 2). Since there is no incoming edge the
two first conditions of corollary 5 are satisfied. We have
added a fictitious node in order to handle th&, ; subsets
in the main loop (lines 3-6).

In order to prove the soundness of this construction, we
first introduce a CTMCEE{, which is bigger thaid 4.

In C§, states o4 are replicated in instances, and in-

outof (s, 7, R). So we can suppose thais examined when
looking for successors dff, R). Then3s’,3l - I sit.
A(s,s') € v < IR, 35 € R, L I' st A(s,s') € v
with (I, R") a successor df, R). Since this mapping pre-
serves the rate of the transitions the condition of Propr4 fo
strong lumpability is fulfilled.

Let(s1,1, R) and(s2, [, R) be two states af§, we show
that there is a bijective mapping from the input transitions
of (s1,1, R) onto the input transitions ofss,l, R). Let
(v1,I',R') be such thaBl’ - [ andA(vy,s1) € ~. Let
H be the group of line 10 related t§ R’, thendg € H C
Gr N Hy st sy = g.s;. Now definevy = g.v1, then
vy € R andA(vy,s2) € 7. This implies the existence

stadnces are cl)grgamzed W.I.L. thﬁ Sr:Jb_SGIS assomﬁte(tj) “l’”th Mo the required mapping. Since this mapping preserves the
nodes oiG4. By construction, all the instances that belong 54e of transitions, the two first conditions of corollary 5

to the same subset have the same associated location of thgy o4 ot jumpability are fulfilled. The third one is ensured

automaton. We will denotgs, I, R) the instance ofs, [) s.t.
s belongs to such a subsBt In the next definitionnodes
(resp.edgejrefers to the nodes (resp. edgesyaf.

Definition 12 LetC 4 be partially symmetrical CTMC w.r.t.
G, thenthe CTMQ@S = (5", n{/, Q") is defined by:
e The set of stateS” is defined by:
S" ={(s,l,R) | (I, R) € nodes A s € R}.
eVie{l,...,no},VR s.t. R is an item of the partition
of Soi, Vs € R, (s, 1o, R) = m((s,lo)(= mo(s)).
For every othel(s,l, R) € S”,n(/(s,l, R) = 0.
oV(s,l,R) # (s',I',R") € 8", 1f3(l,R) = (I', R))
is in edges thenQ"” ((s, 1, R), (s',I',R’)) = Q(s, s').
OtherwiseQ”((s,, R), (s',I', R")) = 0.

The stochastic process we want to build is obtained by
forgetting the instances and only memorizing the subsets.

Definition 13 Let C4 be partially symmetrical w.rt. G,
then the stochastic proce¢€§)" is defined by: X;” =
(R, 1) iff X/ € {(s,1, R)}.

The next proposition is the theoretical core of our
method. It states thgC4)"” is obtained fronC4 by the
inverse of a strong followed by an exact lumping.

Proposition 14 Let C4 be partially symmetrical w.r.tG,
then:
e Denoting(so, lo) - - - , (sn, l) the state space @iy,
C 4 is a strong lumping of,’fj w.r.t. the partitionl] si;
wheresl; = {(Sl‘, l;, R) € S"}.
e Denoting{(Ro, o), - - -, (R, ;) } the state space of
€9, (€$)™ is an exact lumping af§ w.r.t. the
partition |4 Rl; whereRl; = {(s,l;, R;) € S"}.

by the splitting of line 11 which has producédR). <
0/3
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Figure 2. CTMC (C$)™?

lllustration.  We illustrate the algorithm on the CTMC of
Fig. 1. The lumped CTMGC)" is given in Fig. 2. We
have represented inside each node the states corresponding
to the subset associated with that node. Let us describe
the first steps of the algorithm. We push on the stack the
edge | 2%, (lo,{ro}). When we pick it, we determine
that only the automaton transition labeleddgan be syn-
chronized. Thus the subgroup of line 1@,is equal toG.

The transition(rg,1) = (s1,1) (resp. (ro,1) = (t1,1))
yields to push on the stack an edge whose destination set is
{51, 82,83} (resp.{t1,t2,t3}). When the edge with desti-
nation{si, so, s3} is popped, the two transitions of the au-
tomaton can be synchronized and thus the grBugf line



10 becomegqid, p2 3}. The orbits of{s1, s2, s3} w.r.t. H during the refinement.
are{s;1} and{sz, s3}. At the end, observe that statesap-
pear twice: in{t1,ts,¢3} and in some orbit ofid, p2,3}. Definition 15 (Almost symmetrical CTMC) An  almost

