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Abstract. For a large Markovian model, a “product form” is an explio#sdription of the steady-
state behaviour which is otherwise generally untractaBleing first introduced in queueing net-
works, it has been adapted to Markovian Petri nets. Here wieead three relevant issues for
product-form Petri nets which were left fully or partiallpen: (1) we provide a sound and complete
set of rules for the synthesis; (2) we characterise the ee@uplexity of classical problems like
reachability; (3) we introduce a new subclass for which therralising constant (a crucial value for
product-form expression) can be efficiently computed.
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1. Introduction

Product-form for stochastic models. Markovian models of discrete events systems are powerful fo
malisms for modelling and evaluating the performances ohsystems. The main goal is the equi-
librium performance analysis. It requires to compute tlai@bary distribution of a continuous time
Markov process derived from the model. Unfortunately theeptally huge (sometimes infinite) state
space of the models often prevents the modeller from comgukplicitly this distribution. To cope
with the issue, one can forget about exact solutions ankt $ettapproximations, bounds, or even sim-
ulations. The other possibility is to focus on subclassesvinich some kind of explicit description is
indeed possible. In this direction, the most efficient artts&ectory approach may be tieoduct-form
method: for a model composed of modules, the stationarygitty of a global state may be expressed
as a product of quantities depending only on local statadetivby anormalising constant

Such a method is applicable when the interactions betwesmibdules are “weak”. This is the
case for queueing networks where the interactions betweenes are described by a random rout-
ing of clients. Various classes of queueing networks withdpct-form solutions have been exhib-
ited [18, 6, 19]. Moreover efficient algorithms have beerigleed for the computation of the normalising
constant [25].
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Product-form Petri nets. Due to the explicit modelling of competition and synchraitisn, the Marko-
vian Petri nets formalism [1] is an attractive modelling g@igm. Similarly to queueing networks,
product-form Markovian Petri Nets were introduced to copthwhe combinatorial explosion of the
state space. Historically, works started with purely béhaal properties (i.e. by an analysis of the
reachability graph) as in [20], and then progressively ndoteemore and more structural characteri-
sations [21, 17]. Building on the work of [17], the authors[bd] establish the first purely structural
condition for which a product form exists and propose a patgial time algorithm to check for the
condition, see also [22] for an alternative charactensatilhese nets are call&tf-nets.

Product-form Petri nets have been applied for the spedtitatnd analysis of complex systems.
From a modelling point of view, compositional approachegehleen proposed [3, 5] as well as hi-
erarchical ones [16]. Application fields have also beentifled like (1) hardware design and more
particularly RAID storage [16] and (2) software architeeti[4].

Open issues related to product-form Petri nets.
e From a modelling point of view, it is more interesting to dgsispecific types of Petri nets by
modular constructions rather than checking a posteriogtindr a net satisfies the specification.
For instance, in [12], a sound and complete set of rules ipgaed for the synthesis of live and
bounded free-choice nets. Is it possible to get an analogrémfuct-form Petri nets?

e From a qualitative analysis point of view, it is interestitgknow the complexity of classical
problems (reachability, coverability, liveness, etcdaiven subclass of Petri nets and to compare
it with that of general Petri nets. For product-form Pettisp@artial results were presented in [14]
but several questions were left open. For instance, thédabdity problem isPSPACE-complete
for safe Petri nets but in safe product-form Petri nets iniy proved to beNP-hard in [14].

e From a guantitative analysis point of view, an important difficult issue is the computation of
the normalising constant. Indeed, in product-form Pettshene can directly compute relative
probabilities (e.g. available versus unavailable sejyibat determining absolute probabilities
requires to compute the normalising constant (i.e. the suen @achable states of the relative
probabilities). In models of queueing networks, this careffigiently performed using dynamic
programming. In Petri nets, it has been proved that the efficcomputation is possible when
the linear invariants characterise the set of reachabl&ingg [11]. Unfortunately, all the known
subclasses of product-form nets that fulfill this charastgion are models of queueing networks!

Our contribution. Here we address the three above issues. In Section 3, welpraget of sound and
complete rules for generating afi?-net. We also use these rules for transforming a generail itr
into a related product-form Petri net. In Section 4, we soblevant complexity issues. More precisely,
we show that the reachability and liveness problemsP8BACE-complete for safe product-form nets
and that the coverability problem EXPSPACE-complete for general product-form nets. From these
complexity results, we conjecture that the problem of cotimguthe normalising constant does not admit
an efficient solution for the general class of product-foretrifhets. However, in Section 5, we introduce
a large subclass of product-form Petri nets, denétéaets, for which the normalising constant can be
efficiently computed. We emphasise that contrary to all Egses related to queueing networR3;nets
may admitspuriousmarkings (i.e. that fufill the invariants while being unrbable).

The above results may change our perspective on produntfatri nets. It is proved in [22] that
the intersection of free-choice and product-form Petrsngtthe class of Jackson networks [18]. This
may suggest that the class of product-form Petri nets is Boméncluded in the class of product-form
gueueing networks. In the present paper, we refute thisfdelitwo ways. First by showing that some
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classical problems are as complex for product-form Petis as for general Petri nets whereas they
become very simple for product-form queueing networks.o8edy exhibiting the large class 6F-
nets which can model complex behaviours (e.qg. illustraiethbe presence of spurious markings).

A conference version of the paper appeared in [15]. The pteszsion includes additional results
(Subsection 2.2) together with full proofs of the resultShdre is one exception, Proposition 4.3, for
which the proof can be found in the arXiv version of the papailable athttp://arxiv.org/abs/
1104.0291)

Notations. We often denote a vectar € R® by > u(s)s. The supportof vectoru is the subset
S'={se S |u(s)#0}.

2. Petri nets, product-form nets, andln?-nets

Definition 2.1. (Petri net)

A Petri netis a 5-tupleN = (P, T, W~, W mg) where:

P is afinite set oplaces

T is a finite set otransitions disjoint from P;

W=, resp.W,is aP x T matrix with coefficients in\;
mo € N¥ is theinitial marking.

Below, we also calPetri netthe unmarked quadruple?, T, W—, W). The presence or absence of
a marking will depend on the context.

A Petri net is represented in Figure 1. The following graphimonventions are used: places are
represented by circles and transitions by rectangles. eTisaan arc fronp € Ptot € T (resp. from
teTtope P)if WH(p,t) > 0 (resp. W~ (p,t) > 0), and the weightV *(p, t) (resp. W~ (p, 1)) is
written above the corresponding arc except when it is equalih which case it is omitted. The initial
marking is materialised: ifng(p) = k, thenk tokens are drawn inside the cirgle Let P’ C P andm
be a marking them(P’) is defined byn(P") = 3 p m(p).

The matrix/W = W+ — W~ is theincidence matriof the Petri net. Thenput bag®t (resp.output
bagt®) of the transitiort is the column vector ofV’ ~ (resp.W ) indexed byt. For a placey, we define
*p andp® similarly. A T-semi-flow(resp.S-semi-floyis aQ-valued vectow such thai?.v = (0,...,0)
(resp.v.W = (0,...,0)).

A symmetricPetri net is a Petri net such thatt € T, 3t~ € T, °*t = (t7)*,t* = *t~. A free-
choice neis a Petri net such thatit,t’ € T, either®t N *t' = (), or *t = *t’. A state machings a Petri
net such thatvt € T, |*t| = [t*| = 1. A marked graplis a Petri net such that'p € P, |*p| = |p*| = 1.

