
Refinement and Asynchronous Composition of

Modal Petri Nets

Dorsaf Elhog-Benzina1, Serge Haddad1, and Rolf Hennicker2

1 LSV, CNRS & Ecole Normale Supérieure de Cachan
94235 CACHAN, 61 avenue du Président Wilson, France

{elhog, haddad}@lsv.ens-cachan.fr
2 Institut für Informatik Universität München

Oettingenstraße 67 D-80538 München, Germany
hennicker@ifi.lmu.de

Abstract. We propose a framework for the specification of infinite state
systems based on Petri nets with distinguished may- and must-transitions
(called modalities) which specify the allowed and the required behavior of
refinements and hence of implementations. For any modal Petri net, we
define its generated modal language specification which abstracts away
silent transitions. On this basis we consider refinements of modal Petri
nets by relating their generated modal language specifications. We show
that this refinement relation is decidable if the underlying modal Petri
nets are weakly deterministic. We also show that the membership prob-
lem for the class of weakly deterministic modal Petri nets is decidable.
As an important application scenario of our approach we consider I/O-
Petri nets and their asynchronous composition which typically leads to
an infinite state system.

Key words: Modal language specification and refinement, modal Petri
net, weak determinacy, asynchronous composition, infinite state system.

1 Introduction

In component-based software development, specification is an important phase
in the life cycle of each component. It aims to produce a formal description of
the component’s desired properties and behavior. A behavior specification can
be presented either in terms of transition systems or in terms of logic, which
both cannot be directly executed by a machine. Thus an implementation phase
is required to produce concrete executable programs.

Modal specifications have been introduced in [18] as a formal model for spec-
ification and implementation. A modal specification explicitly distinguishes be-
tween required transitions and allowed ones. Required transitions, denoted with
the modality must, are compulsory in all correct implementations while allowed
transitions, denoted with the modality may, may occur but can also be omitted
in an implementation. An implementation is seen as a particular specification
in which all transitions are required. Thus modalities support underspecifica-
tion as well as tight specifications saying that certain activities must be present.

Therefore they provide a flexible tool for system development as decisions can
be delayed to later steps of the component’s life cycle. Two different modal for-
malisms have been adopted in the literature, the first one, introduced in [15],
is based on transition systems while the second one, introduced in [24], is a
language-based model defining modal language specifications.

A transformation step from a more abstract specification to a more concrete
one is called a refinement. It produces a specification that is more precise, i.e. has
less possible implementations. Hence the set of implementations of a refinement
is included in the set of possible implementations of the original specification.
From the practical and from the computational point of view, it is of course
an important issue to be able to check refinements, and even better, to decide
whether a refinement relation holds. For modal transition systems with finite
states and for modal language specifications whose underlying languages are
regular, the refinement problem is decidable.

Due to its simplicity and appropriateness to design, this modal approach has
led both to industrial case studies, see, e.g., [17], and to theoretical developments
in order to integrate timing requirements [6] or probabilistic requirements [8].
However, none of these works deals with infinite state systems or asynchronous
composition while in distributed systems such features are indispensable. For
instance, (discrete) infinite state systems can easily appear by the asynchronous
composition of components, since asynchronous communication introduces a de-
lay between the actions of sending and receiving a message between the commu-
nication partners. Indeed the size of every communication channel is potentially
unbounded. But also requirement specifications for complex systems may in-
volve infinite state spaces. Thus the motivation of our work was to extend the
modal approach to take into account infinite state system specifications and their
modal refinement while keeping most of the problems decidable. In particular,
our results should be applicable to systems of asynchronoulsy communicating
components.

Our contribution. Petri nets are an appropriate formalism for our needs since
they allow for a finite representation of infinite state systems. Automata with
queues might be another alternative, but all significant problems (e.g. the reach-
ability problem) are known to be undecidable [7] while they are decidable when
considering deterministic Petri nets [21]. In our approach, we consider Petri nets
with silent transitions labeled by ǫ. Silent transitions are invisible to the environ-
ment and hence are the basis for observational abstraction. This is particularly
important to obtain a powerful refinement relation which relies only on observ-
able behaviors. In our approach we define the generated language of a Petri net
by abstracting away silent transitions. Then we consider Petri net refinement as
inclusion of the generated languages which means that the observable execution
traces of a “concrete” (refining) Petri net must be observable execution traces of
the “abstract” (refined) Petri net as well. We know from [21] that for languages
generated by deterministic Petri nets the language inclusion problem is decidable
but also, from [10], that in general the language inclusion problem for Petri nets
is undecidable. In the presence of silent transitions we are, unfortunately, very

often in a situation where Petri nets have non-deterministic silent choices such
that we cannot use the decidability results for the deterministic case. Therefore,
we introduce the generalized notion of weakly deterministic Petri nets, which are
deterministic “up to silent transitions”. We show that the following problems are
decidable:

1. Decide whether a given Petri net is weakly deterministic.
2. Decide whether a given language L(N ′) generated by a Petri net N ′ is

included in the language L(N) generated by a weakly deterministic Petri
net N .

In the next step, we incorporate modalities in our approach and consider
modal Petri nets with may- and must -transitions. For the definition of refine-
ment, we follow again a language-based approach and use modal Petri nets as
a device to generate modal language specifications. A subtle aspect of this gen-
eration concerns the treatment of silent may- and must -transitions. Refinement
of modal Petri nets is then considered as refinement of their generated modal
language specifications in the sense of Raclet et al. [25]. In particular, the must
modality is important here to express that certain activities must be respected
by refinements and hence implementations. On the other hand, the language
inclusion property following from the may modality guarantess, as in the non
modal case, that safety properties are preserved by refinements for all observable
execution traces. We also extend the notion of weak determinacy to the modal
case and show that the following problems, which extend the ones from above
to the modal context, are decidable:

3. Decide whether a given modal Petri net is (modally) weakly deterministic.
4. Given two modal language specifications S(M′) and S(M) generated by

two weakly deterministic modal Petri nets M′ and M respectively, decide
whether S(M′) is a modal language specification refinement of S(M).

As a particular important application scenario of our approach, we consider
asynchronously communicating Petri nets. To realize the communication abili-
ties we distinguish between input, output and internal labels which leads to our
notion of a modal I/O-Petri net. We define an asynchronous composition oper-
ator for such nets where all actions related to communication (i.e. sending and
receiving) are represented by internal labels. I/O-Petri nets obtained by asyn-
chronous composition typically exhibit infinite state spaces. When considering
refinements, transitions with internal labels should be treated as silent transi-
tions. Therefore, we introduce a hiding operator on I/O-Petri nets which relabels
internal labels to the silent label ǫ. Then we can directly apply our techniques
and decidability results described above for the treatment of refinements in the
context of asynchronously composed I/O-Petri nets. Thus our machinery is par-
ticularly useful in typical situations where an infinite abstract requirement spec-
ification is implemented by an architecture consisting of asynchronously com-
municating components. We will illustrate such an application in the context of
a cash desk system case study.