We can intuitively explain it as follows. When the CTMC symmetrical specification of a CTMC = (S, 0, Q) is
reaches directly the statésfrom r, then their occurrence  yefined by: T

is equiprobable which is only the case fgrand¢s when

going throughs;. e a partition of the state spacgS;};c; such thatS =
Our generic method can now be described. Assume first Wicr{S;}

that the CTMCC 4 associated with the high-level modet

we want to analyze is partially symmetrical. Assume also o two types of state transition arcs:

4 Ip
that we are able to compute directty$)'? from M. Note generic arcs i S j wherei, j € I are the source

7 the unknown distribution of 4 at timet¢ and wt(lp) the and destination) € R~ is a rate, andf is a function
(computed) distribution ofC§ )™ at timet. Thenm, (s, 1) = f:5 — 25 such that
> ser(1/|R]) x 7" (R, 1). The equality also holds for the
steady-state distributions. 1. Vs,s' € S;,|f(s)] = |f(s")], and
Although theoretically difficult, we can give some hints 1 1
of how the space complexity decreases using our approach. 2.¥s, 8" € S| f T ({shl = If T ({s})]

In the lumped CTMC, the original states have been sub- \

stituted by subsets. Note that these subsets may intersect.  instantiated arcs s — s’ wheres and s’ are states
However these subsets are always the orbit of a state by a  andX € R is a rate.

subgroup of7. Thus, the larger these subgroups, the better

the method. Note that each time a new subset is built, the e the infinitesimal generata®, defined as:

group is reduced (by intersection with some grofip$ and
then is enlarged by implicitly substituting to these inéars Vs € S;,Vs' € S;,Q[s,8] = Z pun Z U
tions, the isotropy subgroup of the subset. Interpretimng th "

A, /
phenomenon at the model level, we deduce that the com- ihgsef(s)
plexity reduction factor is high whenever the effect of an
asymmetrical event is forgotten in a close future. Experi- If there are only generic arcs, then with respect to the
mentations will illustrate this interpretation. given partition, strong lumpability is ensured by conditio

(1) on generic arcs, while exact lumpability is ensured by
condition (2) on generic arcs plus the following initial con

In this section we shall define the second method for dition Vi € I,Vs,s’ € S;,m(s) = mo(s’). In the gen-
the (strong or exact) lumpability of a finite CTMC, called eral case a refinement is required to ensure exact or strong
Two-Levels Symmet(fLS) method: in this case the start- lumpability.
ing point is a CTMC and an initial indication of partition In the sequel an algorithm to check strong/exact lumpa-
of states into aggregates that could potentially alreatly sa bility of almost symmetrical CTMCs is given: it is based
isfy the lumpability conditions; we call such CTMC and on (an adaptation of) the Paige and Tarjan’s partition re-
initial partition almost symmetrical CTMC specificatiof finement algorithm [14, 15] and exploits the properties of
lumpability check algorithm must be applied to such struc- generic arcs whenever possible to reduce the number of
ture, to return a possibly refined partition satisfying the checks to be performed. It should be emphasized that the
strong and/or exact lumpability conditions. achieved lumpable CTMC could have more aggregates than

The almost symmetrical CTMC specificatimontains the one obtained without an initial partition constrairtwhA
state transition arcs at two different abstraction levéis: ever in the case where the initial aggregates cannot anyway
generic arcs expressing transitions between state aggre-be lumped, then the number of steps of the present algo-
gates, and the instantiated arcs, expressing transitiens b rithm is less than the number of steps required when ap-
tween CTMC states. Observe that the presence of generiplying Paige and Tarjan’s algorithm directly on the origi-
arcs make the symmetries present in the model explicit. Ob-nal CTMC. Observe that the reason for imposing an initial
serve also that an efficient implementation of the proposedpartition is due to the efficient (implicit and symbolic) rep
method must rely on some compact (symbolic) representa+esentation of macrostates used in practice to represent th
tion of both generic arcs and of state aggregates, thatsllow almost symmetrical CTMC, moreover it can be related to
to avoid the explicit representation of the correspondimgi the way performance indices are specified (e.g. through a
stantiated arcs and states. Of course a way of retrievirtg suc reward function that is forced to have uniform value for all
explicit representation must be given, to be used if neededstates within the same initial aggregate).

3.2 Lumpability of Almost Symmetrical MCs



Algorithm 2:  Algorithm for the exact lumpability e A (called@ in the original algorithm, and renamed

check here to avoid clash with the symbol used for the
1 A, X : Set Of Sets of States (SSS); CTMC infinitesimal generator) is th_e cutrent partition
2 B,D: Set Of States (SS); of states; every element of the list will be called
3 Lel : Set of tuples (real, integer, S); block A single block contains a set of glements of
4 PartLel : Set of tuples (SS, real, integer); pre Node Moreover aNodecan be a single stgtg
iff it represents only one state; or “macrostate” iff it
5 X.Create(AS-CTMC), represents an aggregate.
6 A= X.PreSplit();
7 while X # A do
8 D = X.Remove() s.t.VA; € A, A, # D; e X represents another possible partition into aggre-
9 B = A.Pick(D)s.t.3B C D = VA; C gates, such that is a refinement oX and A satisfies
D,|B| > |Ail; the lumpability condition with respect to every block
10 | X.Insert(B); of X.

