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Abstract. Statistical model-checking is an alternative verification tech-
nique applied on stochastic systems whose size is beyond numerical anal-
ysis ability. Given a model (most often a Markov chain) and a formula, it
provides a confidence interval for the probability that the model satisfies
the formula. One of the main limitations of the statistical approach is
the computation time explosion triggered by the evaluation of very small
probabilities. In order to solve this problem we develop a new approach
based on importance sampling and coupling. The corresponding algo-
rithms have been implemented in our tool COSMOS. We present experi-
mentations on several relevant systems, with time reductions reaching a
factor of 10−120.

Keywords: statistical model checking, rare events, importance sampling, cou-
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1 Introduction

Quantitative model checking. Model checking [12] is an efficient verification
method to check that the behaviour of a system fulfills properties expressed by
some temporal logic. It has been successfully implemented in a variety of tools,
thanks to it algorithmic simplicity. Although a method initially dedicated to
discrete event systems, it has been adapted to performance evaluation in order
to check quantitative properties and in particular to estimate probabilities [17].
Statistical model-checking. Analysis of stochastic systems requires numerical
or statistical techniques. Numerical methods give exact results (up to numerical
approximations) but significantly restrict the class of analysable systems (man-
ageable size, Markov properties, etc.). Otherwise, statistical method may be
used. By simulating a big sample of trajectories of the system and computing
the ratio of these trajectories that satisfy a given property, it produces a prob-
abilistic framing of the expected value. To generate the sample we only need to
have an operational stochastic semantic of the system. This usually requires a
very small state space compared to the numerical method and allows to deal
with huge models [19].
Rare events. The main drawback of the statistical model-checking is its in-
efficiency in dealing with very small probabilities. The size of the sample of



simulations required to estimate these small probabilities exceeds achievable ca-
pacities. This difficulty is known as the rare event problem. Several methods
have been developed to cope with this problem whose main one is importance
sampling. Importance sampling consists in modifying the model and in substi-
tuting to the indicator random variable related to the satisfaction of the formula,
another variable with same mean and, in the favourable cases, reduced variance.
Most of the techniques related to importance sampling are based on heuristics
and cannot provide any confidence interval for the estimated probability.
Our contribution. Here we propose a method based on importance sampling
to estimate in a reliable way a very small probability1.

We set up a theoretical framework using coupling theory [20], yiedling an
efficient importance sampling that guarantees a variance reduction and provides
a confidence interval. This is done by performing numerical model checking on
a small suitable reduction of the Markov chain associated with the system. The
results are then used as parameters required for the importance sampling tech-
nique. Such a method deals with huge (possibly infinite) systems which are out
of reach of numerical model checking and standard statistical model checking.
It can be applied to a large variety of models compared to existing importance
sampling methods which are usually put up in an ad-hoc way for particular
families of models. Furthermore to the best of our knowledge, this is the first
importance sampling method that provides a true (and not an approximate)
confidence interval.

We implemented our method in the statistical model-checker COSMOS [5]
using the tool PRISM for the numerical computation on the reduced model. We
tested our tool on several models getting impressive time reductions.
Organisation. In section 2, we motivate this work and we give a state of the
art related to rare event handling. Then we develop our method in section 3.
Afterwards we present and discuss experimentations in section 4. Finally in
section 5, we conclude and give some perspectives to this work.

2 Motivation and State of the Art

The temporal logics for probabilistic systems include both the qualitative and
quantitative aspects of the systems. For instance, such logics can express (1)
boolean assertions like “the probability of failure of a fixed component is below
some threshold” and (2) numerical indices like “the mean delivery time of a
packet assuming three collisions”. The semantics of such formula is based on the
probability that a random path fulfills some property (in CSL [3]) or (in a more
general setting) on the conditional expectation of a path random variable whose
condition is the satisfaction of some property by the random path (in HASL [5]).

Model checking of these logics can be performed in a numerical or in a
statistical way. The former approach builds the underlying stochastic process
of the model and then computes probabilities or expectations using direct or
1 We have presented in a previous paper [6] a preliminary approach of this method

with stronger assumptions and without using the coupling theory.



iterative methods. Such methods have been implemented efficiently in tools
like PRISM [16], LiQuor [9] or MRMC [15].

However these methods have two drawbacks. On the one hand, they rely on
strong assumptions about the stochastic process that must be a Markov chain
(see for instance [2]) or at least a regenerative process (see for instance [1]). On
the other hand they suffer from the combinatorial explosion of the size of the
stochastic process w.r.t. the size of the model.

Models with huge stochastic process are handled by statistical model check-
ing. The corresponding methods randomly generate a (large) set of execution
paths and check whether the paths fulfill the formula. The result is a probabilis-
tic estimation of the satisfaction given by a confidence interval [4]. In principle,
it only requires to maintain a current state (and some numerical values in case
of a non Markovian process). Furthermore no regenerative assumption is re-
quired and it is easier to parallelize the methods. Several tools include statistical
model checking: COSMOS [5], GreatSPN [8], PRISM [16], UPPAAL [7], VESTA [22],
Ymer [24].

Model checking of probabilistic systems is particularly important for events
which have disastrous consequences (loss of human life, financial ruin, etc.),
but occur with very small probability. Unfortunately statistical model check-
ing of rare events triggers a computation time explosion, forbidding its use.
To illustrate this point, suppose one wants to estimate an unknown probability
p = 10−13 and one chooses to generate 1010 paths (which is already a large
number) for such an estimation. With probability larger than 0.999 the result is
0, giving no information on the value of p. With probability smaller than 0.001
the result will be greater or equal than 10−10 which is a very crude estimation.

Thus acceleration techniques [21] have been introduced to cope with this
problem. The two main families of methods are splitting and importance sam-
pling.

Splitting methods [18] duplicate or eliminate paths during their generation
depending on their intermediate behaviour. When generation is ended, the bias
introduced by these operations is taken into account for the estimation of the
probability. Splitting methods are by nature heuristics, model dependent and
very few theoretical results are known.

