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Abstract—We show how timed-arc Petri nets and data nets can
compute reliably the functions in the fast-growing hierarchy up
to, and no higher than, Fωωω . This construction provides ordinal-
recursive lower bounds on the complexity of the main decidable
properties (safety, termination, regular simulation, etc.) of these
models. Since these new lower bounds match the upper bounds
that one can derive from wqo theory, they precisely characterise
the computational power of these so-called “enriched” nets.

I. INTRODUCTION

We call enriched nets a handful of Petri net extensions
where tokens are coloured with data values, but still enjoy
decidable verification problems: timed-arc Petri nets (TPN)
where tokens carry real-valued clocks [6], data nets (DN) and
Petri data nets (PDN) where they carry a datum from some
dense domain [20], and constrained multiset rewriting systems
(CMRS) where they carry positive integer values [3]. Their
richer structure makes them a natural choice for modelling
for instance parameterised systems, protocols, workflows, or
real-time systems—in fact, timed extensions of Petri nets have
indeed been in use since the 1970’s for such modelling tasks.
In spite of the presence of two “sources” of infiniteness, the
number of tokens and their colours, they can be handled
by the now standard toolkit of well quasi-orders (wqo) and
well-structured transition systems (WSTS) [5, 15] so that e.g.
safety—which in this context corresponds to the coverability
problem—and other properties are decidable [4, 2, 9].

Recent investigations [1, 7] have shown that all these
formalisms are expressively equivalent, i.e. they define the
same class of so-called coverability languages, and thus in
particular their coverability problems are inter-reducible. Their
computational complexity, however, has rarely been analysed.
The employed wqo and WSTS techniques are generally seen
as non-constructive, hence the aforementioned works do not
provide any complexity analysis of the algorithms they pro-
pose ([20, Prop. 3.2] gives a lower bound: PDNs can simulate
lossy channel systems, a simpler WSTS model, and hence
inherit at least their Fωω complexity [10], but this is far from
optimal).

Our contributions: We prove that the complexity of
enriched nets is exactly at level Fωωω in the fast-growing
hierarchy. (1) The upper bound is a consequence of a generic
technique described in [23]: the length-function theorem for

algebraic wqos, here instantiated with (Nk)∗ as the underlying
wqo. It applies uniformly to DN, PDNs, TPNs, CMRSs (and
to some further extensions). (2) The matching lower bound
is our main contribution: we construct PDNs with O(k)
unbounded places that can compute in a weak sense the fast-
growing functions F

ωωk
and their inverses. This construction

is technically involved. The crux is a cumulative encoding of
ordinals below ωω

ωk

in sequences of vectors of integers (or
“codes”). This encoding must be robust, i.e. safe wrt. Higman’s
ordering on codes. Proving its robustness requires careful and
complex new developments made mandatory by its cumulative
nature (as far as we know, robust and cumulative ordinal
notations have not previously been used in the literature on
subrecursive hierarchies, except in [10]—our inspiration—for
ordinals below ωω

k

where robustness is much easier to obtain).
There remains to compute ordinal codes robustly with PDNs
and we use techniques inspired by the simulation of TPNs by
PDNs developed in [7]. Once established for PDNs, the new
lower bound automatically applies to TPNs and DNs. (3) Be-
yond the complexity of verification problems, our techniques
are easily applied to the study of the coverability languages
of WSTS models [18]. Here our construction directly yields
separation results. (4) Finally, the complexity analysis reveals
how a given feature (number of places for nets, size of message
alphabet for channel systems) is the main parameter ruling the
computational power of these models.

II. PETRI DATA NETS

We denote by 0 the null vector in Nk for any k, and for a
word w = x1 · · ·xn we write |w| = n and w(i) = xi.

A Petri Data Net (PDN) is a Petri net where each token
carries an identity from a linearly ordered and dense domain D.
A marking s of a PDN can be seen, e.g., as a multiset of pairs
in D×P , or as a map s ∈ (NP )D. However, two key features
of PDNs will guide our choice for marking representation:

1) a marking s only has finitely many tokens, thus denoting
d1 < · · · < dm the identities that occur in s and
gathering all tokens carrying a same identity di, one
obtains a (non-null) place vector vi in N|P |. Thus s can
be written (d1, v1) · · · (dm, vm), implicitly associating
the null vector 0 with any d ∈ D \ {d1, . . . , dm};



2) the concrete identities di are irrelevant, and only their
relative order is useful w.r.t. the dynamics of the net,
thus s can be safely abstracted as the sequence v1 · · · vm
in (N|P | \ 0)∗. (Also the choice for set D is irrelevant.)

Every transition t of a PDN specifies a sequence of n
ordered potential identities and for any such identity specifies
the tokens cons to be consumed and prod to be produced.
Thus cons(t) and prod(t) are two sequences of n (possibly
null) place vectors.

Definition 1 (Petri Data Nets). A k-dimensional Petri Data
Net (k-PDN) is a tuple N = (P, T, cons, prod , s0) where
• P is a finite set of k = |P | places,
• T is a finite set of transitions with P ∩ T = ∅,
• for every t in T , cons(t) and prod(t) are finite sequences

in (Nk)∗ with |cons(t)| = |prod(t)|, and
• s0 is an initial marking in (Nk \ 0)∗.

Consider now a marking s ∈ (Nk \ 0)∗. In order to fire
a transition t with |cons(t)| = n, one nondeterministically
selects n identities, consumes some of their tokens as indicated
by cons(t), and produces new tokens with the identities
specified by prod(t). However, some of these n identities
might not be present in s, and we should introduce null
vectors wherever necessary: s′ ∈ (Nk)∗ is a 0-extension of
s ∈ (Nk \0)∗ (or s is the 0-contraction of s′) def⇔ s is obtained
by removing all 0’s from s′. Once an extension s′ is built,
one selects in it a subword of n vectors x1, . . . , xn s.t. every
vector contains enough tokens, i.e. with xi ≥ cons(t)(i). If the
condition is fulfilled, the corresponding tokens are consumed
and prod(t)(i) is added to the resulting vector, yielding a new
sequence s′′. This s′′ may contain null vectors, e.g. when all
tokens with some identity have been consumed, hence the
marking one reaches really is the 0-contraction of s′′. Note
that any way of firing t requires at most n insertions. Examples
of PDNs will be found in Section VI.

Definition 2 (Semantics of PDNs). The transition system
associated with a k-PDN N = (P, T, cons, prod , s0) is
(S, s0,→) with state set S def

= (Nk \0)∗ and transition relation
→ def

=
⋃
t∈T

t−→, where s
t−→ s′ for t ∈ T iff, letting

n = |cons(t)|:
• there exists u0x1u1 · · ·un−1xnun a 0-extension of s with

for all i, ui ∈ (Nk)∗ and xi ∈ Nk;
• for i in {1, . . . , n}, xi ≥ cons(t)(i);
• and defining yi = xi − cons(t)(i) + prod(t)(i), s′ is the

0-contraction of u0y1u1 · · ·un−1ynun.

Below we consider three decision problems for PDNs:
(Strong) Coverability: Given N and p ∈ P , can we reach

a configuration where p holds at least one token?
Boundedness: Given N , is the set of reachable configura-

tions in S finite?
Termination: Given N , is every run finite?

A. PDNs as Well-Structured Transition Systems
A wqo (A,≤) is a set A endowed with a transitive and

reflexive relation ≤ s.t. every infinite sequence σ = a0a1 · · ·

of elements of A contains a pair ai ≤ aj for some i < j.
Some classical examples of wqos are

Dickson’s Lemma: (Nk,≤) with the product ordering de-
fined by x ≤ y iff for all 1 ≤ j ≤ k, x(j) ≤ y(j),

Higman’s Lemma: if (A,≤) is a wqo, then (A∗,≤∗) the set
of finite sequences of elements of A along with the
subword embedding ordering is also a wqo, where
≤∗ is defined by s ≤∗ s′ iff s = a1 · · · an, s′ =
x0b1x1 · · · bnxn with x0, . . . , xn in A∗ and ai ≤ bi
for all 1 ≤ i ≤ n.

The transition system associated with a PDN (see Def. 2)
is well-structured [5, 15] for the wqo (S,≤∗): if s1

t−→ s2

and s1 ≤∗ s3, then there exists s4 s.t. s3 ≤∗ s4 and s3
t−→

s4. This (strict) compatibility of the transition relation with
the ordering allows to employ generic algorithms for deciding
coverability, boundedness, and termination. In fact, the same
generic WSTS algorithms show that coverability, boundedness
and termination are decidable
• for TPNs [2], even when extended with read arcs [9] or

transport arcs [19],
• for CMRSs [3], and
• as far as coverability and termination are concerned, for

DNs [20]. Compared to PDNs, these allow so-called
whole-place operations that can e.g. duplicate or erase the
whole contents of some places, and/or transfer them to
other places, which makes their compatibility non-strict,
and indeed their boundedness problem is undecidable.

III. ORDINAL RECURSIVE COMPLEXITY

The astronomical complexity of some decidable problems
on WSTS requires the introduction of complexity classes
spanning way beyond the usual polynomial or exponential
hierarchies. The complexity classes we consider are generated
by ordinal-indexed subrecursive hierarchies, like the Hardy
hierarchy and the fast-growing hierarchy. See [13] for a self-
contained presentation; we only remind below the notions and
notations that are crucial to our construction in Section V.

A. Ordinals and Subrecursive Hierarchies

It is well-known that any ordinal α < ε0 can be written
uniquely in Cantor Normal Form (CNF). In this paper we use
a dotted addition symbol “+̇” when we want to stress that an
ordinal term is in CNF. Thus, when we write

α = ωα1 +̇ · · · +̇ ωαk , (1)

we mean that not only the equality (1) holds, but also that
αk ≤ . . . ≤ α1 < α, as required by CNF. (NB: we allow
writing α +̇α′ when α or α′ is 0.) We write Ω for the ordinal
ωω

ωω

and Ωk for ωω
ωk

.
Subrecursive hierarchies are defined through assignments

of fundamental sequences (λn)n<ω for limit ordinals λ < ε0,
verifying λn < λ for all x and λ = supn λn. A standard
assignment is defined by:
(
γ +̇ ωα+1

)
n

def
= γ +̇ ωα · ωn ,

(
γ +̇ ωλ

)
n

def
= γ +̇ ωλn ,

(2)
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Fig. 1. The extended Grzegorczyck hierarchy [21].

together with ωn
def
= n+ 1.

The Hardy hierarchy (Hα : N → N)α<ε0 is defined by
H0(n)

def
= n and

Hα+1(n)
def
= Hα(n+ 1), Hλ(n)

def
= Hλn(n). (3)

Observe that H1 is the successor function, and more generally
Hα is the αth iterate of the successor function, using diago-
nalisation to treat limit ordinals. The fast growing hierarchy
(Fα : N → N)α<ε0 can be defined by Fα

def
= Hωα , resulting

in F0(n) = H1(n) = n + 1, F1(n) = Hω(n) = Hn+1(n) =
2n+ 1, F2 being exponential, F3 non-elementary, and Fω an
Ackermannian function.

By applying elementary closure operations to the collection
of functions (Fβ)β≤α along with the addition, projection and
zero functions, one obtains a hierarchy (Fα)α known as the
extended Grzegorczyck hierarchy [21], which characterises
several natural classes of functions; see Figure 1.