11 | X.Insert(D\ B);

12 | Lel = CompAllSucc(B, Part,); Algorithm 2 shows the pseudo-code of the algorithm. It
13 PartLel = Partition_wrt_rate_A(Lel);

' _ has two main phases: the initialization (lines 5-6) and the
1 | A.Split(PartLel); iterative refinement (lines 7-14).
15 return A;

(1) The initial phase.Create initializes the set ofX on
the basis of the initial partition of the almost symmetrical

Algorithm 3: SSSM :: Split(PartLel) CTMC specification: for each aggregate having only
generic input and output arcs, a new block is inserted into

1 Set,A; : SSM; S " "
X, containing only one element of type “macrostate”.

2 for (S, rate,i) € PartLel do For each aggregate having also instantiated input and/or

3 Set = 0; output arcs a new subset is inserted o containing

4 A; = GetElement(i); as many elements of type “state” as the states contained

5 Set = A; \ S, in this aggregates. In the simple example of Fig. 3(a),

6 Substitute(i, Set); X initially contains three blocks, two of which contain a

7 Add(S); single element of type “macrostate” (aggrega$gs S2),

the third contains three elements of type 'state’ (staigs

s andss of aggregates;). The notation used in the sequel
for X is: X = {xo{SO}, {L‘l{sl, S92, 83}, {LQ{SQ}}

The algorithm for checking exact lumpability A map-

ping between thetability conditionof Paige and Tarjan’s PreSplit (line 6) returns a refinement set &f, such
algorithm and the strong or exact lumpability condition is that each element in this refinement set satisfies the exact
possible. This is easy for strong lumpability condition, lumpability condition with respect to each elementof

since the stability condition is implied by it. In fact the

stability condition requires that all elements in each aggr Vs1, 82 € Aj, Z Wk,1 = Z Wk, 2 (1)

gate reach the same set of destination aggregates, while the SREX; sKEX;

strong lumpability condition also requires that they do so wherew, ; represent the rate associated with the arc fspm

with the same rate. - ) ) to s;. Observe that this condition will be also the invariant
Instead for the exact lumpability the mapping requires to ¢ the interactive refinement phase.

consider the arcs as if they were reverse_q: when considering  The new refinement set is performed by splitting those
reversed arcs, again the stability condition is weaker thangets ofx that are reached by one or more instantiated arcs
the exact lumpability condition. In fact the “reversed &rcs - 3nd/or one or more instantiated arcs depart from it. Its-spli
stability condition requires that all elements in each aggr ting is performed considering the weights and source aggre-
gate are reached by the same set of source aggregates Whilgtes of the ingoing instantiated transitions, plus théaglo

the exact lumpability condition also requires that theydo s output rate of each stateFinally (line 6), the new refine-
with the same rate; moreover it is required that the global ,ent set is stored id.

output rate of states in the same aggregate must be equal. _ — o o
21t will be clarified later how the initial partition is chos@md how the

. Like the Paig? and Tarjan’s Par.tition refinement algo- jerated refinement steps leading to each successive refimanork.
rithm, our extension uses the following data structures: 3This is sufficient to assure the previous condition in 1, beeathe




In the simple example thd and X sets after the pre-
splitting are:A = {ao{So}, a1{s1}, a2{S2},as{s2,s3}}

(2) The iterative refinement phasghe algorithm core con-
sists of repeating eefinement stepntil X converges tA

(X = A). The so-called refinement step is performed as
follows :

In the partitionX, an elemenD that has been refined in
a previous step is selected (line 8), then the lafgasment
B € As.t. B C Dischosen (line 9). FinallyX is updated
by replacingD with B and D \ B (lines 10-11). In the
example X blockz; is chosen and tha blockas is chosen
in the role of B.

All successors o8 are computed and the following in-
formation are stored iel (line 12): the successor, the
rate with which it is reached and thé-element index
containing it. Then, the functio®artition_wrt_rate_A
performs a partitioning of.el grouping the tuples with
the same second and third element. In particular all the
found “macrostate” elements are instantiated, so that the
“macrostate” elements will be substituted by all the states
that represent and the generic arcs are instantiated using
function f. In the example the “macrostaté&s,, reached
by block as, is instantiated insy, s; andsg, and PartLel
is {p1{{ss5,s6},3,a2)} (there is only one set of states, be-
longing to blockas, reached by with rate3).