Importance sampling methods [13] generate paths of a system whose prob-
ability distribution of transitions have been changed to increase the probability
of the event to occur. A weight is then affected to each path to correct the
introduced bias. The goal is to substitute to the Bernoulli random variable cor-
responding to the occurrence of the rare event, another one with same mean value
(the probability of event occurrence) but smaller variance. In Markov chains, an
optimal change of distribution exists leading to a zero variance but it requires
more information than the searched value! However this optimal importance
sampling allows to design efficient heuristics for some classes of models.

The modification of the distribution can be performed at the model level
(called static) or at the Markov chain level (called dynamic). The static impor-
tance sampling requires no additional memory but in general provides a smaller



reduction of variance than the dynamic importance sampling. More precisely, it is
proved in [10] that asymptotic optimality (a weaker requirement than optimality)
cannot be obtained even for very simple classes of models by static importance
sampling. In full generality, the dynamic importance sampling [23] requires to
maintain a memory whose size is proportional to the size of the Markov chain
which is exactly what one wants to avoid. To deal with this problem, in [11] the
authors develop the following method: (1) the possible distributions belong to
the convex hull of a finite number of distributions, (2) the state space is parti-
tioned and (3) a distribution is selected for each subset of this partition. They
prove that for a simple class of models their method is asymptotically optimal.
Other empirical approaches turn out to be efficient [14].

Summarizing, theoretical results (reduction of variance, asymptotical opti-
mality, etc.) have been obtained for importance sampling. However none of these
methods can produce a reliable confidence interval2 for the mean value since the
distribution of the modified random variable is unknown.

3 General Approach

3.1 Preliminaries

Definition 1. A discrete time Markov chain (DTMC) C is defined as a set of
states S, an initial state s0, and a transition probability matrix P of size S × S.
The state of the chain at time n is a random variable Xn defined inductively by
Pr(X0 = s0) = 1 and Pr(Xn+1 = s′ | Xn = s,Xn−1 = sn−1, . . . , X0 = s0) =
Pr(Xn+1 = s′ | Xn = s) = P(s, s′).

Example 1. The figure 1(a) represents a Markov chain of a tandem queue
system. This system contains two queues, the number of clients in the first queue
is represented on the horizontal axis and the number of clients in the second one
is represented on the vertical axis. In the initial state s0, the two queues are
empty. Given some state, a new client comes in the first queue with probability
λ, a client leaves the first queue for the second one with probability ρ1 and a
client leaves the second queue and exits with probability ρ2 (λ + ρ1 + ρ2 = 1).
An impossible event (due to to the emptiness of some queue) corresponds to an
event letting unchanged the state. These loops are not represented in the figure.

Usually the modeller does not specify its system with a Markov chain. He
rather defines a higher level model M (a queueing network, a stochastic Petri
net, etc.), whose operational semantic is a Markov chain C.

In the context of model checking, the states of chain C are labelled with
atomic propositions. The problem we address here is the computation of the
probability that a random path starting from state s0 satisfies a formula aUb
where U is the Until operator and a, b are atomic propositions. Observe that in
continuous time Markov chains, this probability only depends on its embedded
2 In contrast to the empirical confidence interval based on approximations by the

normal distribution.



λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ2

ρ2

ρ2

s0
(a) DTMC for the tandem queues

s−

s+

s0 λ λ λ

λ

λ λ λ

λλ λ

λ

λ λ

λ

ρ1 ρ1 ρ1 ρ1

ρ1 ρ1 ρ1

ρ1 ρ1

ρ1

ρ2 ρ2 ρ2 ρ2

ρ2 ρ2 ρ2

ρ2 ρ2

ρ2

(b) DTMC with absorbing states

Fig. 1. DTMC for tandem queues

DTMC. Thus our results are also applicable in a continuous time setting. We
(implicitely) transform C by lumping together all the states that satisfy b into
an absorbing state s+ (i.e. P(s+, s+) = 1) and states that satisfy ¬a ∧ ¬b into
an absorbing state s−. We assume that there is no terminal strongly connected
component of C whose every state satisfies a∧¬b3. Hence in the modified chain,
the probability to reach s+ or s− is equal to 1 and probability of satisfying the
formula is the probability to reach s+.
Example 1. The figure 1(b) shows the transformation of the tandem queues
were the states have been lumped together w.r.t. the propositions a: There is

at least one client in some queue and b: the sum of clients in both

queues is equal to 5. The initial state s0 is now the state with one client in
the first queue (to avoid s0 = s−). We are looking for the probability to have
simultaneously at least five clients between two idle periods.

The statistical approach consists in generating K paths of the Markov chain
which ends in an absorbing state. LetK+ be the number of paths ending in the s+
state. The random variable K+ follows a binomial distribution with parameters
p and K. Thus the random variable K+

K has a mean value p and a variance p−p2
K .

When K goes to infinity the variance goes to 0. In order to be more precise on
the estimation, we introduce the notion of confidence interval.

Definition 2. Let X1, . . . , Xn be independent random variables following a com-
mon distribution including a parameter θ. Let 0 < γ < 1 be a confidence level.
Then a confidence interval for θ with level at least γ is given by two random
variables l(X1, . . . , Xn) and u(X1, . . . , Xn) such that for all θ:

Pr (l(X1, . . . , Xn) ≤ θ ≤ u(X1, . . . , Xn)) ≥ γ

For standard parametrized distributions like the normal or the Bernoulli ones,
it is possible to compute confidence intervals [4]. Thus, given a number of paths

3 There is currently no satisfactory solution for the statistical model checking of the
unbounded until for chains that do not fulfill this assumption.



K and a confidence level 1 − ε, the method produces a confidence interval. As
discussed before when p� 1, the number of paths required for a small confidence
interval is too large to be simulated.

The importance sampling method uses a modified transition matrix P′ during
the generation of paths. P′ must satisfy:

P(s, s′) > 0⇒ P′(s, s′) > 0 ∨ s = s− (1)

which means that this modification cannot remove transitions that have not s−
as target, but can add new transitions. The method maintains a correction factor
called L initialized to 1; this factor represents the likelihood of the path. When
a path crosses a transition s→ s′ with s′ 6= s−, L is updated by L← L P(s,s′)

P′(s,s′) .
When a path reaches s−, L is set to zero. If P′ = P (i.e. no modification of the
chain), the value of L when the path reaches s+ (resp. s−) is 1 (resp. 0).