The (Fα)α hierarchy predates the Hardy hierarchy (Hα)α.
It gives a more abstract packaging of the main stops in Fig. 1
and requires lighter notation. However, with its tail-recursive
definition, the Hardy hierarchy is easier to implement as a
while-program, or in simple automata models like PDNs or
lossy channel systems (LCS). Below we approximate Hardy
computations with PDNs. Formally, a (forward) Hardy com-
putation is a sequence α0, n0 −→ α1, n1 −→ α2, n2 −→ · · · −→
α`, n` of evaluation steps given by Eq. (3) seen as left-to-
right rewrite rules. It guarantees α0 > α1 > α2 > · · · and
n0 ≤ n1 ≤ n2 ≤ · · · and keeps Hαi(ni) invariant. We say
it is complete when α` = 0 and then n` = Hα0(n0) (we
also consider incomplete computations). A backward Hardy
computation is obtained by using Eq. (3) as right-to-left rules.

B. Complexity Upper Bounds for Enriched Nets

A key insight for the complexity analysis of WSTS al-
gorithms is that the use of wqos yields not only algorithm
termination, but also upper complexity bounds:

Theorem 3 (Upper Bounds). Coverability and termination for
PDNs, DNs, TPNs, and CMRSs, are in Fωωω .

For this result, as explained in [14, 23], we merely need to
find out (1) what is the complexity of a step of the WSTS (in
the case of PDNs, transitions perform simple affine operations

in F1), and (2) the order type of the wqo, which is a measure
of its complexity (this is Ωk for a k-PDN). By the length
function theorem for polynomial wqos (see full version of
[23]), we then obtain a parameterised upper bound in F

ωωk
for

the decision problems of k-PDNs mentioned in Section II-A,
and a uniform Fωωω upper bound (which majorises every
function in

⋃
k F

ωωk
) when the dimension is not fixed.

These upper bounds hold more generally for k-DNs, as
they have the same order type and their extra whole-place
operations are still in F1. Regarding TPNs and CMRSs,
the Fωωω upper bound also holds; however here the main
parameter in the parameterised complexity—which appears as
the exponent on top of the tower of ω’s—is not simply the
dimension k but km where m is the maximal constant that
appears in the constraints put on transitions.

IV. A COMPLEXITY LOWER BOUND

We now describe the proof plan for our main result.

Theorem 4 (Lower Bound). Coverability and termination for
PDNs are Fωωω -hard.

The proof is done by assembling two constructions (de-
scribed in the following sections). The schematics (see Fig. 2)
are similar to earlier constructions for lossy channel systems
or counter machines and the reader can refer to [24, 25, 10]
where more lower-level details are given. We outline it as a
motivation for the following sections.

NH [k]

=Ωk,k︷ ︸︸ ︷
α0, n0

r−→ · · · r−→ αi, ni
r−→ · · · r−→ αℓ,

≤Hα0 (n0)︷︸︸︷
nℓ

pstart

prewr phalt

trewr

NH−1[k]

0,m0
r−→−1 · · · r−→−1 α, n

p′′startp′′rewr
p′′halt

t′′rewr

NM
p′start

p′halt

simulate M
using cpt
as a budget

cpt

cM1

cMr

Fig. 2. Schematics for Theorem 4

1. We first construct (see Section VI) a PDN NH [k]

initialised with a pair α0, n0 with n0
def
= k − 1 and that

tries to rewrite it α0, n0 −→ α1, n1 −→ · · · −→ α`, n` in
a way that reflects precisely the complete Hardy derivation
issuing from α0, n0, thus computing n` = Hα0(n0). There
are two difficulties here. First, one has to encode ordinals
in sequences of vectors (i.e. in PDN configurations) and this
is the topic of Section V. Secondly, our PDN only performs
Hardy computations in a weak sense. What is guaranteed is
the following:

Lemma 5 (See Section VI). Starting with α0 = Ωk, NH [k]
can perform the exact Hardy computation and halt with α` =
0 and n` = HΩk(n0) (NH [k] is “complete”).



Any halting computation in NH [k], correct or incorrect, has
n` ≤ Hωk(n0) (NH [k] is “safe”).

2. Now consider some Minsky machine (MM) M . An easy
(see [12, §7] or [22, §4]) and classic construction yields a PDN
NM that simulates M as far as halting is concerned: NM has
unbounded places cM1 , . . . , cMr to simulate the counters of M .
Starting from control place p′start and with empty cM1 , . . . , cMr ,
it eventually reaches p′halt with cM1 , . . . , cMr empty iff M halts.
We further modify NM so that it uses cpt (where NH [k]
stores n`) as a budget, i.e. any incrementing of a cMi is
matched by decrementing cpt and vice versa, see [25, §4].
Adding cpt as a budget has two consequences. First, M is
now simulated with an upper bound of n` for (the sum of)
its counters, at any time along its run. Second, when NM
reaches p′halt, witnessing that M halts, does not require testing
cM1 , . . . , cMr for emptiness: at this point, the value nf of cpt
is necessarily ≤ n`, and only equals n` if cM1 , . . . , cMr are
empty (NB: if M halts, nf = n` is indeed feasible).

3. We now connect NH [k], NM and NH−1 [k] so that they
run sequentially. Here NH−1 [k] is a PDN for backward Hardy
computations. It starts with α′0 = 0 and m0 = nf (passed
on by NM ). Its backward computation may reach Ωk, n0 if
m0 = HΩk(n0). Here too, the PDN only computes H−1 in
a weak sense but it is guaranteed that it can do exact back-
ward computations (completeness) and that incorrect backward
computations halting on Ωk, n have HΩk(n) ≤ m0 (safety).

As a consequence, the resulting PDN started with Ωk, n0

can reach a configuration with p′′halt and a pair α, n that covers
Ωk, n0 (in terms of the places that store the current Hardy pair)
if, and only if, the Minsky machine M with space bounded
by HΩk(n0) = Fωωk (n0) = Fωωω (n0) halts.

Indeed, if M halts within the space bound, the PDN may
reach the required p′′halt, α, n by chaining exact Hardy compu-
tations and the simulation of M by NM . More interestingly, if
the required α, n is reached, we know, letting h def

= HΩk(n0),
that n` ≤ h (safety of NH ), that n` ≥ nf = m0 (budget
of NM ), that Hα(n) ≤ m0 (safety of NH−1 ), and that
Hα(n) ≥ h (α, n covers Ωk, n0). Thus h ≤ Hα(n) ≤ m0 =
nf ≤ n` ≤ h. Necessarily n` = nf , witnessing that M halts,
and n` = h, witnessing that M runs in space bounded by
h = Fωωk (n0).

In conclusion, the construction provides a (logspace) many-
one reduction from the halting problem for Minsky machines
(MM) running in space bounded by Fωωω (n) where n = |M |
is the size of the MM description. Using standard complexity-
theoretical arguments Theorem 4 (for Coverability) follows.

Regarding Termination, a similar reduction works. One
makes sure that NH [k] always halts or deadlocks (it does) and
stores two copies of n`: one is a time budget that ensures the
eventual halting-or-deadlock of NM , and the other witnesses
nf = n` as earlier. In the end, the whole system has to
eventually stop, unless he can cover Ωk, n0 with α, n, finally
enabling an infinite loop. This reduces the same MM problem
to termination for PDNs. More details can be found in [24,
§4.2] or [25, §7] where the same adaptation is done.

Using the simulations of PDNs by TPNs of [7] and of DNs
by CMRSs of [1, §5], we conclude:

Corollary 6. Coverability and Termination for TPNs, DNs,
and CMRSs are Fωωω -hard.

V. ENCODING HARDY COMPUTATIONS

We define in this section a so-called “cumulative” encoding
of ordinals as codes (Section V-A) and a rewriting system r−→
operating on codes that performs Hardy computations (Sec-
tion V-B). Its crucial property is its robustness, which entails
that weak implementations, like the PDN implementation we
present in Section VI, are correct (see Section V-C).

A. Encoding Ordinals as Cumulative Vector Sequences

Fix k ∈ N. An ordinal < ωk is “small” and we use β, β′, . . .
to denote small ordinals; an ordinal < ωω

k

is “medium” and
we use α, α′, . . . for such ordinals; finally, an ordinal < Ωk is
“large” and we use π, π′, . . . for such ordinals. A medium
ordinal can be written in CNF as α = ωβ1 +̇ · · · +̇ ωβp

where β1, . . . , βp are small ordinals, and a large ordinal can
be written as π = ωα1 +̇ · · · +̇ ωαm where α1, . . . , αm are
medium ordinals.

We now introduce an encoding of large ordinals that will
allow the computation of the Hardy functions with PDNs.
These data structures are 1) k-dimensional vectors in Nk for
small ordinals, 2) vector sequences in (Nk)∗ for medium
ordinals, and 3) cumulative encodings in (Nk ] {#})∗ for
large ordinals, where # is a fresh tally symbol.

1) Small Ordinals as Vectors: For v ∈ Nk and an index
0 ≤ i < k, let v[i] ∈ N denote the i-th component of v. We use
two different orderings over Nk: the product ordering, denoted
v ≤ v′ and the lexicographic ordering, denoted v ≤lex v

′, with
most significant component at index k− 1. Recall that ≤ is a
wqo, and that ≤lex is a linear and well-founded extension of
≤.

With a vector v ∈ Nk, we associate the small ordinal

β(v)
def
= ωk−1 · v[k − 1] +̇ · · · +̇ ω0 · v[0] . (4)

This establishes a bijective correspondence between Nk and
small ordinals, and we write v(β) for β−1(β). We write 1i
for the vector with v[i] = 1 and v[j] = 0 for all j 6= i. Hence
β(0) = 0 and β(1i) = ωi.

The bijection relates the two linear orderings of small
ordinals and of vectors in Nk since

v ≤lex v
′ iff β(v) ≤ β(v′) . (5)

2) Medium Ordinals as Vector Sequences: With a finite
sequence V = v1v2 · · · vp ∈ Nk∗, we associate the ordinal

α(V) = α(v1v2 · · · vp) def
= ωβ(v1) + · · ·+ ωβ(vp) . (6)

This surjective1 embedding of Nk∗ into ωω
k

satisfies
α(VV′) = α(V) + α(V′). Write ε for the empty sequence
in Nk∗. Then α(V) = 0 iff V = ε, and α(V) = 1 iff V = 0.

1This is not bijective, e.g. for v <lex v
′, α(v v′) = ωβ(v) + ωβ(v

′) =

ωβ(v
′) = α(v′)

(
6= ωβ(v

′) +̇ ωβ(v)
)
.



Example 7. Consider k = 2: α(10) = α(|01 ) = ωβ(10) =

ωω
0·1 = ω1 = ω, thus α(|01 |01 ) = ω · 2, while α(2 × 10) =

α(|02 ) = ωω
0·2 = ω2.

We order vector sequences with ≤∗, the sequence extension
of ≤: it is a wqo since ≤ is.

a) Pure Vector Sequences: We say that V = v1 · · · vp
is pure if v1 ≥lex v2 ≥lex · · · ≥lex vp: restricted to pure
vector sequences, the embedding in (6) is bijective since
the expression giving α(V) in Eq. (6) is in CNF. We write
pure(V) for the only pure V′ such that α(V) = α(V′): one
obtains pure(V) by removing in V = v1 · · · vp any vi such
that vi <lex vj for some j > i. Hence pure(V) ≤∗ V.