Definition 2.2. (Firing rule)
A transitiont is enabledby the markingn if m > *t (denoted bym i>); an enabled transitionmay

fire which transforms the marking into m — *¢ + ¢*, denoted byn ! =m -t te.

A markingm/’ is reachablefrom the markingn if there exists diring sequence =t ...t (k > 0)

. t t th— t . .
and a sequence of markingsi, . .., mj_; such thatm = m; = - = my_1 = m’. We write in
a condensed wayn % m/.



4 author /short title

-2 -1 1 2
W = .
( 2 1 -1 -2 )

Figure 1. Petri net.

We denote byR(m) the set of markings which are reachable from the marking The reacha-
bility graph of a Petri net with initial markingn is the directed graph with nodé8(m,) and arcs
{(m,m)|3teT:m 5 m'}.

Given (N, mg) andm,, thereachability problenis to decide ifm; € R(my), and thecoverability
problemis to decide if3mgy € R(myg), ma > my.

A Petrinet(\N, my) islive if every transition can always be enabled again, thatis:c R(my), vVt €
T, 3Im’ € R(m), m’ L. A Petri net(\, mg) is bounded ifR (my) is finite. It is safeor 1-boundedf:
Vm € R(myg), Vp € P, m(p) < 1.

2.1. Product-form Petri nets

There exist several ways to define timed models of Petri sets[2]. We consider the model of Marko-
vian Petri nets witltace policy Roughly, with each enabled transition is associated ariictmwn clock”
whose positive initial value is set at random according texgonential distribution whose rate depends
on the transition. The first transition to reach 0 fires, whitdly enable new transitions and start new
clocks. We adopt here ttsngle-server policyvhich means that the rate of a transition does not depend
on the enabling degree of the transition. In the more gemkfahition of product-form Petri nets [14,
Definition 8], rates may depend on the current marking in &iotsd way. For the sake of readability,
we have chosen a simpler version. Results of sections 3 afiltl Hbtd with the general definition. On
the other hand, it is well-known that the complexity of thenpmtation of the normalisation constant
highly increases even for the simple case of queuing nesvditkre also the results of section 5 are only
valid with constant rates.

Definition 2.3. (Markovian PN)

A Markovian Petri net (with race policyis a Petri net equipped with a setmaftes (1¢)icr, 11t € R
The firing time of an enabled transitianis exponentially distributed with parametey. The marking
evolves as a continuous-time jump Markov process with SaéeeR (m() and infinitesimal generator

Q = (Gm,m)m,m'eR(mo), 9iveN by:

Vm, Vm' 7£ m, qmm' = Z Mt Vm, dmm = — Z dm,m’ - (21)

/
t such thatm%m’ mi#Em

W.l.o.g., we assume that there is no transitiosuch that*t = ¢°. Indeed, the firing of such a
transition does not modifiy the marking, so its removal dagsmodify the infinitesimal generator. We
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also assume thdft,,t}) # (*t2,t3) for all transitionst; # t2. Indeed, if it is not the case, the two
transitions may be replaced by a single one with the sumnted ra

An invariant measuras a non-trivial solutionv to the balance equationsv@ = (0,...,0). A
stationary distributionr is an invariant probability measuret) = (0,...,0), >, n(m) = 1.

Definition 2.4. (Product-form PN)
A Petri net is aproduct-form Petri neff for all rates (u):cr, the corresponding Markovian Petri net
admits an invariant measuresatisfying:

I(up)pep,up € Ry, Vm € R(myg), v(im) = H up” . (2.2)
peEP

The existence af satisfying (2.2) implies that the marking process is ina@ble (in other words, the
reachability graph is strongly connected). In (2.2), thessmaf the measure, i.e(R(my)) = >, v(m),
may be either finite or infinite. For a bounded Petri net, thesnaalways finite. But for an unbounded
Petri net, the typical situation will be as follows: struetuconditions on the Petri net will ensure that
the Petri net is a product-form one. Then, for some valuebefatesy will have an infinite mass, and,
for others,v will have a finite mass. In the first situation, the markinggass will be either transient
or recurrent null (unstable case). In the second situatf@marking process will be positive recurrent
(stable or ergodic case).

When the mass is finite, we cal( R(my)) the normalising constant The probability measure
7(-) = v(R(mo))~'v(-) is the unique stationary measure of the marking process.pGting explicitly
the normalising constant is an important issue, see Sestion

The goal is now to get sufficient conditions for a Petri neteémbproduct-form. To that purpose, we
introduce three notionsveak reversibility deficiency andwitnesses

Let (IV, mg) be a Petri net. The set obmplexess defined byC = {*t |t € T} U {t* |t € T}. The
reaction graphis the directed graph whose set of nodeS &nd whose set of arcs {$°¢,¢°)|t € T'}. It
can be viewed as a state machine.

Definition 2.5. (Weak reversibility: 1-nets)
A Petri net isweakly reversible (WR every connected component of its reaction graph is styong
connected. Weakly reversible Petri nets are also chlleets

The notion and the name “WR” come from the chemical litemtun the Petri net context, it was
introduced in [7, Assumption 3.2] under a different nameaittl a slightly different but equivalent for-
mulation. WR is a strong constraint. It should not be corduséh the classical notion of “reversibility”
(the marking graph is strongly connected). In particular \@Rtructural property, implies reversibility,
a behavioural one! Observe that all symmetric Petri net¥\t#re

The notion of deficiency is due to Feinberg [13].

Definition 2.6. (Deficiency)
Consider a Petri net with incidence matfix and set of complexes. Let ¢ be the number of connected
components of the reaction graph. Tdeficiencyof the Petri net is defined by¢| — ¢ — rank(WW).

The notion of witnesses appears in [14].
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Definition 2.7. (Witness)
Let c be a complex. Awvitnessof c is a vectorwit(c) € QF such that for all transition:

wit(c) - W(t)=—-1 if*t=c
wit(c) - W(t)=1 ift*=c
wit(c) - W(t) =0  otherwise,

wherelV (t) denotes the column vector bf indexed byt.

Examples. Consider the Petri net of Figure 1. First, it is WR. Indeed et of complexes i€ =
{p1,p2,2p1,2p2} and the reaction graph is:

D1 < P2, 2p1 < 2p2,

with two connected components which are strongly conne&edond, the deficiency is 1 sinck = 4,
¢ =2, and rankW) = 1. Last, one can check that none of the complexes admit a itnes

The Petri net of Figure 4 is WR and has deficiency 0. Note thattitnesses may not be unique.
Possible witnesses areit(2p1 + q1) = q1, wit(p1 + q2) = qo, wit(p2 + q3) = g3, Wit(2p2 + q4) = q4.
Another possible set of witnesses{ig , g2, —q2, —q1 }-

Proposition 2.8. (deficiency 0<= witnesses, in [22, Prop. 3.9])
A Petri net admits a witness for each complex iff it has deficje0.

Next Theorem is a combination of Feinberg's Deficiency zehedrem [13] and Kelly’s Theo-
rem [19, Theorem 8.1]. (It is proved under this form in [22ebhem 3.8].)

