
Importance Sampling for Model Checking of Continuous Time Markov Chains

Benoı̂t Barbot, Serge Haddad, Claudine Picaronny
LSV, ENS Cachan & CNRS & INRIA Cachan, France
{barbot,haddad,picaronny}@lsv.ens-cachan.fr

Abstract—Model checking real time properties on proba-
bilistic systems requires computing transient probabilities on
continuous time Markov chains. Beyond numerical analysis
ability, a probabilistic framing can only be obtained using
simulation. This statistical approach fails when directly applied
to the estimation of very small probabilities. Here combining
the uniformization technique and extending our previous re-
sults, we design a method which applies to continuous time
Markov chains and formulas of a timed temporal logic. The
corresponding algorithm has been implemented in our tool
COSMOS. We present experimentations on a relevant system,
with drastic time reductions w.r.t. standard statistical model
checking.

Keywords-statistical model checking, rare events, importance
sampling, coupling, uniformization

I. INTRODUCTION

Many complex systems exhibit probabilistic behaviour
either in an inherent way or through interaction with un-
reliable environment (communication protocols, biological
systems. . .). Quantitative model checking is an efficient
technique to verify properties of these systems. It con-
sists in estimating the probability of a real time property,
expressed by some temporal logic formula like CSL [1],
as “the probability that the airbag fails to deploy within
10ms is less than 10−3” [2]. This requires to compute
transient probabilities on a probabilistic model of the system.
Whenever numerical methods cannot be used because of
the inherent state explosion, statistical sampling techniques
prove to be efficient as soon as it is possible to perform
a Monte-Carlo simulation of the model. Simulation usually
requires a very small amount of space comparatively, thus
allows to deal with huge models [3]. In principle, it only
requires to maintain a current state (and some numerical
values in case of a non Markovian process). Furthermore
no regenerative assumption is required and it is easier
to parallelise the methods. Several tools include statistical
model checking: COSMOS [4], GREATSPN [5], PRISM [6],
UPPAAL [7], YMER [8].

The main drawback of statistical model checking is its
inefficiency in dealing with very small probabilities. The size
of the sample of simulations required to estimate these small
probabilities exceeds achievable capacities. This difficulty is
known as the rare event problem.

Several methods have been developed to cope with this
problem whose main one is importance sampling [9]. Im-
portance sampling method is based on a modification of

the underlying probability distribution in such a way that a
specific rare event occurs much more frequently. Theoretical
results have been obtained for importance sampling but
none of them includes any true confidence interval. Indeed
all previous works propose asympotic confidence intervals
based on the central limit theorem. For rare event simulation,
such an interval is inappropriate since to be close to a true
confidence interval, it requires to generate a number of tra-
jectories far beyond the current computational capabilities.

In [10], we proposed an efficient method based on
importance sampling to estimate in a reliable way (the
first one with a true confidence interval) tiny steady-state
probabilities, required for logical formula using a standard
“Until” property (aUb) when the model operational semantic
is a Discrete Time Markov Chain (DTMC).
Our contribution. We extend here our previous results
in order to deal with simultaneous timed and probabilistic
assessments: We improve our method to estimate transient
probabilities of rare events on Continuous Time Markov
Chains (CTMC). More precisely, given a bounded delay τ ,
we statistically estimate the (tiny) probability that a random
path generated by the CTMC reaches a certain state before
instant τ . In order to design and prove the correctness of the
method we proceed in three stages:
• We show using uniformisation [11] that a confidence
interval for the estimation can be computed from confidence
intervals of several estimations in the embedded DTMC of
the CTMC.
• Our importance sampling approach for time bounded
reachability in DTMC is then developped by generalizing
the one we have proposed in [10], based on the mapping of
the original model to a reduced one using coupling [12].
• However contrary to the original approach, the memory
requirements are no more negligible and depend on the
considered (discrete) time interval. Thus we propose three
algorithms with a different trade-off between time and space
so that we can handle very large time intervals.