Let Vs (resp. Ws ) be the random variable associated with the final value of
L for a path starting in s in the original model (resp. in the modified one). By
definition, E(Vs0) = p. The following proposition establishes the correctness of
the method.

Proposition 1. E(Ws0) = p.

A good choice of P′ should reduce the variance of Ws0 w.r.t. to variance of
Vs0 . The following proposition shows that there exists a matrix P′ which leads
to a null variance. We denote the probability to reach s+ starting from s by µ(s).

Proposition 2. Let P′ be defined by

– ∀s such that µ(s) 6= 0, P′(s, s′) = µ(s′)
µ(s) P(s, s′)

– ∀s such that µ(s) = 0, P′(s, s′) = P(s, s′)

Then for all s, we have V(Ws) = 0.

This result has a priori no practical application since it requires the knowledge
of µ for all states, whereas we only want to estimate µ(s0)!

The coupling method [20] is a classical method for comparing two stochas-
tic processes, applied in different contexts (establishing ergodicity of a chain,
stochastic ordering, bounds, etc.). In the sequel we will develop a new applica-
tion for coupling. A coupling between two Markov chains is a chain whose space
is a subset of the product of the two spaces which satisfies: (1) the projection
of the product chain on any of its components behaves like the original corre-
sponding chain, (2) an additional constraint which depends on the property to
be proved (here related to the absorbing states).

Definition 3. Let C = (S,P) and C′ = (S′,P′) be two Markov chains with s+
and s− two absorbing states of C and s′+ and s′− two absorbing states of C′. A
coupling between C and C′ is a DTMC C⊗ = (S⊗,P⊗) such that :

– S⊗ ⊆ S × S′



– ∀s 6= s1 ∈ S , ∀(s, s′) ∈ S⊗, P (s , s1) =
P

s′1∈S′ P
⊗((s, s′), (s1, s

′
1)) and

∀s′ 6= s′1 ∈ S′, ∀(s, s′) ∈ S⊗, P′(s′, s′1) =
P

s1∈S P⊗((s, s′), (s1, s
′
1))

– ∀(s, s′) ∈ S⊗ s′ = s′+ ⇒ s = s+

The set S⊗ defines a coupling relation between the two chains.

The following proposition allows to compare probabilities without any nu-
merical computation. As before, µ(s) (resp. µ′(s′)) denotes the probability to
reach the state s+ (resp. s′+) in C (resp. in C′) starting from s (resp. from s′).

Proposition 3. Let C⊗ be a coupling between C and C′. Then, for all (s, s′) ∈
S⊗, we have:

µ(s) ≥ µ′(s′)
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Fig. 2. Reduced DTMC

Example 1. Let us illustrate coupling for the
Markov chain represented in figure 2 and called C•.
This chain is obtained from the tandem queues by
lumping together states which have the same num-
ber of clients and at least R clients in the second
queue (in the figure R = 2). Its set of state is S• =
[0..N ]× [0..R]. Here there is a coupling of this chain
with itself defined by S⊗ = {((n1, n2), (n′1, n

′
2)) |

n1 + n2 ≥ n′1 + n′2 ∧ n1 ≥ n′1}.

Lemma 1. S⊗ is a coupling relation.

Thus: ∀((n1, n2), (n′1, n
′
2)) ∈ S⊗, µ•(n1, n2) ≥ µ•(n′1, n′2)

3.2 An Importance Sampling Method with Variance Reduction and
Confidence Interval

The proposed method combines statistical model checking on the original chain
preceded by numerical model checking on a reduced chain whose formal definition
is given below.

Definition 4. Let C be a DTMC, a DTMC C• is called a reduction of C by a
function f that maps S to S•, the state space of C•, if, denoting s•− = f(s−) and
s•+ = f(s+), the following assertions are satisfied:

– f−1(s•−) = {s−} and f−1(s•+) = {s+}.
– s•− and s•+ are absorbing states reached with probability 1.
– Let s• ∈ S• and denote by µ•(s•), the probability to reach s•+ starting from
s•. Then for all s ∈ S, we have µ•(f(s)) = 0⇒ µ(s) = 0.

The two first assertions entail that the reduced chain has two absorbing
states reached with probability 1 which are images of the absorbing states of
the origibnal chain. The last assertion requires that when from the image of
some state s, one cannot reach s•+, then one cannot reach s+ from s. These
(weak) assumptions ensure that the mapping f preserves the basic features of



the original chain. Two states s and s′ are equivalent if f(s) = f(s′), in other
words f−1 define equivalence classes for this reduction.
Example 1. In the example of tandem queues, the reduced chain C• is obtained
from the original chain by applying the following function to the state space.

f(n1, n2) =
{

(n1, n2) if n2 ≤ R
(n1 + n2 −R,R) otherwise

Given some reduced chain C•, our goal is to replace the random variable (r.v.)
Vs0 which takes value in {0, 1} by a r.v. Ws0 which takes value in {0, µ•(f(s0))}.
This requires that µ(s0) ≤ µ•(f(s0)). By applying an homogeneity principle,
we get the stronger requirement ∀s∈S, µ(s)≤µ•(f(s)). In fact, the appropriate
requirement which implies the previous one (see later proposition 4) is expressed
by the next definition.

Definition 5. Let C be a DTMC and C• a reduction of C by f . C• is a reduction
with guaranteed variance if for all s ∈ S such that µ•(f(s)) > 0 we have :∑

s′∈S
µ•(f(s′)) ·P(s, s′) ≤ µ•(f(s)) (2)

Given s ∈ S, let h(s) be defined by h(s) =
∑
s′∈S

µ•(f(s′))
µ•(f(s)) P(s, s′). We can

now construct an efficient important sampling based on a reduced chain with
guaranteed variance.