Theorem 2.9. (WR + deficiency 0—> product-form)
Consider a Markovian Petri net with ratés;).c7, p¢+ > 0, and assume that the underlying Petri net is
WR and has deficiency 0. Then there exists),cp, u, > 0, satisfying the equations:

YeeC, H uy Z e = Z Lbt H u;,tp. (2.3)

p:cp#0 t:*t=c t:t®*=c  p:*tp,#0
The marking process has an invariant meastse.: Vim, v(m) = ®(m)~1 [[,cp up”.

Checking the WR, computing the deficiency, determining tliteegses, and solving the equations
(2.3), all of these operations can be performed in polynbtiviee, see [14, 22].

Summing up the above, it seems worth to isolate and chriserlass of nets which are WR and
have deficiency 0. We adopt the terminology of [14].

Definition 2.10. [1%-net)
A M2-netis a Petri net which is WR and has deficiency 0.
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2.2. Some properties of WR and deficiency zero nets

LetN = (P, T,W~,W) be aPetri net. Let¥ = W' — W~ be the incidence matrix of” and letA
be the incidence matrix of the reaction graph.

Consider at first free-choice nets. It was shown in [22, $acii.3] that for free-choice nets, WR
implies deficiency zero. The converse does not hold for garfeze-choice nets. For instance, state
machines always have deficiency zero [22, Prop. 3.2], andmoglye WR. For marked graphs, however,
the converse is true, and stated below.

Proposition 2.11. The deficiency of a connected marked graph is either O or 1. Kedagraph has
deficiency zero if and only if it is WR.

Proof:

Let N be a marked graph. According to [9, Prop. 3.16], the only misiows of N area(1,--- ,1),
a € Q, hence rankV) = |T'| — 1. SinceA is aC x T matrix, ranKA) < |T'|. Henced = rank(A) —
rank W) < 1.

The “if” direction of the second claim is trivial since a matkgraph is a free-choice net. Consider the
“only if” direction. Let A/ be a deficiency zero marked graph. lebe the column vectofl, ..., 1) of
sizeT. SinceN is a marked graph, we haw& - 1 = (0,...,0). By Proposition 2.84 = BW for
someQ-valued matrixB. So we haved - 1 = BW -1 = (0,...,0). This implies that the connected
components of the reaction graph must be strongly conneletdded pick a connected component which
is not strongly connected. It admits a partition of its coexel into two subset§; andC, such that
there at least one transitiagrfrom C; to Cy and no transition front; to C;. Then vector: defined by
z(c) = 0forc € Cy andz(c) = 1for c € Cs fulfills z.A > 0 andz.A(t) > 0. Thusz.A.1 > 0 yields a
contradiction. SoV is WR. O

Proposition 2.12. For a live and bounded Petri net, deficiency zero implies weagrsibility.

Proof:

Let m, be a marking such thdt\V', my) is live and bounded. We assume tt\dthas deficiency O but
is not WR. Then there exists a terminal strongly connectedpamentC' of the reaction graph and a
transitiont, such thatf, € C' and®¢, ¢ C.

We claim that for every vector € QT such that for alt € T, v(t) > 0 andwv(ty) > 0, we have
Av # (0,...,0). Indeed,

> (Av)(e)

> (Z (t)(Lpeme — 1.”))

ceC ceC \teT
= Z U(t) (Z(lt'c — 1't6)> + U(to) .
teT—{to} ceC

SinceC' is a terminal strongly connected component, . 1ys—. — 1e;—. is either0 or 1 for all t € T..

Hence)_ . (Av)(c) > v(to) > 0. The claim is proved.
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Since (M, myg) is live and bounded, there exists a strictly positive T-stiaw v € Q' [9, Theorem
2.38], that is:vt, v(t) > 0, W -v = (0,...,0). Now recall that the deficiency d¥ is 0. According to
Proposition 2.8, there existsCax P matrix B such thatd = BW. We getAv = BWv = (0,...,0).
This contradicts the above claim. O

A home markings a marking which is reachable from every reachable markidgving a home
marking is an important property for Markovian Petri netsdded, a Petri net has a home marking iff
its reachability graph has only one terminal strongly cate@ component. And this last condition is
required for the marking process to be ergodic.

Proposition 2.13. Let A/ be a deficiency zero Petri net. Thahis WR iff there exists a markingg
such that V', mg) is live andm is a home marking.

Proof:

Suppose thatV' is WR. Letm, be a marking which enables every transition. The definitibweak
reversibility implies that every arc of the reachabilityagh belongs to a cycle, so the reachability graph
is strongly connected, thatigg is a home marking. The liveness follows trivially.

Now suppose that there exists a marking such that V', my) is live andm, is a home marking but/

is not WR. We proceed as in the proof of Prop. 2.12. €dte a terminal strongly connected component
of the reaction graph and lebe a transition such that € C and®t ¢ C. Since(N,my) is live there

is a pathry; in the reachability graph from to m; which enableg. Letm/ be the marking reached
by the firing of¢, sincem, is a home marking there is a path from m/} to mg. Thusy = 1ty is a
(directed) cycle of the reachability graph@¥’, m,). Letwv be theN” column vector such that/u € T,
v(u) is the number of occurrences ofin . Clearly,v(t) > 0 andW.v = (0,...,0). The end of the
argument follows from the claim inside the proof of Prop.2.1 O

The interest of Prop. 2.13 is twofold. On the one hand, it eatsweak reversibility and deficiency
zero which are two independent properties ([22]). On themoktiand, it shows that the only deficiency
zero and live Markovian Petri nets which are ergodic ardthaets.

Figure 2 recapitulates the relations between deficiencyveeak reversibility. The shaded cells
correspond to impossibilities. For instance, no WR freeiad nets have strictly positive deficiency.

3. Synthesis and regulation of1?-nets

The reaction graph, defined in Section 2.1, may be viewed atriariét (state machine). Let us formalise
this observation. Theeaction Petri neof A is the Petrined = (C, T, W_,W+), with for everyt € T

o W (*t,t)=1andVu #°t, W (u,t) =0

o W(t,t) =1andvu # t*, W' (u,t) =0

3.1. Synthesis

In this subsection, we consider unmarked nets. We define ttes that generate all th&-nets. The
first rule adds a strongly connected state machine.
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WR Not WR WR Not WR

§=0 §=0 /
§>0 % §>0 %

State machines Marked graphs
WR Not WR WR Not WR
5=0 §=0
d>0 6>0
Free-choice nets Live and bounded nets

and nets which have a live home marking

Figure 2. Relations between deficiendy &énd WR for some classes of Petri nets.

Definition 3.1. (State-machine insertion)
Let V' = (Pn, T, Wy, W) be anet andt = (P, Taq, Wy, W) be a strongly connected state
machine disjoint from\. The rules-add is always applicable an§y” = s-add(N, M) is defined by:
o P =PyUPMT =TvUT\y;
Vp € Py, Yt € Ty, W= (p,t) = W (p,t), W(p,t) = Wi (p, t);
Vp € Pum, Yt € Tag, W(p,t) = Wi (p,t), WH(p,t) = Wi (p,t);
All other entries of#’’~ andW'* are null.