At this point, A must be refined according to the new par-
tition represented byartLel, as described in Algo 3. In
Algo 3, for each elementrate, i, S) € PartLel, we re-
move the elements &§ from A;. Line 6 replaces the old
representation ofi;, while line 7 insertsS as a new set in
A.

In the example the blockas is split in two
blocks as{ss} and as{ss,s¢}, so that list A is
{ao{SO}, al{sl}, a2{84}, a3{52, 83}, CL4{S5, 86}}, while
list X is {JJQ{SQ}, xl{sl}, 132{84, S5, 86}, $3{82, 83}}.

The refinement is repeated choosing blagkn the role of
B. This does not cause any new splitting: the final partition
is the one ofd above as illustrated in Fig. 3(b).

Observe that the algorithm may have to instance some
states and arcs that will be aggregated again in the final
CTMC, so that the peak of memory usage during execu-
tion exceeds the size of the final lumped CTMC, and may
limit the applicability of the method.

Algorithm for strong lumpability check. It is easy to

adapt the previous algorithm to check the strong lumpabilit
condition instead of the exact lumpability one. In fact only
a small part of the previous algorithm must be modified.
First we need to modify slightly the pre-splitting phase. In

subset that are not reached by one or more instantiated adésrane
or more instantiated arcs depart from it do not need refingnadready
satisfy 1

“4In terms of number of contained elements.

f1 ) fl(SO) = {87,2 = 1,2,3})
f2 1 fa(si) = {siys}

f3 : fg(Sl‘) = {So},i = 4, 5,6

0,f,

==
Y 0
-~

=
A 8N0)
o

==

Figure 3. A simple example of almost symmet-
rical CTMC (a) and the result of exact (b) and
strong (c) lumpability algorithm application.



line 6 the new refinement set is performed by splitting those  The computation of the infinitesimal generator of the
sets of X where one or more instantiated arcs depart from lumped CTMC in the case of exact lumpability is instead
them. Fig. 3(a) the pre-split phase for strong lumpability performed as follows (see Proposition 7):

provides the same result as the one already presented for

exact lumpability. R b
QG = (ot Z Alf(s)])

In the refinement step only the following change is nec- Si—5;
essary: after selecting the blo¢kand updatingX, for ev-
ery Node element inB we compute the elements reaching +( 551 Z )
it, and the following information are stored ire! (line 12): |Si] L
the predecessor, the rate with which predecessor reaches it SESisTe
and the4-element index containing predecessor. wheres € S; ands’ € S;, andorig(S;) denotes the ag-

gregate to which states ifl; belonged in the initial almost
After this, the refinement step works similarly to the ex- symmetrical CTMC. This is needed because there might
act lumpability version. be generic arcs connecting a non split aggregate to an ag-
gregate that has been split (there will be a replica of such
In the example:; is chosen again in the role @ but generic arc for each refined aggregate substituting the orig
now the list PartLel is: PartLel = {p1{{so},,ap)}. inal one).
This step requires the instantiation of aggreg&ieand of In the examples of Figg. 3(b) and 3(c) the instantiated
the generic arc labeled, f;. SincesS, contains onlysy no arcs created during the algorithm execution are shown in-
split is performed and the algorithm ends. The final parti- stead of the arcs in the final lumped CTMC, to illustrate the
tion as illustrated in Fig.3(c) algorithm operation and the memory peak problem. There
will be only one arc between each pair of aggregates in the
Comparing the two final partitions (obtained using the |ymped CTMC, whose rate can be easily derived from the
two algorithms) we can observe that the strong lumpa- above formulae: e.g. in Fig. 3(b) the rate fréinto S, is

bility condition for this example requires to instance less 24, the rate fromSs to S, is 3, in Fig. 3(c) the rate fron$,
“macrostate” w.r.t to the exact one. This is not always true, to 3, is 3, from S5 to Sy is 6, from S to S5 is 2a.

it depends on the characteristics of the model to be studied. . .
For selecting the better one w.r.t. a particular model a first4 Implementation issues and comparison
choice must be driven by the performance measures thatwe Both methods handle sets of states which require a sym-
want to compute. If probabilities of individual markings bolic representation to efficiently manage them and a sym-
(SMs) are needed, then the strong lumpability cannot bebolic computation of the set of successors. Decision Dia-
used since it only gives the probabilities of aggregates In-grams (DD) could be used to this aim. However DD would
stead if the performance measures can be expressed at theot take into account that these sets are somewhat special
level of aggregates, then both approaches are available andince they are orbits of subgroups. By contrast, some for-
an heuristic rule for defining the approach minimizing the malisms are tailored to take advantage of the symmetries
number of instanced “macrostate” can be used. during the modeling and the analysis stages.