To the best of our knowledge, our method is the first
one among importance sampling methods for CTMC that
provides a true confidence interval. Furthermore we have
implemented it in the statistical model checker COSMOS [4].
We tested our tool on a classical relevant model getting
impressive time and/or memory reductions.
Organisation. In section II, we recall our previous re-
sults [10]. In section III, we extend this method to the

estimation of transient probabilities on continuous time
Markov chains. In section IV, we develop algorithmic issues
in order to overcome excessive memory consumption. After-
wards we present our implementation in the tool COSMOS

and an experimentation on a classical example. Finally in
section VI, we conclude and give some perspectives to this
work.

II. IMPORTANCE SAMPLING METHOD WITH
GUARANTEED VARIANCE FOR UNBOUNDED

REACHABILITY

Let us summarize the method developed in [10]: first
remark that the modeller does not usually specify its system
with a Markov chain. He rather defines a higher level model
M (a queueing network, a stochastic Petri net, etc.), whose
operational semantic is a Markov chain C. If C is a Discrete
Time Markov Chain (DTMC) with state space S, transition
probability matrix P and two absorbing states s+ and s−
which are reached with probability 1, we define µ(s) s ∈ S
the probability to reach s+ starting from s. We want to esti-
mate the probability µ(s0) with s0 being the initial state of C.

By generating a large sample of trajectories the Monte
Carlo algorithm provides an estimation of µ(s0) as the
ratio of the trajectories reaching s+ by the total number
of generated trajectories. For a rare event this approach is
not suitable as it is due to the size of the sample far too
big when one wants a precise result. The variance of the
underlying random variable is in fact too big [9].

The importance sampling method uses a modified tran-
sition matrix P′ during the generation of paths. P′ must
satisfy:

P(s, s′) > 0⇒ P′(s, s′) > 0 ∨ s′ = s− (1)

which means that this modification cannot remove transi-
tions that have not s− as target, but can add new transitions.
The method maintains a correction factor called L initialized
to 1; this factor represents the likelihood of the path. When a
path crosses a transition s→ s′ with s′ 6= s−, L is updated
by L← L P(s,s′)

P′(s,s′) . When a path reaches s−, L is set to zero.
If P′ = P (i.e. no modification of the chain), the value of
L when the path reaches s+ (resp. s−) is 1 (resp. 0).

Let Vs (resp. Ws) be the random variable associated with
the final value of L for a path starting in s in the original
model (resp. in the modified one). By definition, E(Vs0) =
µ(s0). A classical result [9] p. 25, states that E(Ws0) =
E(Vs0).

The difficulty of the importance sampling method is to
find a suitable P′. We proposed in [10] to perform numerical
analysis of an approximation of the chain to produce a
suitable matrix P′ having in mind a variance reduction.

We associate with the modelM a smaller oneM• whose
associated DTMC C• is a smaller Markov chain with similar
attributes (S•,P•, µ•, . . .). The Markov chain C• is reduced

from C if their exists a reduction f , that is a mapping from
S to S• such that s•− = f(s−) and s•+ = f(s+). Note that
this reduction is designed at the model level. Our method
only uses a particular kind of reductions:

Definition 1: Let C be a DTMC and C• reduced from C
by f . C• is a reduction with guaranteed variance if for all
s ∈ S such that µ•(f(s)) > 0 we have :∑

s′∈S
µ•(f(s′)) ·P(s, s′) ≤ µ•(f(s)) (2)

Fortunately, we do not need to compute the function µ•

in order to check that C• is a reduction with guaranteed vari-
ance. In [10], we developed a structural requirement using
coupling theory to ensure these hypotheses are fulfilled. We
can now construct an efficient important sampling based on
a reduced chain with guaranteed variance.

Proposition 1: Let C be a DTMC and C• be a reduction
with guaranteed variance by f . Let P′ be defined by:
• if µ•(f(s)) = 0 then for all s′ ∈ S, P′(s, s′) = P(s, s′)
• if µ•(f(s)) > 0 then for all s′ ∈ S \ {s−},

P′(s, s′) = µ•(f(s′))
µ•(f(s)) P(s, s′) and

P′(s, s−) = 1−
∑
s′∈S

µ•(f(s′))
µ•(f(s)) P(s, s′).