Definition 6. Let C be a DTMC and C• be a reduction of C by f with guaranteed
variance. Then P′ is transition matrix on S defined by:
Let s be a state of S,

– if µ•(f(s)) = 0 then for all s′ ∈ S, P′(s, s′) = P(s, s′)
– if µ•(f(s)) > 0 then for all s′ ∈ S \ {s−},

P′(s, s′) = µ•(f(s′))
µ•(f(s)) P(s, s′) and P′(s, s−) = 1− h(s).

The following proposition justifies the definition of P′.

Proposition 4. Let C be a DTMC and C• be a reduction with guaranteed vari-
ance. The importance sampling based on matrix of P′ definition 6 has the fol-
lowing properties:

– For all s such that µ(s) > 0,
Ws is a random variable which has value in {0, µ•(f(s))}.

– µ(s) ≤ µ•(f(s)) and V(Ws) = µ(s)µ•(f(s))− µ2(s).
– One can compute a confidence interval for this importance sampling.

Since µ(s0)� 1, V(Vs0) ≈ µ(s0). If µ(s0)� µ•(f(s0)), we obtain V(Ws0) ≈
µ(s0)µ•(f(s0)), so the variance is reduced by a factor µ•(f(s0)). In the case
where µ(s0) and µ•(f(s0)) have same magnitude order, the reduction of variance
is even bigger.

Unfortunately, Equation (2) requires to compute the function µ• in order
to check that C• is a reduction with guaranteed variance. We are looking for a
structural requirement that does not involve the computation of µ•.



Proposition 5. Let C be a DTMC, C• be a reduction of C by f . Assume there
exists a family of functions (gs)s∈S, gs : {t | P(s, t) > 0} → S• such that:

1. ∀s ∈ S, ∀t• ∈ S•, P•(f(s), t•) =
∑
s′|g(s′)=t• P(s, s′)

2. ∀s, t ∈ S such that P(s, t) > 0, µ•(f(t)) ≤ µ•(gs(t))

Then C• is a reduction of C with guaranteed variance.

The family of functions (gs) assigns to each transition of C starting from
s a transition of C• starting from f(s). The first condition can be checked by
straightforward examination of the probability transition matrices. The second
condition still involves the mapping µ• but here there are conly comparisons
between its values. Thanks to proposition 3, it can be proved by exhibiting a
coupling of C with itself.

We are now in position to describe the whole method for a model M with
associated DTMC C.

1. Specify a model M• with associated DTMC C•, a function f and a family
of functions (gs)s∈S . The specification of this family is done at the level of
models M and M• as shown in the next example and in section 4.

2. Prove using a coupling on C• that proposition 5 holds. Again the proof is
performed at the level of models.

3. Compute function µ• with a numerical model checker applied on M•.
4. Compute µ(s0) with a statistical model checker applied on M using the

importance sampling of definition 6.

The last two steps are done by tools. The second step is currently done
by hand (see appendix C) but could be handled by theorem provers. The only
manual step is the specification of M• which requires to study M and the
formula to be checked (see section 4).
Example 1. To apply the method on the example it remains to specify the
family of functions (gs)s∈S.

g(n1,n2)(n1, n2) = f(n1, n2)
g(n1,n2)(n1 + 1, n2) = f(n1 + 1, n2)
g(n1,n2)(n1 − 1, n2 + 1) = f(n1 − 1, n2 + 1)

g(n1,n2)(n1, n2 − 1) =
{

(n1, n2 − 1) if n2 ≤ R
(n1 + n2 −R,R− 1) otherwise

The condition 2 always trivially holds except for the last case with n2 > R.
We have to check that µ•(n1 + n2 − 1 − R,R) ≤ µ•(n1 + n2 − R,R − 1). As
(n1 + n2 − R,R − 1), (n1 + n2 − 1 − R,R)) belongs to the coupling relation the
inequality holds.

3.3 Generalisation

In this paragraph, we generalize the method but with no more guarantee about
the variance reduction.



Definition 7. Let C be a DTMC and C• a reduction C of by f . We define a
transition matrix P′ on S by the following rules.
Let s be in S:

– if µ•(f(s)) = 0 then for all s′ ∈ S, P′(s, s′) = P(s, s′)
– if µ•(f(s)) > 0 and h(s) ≤ 1 then for all s′ ∈ S \ {s−},

P′(s, s′) = µ•(f(s′))
µ•(f(s)) P(s, s′) and P′(s, s−) = 1− h(s)

– if h(s) > 1, then for all s′ ∈ S, P′(s, s′) = µ•(f(s′))
h(s)µ•(f(s))P(s, s′)

When Equation 2 does not hold for some state s, we have to “normalize” the
matrix row P′(s,−). The following proposition characterises the range of the
random variable Ws for this importance sampling.

Proposition 6. Let C be a DTMC and C• his reduction. The importance sam-
pling of the definition 7 has the following property: for all s such that µ(s) > 0,
Ws is a random variable which takes its values in {0} ∪ [µ•(f(s)),∞[.

As we do not have any additional information on the distribution of Ws, the
precision of the estimator highly depends of the shape of the distribution of Ws.

4 Experimentation

4.1 Implementation

Tools. Our experiments 4 have been performed on a modified version of COSMOS.
COSMOS is a statistical model checker whose input model is a stochastic Petri net
with general distributions and formulas are expressed by the Hybrid Automata
Stochastic Logic [5]. The numerical model checking of the reduced model have
been performed by PRISM whereas we have also used the statistical model checker
PRISM for comparisons with our method.
Adaptation of COSMOS. Since COSMOS takes as input a stochastic Petri net
with a continuous time semantic, we have adapted our method to work with con-
tinuous time Markov chains. As discussed before, for formulas that we consider,
this does not present serious difficulty.

The importance sampling increases the computation time of simulation. First
we have to compute the probability vector µ• of the reduced model in polynomial
time w.r.t. the reduced Markov chain C•.
a discuter
Moreover after each transition of the system we must to compute again the rate
of all enabled transition. A hash table is used to store the value of µ•. Another
additional cost come from the computation of P •(x, s−) which require in the
worst case an additional linear time in the number of transition in M. Another
minor additional time is inherent to the importance sampling method, usually
paths to reach s+ are longer than the ones to s− so the mean length of a path
is increased.
4 All the experiments have been performed on a computer with a 2.6Ghz processor

and 48Go of memory without parallelism.