Thus we have implemented our methods using the SWN

formalism [4], a kind of high-level Petri nets that has been

Lumped Markov chain generation. In this section, we the ste_lrting point of numerous efficient_symmetry—based
explain how to generate the lump&@MC from the refined analysis methods already mplementgd in the tool Great-
structure. Let us start with the case of a refined structure SPN [3]. Here we only describe the main features of SWNs.

satisfying the strong lumpability condition; ti@? (i, ) is In a SWN acolor domainis associated with places and
computed as follows (see Proposition 6): _trans_ltlons. The colors of a place label the tqkens co_nthln_e
in this place, whereas the colors of a transition define dif-

ferent ways of firing it. In order to specify these firings, a

color functionis attached to every arc which, given a color
Q™ (i,5) = ( Z AF(s)])+ ( Z o) of the transition connected to the arc, determines the col-

W ored tokens that will be added to or removed from the cor-

responding place. Finally the initial marking is defined by
a multi-set of colored tokens in each place. A color do-

main is a Cartesian product oblor classesvhich may be

wheres, in both terms, denotes any state belonging to ag- viewed as primitive domains. A class can be divided into
gregates;. static subclassed he colors of a class have the same nature

S, s S; S/ESJ':SL)s/



(e.g. processes) whereas the colors inside a static sabclasubclasses depends on each node.
have the same potential behavior (e.g. batch processes). A In order to implement the TLS method for an almost
color function is built by standard operations (linear com- symmetrical CTMC, we specify this chain as an SWN
bination, compasition, etc.) on predefined basic functions where the transitions are split in symmetrical transitjons
In the case study, we use a single kind of basic function: awhose specification does not depend on static subclasses,
projection which selects an item of a tuple and is denotedand asymmetrical ones whose specification depends on
by a typed variable (e.gz, y). Transitions can be guarded them. An almost symmetrical CTMC is then generated
by expressions. An expression is a Boolean combination offrom this specification. It corresponds to the Extended SRG
predefined atomic predicates like # y|. (ESRG) [9] whose main feature is that a node has a two-
The implicit symmetry of an SWN, obtained by its re- level representation. At the hlgher level, a node is a sym-
strictive syntax, leads to a grouﬁ operating on color bolic marking w.r.t. the SWN without static subclassess thi
classes (and by extension on markings and firing instances)symbolic marking is enough to check and fire symmetrical
G is the intersection of the isotropy subgroups of static sub- transitions. At the lower level, the symbolic marking is a
classes. In other words, any permutationdnmaps any  Substituted by a set of symbolic markings taking into ac-
static subclass onto itself. Given a markingand a permu-  count the static subclasses partitions allowing to check an
tationg of G, the behavior of the net from the markiggn fire asymmetrical transitions. These two representations
is the same as the behavior fram up to permutationy. correspond to the same set of ordinary markings. The aim
The Symbolic Reachability Graph (SRG) construction lies of the ESRG construction is to avoid developing the lower
on symbolic markings, namely a compact representation forlevel representation for nodes as often as possible. This ca
a set of equivalent ordinary markings. A symbolic marking Pe done when all ordinary makings of the node are known to
is a generic representation, where the actual identity-of to Pe reachable and when none allows an asymmetrical firing
kens is forgotten and only their distributions among places (these conditions can be symbolically checked). Thus, the
are stored. Tokens with the same distribution and belongingESRG is the starting point of our adaptation of the Paige-
to the same static subclass are grouped into a so-adyted ~ Tarjan algorithm where some avoided lower level represen-
namic subclassThen, the SRG can be automatically built tations are now developed in order to meet the lumpability
using a symbolic firing rule that directly applies on sym- requirements.
bolic markings [4]. We can compare the proposed methods w.r.t. different

The critical factor for efficiency of the SRG method is C'iteria. The size of the lumped chain is generally smaller
the partition of a class into static subclasses. Finer is theWith the TLS method as itis based on the minimization of

partition, less effective is the reduction of space. Thees th & MC w.r.t. lumpability. However the TLS method requires

implementation of both DS and TLS methods aims at keep-© explicitly develop “asymmetrical” set of states during
ing this partition as coarse as possible. the refinement process thus facing the problem of a peak

In order to implement the DS method for a par- in memory usage, contrary to the DS method. On the one

. : . . . hand, when a model is efficiently handled by the methods,
ga!ihsrx?”;?r'cz dCIt'\Agf’ \;vne Zp\),sﬂfy t?r:(s) 2h‘32t.issth§_ the final sizes are of the same magnitude order. On the
Y 1z€d produ withou 1€ SUD- yiher hand, when the asymmetry of the model propagates
classes (so(= is the group of all permutations on color