The importance sampling based on matrix P′ has the
following properties:
• For all s such that µ(s) > 0, Ws is a random variable

which has value in {0, µ•(f(s))}.
• µ(s) ≤ µ•(f(s)) and V(Ws) = µ(s)µ•(f(s))−µ2(s).
• One can compute a true confidence interval for this

importance sampling.
We can now describe the full method:

1) Specify a modelM• with associated DTMC C•, and a
reduction function f satisfying hypotheses of proposi-
tion 1.

2) Compute function µ• with a numerical model checker
applied on M•.

3) Compute µ(s0) with a statistical model checker applied
onM using the importance sampling of proposition 1.

We extend the requirement of definition 1 to the context of
bounded reachability but due to lack of space this extension
is kept in our research report [13].

III. EXTENSION TO BOUNDED REACHABILIY

We now want to apply the previously defined method to
estimate bounded reachability probabilities. We extend it to
bounded reachability in DTMC and then to Continuous Time
Markov Chain CTMC.

A. Bounded Reachability in DTMC

Given a finite integer horizon u we denote by µu(s) the
probability to reach s+ from s in u steps. The goal now is
to estimate µu(s0).

Adding a countdown timer, we define a new Markov chain
Cu whose state space is (S\{s−, s+}) × [1, u] ∪ {s−, s+}.

The timer is initialized to u. Except from the two absorbing
states s+ and s−, all transitions decrease this timer by one.
All trajectories of length u not ending in s+ are sent by the
mean of their last transition into the sink state s−. Therefore
the probability to reach s+ in C in at most u steps is equal
to the probability to reach s+ in Cu.

Theoretically this allows to use the method described in
the previous section in the bounded reachability context. In
practice the size of Cu, which is u times the size of C often
make the direct computation intractable. In the following we
describe several algorithms bypassing this problem.

B. Bounded Reachability in CTMC

In a continuous time Markov chain, each state s is
equipped with an exit rate λs. The waiting time in each
state s is then distributed according to an exponential law
of parameter λs.

To apply our method in the continuous setting we use
the standard method of uniformization which reduces the
problem of bounded reachability in a CTMC to some
problems of bounded reachability in the embedded DTMC.

A chain is said to be uniform when the rate λ = λs is
independent from s. Given a uniform chain, the probability
µτ (s) to reach the state s+ in τ time is equal to:

µτ (s) =
∑
n≥0

e−λτ (λτ)n

n!
µn(s)

Indeed using the uniform hypothesis, e−λτ (λτ)n

n! is the
probability that n transitions take place in interval [0, τ].

Given a non uniform chain with bounded rates, it is
routine to transform it in a uniform chain with the same
distribution [11] . It consists to select some upper bound of
the rates (say λ), consider λ as the uniform transition rate
and set a transition matrix Pu defined by:

∀s 6= s′ ∈ S Pu(s, s′) = λs
λ Pu(s, s′)

Pu(s, s) = 1−
∑
s′ 6=sPu(s, s′)

We estimate this value by truncating this infinite sum.
The Fox-Glynn algorithm [14] allows to compute left (n−)
and right (n+) truncation points given an error threshold.
The errors made by this truncation have to be added to the
confidence interval. We obtain a precise formulation of a
true confidence interval combining errors from the statistical
simulation and from truncation in Fox-Glynn algorithm. Due
to lack of space this formulation is kept in the research
report [13]. Then terms µn(s) are estimated using the
previously defined method.

IV. ALGORITHMIC CONSIDERATIONS

Based on the previous developments, we describe a
methodology to perform statistical model checking using
importance sampling to estimate the tiny probability µτ (s0)
to reach the state s+ in time less than τ in several steps.

1) Specify a reduced a model M• whose embedded
DTMC C• is a reduction with guaranteed variance.

2) Fix some uniform rate λ for the uniformization of C.
Compute left and right truncation points n−, n+ for
the desired error threshold. Then compute for each n

between n− and n+ the coefficient e−λτ (λτ)n

n! .
3) Compute the distributions {µ•n}0<n≤n+ (numerical

computations of the iterated power of the transition
matrix on C•).