4.2 Example 1: Tandem

We use this classical example in order to compare our results with those of [11]
who also use an importance sampling method. We take the same parameters
with λ = 0.1, ρ1 = ρ2 = 0.45, N = 50 and we simulate 20000 trajectories. The
parameter R is set to 4. Our result is 3.8017 · 10−31 with confidence interval
width of 9.63 · 10−33 whereas the result in [11] is 3.75 · 10−31 with a confidence
interval of 6.4 ·10−32 and the computation done using a numerical model checker
is 3.8012 · 10−31. With the same parameter our method provides a six times
smaller confidence interval.

We also need to compare our method to both numerical model checking and
statistical one without rare event method: we change the parameter of the model
to λ = 0.32, ρ1 = ρ2 = 0.34 in order to test big values of N ; we use Prism with
its numerical and statistical implementation. Results are depicted in table 1. To
choose the value of R, we compute experimentaly the minimal value of R such
that µ(s0)

µ•(f(s0))
< 1.5. We found that R and N satisfy R ≈ 36.3 log(N)− 126. We

use this to compute µ(s0) for big values of N , the narrowness of the obtained
confidence interval confirms the validity of this approximation. The reduced
model has O(n log(n)) states whereas the initial one has O(n2) states.

We find that our method computes a good approximation of the result
whereas numerical method takes too much time because of the size of the model
(25000000 states), and statistical model checking without rare event handling
returns zero as value.

Table 1. Experimental results for tandem queues

N Size of Prism num Prism stat Cosmos
C T (s) µ(s0) T (s) µ(s0) Conf. Int. R T C• T (s) µ(s0) Conf. Int.

50 2601 0.3 0.0929 1.45 0.091 0.016 4 0.03 7 0.090 0.017
100 10 201 1.6 0.01177 2.7 0.015 0.007 30 1 36 0.01156 8.6E-4
500 251 001 126 2.06E-12 2.3 0 # 87 23 145 2.075e-12 1.72E-13
1000 1E6 860 2.87E-25 # # # 111 113 263 2.906e-25 2.52E-26
5000 25E6 >12h # # # # 150 3061 1099 7.10e-130 1.21E-130

4.3 Example 2 : Parallel Ruin

The Petri net depicted in figure 3 describes a model of parallel ruin of N players.
We represent on this figure the player i and his interactions with player i + 1.
Each of the N players can move along a line of L cells. The player i in cell j can
move forward using the transition Ai,j of rate p if the player i+ 1 is not in the
cell j or if i = N . He can always move backward using transition Ri,j−1 of rate
q. Cells 1 and L are absorbing. This models has LN states. We are interested in
the property a majority of players have reached the cells L before a
majority of player reaches the cells 1, each player starts in the cell L/2.

This model is a paradigm of failure tolerant systems in which each player
represents a process which finishes his job when he reaches the cell 1. Failure



can occur and move the process away of its goal. The reduced model removes all
synchronisation between players. Behaviours of all players are then independent.
A state of the system is now fully characterized by the number of players in each
cell. The states space of the system is

(
N+L−1
L−1

)
.

Ri,1

Ai,2

Ri,2

...

Ai,j−1

Ri,j−1

Pi,j

P i,j

Pi,j+1

P i,j+1

Ai,j

Ri,j

Ai,j+1

Ri,j+1

...

Ai,L−2

Ri,L−2

Ai,L−1

Pi+1,j

P i+1,j

Pi+1,j+1

P i+1,j+1

Fig. 3. The Petri net for the parallel ruin

For this model we were able to prove the proposition5. The table 2 shows the
experimental result with the following parameters p = 0.3 , q = 0.7, L = 15. We
stop the simulation when the confidence interval width reaches one tenth of the
estimated value.

Table 2. Experimental results for players ruin

N taille de Prism num Prism stat Cosmos
C T in s. µ(s0) T in s. µ(s0) Conf. Int. Nb Traj. T C• T en s. µ(s0) Conf. Int.

1 15 ≈ 0 0.00113 12 1.15E-3 1E-4 1 ≈0 ≈0 0.00113 0
5 7.5E5 6 1.88E-9 21 0 # 18000 0.5 13 1.94E-9 1.89E-10
6 1.1E7 127 1.14E-12 No sample reach the rare event 53000 1 57 1.17E-12 1.17E-13
7 1.7E8 2248 2.93E-12 # 50000 2.8 186 2.92E-12 2.89E-13
8 2.0E9 Out of memory # 145000 7.9 1719 1.86E-15 1.86E-16
9 3.8E10 # # 128000 24 3800 4.7E-15 4.75E-16
10 5.7E11 # # 371000 71 26000 3.12E-18 3.11E-19
11 8.0E12 # # 321000 228 67000 7.90E-18 7.89E-19

This result shows that our method gives an estimation of the probability
µ(s0) with a good precision, the confidence interval width is one tenth of µ(s0),
for very big model (8 · 1012) . Whereas the classical statistical model checking
fails, returning zero, and numerical model checking fails because of the size of
the system.

4.4 Example 3

We will now consider the tandem queues system again but with a different
property to check. This property is The second queue contains N clients



(n2 = N) before that the second queue is empty(n2 = 0). The state
space is S = N×[0..N ] the initial state is moved to (0, 1). The reduction function
f of the first example is no longer suitable. We must define a new one in order
to have a finite state space for the reduced model.

We define a new reduction function f ′R such that we have a finite reduced
model. We choose to transform the model such that once the first queue reaches
R clients it behave like a queue with an infinite number of clients. This model
is depicted figure 4(a). The reduction function f ′ is defined as

f ′R(n1, n2) =
{

(n1, n2) if n1 ≤ R
(R,n2) otherwise

This function is represented figure 4(b). We can prove that this model and this
function guarantees the reduction of variance. The proof is very similar to the
one of the first case of tandem queues.