Outline of the paper. We proceed by reviewing in Sect. 2 modal language
specifications and their associated notion of refinement. Sect. 3 consists of two
parts: In Sect. 3.1 we first recall the notion of a Petri net with silent transitions
and then we define its generated language specification by abstracting silent
transitions away. We also introduce the notion of weak determinacy and state
the first two decision problems from above. In Sect. 3.2 we extend our approach
to modal Petri nets. We define the generated modal language specification of a
modal Petri net, consider modally weakly determinsitic Petri nets and state the
last two decsion problems from above in the context of modalities. In Sect. 4, we
focus on asynchronously communicating modal Petri nets over an I/O-alphabet
with distinguished input, output, and internal labels. We define the asynchronous
composition of modal I/O-Petri nets and adopt them, by hiding of internal labels,
to our approch for modal refinement. Then, in Sect. 5, we discuss a case study to
illustrate our principles. In Sect. 6 we present the decision algorithms of the four
decision problems mentioned above. Sect. 7 concludes this paper and presents
some future work perspectives.

2 Modal Language Specifications

Modal specifications were introduced by Larsen and Thomsen in [18] in terms
of modal transition systems where transitions are equipped with distinguished
may (allowed) and must (required) modalities. This idea has been adapted by
Raclet in his (French) Ph.D. thesis [23] in which he applied it to language speci-
fications where the complexity of decision problems is more tractable than with
modal transition systems. Moreover, modal refinement is sound and complete
with the language-based formalism while it is non-complete with the transition
system based formalism [16]. Therefore we base our considerations on a language
approach to modal specifications. Let us first review the underlying definitions
of modal language specifications and their refinement as introduced in [24].

Notation. Let E be a set, then P (E) denotes its powerset.

Definition 1 (Modal language specification). A modal language specifi-
cation S over an alphabet Σ is a triple 〈L, may, must〉 where L ⊆ Σ∗ is a
prefix-closed language over Σ and may, must : L → P (Σ) are partial functions.
For every trace u ∈ L,

– a ∈ may(u) means that the action a is allowed after u,
– a ∈ must(u) means that the action a is required after u,
– a /∈ may(u) means that a is forbidden after u.

The modal language specification S is consistent if the following two conditions
hold:
(C1) ∀ u ∈ L, must(u) ⊆ may(u)
(C2) ∀ u ∈ L, may(u) = {a ∈ Σ | u.a ∈ L}

Observation. If must(u) contains more than one element, this means that any
correct implementation must have after the trace u (at least) the choice between
all actions in must(u).

Example 1. Let us consider the example of a message producer and a message
consumer represented in Fig. 1. The transition with label in represents an input
received by the producer from the environment, which is followed by the tran-
sition with label m representing the sending of message m. The consumer must
be able to perform the transition labeld with m, representing the reception of
m, and then it must be able to “output” out to the environment.

s0

s1

min

z0

z1

m out

(a) (b)

Fig. 1. Modal transition systems for a producer (a) and a consumer (b)

In the producer system, transition s0
in
→ s1 is allowed but not required

(dashed line) while transition s1
m
→ s0 is required (solid line). In the consumer

model all transitions are required. The language associated with the producer is
L ≡ (in.m)∗ + in.(m.in)∗. The associated modal language specification is then
〈L, may, must〉 with:

– ∀ u ∈ (in.m)∗, must(u) = ∅ ∧ may(u) = {in}
– ∀ u ∈ in.(m.in)∗, must(u) = may(u) = {m}

Similarly, the modal language specification associated with the consumer is
〈(m.out)∗ + m.(out.m)∗, may, must〉 with:

– ∀ u ∈ (m.out)∗, must(u) = may(u) = {m}
– ∀ u ∈ m.(out.m)∗, must(u) = may(u) = {out}

Modal language specifications can be refined by either removing some allowed
events or changing them into required events.

Definition 2 (Modal language specification refinement).
Let S = 〈L, may, must〉 and S′ = 〈L′, may′, must′〉 be two consistent modal
language specifications over the same alphabet Σ. S′ is a modal language speci-
fication refinement of S, denoted by S′ ⊑ S, if:

– L′ ⊆ L,
– for every u ∈ L′, must(u) ⊆ must′(u), i.e every required action after the

trace u in L is a required action after u in L′.

Modal language specifications support underspecification and thus stepwise
refinement but they are not appropriate for the specification of infinite state
systems since refinement can not be decided in this case. Moreover, they do not
support silent transitions and hence observational abstraction.

3 Modal Petri Nets

Petri nets provide an appropriate tool to specify the behavior of infinite state
systems in a finitary way. Therefore we are interested in the following to com-
bine the advantages of Petri nets with the flexibility provided by modalities for
the definition of refinements. Of particular interest are Petri nets which support
silent transitions. Silent transitions are important to model, e.g., internal alter-
natives which are invisible to the outside. In the following of this section we will
consider such Petri nets and extend them by modalities.

3.1 Petri Nets and their Generated Languages

In this subsection, we first review basic definitions of Petri net theory and then
we develop our first decision problems without taking into account modalities
yet.

Definition 3 (Labeled Petri Net). A labeled Petri net over an alphabet Σ
is a tuple N = (P, T, W−, W+, λ, m0) where:

– P is a finite set of places,
– T is a finite set of transitions with P ∩ T = ∅,
– W− (resp. W+) is a matrix indexed by P × T with values in N;

it is called the backward (forward) incidence matrix,
– λ : T → Σ ∪ {ǫ} is a transition labeling function where ǫ denotes the empty

word, and
– m0 : P 7→ N is an initial marking.

A marking is a mapping m : P 7→ N. A transition t ∈ T is called silent, if
λ(t) = ǫ. The labeling function is extended to sequences of transitions σ =
t1t2...tn ∈ T ∗ where λ(σ) = λ(t1)λ(t2)...λ(tn). According to this definition
λ(σ) ∈ Σ∗, i.e. λ(σ) represents a sequence of observable actions where silent
transitions are abstracted away.

For each t ∈ T , •t (t• resp.) denotes the set of input (output) places of t.
i.e. •t = {p ∈ P | W−(p, t) > 0} (t• = {p ∈ P | W+(p, t) > 0} resp.). Likewise
for each p ∈ P , •p (p•) denotes the set of input (output) transitions of p i.e.
•p = {t ∈ T | W+(p, t) > 0} (p• = {t ∈ T | W−(p, t) > 0} resp.). The input
(output resp.) vector of a transition t is the column vector of matrix W− (W+

resp.) indexed by t.
In the rest of the paper, labeled Petri nets are simply called Petri nets. We

have not included final markings in the definition of a Petri net here, because
we are interested in potentially infinite system behaviors. We now introduce the
notions related to the semantics of a net.

Definition 4 (Firing rule). Let N be a Petri net. A transition t ∈ T is firable
from a marking m, denoted by m[t〉, iff ∀p ∈ •t, m(p) ≥ W−(p, t). The set of
firable transitions from a marking m is defined by firable(m) = {t ∈ T | m[t〉}.
For a marking m and t ∈ firable(m), the firing of t from m leads to the marking
m′, denoted by m[t〉m′, and defined by ∀p ∈ P, m′(p) = m(p) − W−(p, t) +
W+(p, t).

Definition 5 (Firing sequence). Let N be a Petri net with the initial marking
m0. A finite sequence σ ∈ T ∗ is firable in a marking m and leads to a marking
m′, also denoted by m[σ〉m′, iff either σ = ǫ or σ = σ1.t with t ∈ T and there
exists m1 such that m[σ1〉m1 and m1[t〉m′. For a marking m and σ ∈ T ∗, we
write m[σ〉 if σ is firable in m. The set of reachable markings is defined by
Reach(N , m0)= {m | ∃σ ∈ T ∗such that m0[σ〉m}.