The second rule consists in substituting to a compldéke complexc + Ap. However in order
to be applicable some conditions must be fulfilled. The fisidition requires that(p) + X is non-
negative. The second condition ensures that the substitdibes not modify the reaction graph. The
third condition preserves deficiency zero. Observe thathing condition can be checked in polynomial
time, indeed it amounts to solving a system of linear equatinQ for every complex.

Definition 3.2. (Complex update)
Let V' = (P,T,W—, W) be aln?-net,c be a complex of\, p € P, A € Z \ {0}. The ruleC-update
is applicable when:
1. A+c¢(p) >0;
2. ¢+ Apis not a complex ofV;
3. For every complex’ there exists a witnessit(c¢’) s.t. wit(c')(p) = 0.
The resulting net\V’ = C-update(N, ¢, p, \) is defined by:
e PP=P,T =T:
e ETSLW () £c, W () =W—(t), "t € TStW—(t) =c, W (t) = c+ Ap
o VteTsStWTH(t)#c, WHEt)=W—(t),Vt e TstWT(t)=c, WT(t)=c+ Ap.

The last rule “cleans” the net by deleting an isolated pl&de.call this operatio®-delete.

Definition 3.3. (Place deletion)
Let NV = (P, T,W~, W) be a net and leb be an isolated place oY, i.e. W~ (p) = W*(p) = 0.



10 author / short title

Then the ruleb-delete is applicable andv’ = P-delete(/N,p) is defined by:
« P'=P\{p},T'=T;
o Vge P, W'=(q) = W (q), W(q) = W*(q).

Proposition 3.4 shows the interest of the rules for synthefiil?-nets.

Proposition 3.4. (Soundness and Completeness)
Let A be aln?-net.
e If arules-add, C-update or P-delete is applicable onV then the resulting net is still @2-net.
e The net\ can be obtained by successive applications of the 8dedd, C-update, P-delete
starting from the empty net.

Proof:

Soundness.The case oP-delete is straightforward. Since we delete an isolated place, ¢hetion
graph is unchanged. So the net is still WR. Assume that weealafeisolated place and thatp occurs
in a witnesswit(c) of some complex. Thenwit(c) — wit(c)(p) is also a witness aof.

Let us examine the application of rute-add(N, M). The state maching1 constitutes a new com-
ponent of the reaction graph. Singdd is strongly connected, the new net is still WR. The witness of
complexes associated witti are unchanged. Lgtbe a place of\1; by definition of state machines this
place is self-witnessing i.evit(q) = ¢g. Thus the new net has deficiency zero.

Let us examine the application of the rdeupdate(N, ¢, p, A). By the second condition of its applica-
tion the reaction graph of the new net is the same as the atigime (withc + Ap instead ofc). So the
new net is WR. Due to the third condition, the witnesg’of ¢ is unchanged and the witnesswf \ - p

is the one oft.

Completeness.Let N = (P, T,W~, W) be all?-net. We proceed as follows to generatevia our
rules. At any stage of the generatioX,,,. denotes the current net. Initially..,.- is the empty net.

First step. Let A4, ..., A, be the strongly connected state machines correspondihg timtmponents of
the reaction net alV. Given a complex of NV, the corresponding place in the state machine is denoted
q.. We apply the rules-add (N, A;) for i from 1 ton. At this stage V..., hasT for set of transitions
and a placey. for every complex: of M. Furthermoreg. has for input (resp. output) transitions the
input (resp. output) transitions efin A/. The complexes alV..,,. are the placeg. and they are their
own witnesses.

Second steplt consists in adding the places Bfin such a way that the ngt’., restricted to the places
of Pis V. At every stage of this step, given a comptex Zpep ¢(p)p of N, there is a corresponding
complexcd = gc + > cpnp.,, ¢(P)p IN Ney,. For every placey € P, we addp to N, by rule
S-add (an isolated place is a strongly connected state machimkfoaevery complex: of A/ such that
¢(p) > 0, we apply the rule€-update(N,., ¢, p,c(p)). Let us check that this rule is applicable. First,
d(p) + c¢(p) = ¢(p) is positive. Second; + ¢(p)p is not a complex ofV...,. by construction. Third, for
every complex’ of N, there is a witness consisting in the single placehich is in a state machine
A; (thus different fromp). At the end of this stepV...., is the net\ enlarged with the places of the state
machinesA4;. Otherwise stated, every complexof V... is equal tac + q..

Third step. This step consists in deleting the places of the state mashiWWe observe that the plage
only occurs in the complex + g.. The net\ being all?-net, every complex’ has a witnessvit(c')
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in V. Thenwit(c') is a witness for’ + ¢ in N, whose support does not contajn Thus the rule
C-update(Neur, ¢ + qc, qe, —1) is applicable. After its application;. becomes isolated and can be
deleted by the rule-delete(N.y:, ¢.). At the end, we have obtained. O

C1=3p; w;=(1/3)py
c,=2p, wy==(1/3)p;
C3=P; wy=-(1/2)p3
C4=Pyt2p3 w,=(1/2)p3

© ©EC) ) D
ot

Figure 3. How to synthetise@?-net.

Example. We illustrate the synthesis process using our rules on thieumebered 5 in Figure 3. We have
also indicated on the right upper part of this figure, the foamplexes and their witnesses. Since the
reaction Petri graph of this net has two state machines, avelst creating it using twice the insertion of
a state machine (net 1). Then we add the pjacé particular state machine). We update the complex
c1 (the single one wherg; appears in the original net) by addifg; (net 2). Iterating this process, we
obtain the net 3. Observe that this net is a fusion {ithe set of transitions) of the original net and
its reaction Petri net. We now iteratively update the coxgse The net 4 is the result of transforming
c1 + 3p1 into 3p;. Oncec; is isolated, we delete it. Iterating this process yieldsatiginal net.

For modelling purposes, we could define more general rukesthie refinement of a place by a
strongly connected state machine. Here the goal was tordasiginimal set of rules.

3.2. From nonl1?-nets tol?-nets

Below we propose a procedure which takes as input any Pétamereturns d@l2-net. The important
disclaimer is that the resulting net, although related ¢adttiginal one, has a different structural and timed
behaviour. So it is up to the modeller to decide if the resglthet satisfies the desired specifications.
In case of a positive answer, the clear gain is that all theczsted Markovian Petri nets have a product
form.

Consider a Petri ne\ = (P, T,W~,W™,mg) with set of complexe€. Assume thaf\ is not
WR. For each transition, add a reverse transitiaim such that't~ = ¢* and(¢~)® = °t (unless such
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a transition already exists). The resulting net is WR. In Markovian Petri net, the added reverse
transitions can be given very small rates, to approximatesrolmsely the original net. However, there
is no theoretical guarantee of the convergence of steady-distributions and in fact counter-examples
can be exhibited.

Now, to enforce deficiency 0, the idea is to compose a genetal et with its reaction graph as in
the illustration of Proposition 3.4.

Definition 3.5. Consider a Petri ne\ = (P, T, W, W™*,mg). Letm, be an initial marking for the
reaction Petri ne#d. TheregulatedPetri net associated witK" is defined as follows:

~ o~ L —~ wW-— N WJF
AON = (PUC,T,W-, W', (mg,my)), W :[W_] 7 W+:[W+] .

Proposition 3.6. The regulated Petri net ©® A is WR iff A/ is WR. The regulated Petri ngt © A/ has
deficiency 0.