I tina th trical MC d ¢ Ithroughout the state space, it may yield a combinatorial ex-
classes) representing the symmeirica » and a control, i and the size of the lumped chain of the DS method

automaton whose labels are set of instances of transition%ay become bigger than the original one. This cannot hap-
I|ke {t(a, b) t(b, ), h( )h (b,a)} equnt;alently ?enoted pen by construction with the TLS method. Finally, the DS
t|ornyr$1{aaybt)e repres-l;znl'i:otl bi/lzof(r)c():g)l/ s;rt%r(;):ﬁr?s;ttlrcagﬁlb method is parametrized in the following sense: as lumping
| b 2 for the label d ibed ab is based on labels the modeler can freely change the numeri-
classes (e.g.{a, 3 {e.d} for the label described a ove).' cal values associated with labels without need to recompute
The symbolic representation of a state of the lumped MC is the graph associated with the lumped chain; only the numer-

then given by a local partition of color classes (roughly-cor jcal values have to be updated. In order for the TLS method

;?;Fe an;:g tg]:)ho?.ésg:;?s.); SUb?rtOLtjﬁ.sf t:z.ts.gaogﬁzssecsge({o support such a parametrization the refinement algorithm
), asy I Ing w.r.t. this partition, must be based on transition labels instead of rate values.

of the automaton. The symbolic firing rule is close to the

original one except that a refinement w.r.t. to the parttion 5 Case study
of the synchronized transitions must&eriori performed,
and a merging of static subclasses musalp@sterioriper-
formed in order to represent the isotropy subgroup of the In this section a client-server architecture model is in-
new set of states. The graph which is built is called Dynam- troduced: the goal is to evaluate the impact of introducing
ical SRG (DRSG), emphasizing that the partition in static and managing different priorities among user classes on the

5.1 Modeling a client-server architecture



efficiency of the system. Users in different classes behaveachieved its preprocessing step must wait if it does not be-
similarly: the asymmetry is only due to the priority rules long to the highest priority user class in competition (see
described later. Fig. 4 shows an SWN model of the systemsubnetN5). If there is no priority between user classes then
with priority among user classes; however except for one the access to the critical section is granted as soon as pos-
subnet, all parts of the model with or without priority are sible after having completed the preprocessing phase. This
identical. So we will explain how a completely symmetric can be represented by a fully symmetric net obtained by
model can be derived from that of Fig. 4. Shaded boxes, la-deleting subneiVs.

are used to refer to each subnet. _ classes is managed M using aswapmechanism based on
The system is composed of a finite number of terminals the asymmetricallguarded {y < «]) transition Swap. It
and a Remote Terminal Server (RTS). In subNetthe ini- ensures that placBlected always contains the highest user

tial marking of placeClients corresponds to the number of  class of the remaining critical services requests. In order
terminals. Via a terminal, a client tries to open a conneéctio to guarantee thafwap is always performed before allow-
with the RTS. This connection is accepted if the maximum ing the next critical section entry, transitichwap is given
load of the RTS has not been reached yet, then it is authenthe highest priority (this is denotedios: we consider nets
ticated. The maximum load is given by the initial marking with different transition priorities). In order to applyeh

of placeM ax Req. The authentication is performed within  the DS method we model this guard bygantrol automaton

subnetN,. Variablez associated with transitioAuthOk, with one state and two loops: one for all transition instance
memorizes theiser clasf the client. exceptSwap and one labeled by the sg§wap(c, ¢')} with

Once authenticated, a client asks for a service that canc < ¢/. With respect to the partition of transitions related to
be non-critical (e.g. a read transaction) aritical (e.qg. the TLS method the only asymmetrical transitiorSisap

a write transaction). Non-critical services can be handled (whose guard is actually expressed as a boolean formula in-
simultaneously (inside subnéf;) while a critical service  volving basic predicates based on the partition of the users
must be performed in mutual exclusion with any other ser- color class into cardinality one static subclasses).