The reachable markings of a Petri net correspond to the reachable states
of the modeled system. Since the capacity of places is unlimited, the set of the
reachable markings of the Petri nets considered here may be infinite. Thus, Petri
nets can model infinite state systems.

The semantics of a net will be given in terms of its generated language. It is
important to note that the language generated by a labeled Petri net abstracts
from silent transitions and therefore determines the observable execution traces
of a net. Technically this is achieved by using the empty word ǫ as a label for
silent transitions such that, for each sequence σ ∈ T ∗ of transitions, λ(σ) shows
only the labels of the observable transitions.

Definition 6 (Petri net language). Let N be a labeled Petri net over the
alphabet Σ. The language generated by N is:

L(N) = {u ∈ Σ∗ | ∃σ ∈ T ∗ and m such that λ(σ) = u and m0[σ〉m} .

A particular interesting class of Petri nets are deterministic Petri nets as de-
fined, e.g., in [21]. In our approach, however, we deal with silent transitions which
often model non-deterministic choices. For instance, silent transitions with non-
deterministic choices will naturally appear in asynchronous compositions consid-
ered later on (c.f. Sect. 4) when communication actions are hidden. Therefore,
we are interested in a relaxed notion of determinacy which allows us to consider
determinism “up to silent moves”. This leads to our notion of weakly determinis-
tic Petri net. We call a Petri net weakly deterministic if any two firing sequences
σ and σ′ which produce the same word u can both be extended to produce the
same continuations of u. In other words, in a weakly deterministic Petri net, one
may fire from a reachable marking two different sequences labelled by the same
word but the visible behaviours from the reached markings are the same. So an
external observer cannot detect this non-determinism. In this sense our notion
of weak deterministic Petri net corresponds to Milner’s (weak) determinacy [20]
and to the concept of a weakly deterministic transition system described in [11].
The underlying idea is also related to the notion of output-determinacy intro-
duced in [14].

Definition 7 (Weakly Deterministic Petri Net). Let N be a labeled Petri
net with initial marking m0 and labeling function λ : T → Σ ∪ {ǫ}. For any
marking m, let

maymk(m) = {a ∈ Σ | ∃σ ∈ T ∗ such that λ(σ) = a and m[σ〉}

be the set of labels that may occur starting from m after a sequence of silent tran-
sitions. N is called weakly deterministic, if for each σ, σ′ ∈ T ∗ with λ(σ) = λ(σ′)
and for markings m and m′ with m0[σ〉m and m0[σ

′〉m′, we have maymk(m) =
maymk(m′).

Weakly deterministic Petri nets will play an important role for deciding re-
finements. Hence, it is crucial to know whether a given Petri net belongs to the
class of weakly deterministic Petri nets. This leads to our first decision prob-
lem stated below. Our second decision problem is motivated by the major goal
of this work to provide formal support for refinement in system development.
Since refinement can be defined by language inclusion, we want to be able to
decide this. Unfortunately, it is well-known that the language inclusion problem
for Petri nets is undecidable [10]. However, in [21] it has been shown that for
languages generated by deterministic Petri nets the language inclusion problem
is decidable. Therefore we are interested in a generalization of this result for lan-
guages generated by weakly deterministic Petri nets which leads to our second
decision problem. Observe that we do not require N ′ to be weakly deterministic.

First decision problem. Given a labeled Petri net N , decide
whether N is weakly deterministic.

Second decision problem. Let L(N) and L(N ′) be two lan-
guages on the same alphabet Σ such that L(N) is generated by
a weakly deterministic Petri net N and L(N ′) is generated by a
Petri net N ′. Decide whether L(N ′) is included in L(N).

The descion problems deal with refinements based on an observational ab-
straction of silent transitions of the underlying Petri nets.

3.2 Modal Petri Nets

In the following we extend our approach by incorporating modalities. For this
purpose we introduce, following the ideas of modal transition systems and modal
language specifications, modal Petri nets with modalities may and must on their
transitions. Note that we require any must -transition to be allowed, i.e. to be a
may-transition as well.

Definition 8 (Modal Petri net). A modal Petri net M over an alphabet Σ
is a pair M = (N , T�) where N = (P, T, W−, W+, λ, m0) is a labeled Petri net
over Σ and T� ⊆ T is a set of must (required) transitions. The set of may
(allowed) transitions is the set of transitions T .

Example 2. Let us consider the same example of a message producer and a
message consumer (see Fig. 2). The producer may receive a message in (white
transition) but must produce a message m (black transition). The consumer
must receive a message m and then it must produce a message out.

• •

(a) (b)

in m m out

Fig. 2. Modal Petri nets for a producer (a) and a consumer (b)

Any modal Petri net M = (N , T�) gives rise to the construction of a modal
language specification (see Def. 1) which extends the language L(N) by may
and must modalities. Similarly to the construction of L(N) the definition of
the modalities of the generated language specification should take into account
abstraction from silent transitions. While for the may modality this is rather
straightforward, the definition of the must modality is rather subtle, since it
must take into account silent must -transitions which are abstracted away dur-
ing language generation. For the definition of the must modality we introduce
the following auxiliary definition which describes, for each marking m, the set
mustmk(m) of all labels a ∈ Σ which must be produced by firing (from m)
some silent must -transitions succeeded by a must -transition labeled by a. This
means that the label a must be producible as the next visible label by some
firing sequence of m. Formally, for any marking m, let

mustmk(m) = {a ∈ Σ | ∃σ ∈ T ∗
�
, t ∈ T� such that λ(σ) = ǫ, λ(t) = a and m[σt〉}

We can now consider for each word u ∈ L(N) and for each marking m, reachable
by firing a sequence of transitions which produces u and which has no silent tran-
sition at the end1, the set mustmk(m). The labels in mustmk(m) must be exactly
the possible successors of u in the generated modal language specification.

Definition 9 (Modal Petri Net Language Specification). Let M = (N , T�)
be a modal Petri net over an alphabet Σ such that λ : T → Σ∪{ǫ} is the labeling
function and m0 is the initial marking of N . M generates the modal language
specification S(M) = 〈L(N), may, must〉 where:

1 We require this to avoid false detection of must transitions starting from intermediate
markings which are reachable by silent may transitions.

– L(N) is the language generated by the Petri net N ,

– ∀u ∈ L(N), may(u) =
{a ∈ Σ | ∃σ ∈ T ∗ and m such that λ(σ) = u, m0[σ〉m and a ∈ maymk(m)},

– ∀u ∈ L(N), x ∈ Σ,

• must(ǫ) = mustmk(m0),
• must(ux) = {a ∈ Σ | ∃σ ∈ T ∗, t ∈ T and m such that λ(σ) = u, λ(t) =

x, m0[σt〉m and a ∈ mustmk(m)}.

Remark 1. Any modal language specification generated by a modal Petri net
is consistent. Condition C1 is a consequence of the inclusion mustmk(m) ⊆
maymk(m) and condition C2 is a consequence of the definition of maymk(m).

Example 3. Let us consider the modal Petri net in Fig. 3.