3) Cumulative Encodings for Large Ordinals: Fix a special
tally symbol # and let Nk#

def
= Nk∪{#}. A cumulative ordinal

description, or simple a “code”, is a sequence x in Nk#∗. Below
we see them as sequences in [Nk∗#]∗Nk∗, i.e. we single out
the tally symbols and factor codes under the form

x = V1#V2# · · ·#Vm#Vrest , (7)

where the Vi’s are vector sequences. We extend ≤∗ from
vector sequences to codes in the natural way, by requiring
that a # embeds into a #: this is still a wqo.

With x we associate a large ordinal π(x) via the following

π(V1#V2# · · ·#Vm#Vrest)
def
=

ωα(V1V2···Vm) +̇ · · · +̇ ωα(V1V2) +̇ ωα(V1) .
(8)

The above definition explains why codes are “cumulative”. We
can also define π inductively by

π(V) = 0 , π(V#x) = ωα(V) · π(x) +̇ ωα(V) . (9)

We say that x is head pure if its head V1 is pure, and that it
is pure if each Vi, i = 1, . . . ,m, is pure, and if in addition
Vrest = ε. (NB: purity of, e.g., V1#V2#, does not guarantee
purity of V1V2.) For a code x, the unique pure x′ such that
π(x) = π(x′), denoted x′ = pure(x), is given by

pure(V1#V2# · · ·#Vm#Vrest) =

pure(V1)#pure(V2)# · · ·#pure(Vm)#ε .
(10)

Lemma 8. x′ ≤∗ x implies pure(x′) ≤∗ pure(x).

Lemma 9 (Bijection). Pure codes in Nk#∗ and large ordinals
in Ωk are in bijection by π.

If we write V (x) for the vector sequence obtained by
removing all tally symbols from x, i.e. the result of the
projection # 7→ ε applied to x, then

π(x1#x2) = π(pure(V (x1)x2)) +̇ π(x1#) . (11)

Example 10. Consider the initial Hardy computation steps

HΩ(k− 1) = HΩk(k− 1) = Hπ(x0)(k− 1) = Hπ(x1)(k− 1)

where x0, x1 are pure codes defined by

x0
def
= (1k−1)k# ; π(x0) = ωω

ωk−1·k
< Ωk ;

x1
def
= (1k−1)k−1(1k−2)k# ; π(x1) = ωω

ωk−1·(k−1)+ωk−2·k
.

B. Rewriting of Ordinal Codes

Let us turn to the encoding of Hardy computations for
ordinals < Ωk as rewriting rules on codes. Such a system
should e.g. map x0 to x1 in Example 10. It turns out that
the bulk of the task when computing Hardy functions lies in
computing the elements in the fundamental sequences of limit
ordinals.

1) Limit Ordinals: Observe that a code denotes a successor
ordinal if it is of the form #x, as indeed π(#x) = ω0 ·
π(x) + ω0 = π(x) + 1. Conversely, a head pure code of
form Vv#x denotes a limit ordinal π(Vvx) +̇ ωα(Vv) s.t.(
π(Vv#x)

)
n

= π(Vvx) +̇ (ωα(Vv))n. We want to define
a similar mapping (.)n from codes to codes s.t. π

(
(x)n

)
=(

π(x)
)
n

; this mapping essentially needs to treat the head Vv,
which contributes the smallest term ωα(Vv) to the encoded
ordinal. Several cases arise depending on v:

• if v = 0, i.e. ωβ(v) = 1, then ωα(V0) = ωα(V)+1 verifies
(ωα(V0))n = ωα(V) · (n+ 1), encoded through

(V0)n
def
= V#n+1 . (12)

Thus we verify

π
(
(V0#x)n

) def
= π(V#n+10x) (13)

= π(V0x) +̇ ωα(V) · (n+ 1)

=
(
π(V0#x)

)
n
.

• if v 6= 0 then (ωα(Vv))n = ωα(V)+̇(ωβ(v))n (recall that
Vv is pure) is encoded by

(Vv)n
def
= V(v)n# , (14)

and we need to further distinguish two cases: let i ∈
{0, . . . ,m−1} be the smallest index with v[i] > 0. Then
β(v) is a successor ordinal if i = 0 and a limit ordinal
otherwise, hence the definition

(v)n
def
=

{
(v − 10)n+1 if i = 0,
v − 1i + (n+ 1) · 1i−1 otherwise.

(15)

Since every vector in the sequence (v)n is <lex v, this
verifies

π
(
(Vv#x)n

) def
= π(V(v)n#vx) (16)

= π(V(v)nvx) +̇
(
ωα(Vv)

)
n

= π(Vvx) +̇
(
ωα(Vv)

)
n
.

The definitions (12–16) thus result for a pure Vv in

π
(
(Vv#x)n

)
= π

(
(Vv)nvx

)
=
(
π(Vv#x)

)
n
. (17)

2) Rewriting System: We define a set of rewriting rules r−→
working on pairs (x, n) of a code x and a number n ∈ N, that
together encode an intermediate stage Hπ(x)(n) in the course
of a Hardy computation.



Definition 11 ( r−→). The relation x, n r−→y,m is given by rules
(R1–R2) below.

#x, n
r−→ x, n+ 1 (R1)

Vv#x, n
r−→





(Vv)nx, n if x = ε or x = v′x′

with v <lex v
′

(Vv)nvx, n if x = #x′ or x = v′x′

with v′ ≤lex v

(R2)

Rule (R2) implements the case of limit ordinals and is
correct by (17)—the first subcase includes a purification step
when π((Vv)nvx) = π(Vv)nx)—while rule (R1) handles
successor ordinals:

Proposition 12 (Correctness of r−→). x, n r−→ y,m and x head
pure imply Hπ(x)(n) = Hπ(y)(m).

Example 13 (Purity is required). A step x, n
r−→ y,m is not

always correct when x is not head pure: e.g. in dimension
k = 1, π(01#) = ω+ωω = ωω but 01#, n

r−→0n+2#, n, which
encodes ωn+2, and Hωω (n) = Hωn+1

(n) < Hωn+2

(n).

Although only head purity is required for the correctness
of a single rule application, r−→ more generally preserves (full)
purity, and it is more convenient to work with pure codes in
proofs: the one-to-one correspondence between pure codes and
ordinals in Ωk yields a one-to-one correspondence between a
pair (x, n) and a snapshot of a Hardy computation Hπ(x)(n),
allowing to transfer results from Hardy computations to r−→.

More importantly, note that Proposition 12 entails the
correctness of r−→ even when applied backwards: we capture
both forward and backward Hardy computations with the same
rewriting system.

C. Robustness of r−→
So far, our encoding of ordinals in Ωk and the rewriting sys-

tem r−→ can be seen as a (rather convoluted) way of performing
forward and backward Hardy computations using sequences of
vectors. Their critical interest compared to more basic ordinal
encodings is that r−→ is robust: if instead of computing with x, n
we first decrease the configuration in an uncontrolled way to
some y,m with y ≤∗ x and m ≤ n, we obtain a configuration
that codes a smaller value Hπ(y)(m) ≤ Hπ(x)(n). This
result is subject to hygienic conditions on x, n and y,m; see
Proposition 16 for the exact statement.

Example 14 (Non-Robustness of CNF). Let us pause for
a moment and consider a natural encoding χ of large or-
dinals. In this encoding, we use the CNF of the ordinal
and separate pure vector sequences with “+̇” symbols s.t.
χ(V1 +̇ · · · +̇Vm)

def
= ωα(V1) +̇ · · · +̇ωα(Vm); e.g. p = 1 +̇ 0

codes χ(p) = ωω +̇ ω for k = 1. However, q = 10 verifies
q ≤∗ p and codes the much larger ordinal χ(q) = ωω+1, with
Hχ(p)(n) = Hωω+̇ω(n) < Hωω·n+̇ωn·n+̇ω(n) = Hχ(q)(n).
By contrast, with cumulative codes, “losing” a tally symbol
results in the loss of a summand in the corresponding ordinal,
which immediately leads to smaller Hardy values.

a) Trim Codes: We introduce a restriction on codes that
allows to ensure that r−→ behaves as expected, especially when
performing backward computations: a pure code x is n-trim
if, for any vector v occurring in x, there exists 0 ≤ i < k s.t.
v[i] ≤ n+1 and for all 0 ≤ j < i, v[j] = 0 and all i < j < k,
v[j] ≤ n (this restricts the ordinal β(v)). A configuration x, n
of r−→ is trim if x is n-trim, and a computation x0, n0

r−→
x1, n1

r−→ · · · r−→ xm, nm is trim if every configuration xi, ni
is trim. Write x′, n trim−−→ x, n if x ≤∗ x′ and x is n-trim (and
thus pure) and call trimming the transformation from x′, n to
x, n (nondeterministic but always possible, e.g. by decreasing
vector values in excess, or removing vectors). In particular,
trim−−→⊆≥∗ where we let x, n ≤∗ x′, n′ def⇔ x ≤∗ x′ and n ≤ n′.

Trimness allows us to focus on particular computations of
r−→:

Lemma 15 (See App. B2b). If x is n-trim, then there exists
a trim computation x, n r−→∗Hπ(x)(n).

As our initial code x0 defined in Example 10 is (k − 1)-
trim, it suffices in the following to consider trim computations,
i.e. forward computations in rt−→ or backward computations in
rt−→−1, where x, n rt−→ y,m

def⇔ x, n
r−→ y,m and x, n and y,m

are trim. (In other words, rt−→=
r−→∩ {x, n | x, n is trim}2).

The next proposition states the key monotonicity property
of trim computations:

Proposition 16 (Robustness). Let x, x′ be pure codes and
n′ > 0. If x′ is n-trim and x, n ≤∗ x′, n′, then Hπ(x)(n) ≤
Hπ(x′)(n′).

b) Weak Implementations: The efforts put into defining
a robust computation for the Hardy functions pay when one
tries to implement them in a “weak” model like PDNs, as we
do in Section VI—but this could also be used in other models.
By a weak implementation, we mean—as usual in the Petri
net literature—an implementation that guarantees

1) completeness: it includes the desired behaviour, and
2) safety: it might also yield “smaller” results.

In the case at hand, we provide sufficient conditions in Defini-
tion 18 on two relations d−→ and b−→ that work on configuration
to qualify as weakenings of r−→ and r−→−1, which will be easy
to check on the actual implementation by PDNs of Section VI,
and entailing:

Theorem 17 (Weak Implementations). If d−→ is a weakening
of r−→ and b−→ a weakening of r−→−1, then

1) For any n0-trim x0, x0, n0
d−→ ∗ε, Hπ(x0)(n0) and

ε, Hπ(x0)(n0)
b−→∗x0, n0.

2) If x0 is n0-trim and x0, n0
d−→∗ε, n then n ≤ Hπ(x0)(n0),

and if ε,m b−→∗x, n, then Hπ(x)(n) ≤ m.

Note that these are exactly the two properties required in the
main proof of Section IV from the PDNs NH [k] and NH−1 [k].

Here are our sufficient conditions:

Definition 18 (Weakenings). A relation d−→ on codes is a



weakening of r−→ if rt−→ ⊆ d−→ ⊆ ≥∗; trim−−→;
rt−→;≥∗; trim−−→.