Proof:

By construction the reaction graph of the regulated Petrihe N is the reaction graph of/, i.e. A,
modulo a node renaming. S N is WR iff N is WR.

Now let us prove that the deficiency is 0. We use the charaet#én by witnesses, see Prop. 2.8. Cet
be the set of complexes of ©® N. Considerc € C and letc be the corresponding elementdn Define
wit(é) € QPYC by: wit(é), = 1, Yu # ¢, wit(é), = 0. By direct inspection, we check thatit(é) is
indeed a witness af. O

Figure 4. Regulated Petri net associated with the Petrifrigigal..

The behaviours of the original and regulated Petri nets iffiereht. In particular, the regulated Petri
net is bounded, even if the original Petri net is unboundaxligRly, the regulation imposes some control
on the firing sequences. Consider the example of Figuresidin(ar net) and 4 (regulated net). The
placesqi, ¢2, g3, g4 correspond to the complex@sp, p1, p2, 2p2, respectively. The transitions and
t4 belong to the same simple circuit in the reaction graph. «.éte an arbitrary firing sequence. The
quantity |w|s1 — |wlw4 is unbounded for the original net, and bounded for the régdlaet.
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4. Complexity analysis ofl1?-nets

All the nets that we build in this section are symmetric heWéR. For every depicted transitian the
reverse transition exists (sometimes implicitly) and isated: . It is well known that reachability and
liveness of safe Petri nets @@SPACE-complete [10]. In [14], it is proved that reachability amgehess
are PSPACE-hard for safel1-nets andNP-hard for safel1?-nets. The next theorem and its corollary
improve on these results by showing that the problem is reieefor safd1?-nets than for general safe
Petri nets.

Theorem 4.1. The reachability problem for safé’-nets isPSPACE-complete.

Proof:
Our proof of PSPACE-hardness is based on a reduction from@AT problem [24]. QSAT consists
in deciding whether the following formula is true

© =V, YV, 13yn—1. .. Vr13y19
where is a propositional formula ovefzi,y; ..., z,, y,} in conjunctive normal form with at most
three literals per clause.

Observe that in order to check the truthi@fone must check the truth gf w.r.t. the2™ interpretations
of z1,...,x, while the corresponding interpretation of ajymust only depend on the interpretation of
{Zn,...,z;}.

Counters modelling. First we design &%-net\,,,; that “counts” from 0 t2¥ — 1. This net is defined
by:

P={po, - ,Pk-1,90,-- > qk—1};

T = {to, ... ,tkfl};

Foreveryd <i < k,*t; = p; + ng q; andt? = ¢; + Zj<ipj;

For every0) < i < k, mo(p;) = 1 andmyg(g;) = 0.

Figure 5. A3-bit counter (without the reverse transitions).

Observe that for every reachable markingand every index, we havem(p;) + m(q;) = 1. Therefore
m can be coded by the binary wotd= wy_1 ...wp in whichw; = m(g;). The wordw is interpreted
as the binary expansion of an integer between 02ind 1. We denote byal(w) the integer value
associated witw. Considerw ¢ {0*, 1%}, there are two markings reachable franwhich arew+ and

w— such thatal(w—) = val(w) — 1 andval(w+) = val(w) + 1.

The figure below represents the reachability graph oBthé counter. For &-bit counter, the shortest
firing sequence from* to 1* is ¢, defined inductively by, = to ando; 1 = o4t;0;.
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to €1 = ) to t1 to
(000)7 (001)7 (010)7(011) 7 (100) 7 (101) 7 (110) 2 (111)
to t to ty to t to

For every complex = p; + ZKZ. qj (resp.c = ¢; + zj<ipj), a possible witness i@it(c) = p; +
>isi 27 pj (resp.wit(c) = q; + 3+, 277"~ 1g;). Thus this subnet has deficiency 0.

To manage transition firings between the update of countegsjuplicate the counter subnet and we
synchronize the two subnets as indicated in the figure bétowa duplicated-bit counter, the shortest
firing sequence from the marking with the two counters séf‘tand placeyo marked to the marking
with the two counters set ttf and placejo marked is obtained by, = 7y anda,,.; = 7,t,7, Where

i = titl.

This net has still deficiency 0 since the complexes are justrged by the placego or go’ and their
withesses remain the same.

Variable modelling. For reasons that will become clear later on, the two countenets contaim + 3
bits indexed from0 to n + 2. The bits1,...,n of countercnt correspond to the value of variables
x1,...,%,. Managing the value of variables, ..., y, is done as follows. For every variablg, we
add the subnet described below on the left (observesthatr,”) and modify the two counter subnets as
described on the right.

u; u;

When placey; (resp. ny;) is marked, this corresponds to interpreting variapglastrue (resp. false).
Changes of the interpretation are possible when plade marked. This is the role of the maodification
done on the counter subnet: between a firing; @ind¢, places{v, } ;<; are marked. With this construc-
tion, we get the expected behaviour: the interpretation wdrebley; can only be modified when the
interpretation of a variable; with j > 7 is modified. The complexes of the counter subnet are enlarged
with placesu; and their withesses remain the same since places in thersubploese witnesses are not
modified by transitions; andr;. The new complex; + u; (resp. ny; + u;) has for witnesgy; (resp.
ny;). Thus the new net has still deficiency 0.
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success

success; success,

1;,x when 1, ,=x;

150,k when 1, o=ax%;

Figure 6. Claus€’; (left), synchronisation witl, (right) and with variables (below)

Modelling the checking of the propositional formula. We now describe the subnet associated with
the checking of propositional formulka = /\jSm C; where we assume w.l.o.g.: (1) that every clause
C; =11 V12 V13 has exactly three literals (i.e. variables or negated b, and (2) that every
variable or negated variable occurs at least in one clauseleft upper part of Figure 6 shows the Petri
net which describes claugg; of the formulay. Placesl;;(k = 1,2,3) represent the literals while
placesn/; ;, represent the literalsed as a proof of the clausthe placenutex; avoids to choose several
proofs of the clause (and thus ensuring safeness), and/fplatesuccess; can be marked if and only

if the evaluation of the clause vyields true for the curretgiipretation and one of its true literal is used
as a proof.

The complexes of this subnet aneutex; + £;; (resp. success; + nl; ;) with witness—n/; ;. (resp.
nl;1). So the subnet has deficiency 0.

We now synchronise the clause subnets with the previousesirbnorder to obtain the final net. Observe
that in the previous subnet, transition (and¢;) must occur after every interpretation change. This is
in fact the role of bit O of the counter. Thus we constrain t®d by requiring the placesuccess; to

be marked as presented in the right upper part of Figure 6ingddops simply enlarges the complexes
associated withy and does not modify the incidence matrix. So the net hagdstfitiency O.