•
t′, ǫ

a t′′, b

t, ǫ

Fig. 3. Modal Petri net with silent transitions

The modal language specification generated by this net consists of the lan-
guage L presented by the regular expression (a∗b∗)∗ and modalities may(u) =
{a, b}, and must(u) = {a} for u ∈ L. Note that b is not a must as it is preceeded
by a silent may-transition (which can be omitted in a refinement).

The notion of weakly deterministic Petri net can be extended to modal Petri
nets by taking into account an additional condition for must -transitions. This
condition ensures that for any two firing sequences σ and σ′ which produce
the same word u, the continuations of u produced by firing sequences of must -
transitions after σ and σ′ are the same.

Definition 10 (Weakly Deterministic Modal Petri Net). Let M = (N , T�)
be a modal Petri net over an alphabet Σ such that λ : T → Σ∪{ǫ} is the labeling
function of N . M is (modally) weakly deterministic, if

1. N is weakly deterministic, and
2. for each σ, σ′ ∈ T ∗ with λ(σ) = λ(σ′) and for any markings m and m′ with

m0[σ〉m and m0[σ
′〉m′, we have mustmk(m) = mustmk(m′).

Remark 2. For any weakly deterministic modal Petri net M = (N , T�) the def-
inition of the modalities of its generated modal language specification L(M) =
〈L(N), may, must〉 can be simplified as follows:

– ∀u ∈ L(N), let σ ∈ T ∗ and let m be a marking such that λ(σ) = u and
m0[σ〉m, then may(u) = maymk(m).

– ∀u ∈ L(N), x ∈ Σ, let σ ∈ T ∗, t ∈ T and let m be a marking such that
λ(σ) = u, λ(t) = x and m0[σt〉m, then must(ux) = mustmk(m). Moreover,
must(ǫ) = mustmk(m0).

Example 4. The Petri net in Fig. 3 (considered without modalities) is not weakly
deterministic. Indeed let m1 be the marking reached by t from m0. Both markings
m0 and m1 are reachable by a sequence of silent transitions. However from m0,
the sequence t′t′′ labelled by b is fireable while no sequence labelled by b is
fireable from m1. Hence it is also not modally weakly deterministic.

Let us now consider the modal Petri net in Fig. 4.

•

tr, a

ǫ

tl, a

ǫ

b

Fig. 4. Non weakly deterministic modal Petri net

Let ml (mr resp.) be the marking obtained by firing the transition tl (tr
resp.). Obviously, both transitions produce the same letter but mustmk(ml) =
{b} while mustmk(mr) = ∅ (since the silent transition firable in mr is only a may-
transition). Hence the Petri net is not modally weakly deterministic. However,
one should note that, if we forget the modalities, then the Petri net in Fig. 4 is
weakly deterministic.

The two decision problems of Sect. 3.1 induce the following obvious exten-
sions in the context of modal Petri nets and their generated modal language
specifications. Observe that for the refinement problem we require that both
nets are weakly deterministic.

Third decision problem. Given a modal Petri net M, decide
whether M is (modally) weakly deterministic.

Fourth decision problem. Let S(M) and S(M′) be two
modal language specifications over the same alphabet Σ such
that S(M) (S(M′) resp.) is generated by a weakly determinis-
tic modal Petri net M (M resp.). Decide whether S(M′) is a
modal language specification refinement of S(M).

4 Modal I/O-Petri Nets and Asynchronous Composition

A particular application scenario for our approach is given by systems of asyn-
chronously communication components. The characteristic property of this com-
munication style is that communication happens via a potentially unbounded
event channel such that the actions of sending (output) and receiving (input) of
a message are delayed. In order to model such systems we consider modal Petri
nets where the underlying alphabet Σ is partitioned into disjoint sets in, out,
and int of input, output and internal labels resp., i.e Σ = in ⊎ out ⊎ int. Since
ǫ /∈ Σ, this means that all labels, including the internal ones, are observable. Such
alphabets are called I/O-alphabets and modal Petri nets over an I/O-alphabet
are called modal I/O-Petri nets. The discrimination of input, output and inter-
nal labels provides a mean to specify the communication abilities of a Petri net
and hence provides an appropriate basis for Petri net composition. A syntactic
requirement for the composability of two modal I/O-Petri nets is that their la-
bels overlap only on complementary types [2, 17], i.e. their underlying alphabets
must be composable. Formally, two I/O-alphabets Σ1 = in1 ⊎ out1 ⊎ int1 and
Σ2 = in2 ⊎ out2 ⊎ int2 are composable if Σ1 ∩Σ2 = (in1 ∩ out2) ∪ (in2 ∩ out1).

2

Definition 11 (Alphabet Composition). Let Σ1 = in1 ⊎ out1 ⊎ int1 and
Σ2 = in2 ⊎ out2 ⊎ int2 be two composable I/O-alphabets. The composition of Σ1

and Σ2 is the I/O-alphabet Σc = inc ⊎ outc ⊎ intc where:

– inc = (in1 \ out2) ⊎ (in2 \ out1),
– outc = (out1 \ in2) ⊎ (out2 \ in1),
– intc = {a⊲ | a ∈ Σ1 ∩ Σ2} ⊎ {⊲a | a ∈ Σ1 ∩ Σ2} ⊎ int1 ⊎ int2.

The input and output labels of the alphabet composition are the input and
output labels of the underlying alphabets which are not used for communica-
tion, and hence are “left open”. The internal labels of the alphabet composition
are obtained from the internal labels of the underlying alphabets and from their
shared input/output labels. Since we are interested here in asynchronous com-
munication each shared label a is duplicated to a⊲ and ⊲a where the former
represents the asynchronous sending of a message and the latter represents the
receipt of the message (at some later point in time).

2 Note that for composable alphabets in1 ∩ in2 = ∅ and out1 ∩ out2 = ∅.

We are now able to define the asynchronous composition of composable modal
I/O-Petri nets. We first take the disjoint union of the two nets. Then we add a
new place pa (called channel place) for each shared label a.3 The shared label
a of every output transition t becomes a⊲ and such a transition produces a
token in pa. The shared label a of every input transition t becomes ⊲a and
such a transition consumes a token from pa. The next definition formalizes this
description.

Definition 12 (Asynchronous Composition). Let M1 = (N1, T1�
), N1 =

(P1, T1, W
−
1 , W+

1 , λ1, m10
) be a modal I/O-Petri net over the I/O-alphabet Σ1 =

in1 ⊎ out1 ⊎ int1 and let M2 = (N2, T2�
), N2 = (P2, T2, W

−
2 , W+

2 , λ2, m20
) be a

modal I/O-Petri net over the I/O-alphabet Σ2 = in2 ⊎ out2 ⊎ int2. M1 and M2

are composable if P1 ∩ P2 = ∅, T1 ∩ T2 = ∅ and if Σ1 and Σ2 are composable.
In this case, their asynchronous composition Mc, also denoted by M1 ⊗as M2,
is the modal Petri net over the alphabet composition Σc, defined as follows:

– Pc = P1 ⊎ P2 ⊎ {pa | a ∈ Σ1 ∩ Σ2} (each pa is a new place)
– Tc = T1 ⊎ T2 and Tc,� = T1�

⊎ T2�

– W−
c (resp. W+

c) is the Pc × Tc backward (forward) incidence matrix defined
by:
• for each p ∈ P1 ∪ P2, t ∈ Tc,