Similarly, a relation b−→ is a weakening of r−→−1 if rt−→ −1 ⊆
b−→ ⊆ ≥∗; trim−−→;

rt−→−1;≥∗; trim−−→.

Proof of Theorem 17: For (1), by Lemma 15, for
an n0-trim x0, x0, n0

r−→ ∗ε, Hπ(x0)(n) implies x0, n0
rt−→
∗

ε, Hπ(x0)(n) and ε, Hπ(x0)(n) (
rt−→−1)∗ x0, n0 since ε is(

Hπ(x0)(n)
)
-trim.

For (2), we reconstruct step by step pieces of a computation
of rt−→ or rt−→−1. For d−→, if x, n is trim and x, n ≥∗ x′, n′ trim−−→
x′′, n′′

rt−→ y′′,m′′ ≥∗ y′,m′ trim−−→ y,m, then

Hπ(x)(n) ≥ Hπ(x′′)(n′′) (by Prop. 16)

= Hπ(y′′)(m′′) (by Prop. 12)

≥ Hπ(y)(m) , (by Prop. 16)

from which a simple induction yields the result.
Similarly for b−→, if y,m is trim and y,m ≥∗ y′,m′ trim−−→

y′′,m′′
rt−→−1x′′, n′′ ≥∗ x′, n′ trim−−→ x, n, then

Hπ(y)(m) ≥ Hπ(y′′)(m′′) (by Prop. 16)

= Hπ(x′′)(n′′) (by Prop. 12)

≥ Hπ(x)(n) , (by Prop. 16)

and we proceed again by induction.

VI. PETRI DATA NET IMPLEMENTATION

We explain in this section how to construct NH and NH−1 ,
the PDNs that we announced and used in Section IV. They
transform pairs x, n via a relation d−→ (or b−→ for NH−1 ) that
is a weakening of r−→ (resp., of r−→−1) so that Theorem 17 is
a proof of Lemma 5. We have to explain how to represent
pairs x, n in a PDN, how to transform them correctly, and
to engineer definitions for d−→ and b−→ that are both simple
enough for PDN implementability, but rigorous and complete
enough to fulfil the requirements of Def. 18. One can loosely
describe d−→ and b−→ as “trying to perform r−→ or r−→−1 on
codes, tolerating decreases (wrt ≤∗) on x and n, all the while
trimming x regularly because Def. 18 requires it.” The PDNs
are highly nondeterministic (unlike r−→) and may deadlock,
but this is not a concern.

What makes PDNs relatively powerful is that they can make
weak copies of a counter and even of a sequence, and they
can use these weak copies for bounding the number of times
a loop is executed (“weak control”). We designed codes and
robustness precisely to fit this weak computational power.

In the rest of this section we explain how codes are repre-
sented in a PDN (Section VI-A) and how to perform trimming.
Due to lack of space, the definitions and the implementation
of d−→ and b−→ have been relegated to appendices D and E, but
all the main implementation ideas are already present with the
trimming process.

A. Encoding Configurations of r−→ in a PDN

The weak implementation of Hardy computations has to
maintain a PDN representation of a code/counter pair x, n.

c) Counter: The counter n is represented via two places
cpt and cpt.id. Place cpt.id is an identity place for
relevant tokens: the current value of the counter will be the
number of tokens in cpt whose identity match cpt.id.

d) Code: For a code x of length l, distinct identities
I1 < . . . < Il identify each item in x. Every item of the code
is identified by a unique identity, and the ordering of identities
lets one recover the code. All the identities that have been used
for items of the current and past codes are stored in two places,
vect and tally, letting one distinguish between vector and #
occurrences in x; note that each # occurrence has a different
identity. The representation of a vector v identified by some I
in a code is done via places c0, . . . , ck−1: v[i] is the number
of tokens in ci with identity I .

Identities evolve during a computation. In order to prevent
tokens with now irrelevant identities from disturbing the
computation, NH uses two identity places, low and high.
Since at any time such places contain a single token, we just
write low or high to denote the identity carried by that single
token. Initially, one has cpt.id < low < high and the
identities I1, . . . , Il for the (current) code are exactly those
with low < I < high, other identities are irrelevant for x.

When simulating an r−→ step (and except in simple cases),
cpt.id is decreased, high is increased and low is set to the
previous value of high. Thus tokens with (now) irrelevant
identities will never match the current value of count.id nor
belong to the open interval (low, high).

B. Counter Duplication

In most cases, r−→ requires that we iterate some operation at
most n times (or n+1, or ...) where n is the current value of the
counter. In NH this is systematically done in a modular way
by first duplicating the counter and then consuming the tokens
of the duplicate, thus controlling the number of iterations.

For this NH uses two places, dpt and dpt.id, where it can
store duplicates of the tokens in cpt and cpt.id. The net of
Fig. 3 depicts the duplication.2 Transition dp1 performs the
identity updating: cpt.id acquires a smaller identity C′ < C

while dpt.id is updated with the previous identity of cpt.id,
namely C. Then transition dp2 transfers the tokens of cpt

(corresponding to the previous identity of the counter D) both
to the original counter and to the duplicated counter. Transition
dp3 stops the process, and is slightly modified if we need to

2 We rely on the standard graphical depiction of enriched nets and use
(pictures of) Petri nets where arcs connected to a transition t are labelled with
bags of variables that must be instantiated by ordered identities. The number
of these variables is exactly |cons(t)| and the ordering of the corresponding
identities is carried by the transition. For concision and readability, it is
convenient to allow orderings of the variables that are not total: this stands
for all possible linearizations. We also use graphical conventions for better
readability: control places containing black tokens are greyed or filled some-
how, identity places containing at most one token per identity are represented
by simple circles, and the other places, used for counters or general storage,
are represented by double circles.
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Fig. 3. Duplication of the counter value.

put n+1 rather than n in dpt. (In order to avoid a special case
for the first duplication, the initial marking has dpt empty and
dpt.id with the same identity as cpt.id.)

This simple mechanism must be refined for the loops in
the trimming process (see below) where the value of n is
used to control that every component of a vector in the code
is ≤ (some value related to) n. Here one cannot just iterate
the previous mechanism: since every duplication possibly
decreases n and could violate the property already established
for previous components. A more elaborate implementation
is required: NH uses a second auxiliary counter ept and
ept.id (initialised using dpt and dpt.id) for such multiple
controls (as in Fig. 4). In order to avoid a clash of identities
for counters, at every initialisation of ept, the new identity of
dpt.id, namely D′ is selected by the guard C < D′ < D with
D the current identity of dpt.id and C the current identity of
cpt.

C. Weak Trimming

During most weak rule applications, a trimming is per-
formed on-the-fly while the exact rule is simulated, i.e. we
actually weakly implement rt−→ and its inverse (see Appendix D
for the detailed rules of our particular weak implementation
in PDNs). This trimming consists in implementing ≥∗; trim−−→
during the selection and copy of the rule left-hand side and is
simultaneously ensured from the rule right-hand side: it turns
a configuration t, n into another one t′, n′ ≤∗ t, n which is
trim and pure.
• NH first duplicates the counter cpt, yielding a new value
n′ ≤ n (see Fig. 3). Below we assume that this stage is
already passed.

• NH scans (in increasing order) relevant identities (the
ones in vect or sharp, between low and high) and
purify the code and copy it beyond high as we explain.

• It purifies, one at a time, sequences separated by #s.
• When copying a vector sequence, the first vector is copied

but also duplicated in auxiliary places d0, . . . , dk−1 inter-
preted as the ci’s. The remaining vectors are also copied
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Fig. 4. Copying the first vector (case i).

and duplicated but their copy must be ≤lex the previous
vector (as stored in d0, . . . , dk−1).

• Finally, both vectors should fulfil the honesty constraint:
for some i < k, v[i] ≤ n+ 1, and v[j] ≤ n when j > i,
and v[j] = 0 when j < i.

1) Controlling Trimming: Let us detail how this is con-
trolled. NH uses three additional identity places: from, to
and with. The current item’s identity is from, its copy after
trimming has the new identity to, and the purification of a
vector requires comparisons with the previous vector in the
sequence, whose identity is recorded in with, letting one
select the appropriate tokens in d0, . . . , dk−1. Fig. 5 describes
the overall control of this process, started by beg.pur,
looping, and concluded by end.pur. The body of the loop
copies one vector sequence followed by a #. If non empty,
the sequence has just one vector, or more, requiring two
different treatments. For readability, the labeling of the crucial
transitions is specified in the lower part of the picture:
• At start, beg.pur produces identity tokens in from and
to within the appropriate intervals (wrt. to low and
high), guessing the identity of an item to be copied.

• When the treatment ends, end.pur updates low and
high to their new value.

• After copying the first vector, efirst guesses a new
identity (to be copied) in from and a new (target) identity
in to, while recording the current identity in with.

• After copying a remaining vector, erem guesses fresh
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identities from and to, and updates the recorded identity
in with.

• csharp copies a # symbol, consuming a token in sharp

with identity from and producing a token with identity
to (while updating from and to as usual).

Observe that a bad guess in from can lead to deadlock but
no infinite looping is possible (as required by the proof of
Theorem 4).

2) Copy of a Vector Sequence:
a) First Vector: First, in order to guarantee the honesty

of the representation, the copy of the first vector non determin-
istically selects a component i, which is allowed to be less or
equal than n+ 1. The rest of the process is depicted in Fig. 4.
It consists for j > i in:

• setting the auxiliary counter ept to dpt;
• “updating” tokens in place cj from identity F to identity
n, and at the same time in memorising the transferred
tokens in place dj for j > i. With the help of the counter
ept, at most n tokens are transferred. This is performed
by transition tsj .

We then perform the same transfer for component i, but allow
one more token thanks to the firing of transition ts′i. No token
is transferred for any component j < i.

b) Remaining Vectors: For the sake of readability, we do
not represent the management of honesty that is performed as
for the first vector and we focus on the purity of the vector
sequence.

Let us call v the vector to be copied (identified by variable
F), v′′ the last vector that has been copied (identified by W)
and v′ ≤ v the vector to be copied (identified by T). In order
for v′ to be lexicographically smaller than v′′ it must satisfy:

• either for all i, v′(i) ≤ v′′(i)

• or there exists some i s.t. for all j > i, v′(i) ≤ v′′(i) and
v′(i) ≤ v′′(i)− 1.

Then the simulation non deterministically selects one of
these cases. The net of Fig. 9 describes the second case for
some i (the first case is easier). The simulation is performed
by firing transitions tk, . . . , t0 interleaved with tqj to “fill”
accordingly the jth component of the new vector. For j > i,
transitions tqj can transfer at most min(v(j), v′′(j)) tokens
due to the input arcs from cj and dj . Transition tqi can
transfer at most min(v(i), v′′(i) − 1) tokens since one token
with identity W is consumed from di by transition ti+1. For
j < i, transitions tqj can transfer at most v(j) tokens, due to
the input arc from cj .

Observe that one of the possible results of weak trimming
is (exact) trimming of the code, and that the other ones are
trimmings of a weaker code.

VII. ON WELL-STRUCTURED LANGUAGES

Well-structured transition systems can be seen as language
acceptors (or generators). For M a class of WSTS models,
e.g. M = the Data Nets, let L(M) be the class {L(M) | M ∈
M} of languages (nondeterministically) accepted by systems
in M when their transitions carry labels, possibly ε, over some
alphabet, and when the set of “final”, or “accepting”, states is
upward-closed. Geeraerts et al. [18] shows convincingly that
this notion of well-structured languages (WSL), also called
coverability languages, is most relevant.