It remains to synchronise the value of the variables anddhees of the literals where the variables occur
either positively or negatively. This is done in two stepsst; ;, is initially marked if the interpretation
of the initial marking satisfieg; ,. Then we synchronize the value changes as illustrated itother
part of Figure 6. Once again the complexes are enlarged andithesses are still valid since the places
¢; 1 do not belong to the support of any witness.
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Choice of the initial and final marking for the net. Let us develop a bit the sequengg, 5 in the two
counter subnet in order to explain the choice of initial nraglfor this subnet:

Tn+3 = Ontitng 1ty 10nt1tnt2ty o0n1tn 1ty 110041
+ + +

We want to check all the interpretationsxgfs guessing the appropriate valuesygs (if they exist). We
have already seen that changing from one interpretationdthar one (i.e. a counter incrementation or
decrementation) allows to perform the allowed updateg .afiowever given the initial interpretation of
the z;'s we need to make an initial guess of all tiiés. So our initial marking restricted to the counter
subnet will correspond to the marking reached aftgrt,, 1, i.e. corresponding tont = 2"*! (i.e.
word 010...0), cnt’ = 2" — 1 (i.e. word001 ... 1) with in addition placesjo’, u;’s, mutez;’s and
y;'s 1-marked; places; , are marked according to the initial marking of plaeg’s andy;’s as explained
before. All the other places are unmarked. This explainsdtesof bitn + 1.

Furthermore, if we have successfully checked all the imétgtions of ther;’s, the counters will have
reached the valug”t2 — 1 (corresponding to a firing sequence obtained ftom, 7,41 with possible
updates ofy; during change of interpretations). However we do not knovatigthe final guess for the
y;'s. So firing transitiort,,, » allows to set thgy;’s in such a way that the final marking will correspond
to cnt = 2"*2 (i.e. word10...0), ent’ = 2"*2 — 1 (i.e. word01...1) with in addition placesjo’,

u;'s mutex;'s andy;’s 1-marked; placeg; ,, are marked accordingly. All the other places are unmarked.
This explains the role of bit + 2.

By construction, the net reaches the final marking iff therfola is satisfied. Observe that the checking
of clauses can be partially done concurrently with the charfgnterpretation. However as long as, in the
net, a claus€’; is “certified” by a literal/; ;. (i.e. marking plac&uccess; and unmarking placé; ;) the
value of the variable associated with the literal cannohgkeaensuring that whey is fired, the marking
of any placesuccess; corresponds to the evaluation of cladsgwith the current interpretation. O

Corollary 4.2. The liveness problem for saf@?-nets isPSPACE-complete.

Proof:
Observe that the transitions of the net of the previous paveffireable at least once and so live by
reversibility, implied by weak reversibility iff is true. O

Let us now consider general (non-safe) Petri nets. Redithadid coverability of symmetric nets
is EXPSPACE-complete [23]. In [14], it is proved that both problems &XPSPACE-complete for
WR nets (which include symmetric Petri nets). The next psifun establishes the same result for the
coverability of M2-nets. The proof is complex and too long to be included hete ifiterested reader
may refer to the arXiv version of the paper instead.

Proposition 4.3. The coverability problem fofl2-nets isEXPSPACE-complete.

The complexity of reachability faf2-nets remains an open issue (indeed the pro&PSPACE-
hardness does not work for reachability).



author/ short title 17

5. The subclass of13-nets

In this section, we introducB?>-nets, a subclass of product-form Petri nets for which thenadising
constant can be efficiently computed. The first subsectifinatethe subclass; the second one studies its
structural properties and the third one is devoted to thepeation of the normalising constant.

5.1. Definition and properties

Definition 5.1. (Ordered I1-net)
Consider an integet > 2. An n-level orderedrl-netis al-net\ = (P, T, W~, W) such that:

1. P= || P, T= || TiandP;, #0forall<i<n,

1<i<n 1<i<n

M; = (P, T;, W‘;ixTi, W;,MTZ,) is a strongly connected state machine,
Vi<i<n,VteT;,Vpe P,*(p) > 0impliesp € P,orp e P,_1 (P, =0),
V2<i<n,3teT;,Ip € P_1st°(p) >0,
V1<i<n,Vt,t' eT; (*tN°*t')N P, # () implies®t = *t'.

We call M; the leveli state machine. The elements@f(resp.T;) are leveli places (resp. transi-
tions). The complexe% with ¢ € T; are leveli complexes.

akrwn

By weak reversibility, the constraints 3, 4, and 5 also applthe output bags®. An orderedll-net
is a sequence of strongly connected state machines. Camsectin only be made between a level
transition and a leveli — 1) place (points 1, 2, 3). By construction, arderedl1-netis connected (point
4). Fori > 1, each level place belongs to one and only one levebmplex (point 5). An example of
orderedrl-net can be found on figure 7.

Lemma 5.2. The reaction net af\' is isomorphic to the disjoint union of state machinet. Conse-
quently, ar'-semi-flow of M; is also ar-semi-flow of /. If a transition ofT; is enabled by a reachable
marking then every transition 4f; is live.

Proof:

Consider the mapping which maps each comple®, ¢t € T;, to p the output place of in P;. By
construction of orderefl-nets, f is a bijection fromC to P. Moreover, each ar¢; — ¢, of the reaction
graph corresponds to the transitios= f(c1)® = *f(c2). This proves the first point of the lemma.

To prove the second point, recall that for a state machims]'teemi-flows correspond to circuits of the
Petri net graph. From this and from the first poinf;-@emi-flow of M; defines a circuit of the reaction
graph of\/, which yields ar'-semi-flow of V.

The set of transition$; is the set of transitions occurring in a component of thetreagraph. The third
point follows. O

An ordered1-net may be interpreted as a multi-level system. The triansitrepresent jobs or events
while the tokens in the places represent resources or eamstr A level; job requires resources from
level (i — 1) and relocates these resources upon completion. On theaogrévents occurring in level
(¢ — 1) may make some resources unavailable, hence interrupttivitias in leveli. The dependency
of an activity on the next level is measured iytentials defined as follows.
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Definition 5.3. (Interface, potential)
Aplacep € P;, 1 < i <n — 1, is aninterface placédf p € t* for somet € T;,,. For a placep € F;,
2 <i<n,andaplacg € P;,_1, set:

t*(q) if pandg have a common input transitigne 7;
0 otherwise.

pot(p,q) = {

The potential of a placep € P;, 2 < i, is defined by:pot(p) = qupi_lpot(p, q) . By convention,
pot(p) =0forallp € P;.

By the definition of orderedl-nets, the quantity®(¢) does not depend on the choicetpfso the
potential is well-defined. Indeed, by weak reversibilitye ttonstraint 5 also applies to the output bags
te.

Example. The Petri net in Figure 7 is a 3-level order8ehet. The potentials are written in parentheses.
To keep the figure readable, the arcs between the plaaad the level 2 transitions are not shown.

level 3 level 2  level 1
\2>/>m

|
|
|
r3(0) =  Or(1), @m

\@E\/y |

|

\

Figure 7. Orderedi-net.