W−
c (p, t) =







W−
1 (p, t) if p ∈ P1 and t ∈ T1

W−
2 (p, t) if p ∈ P2 and t ∈ T2

0 otherwise

W+
c (p, t) =







W+
1 (p, t) if p ∈ P1 and t ∈ T1

W+
2 (p, t) if p ∈ P2 and t ∈ T2

0 otherwise

• for each pa ∈ Pc \ {P1 ∪ P2} with a ∈ Σ1 ∩Σ2 and for all {i, j} = {1, 2}
and each t ∈ Ti with,

W−
c (pa, t) =

{

1 if a = λi(t) ∈ ini ∩ outj
0 otherwise

W+
c (pa, t) =

{

1 if a = λi(t) ∈ inj ∩ outi
0 otherwise

– λc : Tc → Σc is defined, for all t ∈ Tc and for all {i, j} = {1, 2}, by

λc(t) =







λi(t) if t ∈ Ti, λi(t) /∈ Σ1 ∩ Σ2
⊲λi(t) if t ∈ Ti, λi(t) ∈ ini ∩ outj
λi(t)

⊲ if t ∈ Ti, λi(t) ∈ inj ∩ outi

3 Technically, the new places pa play the same role as interface places in open nets.
However, the “openness” of a modal I/O-Petri net is determined by the input/output
lables on its transitions rather than by input/output places.

– mc0
is defined, for each place p ∈ Pc, by

mc0
(p) =







m10
(p) if p ∈ P1

m20
(p) if p ∈ P2

0 otherwise

Proposition 1. The asynchronous composition of two weakly deterministic modal
I/O-Petri nets is again a weakly deterministic modal I/O-Petri net.

Proof. (Sketch) We introduce the following notations. Given a word σ over some
alphabet A and A′ ⊆ A, |σ| denotes the length of σ, σ⌊A′ denotes the projection
of σ on A′ and |σ|A′ is defined by |σ|A′ = |σ⌊A′ |. Given a shared label a, out(a)
(in(a) resp.) denotes the set of output (input resp.) transitions with label a.
Given a marking m of Mc, m(i) denotes the projection of m on Pi with i ∈ {1, 2}.

We start the proof with a key observation. Let m0[σ〉m be a firing sequence of
Mc. Then:

– For every i ∈ {1, 2}, mi0 [σ⌊Ti
〉m(i) is a firing sequence of Mi.

– For every shared label a, m(pa) = |σ|out(a) − |σ|in(a).

We only prove that Mc is weakly deterministic. The proof of the other condition
is similar.
Let m0[σ〉m[σ∗t〉m∗ and m0[σ

′〉m′ be a firing sequence of Mc with λc(σ) =
λc(σ

′), λc(σ
∗) = ǫ and λc(t) ∈ Σc. Due to the equality of labels of σ and σ′ (and

using the key observation), for every i ∈ {1, 2}, m(i) and m′(i) are reached by
sequences with same labels and for every shared label a, m(pa) = m′(pa).

Assume w.l.o.g. that t ∈ T1, then by weak determinism of M1 there is a firing
sequence m′(1)[σ′∗

1 〉 with λ1(σ
′∗
1) = λ1(t). If t is not an input transition there is

no input transition in σ′∗
1 . So σ′∗

1 is fireable from m′ in Mc and we are done.
Otherwise let a = λ1(t) then (1) m(pa)(= m′(pa)) > 0 and (2) there is exactly
an input transition in σ′∗

1 and its label is a. So again σ′∗
1 is fireable from m′ in

Mc. ⊓⊔

Example 5. Consider the two modal producer and consumer Petri nets of Fig. 2
as I/O-nets where the producer alphabet has the input label in, the output label
m and no internal labels while the consumer has the input label m, the output
label out and no internal labels as well. Obviously, both nets are composable and
their asynchronous composition yields the net shown in Fig. 5. The alphabet of
the composed net has the input label in, the output label out and the internal
labels m⊲ and ⊲m. The Petri net composition describes an infinite state system
and its generated modal language specification has a language which is no longer
regular.

We will now discuss how the results of our theory presented in Sect. 3 can
be applied in typical application scenarios involving asynchronous composition.
Assume given an abstract requirements specification for a possibly infinite state
system given in form of a modal I/O-Petri net M. As an example for M consider

• •

(a) (b)

out
m⊲ ⊲m

in

Fig. 5. Composition of the producer and consumer Petri nets

in out

Fig. 6. Requirements specification for an infinite state producer/consumer system

the requirements specification for an infinite state producer/consumer system
presented by the modal I/O-Petri net in Fig. 6. The system is infinite since the
transition labeled with in can always fire. Such requirements specifications are
typically implemented by an architecture which involves several communicating
components, presented by modal I/O-Petri nets, say M1 and M2. Such compo-
nents could be, for instance, off-the-shelf components which are now reused for a
particular purpose. Then one is interested to check whether the designed archi-
tecture, say Mc = M1 ⊗as M2, obtained by component composition is indeed
a correct implementation/refinement of the given requirements specification M.
An example architecture for a producer/consumer system is shown by the asyn-
chronous composition of the two Petri nets in Fig. 5. According to our theory in
Sect. 3, implementation correctness could mean that the modal language specifi-
cation S(Mc) generated by Mc is a modal language specification refinement, in
the sense of Def. 2, of the modal language specification S(M) generated by M.
Unfortunatley, we can immediately detect that this cannot be the case since the
asynchronous composition has additional communication actions represented by
internal labels of the form a⊲ and ⊲a which are not present in the abstract
requirements specification. In the example the internal labels are just the labels
m⊲ and ⊲m used for the communication. On the other hand, from the observa-
tional point of view internal actions, in particular communication actions, can
be abstracted away when considering refinements. In our approach this can be
simply achieved by relabeling internal labels, and hence communication labels
a⊲ and ⊲a, to ǫ which is formally defined by the following hiding operator:

Definition 13 (Hiding). Let M = (N , T�) be a modal I/O-Petri net over the
I/O-alphabet Σ = in⊎ out⊎ int with Petri net N = (P, T, W−, W+, λ, m0). Let
α(Σ) = in⊎out⊎∅ and let α : Σ∪{ǫ} → (Σ\int)∪{ǫ} be the relabeling defined by
α(a) = a if a ∈ in⊎out, α(a) = ǫ otherwise. Then hiding of internal actions from
M yields the modal I/O-Petri net α(M) = (α(N), T�) over the I/O-alphabet
α(Σ) = in⊎out⊎∅ with underlying Petri net α(N) = (P, T, W−, W+, α◦λ, m0).

Coming back to the considerations from above we can then express implemen-
tation correctness by requiring that the modal language specification S(α(Mc))
generated by α(Mc) is a modal language specification refinement of the modal
language specification S(M) generated by M. According to the results of Sect. 6,
we can decide this if M and α(Mc) belong to the class of weakly deterministic
modal Petri nets which again is decidable. Looking to the producer/consumer
example the “abstract” Petri net in Fig. 6 is obviously modally weakly deter-
ministic. For the composed Petri nets in Fig. 5 it is not obvious that the hiding
operator produces a modally weakly deterministic net but, according to the re-
sults of Sect. 6, we can decide it (and get a positive answer). Note, however, that
in the case where one of the transitions used for the communication were not a
“must” then, after hiding, the Petri net composition would not satisfy the second
condition of modal weak determinacy. Finally, we can also decide whether the
refinement relation holds in the example between the generated modal language
specifications and get also a positive answer.