4) Use these distributions to perform importance sampling
on the simulation of the initial model in order to
estimate µu(s) for n− ≤ u ≤ n+. We generate a
large sample of trajectories using the transition sys-
tem corresponding to matrix P ′u obtained by applying
proposition 1 to the DTMC Cu; compute along each
path the likelihood L in order to obtain an estimation
with accurate confidence interval.

5) Deduce from these confidence intervals the final confi-
dence interval.

The first step requires some understanding of the system
to design an appropriate reduced chain. Steps 2 and 3 only
require standard computations on finite Markov chains. Step
5 is obtained by weighting with the Poisson probabilities
confidence intervals obtained in step 4 and combining them
with the numerical error produced by the Fox-Glynn algo-
rithm. See [13] for a precise formulation. We now detail step
4 since it rises algorithmic problems.

We denote by m the number of states of the Markov chain
C• and by d the maximum of outdegrees of vertices of C•.
Let us remark that in typical modellings, d is very small
compared to m. A simulation takes at most u steps going
through states (su, u), . . . , (s1, 1), s± where su = s0 and
s± ∈ {s+, s−}. In state (sv, v), we compute the distribution
P ′u((sv, v),−) (cf. proposition 1), which requires the values
of µ•v(f(s)) and µ•v−1(f(s′)), for each possible target state
s′ from sv .

Vectors {µ•v}0<v≤u may be computed iteratively one from
the other with complexity Θ(mdu): Precisely, define P̃•

as the substochastic matrix obtained from P• by removing
state s− and µ•0 as the null vector except for µ•0(s+) = 1;
then µ•v = P̃• · µ•v−1. But for large values of u, the
space complexity to store them becomes intractable and the
challenge is to obtain a space-time trade-off. So we propose
three methods. The methods consist of a precomputation
stage and a simulation stage. Their difference lies in the
information stored during the first stage and the additional
numerical computations during the second stage. In the
precomputation, each method computes iteratively the u
vectors µ•v = (P̃•)v(µ•0) for v from 1 to u.

1) First method is the “natural” implementation. It consists
in storing all these vectors during the precomputation
stage and then proceeding to the simulation without
any additional numerical computations. The storage of

vectors {µ•v}v≤u is the main memory requirement.
2) Let l(< u) be an integer. In the precomputation stage,

the second method only stores the bul c+ 1 vectors µ•τ
with τ multiple of l in list Ls and µ•lbul c+1, . . . , µ

•
u in

list K (see the precomputation stage of algorithm 2).
During the simulation stage, in a state (s, τ), with
τ = ml, the vector µ•τ−1 is present neither in Ls nor
in K. So the method uses the vector µ•l(m−1) stored
in Ls to compute iteratively all vectors µ•l(m−1)+i =

P •i(µ•l(m−1)) for i from 1 to l − 1 and store them
in K (see the step computation stage of algorithm 2).
Then it proceeds to l consecutive steps of simulation
without anymore computations. We choose l close to√
u in order to minimize the space complexity of such

a factorization of steps.
3) Let k = blog2(u)c + 1. In the precomputation stage,

the third method only stores k+ 1 vectors in Ls. More
precisely, initially using the binary decomposition of
u (u =

∑k
i=0 au,i2

i), the list Ls of k + 1 vectors
consists of wi,v = µ•∑k

j=i av,j2
j , for all 1 ≤ i ≤ k + 1

(see the precomputation step of algorithm 3). During
the simulation stage in a state (s, v), with the binary
decomposition of v (v =

∑k
i=0 av,i2

i), the list Ls
consists of wi,v = µ•∑k

j=i av,j2
j , for all 1 ≤ i ≤ k + 1.