Definition 5.4. (Marking witness)
Themarking witnes®f a markingm, denoted byn, is defined as follows. For all< n andp € P;,

n—i j—1

m(p) =mp)+ Y (=17 > mry) (][] pot(rasr,r))pot(ri,p)) - (5.1)
Jj=1 r1€P; 11 k=1

Remark. Note that a marking witness is not necessarily non-negativean be showed by induction
that:
Vp € P, ,m(p) = m(p) andVp € P; ;i <n,m(p) =m(p) — 3, ¢p,,, m(r)pot(r,p)

Lemma 5.5. Letm, m’ be two vectors such that’ = m + W (t) for somet € T; (1 <1i < n). Letp;
andp- denote the input place and the output placeiof P;, respectively. Then for every plage
m/(p) = m(p) — 1if pispy, m(p) + 1if pispe, m(p) otherwise. (5.2)

Proof:
Sincem andm’ have the same restriction af}~; P;, we havemn/(p) = m(p) ¥p € (U;>:FP;j) \ {p1,p2}-
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It follows thatm/ (p1) — m(p1) = m/(p1) — m(p1) = —1 andm/(p2) — m(p2) = m'(p2) — m(p2) = 1.
Forp € P,_1 Nt*, we havem/(p) — m(p) = pot(p2, p) — pot(p1,p), hence

m/(p) —m(p) = m/(p) — m(p) — [(M'(p1) — m(p1))pot(p1,p)
+(m/ (p2) — m(p2))pot(p2, p)]
—0

Similarly, m/(p) — m(p) = 0forp € P,_y N *t.
For all other placesy/(p) = m(p) andm/(r) = m(r) Vr s.t. pot(r, p) # 0, thusm’(p) = m(p). 0

The above lemma applies in particular wh@nandm’ are markings such that o Equa-
tions (5.2) look like the equations for witnesses. Sincéndeeeli complex contains exactly one leviel
place, one guesses that every complex admits a witnestate\” is al12-net. This is confirmed by the
next proposition.

Proposition 5.6. Let B denote theP x P integer matrix of the linear transformation — m defined
by (5.1). Forp € P;, the line vectorB(p) is a witness for thé-level complex containing. In particular,
N is al?-net.

Proof:
Denote byA € Z(C x T') the incidence matrix of the reaction graph. From Lemma 5&have:

mLm = m —m=A).

We have to show thaBW (t) = A(t) Vt € T'. Indeed, letn andm’ be two markings such that 5w,
we have:BW (t) = B(m' —m) =m’ —m = A(t). O

Lemma 5.5 allows to derive relevant S-semi-flows\6fand S-invariants.

Corollary 5.7. Letm be the initial marking of\/. We have:
Vm € R(mO)a Vi € {1""’n}? m(PZ) :’ﬁ:l’O(PZ)
More generally, for alt, the vector; = Zpepi B(p) is a S-semi-flow of\.

Using this corollary, it can be shown that an orderedet is bounded.

Example. Consider the ordered-net in Figure 7 with the initial marking.g = ps + q3 + r3 + 4p;1.
The marking witness af is mg = p3 + g3 + 73 — 2p2 — g2 + 10p;. Any reachable marking satisfies
the invariants:
m(Pg) =3
m(P2) — 2m(ps) — m(q3) = —3
m(p1) — 2m(p2) — 2m(qz) — m(rz) + 4m(ps) + 2m(q3) = 10
We shown thafv;, 1 < i < n} is a basis of the S-semi-flows 4f.

Proposition 5.8. Let v be an S-semi-flow of\/, i.e. v.W = 0. There exist unique rational numbers
ai,...,ap suchthav = >"7" | a;v;.
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Proof:
The matrixB is a P x P unit lower triangular matrix, so it is invertible.
We have:
oW =0 = (w.B H)BW)=0 = (wB HA=0,

hencev.B~!is an S-semi-flow of the disjoint union of the state machifgs But since a state machine’s

only S-semi-flows are(1,...,1), a € Q, there exist rational numbets, . . . , a;, such that
n
v.B7! = Z a;w; , (5.3)
=1

wherew; € QF are defined byv;(p) = 1p,(p).

Right-multiplying both sides of (5.3) b$, we getv = Y, a;v;.

The independence of the s@t; ,1 < i < n} follows from the fact that the vectors B! have non-
empty disjoint supports. O

We now consider only ordereld-nets in which the interface places ify have maximal potential
among the places df;. From the technical point of view, this assumption is crufdathe reachability
set analysis presented later. From the modelling pointefiyit is a reasonable restriction. Consider the
multi-level model, the assumption means that during thewati@ns of leveli jobs, the leveli — 1) is
idle, therefore the amount of available resource is maximal

Definition 5.9. ((3-net)
An orderedr-net\V is al®-net if:
Vi,¥p € P; :p € *Ti11 = pot(p) = max{pot(q),q € P;}.

5.2. The reachability set

From now on\ is an-level M3-net with M, . .., M,, being its state machines.

Definition 5.10. (Minimal marked potential)

Consideri € {2,...,n}. Theleveli: minimal potential marked by is:
( max{pot(p),p € P;} if m(P;) =0,
7 min{pot(p), p € P,m(p) >0} i m(P;) > 0.

The next lemma gives a necessary condition for reachability
Lemma 5.11. If p;(m) < m(P;—1) thenp;(m') < m/(P;_1) forall m’ € R(m).

Proof:

W.l.0.g., assume that Lom!.

First, suppose that ¢ T;. If t ¢ T;., then firing¢ does not modify the marking oR;, so;(m') =
wi(m). If t € T;44, firing ¢ either leaves the marking @, unchanged or moves tokens between places
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of maximal potential inP;; in both casesp;(m’) = ;(m). Sincet ¢ T;, m'(P,—1) = m(P;i_1). So
pi(m') <m'(Pi—1) if t & T:.

Now considert € T;, let p andq be the input and output placestoih P;. We havep;(m’) < pot(q) <
m(Pi—1) — pot(p) + pot(q) = m/(P;—1). O

We now define the partial liveness and partial reachability.

Definition 5.12. (¢-reachability set, i-liveness)

Letm be a marking. Theé-reachability set ofn, denoted byR;(m), is the set of all markings reachable
from m by a firing sequence consisting of transitionsUl@Sjgi T;. We say thatn is i-live if for any
transitionst in {J, < ;; 7}, there exists a marking iR;(m) which enables. By convention;Ro(m) =
{m} and every marking i8-live.

Thei-live markings are characterised by the following proposit

Proposition 5.13. A markingm is i-live if and only if it satisfies the following inequalitiesalled the
i-condition
m(P;) >0AV2< 5 <i: m(Pj—1) > ¢j(m) (5.4)

If m satisfies theé-condition then for every, ¢ € P; such thap # ¢, m(p) > 0 andpot(p) < m(P;—1),
there existsn’ € R;(m) such that:

m/(p) =m(p) — 1, m'(q) =m(q) + 1, Vr € P\ {p,q}, m/'(r) = m(r). (5.5)
A marking is live if and only if it satisfies the-condition.

Proof:

Consider ani-live markingm. For any;j < i, there is a marking:’ € R;(m) which enables a transition
of T;. This marking satisfieg;(m’) < m/(P;j_1). By (weak) reversibilitym € R(m’), sog;(m) <
m(Pj—1) (Lemma 5.11). Since the number of tokensAnis the same for all the markings &;(m),
m(P;) > 0 (otherwise, the transitions @f would be dead).

We prove the reverse direction and the second part of theopitigm by induction on > 1, i.e. :

If m satisfies th&-condition then:

(1) for everyp, g € P, such thap # ¢, m(p) > 0 andpot(p) < m(P;_1), there existsn’ € R;(m) such
that:m/(p) = m(p) =1, m'(q) =m(q) + 1, Vr € P\ {p,q}, m'(r) =m(r).

(2) m is i-live.

The casé = 1 is trivial.

Suppose that the claim has been proven forjalt i — 1. Let m be a marking which satisfies the
i-condition. Consider two casegot(p) = 0 andpot(p) > 0.