A series of recent papers (see [18, 1, 8] and the references
therein) successfully use WSLs as a tool for comparing the
descriptive power of varied WSTS models, showing equiva-
lence, e.g. of PDNs and TPNs, or, separating them from the
less expressive LCSs (lossy channel systems) or APNs (affine
Petri nets [16]).



It turns out that the simulation we develop in this paper (and
the matching complexity upper bounds) leads to a (relative but)
precise characterisation: Let L0 = {w#n | n = |w|} collect
all words (over a two-letter alphabet) equipped with a length
witness: L0 ⊆ (a+ b)∗#∗ is deterministic context-free.

Theorem 19.
1) L ∈ L(PDN)(= L(TPN) = L(DN)) implies L ∈⋃

k∈N TIME(F
ωωk

(n)).
2) L ∈ ⋃k∈N TIME(Fωωk (n)) implies L ∩ L0 ∈ L(PDN).

The proof (cf. App. C) relies on the possibility of simulating
a space-bounded MM. Using the simulations in [10, 25] and
the upper bounds in [14, 23] we derive in a similar way:

Theorem 20. For any L ⊆ L0:
1) L ∈ ⋃k∈N TIME(Fωk(n)) iff L ∈ L(LCS).
2) L ∈ ⋃k∈N TIME(Fk(n)) iff L ∈ L(APN).

This immediately entails separation results like L(APN) (
L(LCS) ( L(PDN)(= L(TPN) = L(DN)) and the non-
collapse of hierarchies like {L(k-PDN)}k∈N, {L(k-LCS)}k
and {L(k-APN)}k where k-DN, k-APN and k-LCS restrict
to nets with at most k places (resp., to channel systems with
a k-letter internal message alphabet). These first separation
results are not stronger than those of [1, 8], but they provide
a standard measure (using Turing, or equivalently Minsky,
machines) rather than a myriad of relative ones.

VIII. CONCLUDING REMARKS

Theorems 3 and, especially, 4 close a long standing open
question in the family of “enriched” nets (our terminology)
and has immediate consequences, e.g. for separating various
WSTS models according to their computational power. We
would like to point out that we are not aware of any other nat-
ural decision problem known to sit exactly at level Fωωω [17].

This paper is part of a program aimed at building a toolset
for the analysis of wqo-based algorithms and models. Parts of
this program are (1) the identification and study of paradig-
matic master problems that can be used in reductions, (2)
the developement of coding techniques for ordinal-recursive
functions (of some level), and (3) of generic algorithms
for wqo-theoretical concepts (e.g., good data structures for
upward-closed sets). For the (Nk∗,≤∗) wqo, this submission
clearly contributes to the first two parts.

Finally, let us mention two questions raised by this work:
1) Can one improve on Theorem 20? We would prefer an

exact characterisation of L(PDN), not relatively to L0.
2) What about ν-Petri nets [22]? Their underlying wqo is

simpler than (Nk)∗, hence we can prove a better upper
bound, but the tricky part is to prove a matching lower
bound.
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APPENDIX

A. Subrecursive Hierarchies and Monotonicity

1) Properties of the Hardy Hierarchy: Let us remind a
few useful facts about the Hardy hierarchy (see [13] or [23,
Appendix C] for details).

The first fact is that each Hardy function is expansive and
monotone in its argument n:

Fact 21 (Expansiveness and Monotonicity, see e.g. 23,
Lemma C.9). For all α, α′ and n,m,

n ≤ Hα(n) , (18)
n < m implies Hα(n) ≤ Hα(m) . (19)

However, the Hardy functions are not monotone in the
ordinal parameter: Hn+2(n) = 2n + 2 > 2n + 1 =
Hn+1(n) = Hω(n), though n+2 < ω. We will introduce two
ordinal orderings in Section A2 and Section A4 that ensure
monotonicity of the Hardy functions.

Another handful fact is that we can decompose Hardy
computations:

Fact 22 (see e.g. 23, Lemma C.7). For all α, γ in Ω, and x,

Hγ+̇α(x) = Hγ(Hα(x)) . (20)

2) Pointwise Ordering: The classical “pointwise at n”
ordering used e.g. in [13] and [23, Appendix C] is defined
for any n ∈ N as the smallest transitive relation ≺n s.t.

α ≺n α+ 1 , λn ≺n λ . (21)

The inductive definition of ≺n implies

α′ ≺n α iff
{
α = β + 1 is a successor and α′ 4n β, or
α = λ is a limit and α′ 4n λn.

This can be understood a “descent” through ordinals, eventu-
ally reaching predecessor ordinals, which are defined by

Pn(α+ 1)
def
= α , Pn(λ)

def
= Pn(λn) , (22)

and indeed
0 4n α , Pn(α) ≺n α .

The interesting observation here is that the ordinals that appear
in a Hardy computation α0, n→ α1, n→ · · · → α`, n where
n remains constant, i.e. no successor steps are used, are all
related by ≺n: α0 ≺n α1 ≺n · · · ≺n α`. The first successor
step will occur with Pn(α0) + 1, n→ Pn(α0), n+ 1.

Obviously ≺n is a restriction of <, the linear ordering of
ordinals. For example, n + 1 = ωn ≺n ω but n + 2 6≺n ω.
The ≺n relations are linearly ordered themselves, and <, can
be recovered in view of [see 23, Appendix C.2]:

≺0 ⊂ · · · ⊂ ≺n ⊂ ≺n+1 ⊂ · · · ⊂
(⋃

n∈N
≺n
)

= < . (23)

Fact 23 (Congruence, see 23, Lemma C.2). For all α, α′, γ
and all n

α ≺n α′ implies γ +̇ α ≺n γ +̇ α′ , (24)

α ≺n α′ implies ωα ≺n ωα
′
. (25)

Fact 24 (Monotonicity, see e.g. 23, Lemma C.9). For all α, α′

and n,m,

α ≺n α′ implies Hα(n) ≤ Hα′(n) . (26)

Since Fα = Hωα , the same statement holds for F using (25).
3) Slim Ordinals: Leanness is a norm on ordinal terms used

extensively in [23]: Let n be in N. We say that an ordinal
α < ε0 is n-lean if it only uses coefficients ≤ n, or, more
formally, when it is written under the strict CNF α = ωβ1 ·
c1 +̇ · · · +̇ ωβm · cm with β1 > · · · > βm, if we have ci ≤ n
and if, inductively, βi is also n-lean, this for all i = 1, . . . ,m.

Let us introduce a slight variant of n-lean ordinals [see 23,
Lemma D.2]: let α = ωβ1 · c1 +̇ · · · +̇ ωβm · cm be an ordinal
in CNF with α > β1 > · · · > βm and ω > c1, . . . , cm > 0.
We say that α is n-slim if either (i) cm ≤ n + 1 and both∑
i<m ω

βi and βm are n-lean, or (ii) cm ≤ n,
∑
i<m ω

βi is
n-lean, and βm is n-slim. An n-slim ordinal is not necessarily
n-lean, but an n-lean ordinal is always n-slim.

The interest of n-slimness is that it is an invariant of the
ordinals appearing during forward Hardy computations. As the
initial ordinal of (10) is k-slim, this property is preserved by
perfect computations.

Lemma 25. If a limit ordinal λ is n-lean, then λn is n-slim.

Proof: By induction on λ, letting λ = ωβ1 · c1 +̇ · · · +̇
ωβm · cm as above. If βm is a successor ordinal β+ 1 (thus β
is n-lean), λn = ωβ1 · c1 +̇ · · · +̇ωβm · (cm− 1) +ωβ · (n+ 1)
is n-slim. If βm is a limit ordinal, λn = ωβ1 · c1 +̇ · · · +̇ωβm ·
(cm − 1) + ω(βm)n is n-lean by ind. hyp. on βm.

Lemma 26. If a successor ordinal α+ 1 is n-slim then α is
n-lean.

Proof: If α + 1 = ωβ1 · c1 +̇ · · · +̇ ωβm · cm as above,
it means βm = 0, thus we are in case (i) of n-slim ordinals
with cm ≤ n+ 1, and α = ωβ1 · c1 +̇ · · · +̇ ωβm · (cm − 1) is
n-lean. The converse implication is immediate.

Lemma 27. If a limit ordinal λ is n-slim then λn is n-slim.

Proof: We proceed by induction on λ, letting λ = ωβ1 ·
c1 +̇ · · · +̇ ωβm · cm as above.

If βm is a successor ordinal β + 1, λn = ωβ1 · c1 +̇ · · · +̇
ωβm ·(cm−1)+ωβ ·(n+1), and either (i) cm ≤ n+1
and βm is n-lean, and then λn also verifies (i), or
(ii) cm ≤ n and β + 1 is n-slim and thus β is n-
lean by Lemma 26, and λn is again n-slim verifying
condition (i).

If βm is a limit ordinal, then λn = ωβ1 · c1 +̇ · · · +̇ ωβm ·
(cm− 1) +ω(βm)n . Either (i) cm ≤ n+ 1 and βm is
n-lean, and by Lemma 25 (βm)n is n-slim and λn
is n-slim by condition (ii), or (ii) cm ≤ n and βm
is n-slim, and by ind. hyp. (βm)n is n-slim, and λn
n-slim by condition (ii).

The following lemma relates leanness, the pointwise order-
ing, and the linear ordinal ordering; this is a refinement of



[23, Lemma B.1], as it handles the n-slim case instead of the
n-lean one:

Lemma 28. Let α be n-slim. Then α < α′ iff α ≺n α′.
Proof: If α = 0, we are done so we assume α > 0 and

hence n > 0, thus α = ωβ1 · c1 +̇ · · · +̇ωβm · cm in CNF with
m > 0.

We prove the claim by induction on α′, considering two
cases:

1) if α′ = α′′ + 1 is a successor then α < α′ implies

α ≤ α′′, hence α
ih
4n α′′ ≺n α′.

2) if α′ is a limit, we claim that α ≤ α′n, from which

we deduce α
ih
4n α′n ≺n α′. We prove the claim by

induction and considering three subcases on α′:
a) if α′ = ωλ with λ a limit, then α < α′ implies

β1 < λ, hence β1 ≤ λn by ind. hyp., applicable
since β1 is also n-slim. Thus α ≤ ωλn = (ωλ)n =
α′n.

b) if α′ = ωβ+1 then α < α′ implies β1 < β + 1,
hence β1 ≤ β. Now, since α is n-slim, either
i) c1 = n+ 1 and m = 1, hence α = ωβ1 · (n+

1) ≤ ωβ · (n+ 1) = (ωβ+1)n = α′n, or
ii) c1 < n + 1, hence α < ωβ1 · (n + 1) ≤ ωβ ·

(n+ 1) = (ωβ+1)n = α′n.
c) if α′ = γ +̇ ωβ with 0 < γ, β, then either α ≤ γ,

hence α < γ +̇ (ωβ)n = α′n, or α > γ, and then α
can be written as α = γ +̇γ′ with γ′ < ωβ . In that
case γ′ ≤ (ωβ)n by ind. hyp., applicable since γ′

is also n-slim. Thus α = γ +̇ γ′ ≤ γ +̇ (ωβ)n =
(γ +̇ ωβ)n = α′n.