vice. The system ensures a weak priority for non-critical  From a guantitative point of view, the expected perfor-
services based onwavemechanism. The wave consists mance behavior of the system with priorities is a decrease
of the clients currently accepted by the RTS. Once a client 5f the global throughput of the system (w.r.t. the version
chooses a critical service (transitioth(C's) accepted by the  ithout priorities), due to the fact that the users in thenhig
RTS (transitionAccC's), no more clients can join the wave  ast priority class must be served first when they require a
(inhibitor arc from placéV ave to transitionAccR). Crit- critical service; on the other hand we expect that the high
ical services are performed only when there are no morepyiority user class will experience a smaller criticalsee
clients in the authentication stage or in a non-critical®r  {jme than in the symmetric system. Hence we are interested
execution. Placé&/bReq is used to control this requirement. 15 evaluate the throughput vs. service time trade off.
When the last critical service of the wave completes, a new
wave can start. 5.2 Performance analysis
SubnetN; models the handling of a non-critical service.
A service identity (variablé) is attached to the two parallel To study and compare the two discussed service policies,
tasks that perform the service in order for them to synchro- We must introduce and compute some performance indices:
nize at the end (transitionVC's). the throughput of thg serveX(cs+N5); the average ser-
For efficiency reasons, during a wave the RTS accepts”/C€ time for Non-critical Service requestss); the aver-
a limited number of different concurrent user classes (ini- 29€ Service time for Critical Service requests ofthieser
tial marking of placelM axQueues) in the critical services. class 'cs,). Then, we compare the global (resp. the user

This management is modeled by subngt A critical ser- class dependent) average critical service time of the RTS

vice request related to a user class not already in compeccording to each policy (with or without priority).

tition (i.e., without its colour in plac&ueues) is rejected As long as we perform the analysis on a lumped MC
(transitionRe7) if the maximum number of concurrent user based on the exact lumpability condition, there is no loss
classes has been reached. of information on the state probabilities. Hence, we can

A critical service is divided into two sequential stages: a Compute not only the global performance indices, but also
preprocessing step that can be performed concurrently andhe user class dependent ones. In this context Lumped MCs
a main step that is performed in mutual execution (see sub-can be obtained either applying DS or TLS.
netNg). If a priority rule is applied then the requests access  Besides computing the performance indices according to
the critical section following the order of the user classes the initial goal, we compare the behavior (in terms of mem-
Observe that in this case the first critical service that hasory consumption) of the two methods and of the traditional
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Figure 4. SWN of the Client/Server System.

SRG-based lumping techniqdeAlso, a reference pointis  eters. The first columns express again the parameter values
given by the size of the Ordinary MC (OMC). ( Cli, maxR maxQand Prio). Again the maximum num-
Table 1 shows some of the computed performance in-ber of non-critical service requests that can be concurrent
dices for different configurations, expressed by the valuesin the server is3. For each method, columsi. (resp. T.)
of four parametersCli, maxR, max@ndPrio (listed in the gives the number of states (resp. the computation time) of
first columns). Cli) is the initial markings of placé€'lients the (lumped) MC Column Peak represents the maximum
(the numbers of clients)n{axR the initial marking of place  number of intermediate states constructed while applying
MaxReq (the maximum load of the RTS)m@xqQ the ini- the TLS method.
tial marking of placeM axQueues (the maximum allowed We observe a significant reduction (exponential savings)
number of different user classes). Coluinio gives the achieved by our two methods w.r.t. the OMC and the SRG.
number of user classes. The maximum number of non-Moreover, we remark that DS and TLS behave similarly,
critical service requests that can be concurrent in theegserv in the sense that the number of constructed states using DS
is fixed to3 (not explicitly represented). is always situated between the final number of states and
The other columns are each labeled with the correspond-the peak of TLS. It is worth noting that the (premature) ex-
ing performance index introduced earlier in this section. plosion for the TLS method is not caused by its intrinsic
The pairs of values in the column labeledin/loss(%) behavior: for the shown cases, it was impossible to gen-
represents the gain (resp. loss) for the highest (resp. low-erate thealmost symmetrical CTMEonstituting its input
est) priority user class on the average critical serviceetim (i.e., the ESRG structure). Actually, the ESRG construrctio
in the asymmetric model w.r.t the symmetric one. As ex- algorithm suffers from a memory peak problem similar to
pected, the decrease of the throughput and the increase dhat discussed for the TLS method.
the average critical service time in the asymmetric RTS is  Although theoretically difficult to prove, we can intu-
counterbalanced by an acceleration in the treatment of thetively say that the two methods are complementary and
highest priority user class. This phenomenon is emphasizedheir respective efficiency heavily depends on the presence
when increasing the number of the clients, and the numberof strong synchronization pointsetween symmetric and
of user classes. asymmetric behaviors of the system. These are regeneration
Table 2 summarizes some results on the state space repoints w.r.t the consequences of any asymmetric transition
duction induced by different analysis methods, obtained onoccurrence and block the propagation of states instamtiati
our asymmetric system with different values of the param- and splitting in the algorithms.

5We recall here that the SRG satisfies both strong and exaptlbitity 6The construction time of OMC is not given because the resarks
conditions. evaluated based on the SRG outputs.