5 Case Study: Cash Desk Application

In order to illustrate our approach with a more ambitious example we consider
a cash desk application (inspired by the case study of a trading system in [26]).
First, we provide a requirement specification for the behavior of the cash desk
in terms of the modal I/O-Petri net shown in Fig. 7. The net is based on an
I/O-alphabet partitioned into sets of input labels and output labels. There are
no internal labels in this requirement specification. Here and in the following
drawings we write m? to indicate that a label m belongs to the set of input
labels; similarly, we write m! if a label m belongs to the set of output labels.

The requirement specification says that a cash desk must be able to read
repeatedly an item, represented by the must-transition with input label item?,
and that afterwards it must be able to print (on the bill) each item’s details
(output printItem!). Since the number of items to be processed is not limited,
and since the cash desk can proceed with reading the next item before the details
of the previous item have been printed, the system specification involves infinitely
many states. On the other hand, the specification determines what must/may
be done when a sale is finished. First, when no item is read anymore, it must be
possible to finish a sale (input finishSale?) and then to print the total sum of
the sale (output printTotal!). Afterwards the cash desk must be able to accept
cash payment (input cash?), but it may also be implemented in such a way
that one can choose a credit card for the payment. Hence, the transition with

Fig. 7. Requirement specification for a cash desk

input label creditCard? is a may-transition. Note that printItem! may always
interleave with other actions but at most as often as item? has occurred before.
Hence this is a loose specification. In practice one would expect that printTotal!
can only occur if the details of all inputed items are indeed printed before, but
to specify such a property would need further extensions of the formalism.

We are now going to provide a refinement of the cash desk requirement
specification. For this purpose we want to use two components, one representing
a graphical user interface of the cash desk (Cash Desk GUI) and another one
representing a controller of the cash desk (Cash Desk Controller). The single
components with their input and output labels are shown in Fig. 8 and the
behavior of each single component is specified by the modal I/O-Petri nets in
Fig. 9.

Fig. 8. Components Cash Desk GUI and Cash Desk controller

The specified behavior of the cash desk GUI is straightforward. It is initiated
by an input of newSale? from the environment and then the GUI must be able
to read iteratively items (input item?) or to accept a request to finish a sale
(input saleFinish?). After an item has been read the GUI must immediately
forward the details of the item for further processing to the environment (output
itemReady!). Similarly, if the GUI has received a request to finish a sale it must
forward this request to the environment to take over the control (output finish!).

Fig. 9. Modal I/O-Petri nets for Cash Desk GUI (left) and Cash Desk Controller (right)

The behavior of the cash desk controller specified by the Petri net on the
righthand side of Fig. 9 is more subtle. It contains two unconnected parts, the
“upper” part describing a global protocol that a cash desk controller must fol-
low and the “lower” part controlling the printing of items. As a consequence,
the cash desk controller is always able to consume items with itemReady? and
then to print the item with printItem!. In particular printItem! can interleave
everywhere (which, in fact, is also possible in the requirement specification). Of
course, this is not a desirable behavior for a concrete implementation of the cash
desk controller and it would be better if the cash desk controller could only finish
(finish?) if there are no more items provided by the environment for itemReady?.
In a concrete implementation this could be achieved, e.g., by introducing a pri-
ority such that the cash desk controller priorizes available inputs for itemReady?
against available inputs for finish?. Such an implementation would be conform
to our specification of the cash desk controller, but to specify such a priorization
would need further extensions of the formalism.

Finally, we connect the two components which yields the system architecture
shown in Fig. 10 whose dynamics is described by the asynchronous composition
of the I/O-Petri nets of the single components as shown in Fig. 11.4

4 Remember that in the asynchronous composition of Petri nets the (internal) com-
munication labels are either of the form m⊲ (representing the sending of an output
to the channel place) or of the form ⊲m (representing the receiption of an input
from the channel place).

Fig. 10. Composition of cash desk GUI and cash desk controller components: static
view

Fig. 11. Asynchronous composition of cash desk GUI and cash desk controller Petri
nets

All Petri nets considered here are modally weakly determinisitic, which is de-
cidable by the results of Sect. 6. Moreover, after hiding the communication labels
of the form m⊲ and ⊲m in the asynchronous composition in Fig. 11 (by relabel-
ing them to ǫ), the resulting net is also modally weakly deterministic. Therefore
we can also decide, according to Sect. 6, whether the modal language specifica-
tion generated by the Petri net obtained by hiding the internal communication
labels from the asynchronous composition in Fig. 11 is a modal refinement of
the modal language specification generated by the modal Petri net for the re-
quirement specification in Fig. 7. This is indeed the case but requires a detailed
proof.

6 Decision Algorithms

We begin this section by some recalling semi-linear sets and decision procedures
in Petri nets.

Let E ⊆ N
k, E is a linear set if there exists a finite set of vectors of N

k

{v0, . . . , vn} such that E = {v0 +
∑

1≤i≤n λivi | ∀i λi ∈ N}. A semi-linear
set [9] is a finite union of linear sets; a representation of it is given by the
family of finite sets of vectors defining the corresponding linear sets. Semi-linear
sets are effectively closed w.r.t. union, intersection and complementation. This
means that one can compute a representation of the union, intersection and
complementation starting from a representation of the original semi-linear sets.
E is an upward closed set if ∀v ∈ E v′ ≥ v ⇒ v′ ∈ E. An upward closed set
has a finite set of minimal vectors denoted min(E). An upward closed set is a
semi-linear set which has a representation that can be derived from the equation
E = min(E) + N

k if min(E) is computable.

Given a Petri net N and a marking m, the reachability problem consists in
deciding whether m is reachable from m0 in N . This problem is decidable [19].
Furthermore this procedure can be adapted to semi-linear sets when markings
are identified to vectors of N

|P |. Given a semi-linear set E of markings, in order
to decide whether there exists a marking in E which is reachable, we proceed
as follows. For any linear set E′ = {v0 +

∑

1≤i≤n λivi | ∀i λi ∈ N} associated
with E we build a net NE′ by adding transitions t1, . . . , tn. Transition ti has vi

as input vector and the null vector as output vector. Then one checks whether
v0 is reachable in NE′ . E is reachable from m0 iff one of these tests is positive.

In [28] given a Petri net, several procedures have been designed to compute
the minimal set of markings of several interesting upward closed sets. In par-
ticular, given a transition t, the set of markings m from which there exists a
transition sequence σ with m[σt〉 is effectively computable.

Now we solve the decision problems stated in the previous sections.

Proposition 2. Let N be a labeled Petri net, then it is decidable whether N is
weakly deterministic.

Proof. First we build a net N ′ (1) whose places are two copies of places of N , (2)
whose firing sequences are pairs of firing sequences in N with the same label and,
(3) whose markings are pairs of the corresponding reached markings in N . Then
we define the semilinear sets Fa with a ∈ Σ that characterize the markings of
N ′ where a firing sequence can produce the label a starting from the first item of
the pair while such a sequence does not exist from the second item of the pair.
Proceeding in such a way reduces the weak determinism N to a reachability
problem for N ′.

Let us detail the proof. N ′ is defined as follows.