Observe that the first vector w1,v is equal to µ•v . We
obtain µ•v−1 by updating Ls according to v− 1. Let us
describe the updating of the list performed by the step-
computation of algorithm 3. Let i0 be the smallest index
such that av,i0 = 1. Then for i > i0, av−1,i = av,i,
av−1,i0 = 0 and for i < i0, av−1,i = 1. The new list Ls
is then obtained as follows. For i > i0 wi,v−1 = wi,v ,
wi0,v−1 = wi0−1,v . Then the vectors for i0 < i, the
vectors wi,v−1 are stored along iterated 2i0−1 − 1
matrix-vector products starting from vector wi0,v−1:
w(j, v − 1) = P •0

2jw(j + 1, v − 1). The computation
associated with v requires 1 + 2 + · · ·+ 2i0−1 products
matrix-vector , i.e. Θ(md2i0). Noting that the bit i is
reset at most m2−i times, the complexity of the whole
computation is

∑k
i=1 2k−iΘ(md2i) = Θ(mdu log(u)).

The three methods are numbered according to their de-
creasing space complexity. The corresponding space-time
trade-off is summarized by table I, where the space unit
is the storage of a float.

V. EXPERIMENTATION

A. Implementation

Tools. Our experiments have been performed on COSMOS, a
statistical model checker whose input model is a stochas-
tic Petri net with general distributions and formulas are
expressed by the logic HASL [4]. We have also used the
model checker PRISM for comparisons with our method. All

Algorithm 2:
Precomputation(u, µ•0, P

•
0)

Result: Ls,K
// List Ls fulfills Ls(i) = µ•i·l

1 l← b
√
uc

2 w ← µ•0
3 for i from 1 to bul cl do
4 w ← P •0w
5 if i mod l = 0 then
6 Ls(il)← w

// List K contains µ•bul cl+1, . . . , µ
•
u

7 for i from bul cl + 1 to u do
8 w ← P •0w
9 K(i mod l)← w

10 Stepcomputation(v, l, P •0 ,K, Ls)
// Updates K when needed

11 if v mod l = 0 then
12 w ← Ls(vl − 1)
13 for i from (vl − 1)l + 1 to v − 1 do
14 w ← P •0w
15 K(i mod l)← w

Algorithm 3:
Precomputation(u, µ•0, P

•
0)

Result: Ls
// Ls fulfills Ls(i) = µ•∑k

j=i au,j2
j

1 k ← blog2(u)c+ 1
2 v ← µ•0
3 Ls(k + 1)← v
4 for i from k downto 0 do
5 if au,i = 1 then
6 for j from 1 to 2i do
7 w ← P •0w

8 Ls(i)← w

9 Stepcomputation(v, l, P •0 , Ls)
// Ls is updated accordingly to v − 1

10 i0 ← min(i | av,i = 1)
11 w ← Ls(i0 + 1)
12 Ls(i0)← v
13 for i from i0 − 1 downto 0 do
14 for j = 1 to 2i do
15 w ← P •0w

16 Ls(i)← w

Table I
COMPARED COMPLEXITIES

Complexity Method 1 Method 2 Method 3
Space mu 2m

√
u m log u

Time for the
Θ(mdu) Θ(mdu) Θ(mdu)precomputation

Additional time
0 Θ(mdu) Θ(mdu log(u))for the simulation

the experiments have been performed on a computer with
twelve 2.6Ghz processors and 48G of memory1.

Adaptation of COSMOS. In addition to the implementation
of our algorithms, we have done two main modifications
on the tool in order to integrate our method. First, the
probabilities of the Poisson distribution are computed
by a freely available implementation of the Fox-Glynn
algorithm [15]. Second, COSMOS sequentially generates a
batch of trajectories. In our context this is highly inefficient
since the numerical computations of µ•n required by
algorithms 1 and 2 should be repeated for every trajectory.
So one generates a bunch of trajectories in parallel step by
step. Different sizes of bunches are possible but they cannot
exceed the size required for the numerical computations.
Based on the asymptotic time and space cost of these
computations, we handle m2 trajectories.

B. Global Overflow in Tandem Queues

Let us present an experimentation on tandem queues. This
example is a classical benchmark for importance sampling.
It has also practical interest as a standard modeling of net-
works [16]. Such a modeling allows to accurately dimension
a network for a given loadwork.
Specification. We consider a system of k queues in serie.
A client arrives in the first queue with rate ρ0. In queue i
(i < k), a client is served with rate ρi and then go to the
next queue. In the last queue, clients leave the system with
rate ρk. For this model we can construct a reduced one by
bounding the number of clients except in the first queue
by a parameter R. A suitable coupling relation can be
established in order to ensure the hypotheses of definition 1
as described in [13]. We are interested in estimating the
probability for the system to overflow i.e. there is more
than H = 50 clients in the whole system before being
empty in less than τ = 100 time units.