Asymmetric model

Symmetric model

Cli maxR maxQ Prio XCS+NS Tns Tcs XCS+NS TnNs Tes gam/loss(%)

3 2 2 3 0.51305 2.5 | 2.782178| 0.51570 25 | 2.726234| (1.42,-5,52)

3 2 2 5 0.53829 2.5 | 2.819253| 0.54189 25 | 2.750577| (1.74,-6.73)

3 2 2 8 0.55373 2.5 | 2.842139| 0.55795 25 | 2.766257| (1.93,-7.41)

3 3 3 3 0.53508 | 2.5 | 2.963033| 0.53816 | 2.5 | 2.902267| (1.97,-6,16)

3 3 3 5 0.55919 | 2.5 | 2.986704| 0.56324 | 2.5 | 2.913987| (2.25,-7.24)

3 3 3 8 0.57336 2.5 | 2.994600| 0.57800 2.5 | 2.915846| (2.33,-7.72)

8 2 2 3 0.55206 2.5 | 2.971734| 0.55636 2.5 | 2.887827| (1.94,-7.75)

8 2 2 5 0.57223 2.5 | 3.022436| 0.57814 2.5 | 2.915278| (2.45,-9.80)

8 2 2 8 0.58430 2.5 | 3.054844| 0.59132 2.5 | 2.932937| (2.77,-11.08)

8 3 3 3 0.63419 2.5 | 3.682498| 0.64124 2.5 | 3.566985| (4.83,-11.26)

8 3 3 5 0.65524 | 2.5 | 3.779566| 0.66459 | 2.5 | 3.633744| (6.19,-14.06)

8 3 3 8 0.66833 | 2.5 | 3.842901| 0.67916 | 2.5 | 3.678659| (7.04,-15.86)

Table 1. Performance indices for asymmetrical and symmetri cal models
OoMC SRG DS TLS

Cli | maxR | maxQ | Prio St. St. T. St. T. St. Peak .
3 3 2 3 16547 4533 1.59 1071 1.47 998 1160 | 0.14
3 3 2 5 69638 17708 9.38 1217 2.11 998 1727 | 0.20
3 3 2 8 269732 65268 48.75 1436 4.30 998 3185 | 0.50
8 4 2 3 529061 122771 61.88 | 24156 4551 | 23457 | 25221| 0.77
8 4 2 5 3591686 759796 592.02| 26884 69.93| 24787 | 32725 1.72
8 4 2 8 | 21835811| 4358051| 5143.14| 28981 101.66 | 24787 | 48601| 5.59
8 5 3 3 2241462 496618 282.09| 94593 187.98 | 92600 | 96088 | 3.04
8 5 3 5| 23568689| 4788499| 4206.34| 134553 492.49 | 110376 | 159104 | 13.98
8 5 3 8 - - — | 193401| 4321.32 - - -
8 5 4 3 2241462 496618 282.09| 94593 187.98 | 92600| 96088| 3.04
8 5 4 5 23656834 | 4838244| 4226.15| 153180 649.24 | 114442 | 178690 | 21.09
8 5 4 8 - - — | 346649 | 39063.66 - - -
8 6 3 3 7168981 | 1543595 952.74 | 280296 574.6 | 276658 | 282250 | 7.31
8 6 3 5| 111146711| 21863821 | 21235.84| 438194 | 1724.53| 388521 | 483119 | 32.22
8 6 3 8 - - — | 563975 | 10535.30 - - -

Table 2. Benchmark model showing the efficiency of the differ

ent methods.




6 Conclusion and future work

In this paper the DS and TLS methods have been pre-

sented: their goal is to generate a lumped CTMC from a
partially symmetrical and almost symmetrical CTMC spec-
ification respectively. They can be efficiently applied only
if the MCs on which they operate can be handled symbol-
ically, exploiting the a priori known presence of symme-

tries: this happens when they are derived from a higher level [10]
model, such as SWNs, where the presence of similarly be-
having components is made explicit. Implementation issues
have also been discussed referring to SWNs. A realistic per-
formance evaluation case study has been presented and thﬁz] J.Kemeny and J. Snell.

effectiveness of the two methods was illustrated through it

In perspective, it is interesting to achieve a characteriza [13] J. Ledoux. Weak lumpability of finite markov chains and
tion of the type of models that can fully exploit the poten-

tial of the presented methods, possibly based on structurall14]

properties of the high level model. Another possible line of

development is to complement these methods with the pos-[15]

sibility of computing bounds on the performance indices by
transforming the partially symmetrical MC into a symmet-
rical one, and using stochastic ordering arguments.

Finally the presentation of the methods in a general set-

ting can be a good starting point to extend their application
to other high level formalisms able to highlight the presenc
of similarly behaving components.
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