– Its set of places is the union of two disjoint copies P1 and P2 of P .
– There is one transition (t, t′) for every t and t′ s.t. λ(t) = λ(t′) 6= ε. The input

(resp. output) vector of this transition is the one of t with P substituted by
P1 plus the one of t′ with P substituted by P2.

– There are two transitions t1, t2 for every t s.t. λ(t) = ε. The input (resp.
output) vector of t1 (resp t2) is the one of t with P substituted by P1 (resp.
P2).

– The initial marking is m0 with P substituted by P1 plus m0 with P substi-
tuted by P2.

Then for every a ∈ Σ, we compute a representation of the set Ea from which,
in N a transition labelled by a is eventually firable after the firing of silent
transitions (using results of [28]) and a representation of its complementary set
Ea. Afterwards we compute the representation of the semi-linear set Fa whose
projection on P1 is a vector of Ea with P substituted by P1 and whose projection
on P2 is a vector of Ea with P substituted by P2. Let F =

⋃

a∈Σ Fa then N is
weakly deterministic iff F is not reachable which is decidable. ⊓⊔

Proposition 3. Let N be a weakly deterministic labeled Petri net and N ′ be a
labeled Petri net then it is decidable whether L(N ′) ⊆ L(N).

Proof. W.l.o.g. we assume that P and P ′ are disjoint. First we build a net N ′′

(1) whose places are copies of places of N and N ′, (2) whose firing sequences
are pairs of firing sequences in N and N ′ with the same label and, (3) whose
markings are pairs of the corresponding reached markings in N and in N ′. Then
we define the semilinear sets Fa with a ∈ Σ that characterize the markings of
N ′′ where a firing sequence can produce the label a starting from the item of the
pair corresponding to N ′ while such a sequence does not exist from the item of
the pair corresponding to N . Now the key observation is that since N is weakly
deterministic, from any other marking of N reached by a sequence with the
same label there does not exist such a sequence. Thus proceeding in such a way
reduces the inclusion L(N ′) ⊆ L(N) to a reachability problem for N ′′.

Let us detail the proof. The net N ′′ is defined as follows.

– Its set of places is the union of P and P ′.
– There is one transition (t, t′) for every t ∈ T and t′ ∈ T ′ s.t. λ(t) = λ(t′) 6= ε.

The input (resp. output) vector of this transition is the one of t plus the one
of t′.

– Every transition t ∈ T ∪ T ′ s.t. λ(t) = ε is a transition of N ′′.
– The initial marking is m0 + m′

0.

Then for every a ∈ Σ, we compute a representation of the set EN ,a (resp.
EN ′,a) from which in N a transition labelled by a is eventually firable preceeded
only by silent transitions and a representation of its complementary set EN ,a

(resp. EN ′,a). Afterwards we compute the representation of the semi-linear set Fa

whose projection on P is a vector of EN ,a and whose projection on P ′ is a vector
of EN ′,a. Let F =

⋃

a∈Σ Fa then L(N) ⊆ L′(N ′) iff F is not reachable. This
procedure is sound. Indeed assume that some marking (m, m′) ∈ Fa is reachable
in N ′′ witnessing that after some word w, some firing sequences σ ∈ N , σ′ ∈ N ′

s.t. m0[σ〉m, m′
0[σ

′〉m′ and λ(σ) = λ′(σ′) from m one cannot “observe” a and
from m′ one can “observe” a. Then due to weak determinism of N for every m∗

s.t. there exists a sequence σ∗ with m0[σ
∗〉m∗ and λ(σ∗) = λ(σ), m∗ is also in

EN ,a. ⊓⊔

Proposition 4. Let M be a modal Petri net, then it is decidable whether M is
(modally) weakly deterministic.

Proof. We first recall the two conditions for weak determinism:

1. N is weakly deterministic, and
2. for each σ, σ′ ∈ T ∗ with λ(σ) = λ(σ′) and for any markings m and m′ with

m0[σ〉m and m0[σ
′〉m′, we have mustmk(m) = mustmk(m′).

Observe that the first condition for being weakly deterministic is decidable by
proposition 2. In order to decide the second condition, we build as in the cor-
responding proof the net N ′. Then we build representations for the following
semi-linear sets. Ga is the set of markings m of N such that from m a transition
of T� labelled by a is eventually firable after firing silent transitions of T�. After-
wards we compute the representation of the semi-linear set Ha whose projection
on P1 is a vector of Ga with P substituted by P1 and whose projection on P2 is
a vector of Ga with P substituted by P2. Let H =

⋃

a∈Σ Ha then M fulfills the
second condition of weak determinism iff H is not reachable. ⊓⊔

Proposition 5. Let M,M′ be two weakly deterministic modal Petri nets then
it is decidable whether the modal specification S(M) refines S(M′).

Proof. We first recall the two conditions for refinement:

1. L′ ⊆ L,
2. for every u ∈ L′, must(u) ⊆ must′(u), i.e every required action after the

trace u in L is a required action after u in L′.

Observe that the first condition for refinement is decidable by proposition 3. In
order to decide the second condition, we build as in the corresponding proof the
net N ′′. Then we build representations for the semi-linear sets Ga (as in the
previous proof) and similarly G′

a in the case of N ′. Afterwards we compute the
representation of the semi-linear set Ha whose projection on P is a vector of Ga

and whose projection on P ′ is a vector of G′
a. Let H =

⋃

a∈Σ Ha then the second
condition for refinement holds iff H is not reachable. This procedure is sound.
Indeed assume that some marking (m, m′) ∈ Ha is reachable in N ′′ witnessing
that after some word w, some firing sequences σ ∈ N , σ′ ∈ N ′ s.t. m0[σ〉m,
m′

0[σ
′〉m′ and λ(σ) = λ′(σ′) = w and from m one can “observe” b by a “must”

sequence and from m′ one cannot observe a by a must sequence. Then due to
(the second condition of) weak determinism of N ′ for every m∗ s.t. there exists
a sequence σ∗ with m′

0[σ
∗〉m∗ and λ′(σ∗) = λ′(σ′), m∗ is also in G′

a. ⊓⊔

7 Conclusion

In the present work, we have introduced modal I/O-Petri nets and we have
provided decision procedures to decide whether such Petri nets are weakly de-
terministic and whether two modal language specifications generated by weakly
deterministic modal Petri nets are related by the modal refinement relation. It
has been shown that our theory is particularly useful in the context of refine-
ments given by an architecture of asynchronously communicating components.

Our work extends the expressive power of modal transition systems [18, 17]
and of modal language specifications [23, 24] since Petri nets allow to specify
with a finite representation the behavior of infinite state systems. On the other
hand, our work provides also an extension of Petri net theory since we have
considered observational refinement abstracting silent moves during language
generation and we have introduced modalities for Petri nets. In particular, the
must modality is important to express that certain activities must be respected
by refinements and hence implementations.

An important role in our approach has been played by the hypothesis of
weak determinacy which has two justifications. First, without this hypothesis,
the refinement problem is undecidable (but we have not proved it in this paper).
Secondly, as nets represent specifications, using weakly deterministic Petri nets
limits the class of specifications, but this class is already much more expressive
than regular specifications (the standard model). But still weak determinacy is a
proper restriction since it does not allow internal decisions if they lead to different
observable execution traces. More discussions and examples of weak determinacy
in the context of state transition systems without modalities can be found in [11].
In particular, it is shown in [11] that a transition system is weakly deterministic
if its minimization w.r.t weak bisimulation leads to a deterministic transition
system without silent transitions. From the point of view of complexity, it is
well known that reachability of Petri nets has a high theoretical complexity
but in practical cases of specifications the empirical complexity is significantly
smaller than the theoretical one.