F1

R

AF1

F2λ

ρ′1R

ρ1

ρ2

(a) Reduce model

s−

s+

s0

(b) Reduction function

Fig. 4. Petri net for the infinite tandem queues (R = 3, N = 5)

Table 3. Experiemental result for tandem queues

N R T (s) Size of µ•(f(s0)) Cosmos Prism stat
C• C• µ(s0) Conf. Int. T (s) Nb Traj. T (s) µ(s0) Conf. Int.

25 12 ≈ 0 338 1.16E-5 1.48E-6 2.83E-7 2 5000 33 1.1E-6 1.6E-6
50 29 ≈ 0 1530 2.98E-10 3.81E-11 7.19E-12 13 5000 No sample reach the rare event
100 66 1.44 6767 1.87E-19 4.22E-20 7.34E-21 17 3000 #
500 370 1770 185871 1.03E-90 6.63E-91 8.05E-32 37 2000 #
1000 740 24670 741741 3.24E-177 3.95E-179 4.00E-179 180 3000 #

Similarly to the first example we have to choose suitable values for R, we
found by running experiments on small values of N and R that for R > 0.74×N
we have µ(s0) ≥ µ•(f(s0))/10. This allows us to compute big values of N . This
example shows that we can estimate a probability on an infinite model which is
not possible with a numerical model checker like PRISM, the low probability of
the outcome makes this computation too long for statistical model checker.



4.5 Example 4

The third property we choose to study for the tandem queues system is: The
second queue is full (n2 = N) before the first one (n1 = N). The
idea for the reduction is that in the initial state the second queue already contains
R clients, then the second queue is full when it contains N−R clients. This model
is depicted figure 5(a). We define f ′′R the new reduction function:

f ′′R(n1, n2) =
{

(n1, R) if n2 ≤ R
(n1, n2) otherwise

This function is depicted figure 5(b). We prove that this model guarantees the
reduction of variance.

F1

R

F2λ ρ1

R+ 1

R ρ2

(a) Reduced model

s−

s+

s0

(b) Reduction function

Fig. 5. Petri net for the tandem queues (R = 2, N = 5)

Even if our method guarantees the reduction of variance, the experimental
results are not satisfactory. Because µ(s0) � µ•(f(s0)) when R is small com-
pared to N . This shows that the reduced model needs to be carefully designed
to obtain an efficient importance sampling. For this example we need to find a
better reduced model to make our method work.

5 Conclusion

We proposed a method of statistical model checking which computes a reduced
confidence interval for the probability of a rare event. Our method is based on
importance sampling techniques. Other methods usually rely on heuristics and
fail to provide a confidence interval. We have developed a theoretical framework
ensuring the reduction of the variance and providing a confidence interval. This
framework requires a structural analysis of the model but no numerical compu-
tation thanks to coupling theory. Our method is implemented in the statistical
model checker COSMOS and we have done experiments with impressive results.

We plan to go further in three directions. First we want to deal with more
complex infinite systems. Secondly we want to handle “bounded until” formulas



requiring to deal with non Markovian systems. Finally we would like to mecha-
nize the proofs of coupling since they consist to check parametrized inequalities.
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A Definitions

For our purpose, we need to enrich the usual definition of Markov chains with
labels on transitions. When the transitions’labels are not useful, we simply omit
them.

Definition 8. A discret time Markov chain (DTMC) C is define as a set of
states S, an initial state s0, a finite set of events E, a successor function δ :
S × E → S, and a function p : S × E → [0; 1] with the property that for all
s ∈ S,

∑
e∈E p(s, e) = 1. We define the transition probability matrix P of size

S × S by:
∀s, s′ ∈ S, P(s, s′) =

∑
δ(s,e)=s′

p(s, e)

q

p1
s1

p2

s2

pn
sn

...
∼ q′

p′1
s1

p′2

s2

p′n sn

...

Two Markov chains are equivalent if
they have the same set of states S, re-
spective probability distribution matrices
P, P′ and for all state s with q = P(s, s) ,
q′ = P′(s, s) we have the following equal-
ity

∀s′ 6= s
P(s, s′)
1− q

=
P′(s, s′)
1− q′

This equivalence is used in an implicit way
in the proofs. We will often omit self-loops: we consider that a self-loop always
exists with a probability such that the sum of all outgoing transitions probability
is equal to 1.

B Proofs

Proof of proposition 1
In all states, the probability to reach s− or s+ is equal to 1. Then thanks to a
classic result on Markov chains the expected value of the r.v. Vs is the unique
solution of the following system of equations:

E(Vs−) = 0 ∧ E(Vs+) = 1 ∧ ∀s /∈ {s−, s+} E(Vs) =
∑
s′ 6=s−

P(s, s′)E(Vs′) (3)

We now write the corresponding system for P′ with correction factor:

E(Ws−) = 0 ∧ E(Ws+) = 1

∧ ∀s /∈ {s−, s+} E(Ws) =
∑

s′ 6=s−∧P′(s,s′)>0

P′(s, s′)
(

P(s, s′)
P′(s, s′)

)
E(Ws′)



Thanks to the restriction of equation 1, the two systems are equal after simpli-
fication, and we have E(Ws0) = E(Vs0) = p.

c.q.f.d. ♦♦♦

Proof of proposition 2
If µ(s) = 0 then all trajectories starting in s end in s−. Threfore the variance is
null.
If µ(s) 6= 0, thanks to the equation

µ(s) =
∑

s′|µ(s′)>0

P(s, s′)µ(s′)

P′(s,−) is a distribution. A trajectory starting from a state s with µ(s) > 0 visits
only states s′ with µ(s′) > 0, so it ends in s+, with s = u0, . . . , ul = s+ such a
trajectory then the value L is equal to (µ(u0)/µ(u1)) . . . (µ(ul−1)/µ(ul)) = µ(s).

c.q.f.d. ♦♦♦

Proof of proposition 3
Let ω be a finite random trajectory ending in one of the absorbing states in the
coupled chain starting from (s, s′). We define the random variables 1s+ ,1s′+ such
that:

– 1s+ = 1 if the first component of the ending state of ω is s+.
– 1s′+ = 1 if the second component of the ending state of ω is s′+.

let (sf , s′f ) ∈ S⊗ be the final state of ω. Using the hypothesis we have:

s′f = s′+ ⇒ sf = s+

then for all ω
1s+(ω) ≥ 1s′+(ω)

by taking mean values, we have:

E(1s+) ≥ E(1s′+)

which is equal to:
µ(s) ≥ µ′(s′)

c.q.f.d. ♦♦♦

To simplify proofs of coupling we add a new proposition.