4) Embedding Ordering: We introduce a partial ordering
vo on ordinals, called embedding, and which can be seen as
a tree embedding on CNF’s that respects layers. Formally, it
is defined inductively as

α vo β
def⇔





α = ωα1 +̇ · · · +̇ ωαp

β = ωβ1 +̇ · · · +̇ ωβm

α1 vo βi1 ∧ · · · ∧ αp vo βip
for some i1 < i2 < . . . < ip .

(27)

Note that 0 vo α for all α, that 1 vo α for all α > 0. Observe
that, in general, α 6vo ωα and λn 6vo λ. This ordering is
obviously congruent for addition and ω-exponentiation:

α vo α
′ and β vo β

′ imply α +̇ β vo α
′ +̇ β′ , (28)

α vo α
′ implies ωα vo ω

α′ , (29)

and could in fact be defined alternatively by the axiom 0 vo α
and the two deduction rules (28) and (29).

When considering the encoding of small ordinals described
in Section V-A-1), the following holds:

v ≤ v′ implies β(v) vo β(v′) . (30)

The reciprocal of (30) does not hold in general, e.g. β(11) =
ω vo ω

2 = β(12) while 11 6≤ 12.

We list a few useful consequences of the definition of vo:

α vo γ +̇ ωβ implies α vo γ

or α = γ′ +̇ ωβ
′

with γ′ vo γ and β′ vo β ,
(31)

n ≤ m implies λn vo λm , (32)
α vo λ implies α vo λn or α is a limit and αn vo λn .

(33)

Proof: (31): Intuitively, there are two cases when we
consider an embedding α vo α′ = γ +̇ ωβ : either the ωβ

summand of α′ is in the range of the embedding or not. If
it is not, then already α vo γ. If it is, then α must be some
γ′ +̇ ωβ

′
and ωβ

′ vo ω
β .

(32): By induction on λ: indeed if λ = γ +̇ ωβ+1 then λm =
γ+̇ωβ .(m+1) by (2) which is λn+̇ωβ .(m−n). If λ = γ+̇ωµ,
the i.h. gives µn vo µm, hence λn = γ +̇ωµn vo γ +̇ωµm =
λm.
(33): By induction on λ. λ is some γ +̇ωβ with β > 0 so that
λn = γ +̇ (ωβ)n. If α vo γ, then α vo λn trivially. If α =
γ′ +̇ 1 is a successor, 1 vo (ωβ)n and again α vo λn. There
remains the case where α = γ′ +̇ ωβ

′
is a limit (i.e. β′ > 0)

with γ′ vo γ and β′ vo β. If β is a limit, then by i.h. either
β′ vo βn and hence α vo λn, or β′ is a limit and β′n vo βn,
hence αn vo λn. Finally, if β = δ + 1 is a successor, then
either β′ vo δ so that α vo γ + ωδ vo γ + ωδ.(n+ 1) = λn,
otherwise by (31), β′ is a successor δ′ + 1 with δ′ vo δ, and
then (ωβ

′
)n = ωδ

′
.(n + 1) vo ω

δ.(n + 1) = (ωβ)n, hence
αn vo λn.

Proposition 29 (Monotonicity).

α vo β and n ≤ m imply Fα(n) ≤ Fβ(m) , (34)

α vo α
′ implies Hα(n) ≤ Hα′(n) . (35)

Proof of (34): We prove (34) by induction on β. There
are three cases:
1. If β = 0 then α vo β implies α = 0 and we are done.
2. If β = λ is a limit, then by (33) either α vo λn or α is a
limit and αn vo λn. In the first case Fα(n) ≤ Fλn(m) by i.h.,
in the second case Fα(n) = Fαn(n) ≤ Fλn(m), again by i.h.
Now (32) and the i.h. entail Fλn(m) ≤ Fλm(m) = Fλ(m)
and we are done.
3. If β = β′ +̇ 1 is a successor, then by (31) either α vo β

′,
or α = α′ +̇ 1 with α′ vo β

′.
In the first case, Fα(n) ≤ Fβ′(m) (by i.h.) ≤ Fm+1

β′ (m)
(by expansiveness) = Fβ(m).

In the second case, Fα(n) = Fα′+̇1(n) = Fn+1
α′ (n). Now,

since α′ vo β′, the i.h. gives F kα′(n) ≤ F kβ′(m) for all
k ∈ N (by ind. on k). In particular Fn+1

α′ (n) ≤ Fn+1
β′ (m) ≤

Fm+1
β′ (m) (by expansiveness) = Fβ(n).

Proof of (35): Let us proceed by induction on a proof
of α vo α

′, based on the deduction rules (28) and (29). For
the base case, 0 vo α′ implies H0(n) = n ≤ Hα′(n) by
expansiveness. For inductive step with (28), if α vo α

′ and



β vo β
′, then

Hα+̇β(n) = Hα
(
Hβ(n)

)
(by (20))

≤ Hα
(
Hβ′(n)

)
(by ind. hyp. and (19))

≤ Hα′
(
Hβ′(n)

)
(by ind. hyp.)

= Hα′+̇β′(n) . (by (20))

For the inductive step with (29), Hωα(n) = Fα(n) ≤
Fα′(n) = Hωα

′

(n) by (34).

B. Monotonicity for Codes

This Appendix details the proof of Proposition 16.
1) Atomic Losses: Let us first investigate a few properties

of ≤∗ over pure codes. Write x ≤1
∗ x
′ when x ≤∗ x′ and the

difference between two pure codes x and x′ is in some sense
“minimal”.3 Formally, the relation is defined by three axioms:

x1x2 ≤1
∗ x1#x2 x1x2 ≤1

∗ x1vx2 x1vx2 ≤1
∗ x1(v + 1j)x2

(36)

with 0 ≤ j < k.
It is plain that ≤∗ is the reflexive and transitive closure of

≤1
∗. The following lemma allows reducing Proposition 16 to

the simpler case x ≤1
∗ x
′:

Lemma 30. If x ≤∗ x′ are two pure codes, then there exists
x = x0 ≤1

∗ x1 ≤1
∗ x2 ≤1

∗ · · · ≤1
∗ x` = x′ where the xi’s are

pure.

Proof idea: We explain how to build the sequence of
intermediary xi’s in three steps.

1) One starts with x and adds all missing # symbols one
by one: this maintains purity.

2) One then adds vectors in place where they are missing.
In order to maintain purity, an empty position is filled
by duplicating the vector immediately to the right of the
empty slot (or add 0 if there is a # to the right). Any
such addition maintains purity.
For example, assume

x = . . .#v1v3v6# . . . and x′ = . . .#v′1v
′
2v
′
3v
′
4v
′
5v
′
6v
′
7# . . .

with vi ≤ v′i for i ∈ {1, 3, 6}. Then x can be filled (in
4 steps) with

x = . . .#v1v3v6# . . . ≤1
∗≤1
∗≤1
∗≤1
∗ . . .#v1v3v3v6v6v60# . . .

If this filling process is done from right to left, every
inserted vector is smaller than the corresponding vector
in x′ (since x′ is pure) hence the constructed xi+1

remains ≤∗ x′.
3) We have now reduced the problem to the case where x

and x′ have same length. It suffices to add enough unit
vectors to every v until we reach the corresponding v′

in x′ whenever v < v′. If this is done from left to right,
purity is maintained.

3It would be minimal for arbitrary codes if the second axiom was reading
x1x2 ≤1

∗ x10x2, but it would not always relate pure codes to pure codes.

2) Code Honesty: We investigate in this section two restric-
tions on the size of representation of codes during computa-
tions. One is an upper bound on the length of the code, and
is true of any forward or backward computation with r−→. The
second, trimness, is a restriction on the values that can appear
in the vectors of the code: it is guaranteed by our forward
computation, but need to be enforced on backward ones;
however there exists one “perfect” backward computation that
verifies it: it suffices to reverse the forward computation!

a) Length Hierarchy: We define a hierarchy of func-
tions Hα(n) that bounds the length of any pure code x s.t.
Hπ(x)(n) = Hα(n). The strategy we adopt is to employ
the rules of Definition 11 in reverse from a configuration
(ε, Hα(n)), and bound the size of the resulting code. It will
turn out that this hierarchy is already known in the literature
as the length hierarchy [26].

We define accordingly

H0(n) = 0 , (37)
Hα+1(n) = Hα(n+ 1) + 1 , (38)
Hλ(n) = Hλn(n) . (39)

Observe that, indeed, ε is of length 0, thus justifying (37);
that if x is of length ≤ Hα(n+ 1), then applying rule (R1) in
reverse increments this length by 1, thus justifying (38); finally,
if x is of length ≤ Hλn(n), then applying rule (R2) in reverse
either decreases this length, or preserves it in case of a rewrite
“Vv#x, n

r−→ V(v)nx, n” with (v)n = v−1i+ (n+ 1) ·1i−1

for some i > 0, justifying (39). By Proposition 12, we deduce:

Lemma 31. If x is pure and x, n
r−→∗ ε, Hα(n), then |x| ≤

Hα(n).

The length hierarchy is closely related to the Hardy hierar-
chy; in particular [see e.g. 23, Eq. (65)]:

Hα(n) = Hα(n)− n . (40)

An easy observation in the same line as Lemma 31 is that
backward rule applications from ε, Hα(n) cannot increment
the values in vectors to more that the total computed value
Hα(n). Thus,

Lemma 32. If x1vx2 is pure and x1vx2, n
r−→∗ε, Hα(n), then

v[j] < Hα(n) for all 0 ≤ j < k.

b) Slim and Trim Computations: Lemma 32 does not
provide us with enough information on the values in vectors
for our purposes. Recall the definition of n-slim ordinals from
Appendix A3. Let us call a pure code x n-slim if π(x) is
n-slim. By extension, a configuration x, n of r−→ is slim if x
is pure and n-slim, and a computation x0, n0

r−→ x1, n1
r−→

· · · r−→ xm, nm is slim if every configuration xi, ni is slim, for
every 0 ≤ i ≤ m. By Lemmas 25 to 27, we deduce:

Lemma 33. If π(x) is n-slim, then there exists a slim
computation x, n r−→∗ε, Hπ(x)(n).

Note that our initial code x0 from (10) is (k − 1)-slim.



However, n-slimness is not a robust property of codes: e.g.
|20 |10 |10 |10 # encodes ωω

ω2+̇ω·3
and is 2-slim, but the smaller

code |10 |10 |10 |10 # that encodes ωω
ω·4

is not 2-slim. We therefore
introduce a slight relaxation of slimness: a pure code x is n-
trim if, for any decomposition x = x1vx2, the ordinal β(v)
is n-slim, i.e. there exists 0 ≤ i < k s.t. v[i] ≤ n + 1 and
for all 0 ≤ j < i, v[j] = 0 and all i < j < k, v[j] ≤ n.
By analogy with slimness, call a computation trim if in every
configuration xi, ni the code xi is ni-trim. Unlike slimness,
trimness is clearly preserved by ≥∗. Interestingly, it is also
preserved by direct computations, as shown by Lemma 15,
which is a version of Lemma 33 that restricts computations to
trim ones instead of slim ones:

Proof of Lemma 15: Define a large n-trim ordinal as
π(x) where x is n-trim. We need to prove that if π′ is an
n-trim large ordinal and π ≺n π′, then π is n-trim. This is
obvious for π′ = π+1, and we turn now to the different limit
cases when π = π′n. If π = (γ +̇ ωα+1)n = γ +̇ ωα · (n+ 1),
this holds; otherwise π = (γ +̇ ωα)n = γ +̇ ωαn and we only
need to prove that the small ordinals in αn = (

∑p
i=1 ω

βi)n
are n-slim, under the hypothesis that each βi is n-slim since
π′ is n-trim. If βp = β + 1 is a successor ordinal, then αn =∑p−1
i=1 ω

βi +̇ ωβ · (n + 1), then β is clearly n-slim. If βp is
a limit ordinal, then αn =

∑p−1
i=1 ω

βi +̇ ω(βp)n is s.t. βn is
n-slim by Lemma 27. Hence π is n-trim in all cases.