Choice of parameters. We choose the parameters of the sys-
tem as follows. ρ0 = 0.25 and for all 1 ≤ i ρi = 0.375. We
study the behaviour of the methods for different values of k.
We have chosen for the reduced model R = 5 as we experi-
mentally found that this value of R yields a tight confidence
interval. We generated 1000 simulations to estimate every
µn(s0) with a confidence level for the simulation of 10−6.

1Here, K means Kilobyte, M means Megabyte and G means Gigabyte.

Fox-Glynn algorithm. We plotted in figure 1 the curves
µn(s), e−λλn

n! and e−λλn

n! µn(s) for the tandem queues
with two queues and λ = 100 with logarithmic scale.
The quantity which we estimate is

∑∞
n=0

e−λλn

n! µn(s). We
observe that for n < 50 , µn(s0) = 0 whereas the Poisson
probability for such a n is not null. Therefore a left trun-
cation of n− = 50 on the Fox-Glynn does not produce any
error. On the right part of the Poisson distribution we notice
that after the maximum (n = 100) the curve decreases while
the curve of µn increases. Thus the maximum of the product
is shifted to the right compared to the maximum of the
Poisson probabilities. In order to get a confidence interval of
10−1µτ (s0) a big enough right truncation index is required.
We choose a right truncation on the index n+ = 206 in order
to bound the error by 10−10 in the Fox-Glynn algorithm.

Analysis of confidence interval. We collected our results
with respective time and space consumption for the three al-
gorithms and PRISM in table II. We also computed the value
µ with a confidence level of 0.001 estimated with method
described in [10]. The overall confidence level is then equal
to (206−50)×10−6+0.001 = 156·10−6+0.001 = 0.001156
using formula (2) from [13]. In all experiments, the width
of the confidence interval is ten times smaller than the
estimated value. Moreover when the numerical computation
terminates, the result belongs to the confidence interval. With
our choice of truncation indices, the contribution of the right
truncation of the Poisson distribution to the length of the
confidence interval is several magnitude orders less than the
contribution associated with the statistical estimations. So in
order to reduce this length, we should increase the number
of simulations letting unchanged the truncation index n+.

Analysis of numerical and statistical PRISM. We compare
our method to numerical and statistical model checking
done by PRISM. Due to the rarity of the considered event the
statistical approach always fails returning 0. We observe that
for small models (k ≤ 4), PRISM numerical model checker
is faster and uses less memory than COSMOS. For k = 5,
our method is 10 times faster and uses up to 28 times less
memory. For k ≥ 6, PRISM crashes due to a lack of memory.

Comparison of the three methods. While the empirical
storage behaviour of the three methods follows the theoret-
ical study, memory does not constitute a bottleneck until
k = 8. For this value, memory required by method 1 is
too important. In order for method 2 to fail, farther time
horizons must be chosen.

VI. CONCLUSION

We proposed a method of statistical model checking in
order to compute with accuracy a tiny probability associated
with a timed temporal formula on a CTMC. We obtain
a true confidence interval bounding this value. We have
developed a theoretical framework justifying the validity
of a confidence interval and ensuring the reduction of the

1e-20

1e-15

1e-10

1e-05

1

0 50 100 150 200 250 300

µn(s0)

e−λλn

n!

e−λλn

n! µn(s0)