Proposition 7. Let C = (S,E, δ, p) be a DTMC and S⊗ ⊂ S × S be a relation
on C such that:

1. ∀e ∈ E, s1, s2 ∈ S, p(s1, e) = p(s2, e)



2. ∀(s1, s2) ∈ S⊗, e ∈ E, (t1, t2) ∈ S2

(δ(s1, e) = t1 ∧ δ(s2, e) = t2)⇒ (t1, t2) ∈ S⊗

We define δ⊗((s1, s2), e) = (δ(s1, e), δ(s2, e)) and p⊗((s1, s2), e) = p(s1, e). Then
the DTMC C⊗ = (S⊗, E, δ⊗, p⊗) and S⊗ is a coupling relation on C2.

Proof
The second hypothesis asserts that the chain is well defined. We will now prove
that

∀s 6= t ∈ S , ∀(s, s′) ∈ S⊗, P (s , t) =
∑
t′∈S′

P⊗((s, s′), (t, t′))

Using definition 8 we replace the sum on target states by a sum on events.∑
t′∈S′

P⊗((s, s′), (t, t′)) =
∑

e|δ(s,e)=s′
p(s, e) = P (s , t)

The other claim has a similar proof.

c.q.f.d. ♦♦♦

Proof of proposition 4
Let s = u0, . . . , ul = s+ be a trajectory starting in s ending in s+.
As the trajectory avoids s−, its value is
(µ•(f(u0))/µ•(f(u1))) . . . (µ•(f(ul−1))/µ•(f(ul))) = µ•(f(s))

We know that E(Ws) = µ(s), then P(Ws = µ•(f(s))) = µ(s)
µ•(f(s)) . This implies

that µ(s) ≤ µ•(f(s)) and V(Ws) = µ(s)µ•(f(s))− µ2(s). As Ws takes only two
values, the distribution is proportionnal to a binomial law and it is possible to
compute a confidence interval.

c.q.f.d. ♦♦♦

Proof of proposition 5

Let s be a state of S. We split the term of the sum of the inequation (2) by there
mapping by gs:∑

s′|P(s,s′)>0

µ•(f(s′)) ·P(s, s′) =
∑
s•∈S•

∑
s′|gs(s′)=s•

µ•(f(s′)) ·P(s, s′)

We apply the second hypothesis:

≤
∑
s•∈S•

∑
s′|gs(s′)=s•

µ•(s•) ·P(s, s′) =
∑
s•∈S•

µ•(s•)
∑

s′|gs(s′)=s•
P(s, s′)

then the first hypothesis:

=
∑
s•∈S

µ•(s•)P(f(s), s•)

This term is equal to µ•(f(s)) thanks to the equation (3) apply to the Markov
chain C•.



c.q.f.d. ♦♦♦

Proof of proposition 6
Let s = u0, . . . , ul = s+ be a trajectory starting in s ending in s+.
As the trajectory avoids s−, its value is

(µ•(f(u0) max(h(u0), 1))/µ•(f(u1))) . . . (µ•(f(ul−1) max(h(ul−1), 1))/µ•(f(ul)))

= µ•(f(s))
∏

0≤i<l|h(ui)>1

h(ui) ≥ µ•(f(s))

c.q.f.d. ♦♦♦

C Proofs of coupling

Proof of lemma 1
We recall the coupling relation

a) n1 + n2 ≥ n′1 + n′2
b) n1 ≥ n′1

We need to check that for all couples ((n1, n2), (n′1, n
′
2)) in the relation, all suc-

cessors are also in the relation. We have three different types of transitions in
the system:

1. For transition λ, the successor of ((n1, n2), (n′1, n
′
2)) is ((n1 + 1, n2), (n′1 +

1, n′2)) which is inside the relation.
2. For transition ρ1, the successor of ((n1, n2), (n′1, n

′
2)) is

((n1 − 1{n1>0∧n2<R}, n2 + 1{n1>0∧n2<R}),
(n′1 − 1{n′1>0∧n′2<R}, n

′
2 + 1{n′1>0∧n′2<R}))

the condition a) is satisfied as the sum is not modified.

– If n1 > n′1 then n1−1{n1>0∧n2<R} ≥ n′1−1{n′1>0∧n′2<R} and condition b)
is satisfied.

– Else n1 = n′1 and with the condition a) we have n2 ≥ n′2 ; then
n1 > 0 ∧ n2 < R⇒ n′1 > 0 ∧ n′2 < R which implies :
n1 − 1{n1>0∧n2<R} ≥ n′1 − 1{n′1>0∧n′2<R} then conditionb) holds.

3. For transition ρ2, the successor of ((n1, n2), (n′1, n
′
2)) is

((n1, n2 − 1{n2>0}), (n′1, n
′
2 − 1{n′2>0})).

As the first component is not modified, the condition b) holds.
– If n1 + n2 > n′1 + n′2 then n1 + n2 − 1{n2>0} ≥ n′1 + n′2 − 1{n′2>0}
– Else n1+n2 = n′1+n′2 and with condition b) n2 ≤ n′2 then n2−1{n2>0} ≥
n′2 − 1{n′2>0}, the condition a) holds.