For the application of our theory to asynchronously communicating compo-
nents we have used a hiding operator which translates communication actions
into silent transitions (which then are abstracted for refinement). Since, in gen-
eral, the hiding operator does not preserve modal weak determinacy, we are
interested in the investigation of conditions which ensure this preservation prop-

erty. This concerns also conditions for single components such that the hiding of
communication labels from their composition is automatically modally weakly
deterministic. We claim that this is indeed the case if the single components
are modally weakly determinsitic and if all transitions concerning communica-
tion actions are must -transitions. Another direction of future research concerns
the study of behavioral compatibility of interacting components on the basis
of modal I/O-Petri nets, and the establishment of an interface theory for this
framework along the lines of [1, 17, 5]. This would involve, in particular, composi-
tionality results on the preservation of local refinements by global compositions.
Such results are important to achieve independent implementability and thus
substitutability of components which may lead to applications of our theory
to web service substitutability as considered in [27]. Actually, the refinement
notion proposed in [27], called accordance there, is conceptually different from
ours. In [27], refinement is motivated by requiring preservation of interaction cor-
rectness of services with their communication partners. In our approach we do
not consider communication partners for the refinement definition, but we com-
pare behaviors of abstract and concrete modal Petri nets (formalized by their
generated modal language specifications). Then refinement ensures, first, that
all observable execution traces of the concrete net are allowed by the abstract
one, hence safety properties are preserved, and secondly, that all required tran-
sitions of the abstract net are respected by the concrete one. In modal interface
theories [17, 5, 12] this property has then the consequence that certain required
interactions are preserved by refinements, much in the spirit of [27].

Acknowledgement. We are very grateful to all reviewers of the submitted
version of this paper who have provided detailed reports with many valuable
hints and suggestions.

References

1. L. de Alfaro and T. A. Henzinger. Interface Theories for Component-Based Design.
In Proc. EMSOFT’01, pages 148–165, 2001.

2. L. de Alfaro and T. A. Henzinger. Interface-based Design. In NATO Science Series:
Mathematics, Physics, and Chemistry, vol. 195, pages 83–104, Springer, 2005.

3. A. Antonik, M. Huth, K. G. Larsen, U. Nyman and A. Wasowski. Complexity of
decision problems for mixed and modal specifications. In Proc. of the 10th Int.
Conf. on Found. of Software Science and Comp. Struct. (FoSSaCS’08), vol. 4962
of LNCS, Springer, 2008.

4. A. Antonik, M. Huth, K.G. Larsen, U. Nyman and A. Wasowski. EXPTIME-
complete decision problems for mixed and modal specifications. In: Proc. of EX-
PRESS, July 2008.

5. S. Bauer and P. Mayer and A. Schroeder and R. Hennicker. On Weak Modal
Compatibility, Refinement, and the MIO Workbench. In Proc. 16th Int. Conf.
Tools and Algor. for the Constr. and Analysis of Systems (TACAS’10), vol. 6015
of LNCS, pages 175–189, Springer, 2010.

6. N. Bertrand, A. Legay, S. Pinchinat, J-B. Raclet A Compositional Approach on
Modal Specifications for Timed Systems. ICFEM 2009, pages 679–697, 2009.

7. D. Brand and P. Zafiropulo On communicating finite-state machines. JACM,
volume 30(2), pages 323–342, 1983.

8. B. Delahaye, K. G. Larsen, A. Legay, M. L. Pedersen, and A. Wasowski Decision
Problems for Interval Markov Chains LATA’2011, to appear

9. S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages.
Pacific Journal of Mathematics, 16(2) pages 285–296, 1966.

10. M.H.T. Hack. Decidability questions for Petri Nets. Ph.D.Thesis. M.I.T (1976)
11. R. Hennicker and S. Janisch and A. Knapp. On the Observable Behaviour of

Composite Components. In Electr. Notes Theor. Comput. Sci. Volume 260, pages
125–153, 2010.

12. R. Hennicker and A.Knapp. Modal Interface Theories for Communication-Safe
Component Assemblies. In Proc. 8th Int. Conf. on Theoretical Aspects of Com-
puting (ICTAC’11), LNCS, Springer, 2011, to appear.

13. R.M. Karp, R.E. Miller Parallel program schemata. In: JTSS 4, 1969, pages
147–195.

14. V. Khomenko, M. Schaefer and W. Vogler. Output-Determinacy and Asynchronous
Circuit Synthesis. In: Fundam. Inf. 88, 4, pages 541–579, 2008.

15. K.G. Larsen. Modal specifications. In: Joseph Sifakis, ed., Automatic Verification
Methods for Finite State Systems, vol. 407 of LNCS, pages 232–246, 1989.

16. K.G. Larsen, U. Nyman and A. Wasowski. On modal refinement and consistency. In
Proc. of the 18th International Conference on Concurrency Theory, (CONCUR07),
LNCS pages 105–119, Springer Verlag, 2007.

17. K.G. Larsen, U. Nyman and A. Wasowski. Modal I/O automata for interface and
product line theories. In Prog. Languages and Systems, 16th European Symposium
on Programming (ESOP’07), vol. 4421 of LNCS, pages 64–79. Springer, 2007.

18. K.G. Larsen and B. Thomsen. A modal process logic. In:Third Annual IEEE
Symposium on Logic in Computer Science LICS, pages 203–210, 1988.

19. E. Mayr. An algorithm for the general Petri net reachability problem. In Proc. 13th
Annual ACM Symp. on Theor. of Computing (STOC’81), pages 238–246, 1981.

20. R. Milner Communication and concurrency. Prentice Hall, 1989.
21. E. Pelz. Closure properties of deterministic Petri net languages. In STACS’87, vol.

247 of LNCS, Springer 1987.
22. J.L. Peterson, Petri net theory and the modeling of systems, Prentice-Hall, Engle-

wood Cliffs, NJ, 1981
23. J.-B. Raclet. Quotient de spécifications pour la réutilisation de composants. PhD

Thesis, Ecole doctorale Matisse, Université de Rennes 1, IRISA. December 2007
24. J.-B. Raclet. Residual for Component Specifications. In: Proc. of the 4th Inter-

national Workshop on Formal Aspects of Component Software (FACS07), Sophia-
Antipolis, France, September 2007.

25. J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay and R. Passerone.
Modal Interfaces: Unifying Interface Automata and Modal Specifications. In Proc.
of 9th International Conference on Embedded Software (EMSOFT’09), Grenoble,
France, ACM, October 2009.

26. A. Rausch, R. Reussner, R. Mirandola, U. Nyman and F. Plasil. The Common
Component Modeling Example: Comparing Software Component Models. vol. 5153
of LNCS, Springer, 2008.

27. C. Stahl, K. Wolf. Deciding service composition and substitutability using extended
operating guidelines. Data Knowl. Eng., 68(9): 819-833 (2009).

28. R. Valk, M. Jantzen. The residue of vector sets with applications to decidability
problems in Petri nets. Advances in Petri Nets 1984, LNCS volume 188, pages
234–258, 1984.