Lemma 15 implies that forward computations preserve trim-
ness, but more importantly that we can restrict our backward
rule applications to enforce trimness. Such a restriction is
required because backward rule applications do not neces-
sarily preserve trimness: for instance with k = 2, we can
go from a configuration (0, n + 1)#, n to a configuration
#(0, n+ 1)#, n− 1 by applying (R1), and if n is sufficiently
large, later to a configuration (0, n+2)#, n′ for a considerably
smaller n′. What Lemma 33 entails is that there is another
computation that fits our needs: for this example, applying
(R2) backwards on (0, n+ 1)#, n yields (1, 0)#, n instead.

3) Monotonicity in Presence of Losses: We prove a series
of monotonicity results that allow to handle losses in codes.
As we work with ordinals of form ωα, it is more convenient
to express these results using Fα = Hωα .

Lemma 34. Let α, α′, γ be ordinals. If γ + α is n-slim and
α < α′, then γ + α ≺n γ + α′.

Proof: Write γ = γ1 +̇γ2 +̇γ3 so that γ+α = γ1 +̇γ2 +̇α
and γ+α′ = γ1+̇α′. Now γ2+̇α < α′ and γ2+̇α is n-slim, so
that γ2 +̇α ≺n α′ by Lemma 28 and γ+α = γ1 +̇γ2 +̇α ≺n
γ1 +̇ α′ = γ + α by (24).

Lemma 35. If γ ≺n γ′ then Fγ+α(n) ≤ Fγ+α′(n).

Proof: We proceed by induction over α.
For α = 0, γ ≺n γ′ entails Fγ(n) ≤ Fγ′(n) by (26).
For α = β + 1 a successor ordinal, the ind. hyp. and (23)

gives Fγ+β(m) ≤ Fγ′+β(m) for any m ≥ n,
hence Fn+1

γ+β (n) ≤ Fn+1
γ′+β(n) by (19) and (18), hence

Fγ+β+1(n) ≤ Fγ′+β+1(n).

For α = λ a limit ordinal, we immediately have Fγ+λ(n) =
Fγ+λn(n) ≤ Fγ′+λn(n) = Fγ′+λ(n) by ind. hyp.

We exploit Lemma 34 in the two following lemmata, which
match cases 2 and 3 of atomic losses in codes:

Lemma 36. If γ is n-lean, then Fγ+α′+α(n) ≤
Fγ+α′+̇ωβ+α(n).

Proof: If α′ > 0, the lemma is trivial, as putting γ =
γ1 +̇ γ2 and γ + α′ = γ1 +̇ α shows that γ1 +̇ α′ + α vo
γ1 +̇α′ +̇ωβ +α and we conclude by (34). Assume therefore
α′ = 0; then Lemma 34 applies to show γ ≺n γ + ωβ since
γ is n-slim and 0 < ωβ , and applying Lemma 35 yields the
result.

Lemma 37. If γ + ωβ is n-slim and β vo β′, then
Fγ+α′+̇ωβ+α(n) ≤ Fγ+α′+̇ωβ′+α(n).

Proof: As in the previous proof, the case α′ > 0 is trivial
since ωβ vo ωβ

′
by (29). Assume therefore α′ = 0, then

ωβ < ωβ
′

yields γ + ωβ ≺n γ + ωβ
′

by Lemma 34, and
applying Lemma 35 yields the result.

The following proposition together with (19) immediately
proves Proposition 16:

Proposition 38. Let x, x′ be pure codes and n > 0. If x′ is
n-trim and x ≤∗ x′, then Hπ(x)(n) ≤ Hπ(x′)(n).

Proof: We proceed by induction on the number of ≤1
∗-

steps between x and x′. If x = x′ the result hold vacuously.
Consider therefore for the induction step a pure code x′′ with
x′′ ≤∗ x′ and x ≤1

∗ x
′′; clearly x and x′′ are also n-trim. By

ind. hyp., Hπ(x′′)(n) ≤ Hπ(x′)(n), and we only need to prove
Hπ(x)(n) ≤ Hπ(x′′)(n).

1) The first axiom is easy to treat: if x = x1x2 and x′′ =

x1#x2, then π(x) vo π(x′′) and thus Hπ(x)(n)
(35)
≤

Hπ(x′′)(n). This simple proof is the main rationale for
our cumulative encoding of ordinals.

The next two axioms require more work. In both cases, we
decompose x′′ into x1#V1vV2#x2 where v is the particular
vector modified by ≤1

∗, so that x = x1#V#x2 verifies either
V = V1V2 (in the case of the second axiom) or V = V1(v−
1j)V2 for some 0 ≤ j < k (in the case of the third axiom). By
Lemma 15, there exists a trim computation on x′′; its initial
phase is of form:

x1#VvV′#x2, n
r−→∗ pure(V (x1)V1vV2#x2), n′ (41)

which we reach by evaluating x1 in full, i.e.

x1#, n
r−→∗ ε, n′ , (42)

where we define

n′
def
= Hπ(x1#)(n) . (43)

Two comments are in order on this prefix of the computation:
by combining Lemma 31 and (40) on the computation (42),
we deduce that |x1| ≤ n′−n < n′ since n > 0, thus α(V (x1))
can be written as

∑p
i=1 ω

βi with p < n′. Using Lemma 32,



each βi, which is encoded by a vector appearing in x1, is
n′-lean, hence:

α(V (x1)) is n′-lean. (44)
In the same way, since the computation is trim, β(v) is n′-
slim. Recall that the CNF of α(V (x1)) has p < n′ terms. As
it is also n′-lean, adding an n′-slim term yields an n′-slim
term:

α(V (x1)) + ωβ(v) is n′-slim. (45)

Assume that the following claim holds for all vector se-
quences V′:

Hωα(V (x1)VV′)
(n′) ≤ Hωα(V (x1)V1vV2V′)

(n′) . (46)

Let further x2
def
= V3# · · ·#Vm, and consider the prefix

corresponding to (41) in the computation on x: it encodes
a Hardy computation step

Hπ(x1#V#x2)(n)

=Hπ(V (x1)V#x2)(n) (by (20))

=Hπ(V (x1)VV3#···#Vm#)
(
Hωα(V (x1)V)

(n′)
)

(by (20))

≤Hπ(V (x1)VV3#···#Vm#)
(
Hωα(V (x1)V1vV2)

(n′)
)

(by (46) with V′ = ε and (19))

=Hπ(V (x1)VV3V4#···#Vm#)
(
Hωα(V (x1)VV3)

(n′′)
)

(by (20) and setting n′′ def
= Hωα(V (x1)V1vV2)

(n′))

≤Hπ(V (x1)VV3V4#···#Vm#)
(
Hωα(V (x1)V1vV2V3)

(n′′)
)

(by (46) with V′ = V3 and (19))
...

≤Hπ(V (x1)V1vV2#x2)(n′)

=Hπ(x′′)(n) .

It only remains to prove the claimed (46) for each of the
axioms:

2) For the second axiom, recall that V = V1V2. Put γ =
α(V (x1)), α′ = α(V1), β = β(v), and α = α(V2V

′).
Then, by (44) and Lemma 36, Hωγ+α

′+α
(n′) =

Fγ+α′+α(n′) ≤ Fγ+α′+̇ωβ+α(n′) = Hωγ+α
′+̇ωβ+α

(n′).
3) For the third axiom, recall that V = V1(v−1j)V2. Put

γ = α(V (x1)), α′ = α(V1), β = β(v−1j), β′ = β(v),
and α = α(V2V

′). By (30), β vo β
′, and by (45) and

Lemma 37, Hωγ+α
′+̇ωβ+α

(n′) = Fγ+α′+̇ωβ+α(n′) ≤
Fγ+α′+̇ωβ′+α(n′) = Hωγ+α

′+̇ωβ
′
+α

(n′).

C. Proof of Theorem 20 (Section VII)

1. If L is L(N ) for some PDN N , then the question whether
w ∈ L reduces to a coverability problem for N ′ def

= w ⊗ N ,
a PDN obtained by a synchronized product of N and (an
FSA for) w. Since |N ′| = O(|w|) (here N is a constant
of size O(1)) and since N ′ is k-dimensional when N is,
we have reduced L to coverability for k-PDNs, a problem
in TIME(F

ωω
k+O(1) (n)) by Theorem 3.

2. With a Minsky machine (MM) M and some k, the
construction in section IV associates a PDN that simulates
M with space bounded by F

ωωk
(n). It is easy to modify the

PDN so that it (1) guesses a word w of length n; (2) outputs
w while weakly storing w#n in the work space of the MM
and weakly storing n in cpt; (3) generates F

ωωk
(n) extra

workspace for M and runs it on w; (4) after/if M accepts w,
folds back the workspace and reconstructs cpt; (5) outputs
#n′ where n′ is value now stored in cpt. As in Section IV,
the nature of weak computations guarantees n′ ≤ n, and one
only has n′ = n if the simulation of the MM (and storing
w) was perfect. Hence the PDN only outputs words w#n s.t.
n = |w| and that are accepted by M in space F

ωωk
(n) (or s.t.

n < |w| and hence that are not in L0).

D. Weak Implementation of r−→
In Table I, we present the so-called “weak” rules that

define d−→, a weakening of both r−→ and r−→−1 in the sense
of Theorem 17, which proves its weak correctness. Note that
a general implicit condition on the rules is that they take and
produce trim configurations. Rule 1 corresponds to rule (R1)
but we have split the exact rule (R2) of r−→. Indeed in order
to correctly define d−→, we need to make explicit the implicit
different cases of rule (R2). More precisely, the application of
this rule may vary depending on two criteria:

• The type of the vector that is found in front of the first
#. Rules 2–5 correspond to the case of the null vector,
as in (12). Rules 6–9 correspond to the case of a vector
whose first component is non null, which is the first case
in (15). Rules 10–13 correspond to the remaining case of
(15).

• Inside any group of rules, there are four cases depending
on what follows the first #. It can be the empty sequence,
a second # or a vector. This last case is again split into
two subcases depending on a lexicographic relation.

This laborious presentation of all the rules has its uses, firstly
because writing the weak backward rules and performing
trimming on-the-fly without first breaking up the various cases
turned out to be an error-prone task, and secondly because
there is sufficient variation between the various cases of r−→
and especially of r−→−1 to warrant handling them separately
in a PDN implementation.

Let us repeat that these weak rules always produce a trim
representation. In order to prove the correction of the the
weak rules, we prove that they are weakenings as defined in
Definition 18.

E. PDN Simulation of d−→
The implementation of all the various cases described by the

rules of Table I is highly redundant, and relies on the same
core ideas that we have illustrated in Section VI. We only
present a few salient points that ought to convince the reader
that all rules can be implemented in a PDN.