Then S⊗ is a coupling relation.
We now have to check the hypothesis of the proposition 3 on coupling of two

chains. Let ((n1, n2), (n′1, n
′
2)) ∈ S⊗. If n′1 + n′2 = N is an absorbing state then

by condition a) of coupling, n1 + n2 = N . Moreover, for all n > 0 , ((n,R −
1), (n− 1, R)) ∈ S⊗. We can apply proposition 3 which gives

∀n > 0, µ•(n,R− 1) ≥ µ•(n− 1, R)

c.q.f.d. ♦♦♦

Proof of guaranteed variance reduction for example 3

Proposition 8. The third example guarentees the variance reduction.

Proof
We define the family function gs.

g(n1,n2)(n1, n2) = fR(n1, n2)
g(n1,n2)(n1 + 1, n2) = fR(n1 + 1, n2)

g(n1,n2)(n1 − 1, n2 + 1) =
{

(n1 − 1, n2 + 1) if n1 < R
(R,n2 + 1) otherwise

g(n1,n2)(n1, n2 − 1) = fR(n1, n2 − 1)

We have to verify the condition 2 of property 5 with a coupling method. The
only non trivial case is for transition ρ1 with n1 = R. We have to prove that

∀n2, µ
•(R− 1, n2) ≤ µ•(R,n2)

The pair ((n1, n2), (n′1, n
′
2)) belongs to the coupling relation S⊗ if the two

following conditions are satisfied:

a) n1 ≥ n′1
b) n2 ≥ n′2

For all couple ((n1, n2), (n′1, n
′
2)) in the coupling relation we have to prove

that all its successor also belong to the coupling relation. There is three possible
transitions.

1. For transition λ, The successor of ((n1, n2), (n′1, n
′
2)) is

((n1 + 1{n1<R}, n2), (n′1 + 1{n′1<R}, n
′
2))

Condition b is satisfied. We split cases where n1 = n′1 and n1 > n′1 condition
a is satisfied for both cases.

2. For transition ρ1, The successor of ((n1, n2), (n′1, n
′
2)) is

((n1 − 1{n1>0∧n1<R}, n2 + 1{n1>0}), (n′1 − 1{n′1>0∧n′1<R}, n
′
2 + 1{n′1>0}))

– if n1 = n′1 then both conditions are satisfied
– else n1 > n′1 and a is satisfied, and 1{n1>0} ≥ 1{n′1>0} then b holds

3. For transition ρ2, The successor of ((n1, n2), (n′1, n
′
2)) is

((n1, n2 − 1{n2>0}), (n′1, n
′
2 − 1{n′2>0})).

As the first component is not modified the condition a) holds.



– if n2 > n′2 then n2 − 1{n2>0} ≥ n′2 − 1{n′2>0}
– else n2 = n′2 then n2 − 1{n2>0} = n′2 − 1{n′2>0}

By applying proposition 7, we obtain a coupling.
We can now check the hypotheses of proposition 3 on coupling.

Let ((n1, n2), (n′1, n
′
2)) be in S⊗. If n′2 = N , (n′1, n

′
2) is an absorbing state then

using condition b) of coupling we have : n2 = N . Moreover for all n1, n2 < N ,
((n1, n2), (n1, n2)) ∈ S⊗. We can then apply the property. We obtain

∀n1, n2 < N, µ•(n1, n2) ≥ µ•(n1 − 1, n2)

With n1 = R we have the needed property.
Other hypothesis of proposition 5 holds trivialy. We then have garantee vari-

ance reduction.

c.q.f.d. ♦♦♦

Proof of guaranteed variance reduction for example 4

Proposition 9. The fourth example guarantees the variance reduction.

Proof
We define the family function gs.

g(n1,n2)(n1, n2) = fR(n1, n2)
g(n1,n2)(n1 + 1, n2) = fR(n1 + 1, n2)

g(n1,n2)(n1 − 1, n2 + 1) =
{

(n1 − 1, n2 + 1) if n2 ≥ R
(n1 − 1, R+ 1) otherwise

g(n1,n2)(n1, n2 − 1) = fR(n1, n2 − 1)

We have to verify condition 2 of property 5 with a coupling method. The
only non trivial case is for transition ρ1 with n2 < R. We have to prove that

∀n1, n2 < R, µ•(n1, n2 + 1) ≤ µ•(n1, R+ 1)

The pair ((n1, n2), (n′1, n
′
2)) belongs to the coupling relation S⊗ if the two

following conditions are satisfied:

a) n1 = n′1
b) n2 ≥ n′2

For all couple ((n1, n2), (n′1, n
′
2)) in the coupling relation we have to prove

that all its successors also belong to the coupling relation. There are three pos-
sible type of transitions.

1. For transition λ, The successor of ((n1, n2), (n′1, n
′
2)) is

((n1 + 1, n2), (n′1 + 1, n′2))
which is indeed in the coupling relation.



2. For transition ρ1, The successor of ((n1, n2), (n′1, n
′
2)) is

((n1 − 1{n1>0}, n2 + 1{n1>0}), (n′1 − 1{n′1>0}, n
′
2 + 1{n′1>0})).

Using condition a), n1 − n′1 then the difference beetwen n′2 and n2 is un-
changed. Then condition b) holds.

3. For transition ρ2, the successor of ((n1, n2), (n′1, n
′
2)) is

((n1, n2 − 1{n2>R}), (n
′
1, n
′
2 − 1{n′2>R})).

As the first component is not modified the condition a) holds.
– if n2 > n′2 then n2 − 1{n2>R} ≥ n′2 − 1{n′2>R}
– else n2 = n′2 then n2 − 1{n2>R} = n′2 − 1{n′2>R}

By applying proposition 7, we obtain a coupling.
We can now check the hypotheses of proposition 3 on coupling.

Let ((n1, n2), (n′1, n
′
2)) be in S⊗. If n′2 = N , (n′1, n

′
2) is an absorbing state then

using condition b) of coupling we have : n2 = N . Moreover for all n1, n2 < N ,
((n1, n2), (n1, n2)) ∈ S⊗. We can then apply the property. We obtain

∀n1, n2 ≥ n′2, µ•(n1, n2) ≥ µ•(n1, n
′
2)

The other hypothesis of proposition 5 holds trivialy. We then have guarantee
variance reduction.

c.q.f.d. ♦♦♦