Figure 1. Repartition of Poisson and µn(s) probabilities

Table II
EXPERIMENTAL RESULTS FOR THE TANDEM QUEUES

k Size of C numerical PRISM Cosmos
Method 1 Method 2 Method 3

T (s) Mem µτ (s0) µτ (s0) µ∞(s0) Conf. Int. Tpre Tsim Mem Tpre Tsim Mem Tpre Tsim Mem
2 2601 0.021 156K 1.996e-13 1.993e-13 3.764e-8 1.732e-14 ≈ 0 68 140M ≈ 0 69 140M ≈ 0 73 158M
3 132651 1.36 4.3M 1.694e-12 1.692e-12 9.196e-7 1.271e-13 ≈ 0 144 202M ≈ 0 141 200M ≈ 0 137 200M
4 6765201 107 168M 9.381e-12 9.392e-12 1.524e-5 4.997e-13 1 243 259M 2 246 239M 1 250 237M
5 ≈345e+6 5306 8400M 3.941e-11 3.941e-11 2.290e-4 1.725e-12 7 501 439M 7 538 310M 7 561 300M
6 ≈17e+9 Out of Memory 1.355e-10 2.355e-3 4.031e-12 57 2577 1347M 57 2278 509M 54 2470 448M
7 ≈897e+9 4.013e-10 8.391e-3 9.998e-12 415 33262 7039M 487 31942 1581M 387 33087 1213M
8 ≈45e+12 1.051e-09 0.088 2.757e-11 Out of Memory 3030 261050 7502M 2896 267357 5157M

variance. As the memory requirements (which depend on the
time horizon) put a kurb on the efficiency of the method, we
propose three algorithms with a different trade-off between
time and space. We have implemented these algorithms in
the statistical model checker COSMOS and we have done
experiments on several examples. We detailed one of them
in the paper.

We plan to go further in several directions. Our first goal
is to deal with infinite models whose reduction yields an
infinite one and more expressive language logical formula.
Finally we aim at defining formalisms on which the reduced
model can be automatically produced.

REFERENCES

[1] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen,
“Model checking continuous-time markov chains by transient
analysis,” 2000.

[2] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic
model checking,” in SFM’07, ser. LNCS, vol. 4486. Springer,
2007, pp. 220–270.

[3] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model
checking: an overview,” in RV 10. Springer, 2010, pp. 122–
135.

[4] P. Ballarini, H. Djafri, M. Duflot, S. Haddad, and N. Pekergin,
“HASL: An expressive language for statistical verification
of stochastic models,” in VALUETOOLS’11, Cachan, France,
May 2011, pp. 306–315.

[5] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo,
“GreatSPN 1.7: Graphical editor and analyzer for timed and
stochastic Petri nets,” Perform. Eval., vol. 24, no. 1-2, pp.
47–68, 1995.

[6] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Prob-
abilistic symbolic model checker,” in Computer Performance
Evaluation: Modelling Techniques and Tools, ser. LNCS.
Springer, 2002, vol. 2324, pp. 113–140.

[7] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi, “UPPAAL - a tool suite for automatic verification of
real-time systems,” in Hybrid Systems, 1995, pp. 232–243.

[8] H. Younes, “Ymer: A statistical model checker,” in Computer
Aided Verification, ser. LNCS. Springer, 2005, vol. 3576, pp.
171–179.

[9] G. Rubino and B. Tuffin, Rare Event Simulation using Monte
Carlo Methods. Wiley, 2009.

[10] B. Barbot, S. Haddad, and C. Picaronny, “Coupling and im-
portance sampling for statistical model checking,” in TACAS,
ser. LNCS. Springer, Mar. 2012, pp. 331–346.

[11] A. Jensen, “Markoff chains as an aid in the study of markoff
processes,” Skand. Aktuarietidskr, 1953.

[12] T. Lindvall, Lectures on the coupling method. Dover, 2002.

[13] B. Barbot, S. Haddad, and C. Picaronny, “Importance sam-
pling for model checking of continuous-time Markov chains,”
Laboratoire Spécification et Vérification, ENS Cachan,
France, Research Report LSV-12-08, May 2012.

[14] B. L. Fox and P. W. Glynn, “Computing poisson probabili-
ties,” Commun. ACM, vol. 31, no. 4, pp. 440–445, 1988.

[15] D. N. Jansen, “Understanding Fox and Glynn’s “comput-
ing poisson probabilities”,” Nijmegen: Radboud Universiteit,
Tech. Rep. ICIS-R11001, 2011.

[16] L. Kleinrock, Queueing Systems. Wiley Interscience, 1976,
vol. II: Computer Applications.