Exact Rules Weak forward rules Weak backward rules

Rule 1 #t, n
r−→ t, n+ 1 s#t, n

d−→ t, n+ 1 t, n
d−→#t′, n′ + 1

with n′ ≤ n and t′ ≤∗ t

Rule 2 V0#, n
r−→V#n+1, n rvs#t, n

d−→V#n
′′+1, n′ r#t0# . . .#tn′ , n

d−→V0#, n′

with n′′ ≤ n′ ≤ n and V ≤∗ r with n′ ≤ n and V ≤∗ r
Rule 3 V0##t, n

r−→V#n+10#t, n rvs#s′#t, n
d−→V#n

′′+10#t′, n′ r#t0# . . .#tn′vs#t, n
d−→V0##t′, n′

with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
Rule 4 V0#0t, n

r−→V#n+100t, n rvs#s′wt, n
d−→V#n

′′+100t′, n′ r#t0# . . .#tn′vsv
′t, n

d−→V0#0t′, n′

with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
Rule 5 V0#wt, n

r−→V#n+1wt, n rvs#s′wt, n
d−→V#n

′′+1w′t′, n′ r#t0# . . .#tn′wt, n
d−→V0#w′t′, n′

with w > 0 with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
and 0 < w′ ≤ w and 0 < w′ ≤ w

Rule 6 Vv#, n
r−→V(v − 10)n+1#, n rvs#t, n

d−→Vv0 . . . vn′′#, n
′ rv0t0 . . . tn′−1vn′ t, n

d−→V(v′ + 10)#, n′

with 10 ≤ v with n′′ ≤ n′ ≤ n, V ≤∗ r, with n′ ≤ n, V ≤∗ r
10 ≤ v and v0 ≤ (v − 10) and v′ ≤ min(vi)

Rule 7 Vv##t, n
r−→V(v − 10)n+1#v#t, n rvs#s′#t, n

d−→Vv0 . . . vn′′#vn′′+1 + 10#t′, n′ rv0t0 . . . tn′−1vn′ tn′#svn′+1 + 10s′#t, n
d−→V(v′ + 10)##t′, n′

with 10 ≤ v with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and vn′′+1 ≤ vn′′ and v′ ≤ min(vi)

Rule 8 Vv#wt, n
r−→V(v − 10)n+1#vwt, n rvs#s′wt, n

d−→Vv0 . . . vn′′#vn′′+1 + 10w′t′, n′ rv0t0 . . . tn′−1vn′ tn′#svn′+1 + 10s′wt, n
d−→V(v′ + 10)#w′t′, n′

with 10 ≤ v and w ≤lex v with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and vn′′+1 ≤ vn′′ v′ ≤ min(vi) , w′ ≤ w and w′ ≤lex v

′ + 10

Rule 9 Vv#wt, n
r−→V(v − 10)n+1#wt, n rvs#s′wt, n

d−→Vv0 . . . vn′′#w
′t′, n′ rv0t0 . . . tn′−1vn′ tn′#swt, n

d−→V(v′ + 10)#w′t′, n′

with 10 ≤ v and v <lex w with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and v0 + 10 <lex w

′ v′ ≤ min(vi) , w′ ≤ w and v′ + 10 <lex w

Rule 10 Vv#, n
r−→Vv′′#, n rvs#t, n

r−→Vv′′#, n′ rvs#t, n
r−→V(v′′ + 1i)#, n

′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, ∃v′ ≤ v Vv′ pure i > 0, ∀j < i v′′(j) = 0, v(i− 1) ≥ n′ + 1
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 ∀j > i v′′(j) ≤ v(i)

v′′(i) = v(i)− 1 and v′′(i− 1) = n+ 1 v′′ ≤ v′ − 1i + (n′ + 1)1i−1 V ≤∗ r
Rule 11 Vv##t, n

r−→Vv′′#v#t, n rvs#s′#t, n
r−→Vv′′#v′#, n′ rvs#s′us′′#t, n

r−→V(v′′ + 1i)##, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, v′ ≤ v Vv′ pure ∃v′ ≤ u ,∀j < i v′(j) = 0 ∧ v′ ≥ (v′′ + 1i)
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 i > 0, v ≥ v′ − 1i + (n′ + 1)1i−1

v′′(i) = v(i)− 1 and v′′(i− 1) = n+ 1 v′′ ≤ v′ − 1i + (n′ + 1)1i−1 V ≤∗ r
Rule 12 Vv#wt, n

r−→Vv′′#vwt, n rvs#s′wt, n
r−→Vv′′#v′w′t, n′ rvs#s′us′′wt, n

r−→V(v′′ + 1i)#w
′t′, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, v′ ≤ v Vv′ pure ∃v′ ≤ u ,∀j < i v′(j) = 0 ∧ v′ ≥ (v′′ + 1i)
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 i > 0, v ≥ v′ − 1i + (n′ + 1)1i−1

v′′(i) = v(i)− 1 and v′′(i− 1) = n+ 1 v′′ ≤ v′ − 1i + (n′ + 1)1i−1 w′ ≤lex v
′ , V ≤∗ r and t′ ≤∗ t

w ≤lex v w′ ≤ w and t′ ≤∗ t
Rule 13 Vv#wt, n

r−→Vv′′#wt, n rvs#s′wt, n
r−→Vv′′#w′t, n′ rvs#s′wt, n

r−→V(v′′ + 1i)#w
′t′, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, ∃v′ ≤ v Vv′ pure i > 0, ∀j < i v′′(j) = 0, v(i− 1) ≥ n′ + 1
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 ∀j > i v′′(j) ≤ v(i)

v′′(i) = v(i)− 1 and v′′(i− 1) = n+ 1 v′′ ≤ v′ − 1i + (n′ + 1)1i−1 (v′′ + n′1i−1) <lex w ≤ w
v <lex w w′ ≤ w v′ <lex w and t′ ≤∗ t V ≤∗ r and t′ ≤∗ t

TABLE I
THE EXACT AND WEAK RULES.

1) Weak Forward Rule 1: Let us recall this rule:

s#t, n
d−→ t, n+ 1 (D1)

This (simple) rule does not require to copy the code in order
to be simulated. It is sufficient to select an identity between
low and high corresponding to a #, to update the low identity
with this identity (implicitly deleting the prefix #) and to
increment the counter. This is performed by a single transition
depicted in Figure 6.

2) Weak Forward Rule 3: Let us recall this rule:

rvs#s′#t, n
d−→V#n′′+10#t′, n′ (D3)

sharp

low

cpt

cpt.id
C

C

L

D

D L<D

Fig. 6. Implementation of (D1).



where V ≤∗ r is pure, t′ ≤∗ t, and n′′ ≤ n′ ≤ n. In the
perfect case, these orderings are equalities, v is 0, and s, s′

are ε.
a) First Stage: It consists in duplicating the counter,

which corresponds to the following transition.

x, n→ x, n′ where n′ ≤ n
The subsequent stages consist of an appropriate copy with
update of the code.

b) Second Stage: It consists in extracting a non empty
vector sequence and in copying with purification a vector
sequence with the last vector (v) which is not copied. This can
be performed by a net similar to (and in fact simpler than) the
purification net of Figure 5. It corresponds to the following
partial transition. The up arrows are “lower bounds” of the
identities of from and to.

rv↑x
′, n′ → V↑ where V ≤∗ r,V pure and n′ ≤ n

c) Third Stage: It consists in picking two # in the
remaining code (x′) and in copying, with the help of the
duplicated counter, at most n′+ 1 # symbols followed by the
null vector and a #. This is performed by the net of Figure 7.
Transition mult1 checks that from contains the identity of a
# symbol and adds such a symbol to the new code. Transition
mult2, which can be performed at most n′ times, also adds a
# at the end of the new code. Finally, transition mult3 adds a
null vector to the new code and “moves forward” the identity
contained in from. All transitions also move forward the token
in to. Creating a null vector is easy since it simply consists
in adding a vect identity to the new code. We have not
represented the concatenation of the # which simply consists
in adding a token in place sharp with identity to and in
increasing the identity.

This stage corresponds to the partial transition:

rvs#s′#↑t, n
′ → V#n′′+10#↑

where V ≤∗ r, V pure and n′′ ≤ n′ ≤ n
d) Fourth Stage: The last stage consists in copying the

remaining code t in a way similar to that of the weak trimming
net.

3) Weak Forward Rule 7: Let us recall this rule:

rvs#s′#t, n
d−→Vv0 . . . vn′′#(vn′′+1 + 10)#t′, n′ (D7)

where V ≤∗ r, v0 + 10 ≤ v, V(v0 + 10) pure, ∀0 ≤ i ≤ n,
vi+1 ≤ vi, t′ ≤∗ t, and n′′ ≤ n′ ≤ n

We have already presented all the gadgets necessary to
simulate this rule. First we duplicate the counter which yields
a new value n′ ≤ n. Then we extract and copy a non empty
pure vector sequence, the last vector containing at least a
token in the 0-component; this sequence is V(v0 + 10). We
delete this token and extend it to a sequence of n + 1 non
increasing vectors v0 . . . vn′′#vn′′+1 (inserting a # before and
after writing the last vector). This can be done by a modified

from

T<T'

sharp

dmult

T

T'

dpt.iddpt
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imult

mult1 F

T'

T

T

vect

Y

T D

mult2

T<T'

T' T

F<F'<H<T<T'
mult3F

F'

high

H

Fig. 7. Multiplying the tally symbol

version of the purification net where the duplicated counter
controls the length of the sequence (as for the duplication of
# in rule D2). We add a token to the last vector. Finally, we
copy the remaining code t at the end of the new code.

4) Weak Forward Rule 11: Let us recall this rule:

rvs#s′#t, n
d−→Vv′′#v′t′, n′ (D11)

where V ≤∗ r, v′ ≤ v, ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0,
Vv′ pure, v′′ ≤ (v′)n′′ , t′ ≤∗ t and n′′ ≤ n′ ≤ n

We simulate the rule in four stages. First we duplicate the
counter. Then we simulate the following partial copy:

rv↑x
′ → Vv′#v′

It consists in extracting and copying a non empty pure
vector sequence Vv′#v′. The copy of the last vector is
particular since
• we arbitrarily choose some component index i, such that
v′(i) > 0; we memorize this choice by marking place
derivi.

• we set v′(j) = 0 for all j < i;
• we duplicate v′ in the new code and separate them by a

#. This can be done by moving forward to three times
and keeping in auxiliary places oldto and oldoldto the
identities that precede the current one. Then the copy is
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deri,1
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ci-1

dpt

T

T
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Fig. 8. Derivating a vector (case i)

done simultaneously using to and oldoldto for the two
copies of the vector, while a # is inserted with identity
oldto.

The third stage consists in deriving it, i.e. in deleting a token
in ci and adding at most n′ + 1 tokens in ci−1. This is done
by the net of Figure 8 for some case i. Transition derivi,1
starts the derivation by subtracting a token in ci. Then there
are at most n applications of derivi,2 adding tokens in ci−1.
Finally, derivi,3 stops the derivation by adding one more
token in ci−1.

The last stage consists in copying the remaining code #t
at the end of the new code.

We end this subsection by presenting the copy of remaining
vectors of a sequence during the weak trimming in figure 9.
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