If pot(p) = 0 then the output transitions gf are enabled byn. For any arbitraryg # p, fire the
transitions along a path fromto ¢ in 7}, we obtain a markingn’ satisfying (5.5). So we have proved
assertion (1). Now choose somesuch thatpot(q) > 0 (there is at least one). Then'(P,_;) >
pot(q) > 0. By the induction hypothesisy’ is (i — 1)-live. Moreover,m’ enables the output transitions
of ¢. Hencem' is i-live, which impliesm is i-live.

If pot(p) > 0thenm(P;_1) > 0, hencem is (i — 1)-live by the induction hypothesis. It remains to find
a marking inR;_1(m) which enables the output transitionsoflf for all » € P,_y, m(r) > pot(p,r)
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then choosen. Otherwise, choose a marked placef P,_; such thatpot(q) < m(FP;_2) and a level
(i — 1) interface place/, then apply the induction hypothesis on (5.5) to find € R;_1(m) such that
m1(q) = m(q) — 1, m1(¢") = m(q") + 1 andmq(r) = m(r) for every other places of P,_;. We have
vi—1(m1) = max{pot(r),r € P;_1}. Now starting fromm, repeat the following procedure:

e Step 1: Find two place,, r2 in P;_; such thatn(r) < pot(p,r1) andm(rz) > pot(p,r2), m
denoting the current marking.

e Step 2: Use the induction hypothesis on (5.5) to fitld= R;_1(m) such thatn’(r;) = m(r1)+1,
m/(re) = m(ry) — 1andm/(r) = m(r) forallr € P,_q \ {r1,r2}.

All the intermediate markings arg@ — 1)-live. Sincem(P;—1) > pot(p), if there existsr; € P,_»
such thatn(ry) < pot(p,r1) then there exists, € P,_5 such thatn(re) > pot(p,re) > 0 as well.
Because the interface places have maximal potential, dtgfimning of each iteration, we always have
wi—1(m) = max{pot(r),r € P,_1}, hencepot(ra) < ¢;—1(m) < m(P;_2). Each iteration strictly
diminishes the number of “missing” tokens in the place$’of; synchronised withp, so the procedure
eventually stops at a markings such thatns(r) > pot(p,r) for every placer € P;,_;. This marking
enables the output transitions jof O

Example: The orderedT-net in Figure 7 is &13-net. Consider two markingsi; = ps + ¢z + 3 + 4p1
andms = 3q3 +4p1. These markings agree on all the S-invariants, but enl\satisfies the 3-condition.
It is easy to check that is live while ms is dead.

We conclude this subsection by showing that the reachgalpifitblem forl13-nets can be efficiently
decided as well.

Theorem 5.14. Suppose that the initial marking, is live. Then the reachability s&(m) coincides
with the setS(mg) of markings which satisfy the-condition and agree withn, on the S-invariants
given by Corollary 5.7.

Proof:
The inclusionR (mg) C S(mp) is the combination of the results of Corollary 5.7 and Prajms5.13.
To prove the converse, we look for a marking which is reachéfdm every marking o6 (m,). Let
p;j, 1 < j < n, be a place of maximal potential @;, that is,pot(p;) = max{pot(p),p € P;}. Let
my, denote the unique marking &(my) such thatn(p) = 0 for everyp ¢ {pi1,...,p,}. Consider an
arbitrary markingn in S(mg). We prove by a reverse induction o< n and by using the second part
of Proposition 5.13 that there exists a markinge R (m) such thatn'(p) = 0Vp ¢ {p1,...,pn}. The
inductive claim is:

There exists a markingy; € R(m) such that'p € U,<j<,Pj \ {pi,....pn} mi(p) =0

andm!, satisfies the — 1 condition.

Let us address the basis case- n. Assume that there exisis # p,, such thatmg(p) > 0. Using
proposition 5.13, we move a token fromto p,,. Furthermore by lemma 5.11, thecondition is still
satisfied. lterating this process, we obtain a markirjgsuch thatvp € P, \ {p.} m/,(p) = 0 and the
n-condition is still satisfied. The inductive case is simligrobserving that the sequence that moves the
tokens ofP; does not use transitions & for j > i.
Sincem’ is also an element & (m), m’ = my. Somy, is reachable from every marking 8(my). By
(weak) reversibility, every marking ii(my) is reachable fromn,. SoS(mg) C R(m() = R(myg). O
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5.3. Computing the normalising constant

The normalising constant of a product-form Petri net (seti@@2.1) isG' = >, 1cRr(mo) Hpep ug“p).

It is in general a difficult task to computg, as can be guessed from the complexity of the reachabil-
ity problem. However, efficient algorithms may exist for ::@tith a well-structured reachability set.
Such algorithms were known for Jackson networks [25] andstivevariant reachabléetri nets defined

in [11]. We show that is is also the case for the class of liWenets which is strictly larger than the
class of Jackson networks (which correspond to 1-levelredaets) and is not included in the class of
S-invariant reachable Petri nets.

Suppose thain is a live marking. Suppose that the places of each level atered by increasing
potential: P; = {pi1, ..., pir; } such that'l < j < k;, pot(pi;) < pot(pij+1))-

Let V denote the: x P-matrix thei-th row of which is the S-invariant; defined in Corollary 5.7.
Forl < i < n, setC; = v;my = mo(P;). Then the reachability set consists of allive markingsm
such thatVm = (Cy,...,Cy).

Forl1 <i<mn,1<j <k ande,...,¢ € Z, defineE(i, j,c1,...,c;) as the set of markings:
such that
m(pyy) =0forally > j
Vm ="c,...,¢;,0...,0)
wu(m) <m(P,_y)forall2 <v <i.

The elements of(i, j, 1, . . ., ¢;) are the markings which satisfy the second part ofitbendition and
the S-invariants constraings,, . .., ¢;, 0,...,0) and concentrate tokensi, ..., P,y and{p;1, ..., pi;}.
With eachE (i, j, c1, . .., ¢;) associate
G(i7j7 Clv e 7ci) = W(E(i7j7 017 e 7Ci)) = Z HpEP uzl(p)
the sum being taken over all € E(i, j,c1,...,¢;).
We propose to comput&(n, k,,, C1, ..., C,) by dynamic programming. It consists in breaking each
G(i,j,¢c1,-..,¢;) into smaller sums. This corresponds to a partition of themelds ofE (i, j, ¢1, . .., ¢;)

by the number of tokens ip;;.

Proposition 5.15. Let be givenE = E(i, j,¢1,...,¢). If ¢; < 0thenE = (. If ¢; > 0 then for every
non-negative integet:
1. If a > ¢; thenE N {m|m(p;;) = a} = 0.
2. Ifa < ¢;andj = 1thenE N {m|m(p;;) = a} = 0.
3. Ifa < ¢; andj > 2 then
En{m|m(pi;) = a} = {m+apy; | m € E(i,j —1,c1 —vi(apij),-..,ci —vi(apij))}.
4. If a = ¢; andi = 1 thenE' N {m|m(p;;) = a} = {c1p1;}.
5. If a = ¢; andi > 1 then
En{m|m(pi;) = a} ={m+ap;j; | m € E(i —1,ki—1,c1 —vi(apij), ..., ci—1 — vi—1(apij))}

Proof:

Suppose thall # (. Letm be an element oF such thatn(p;;) = a. We havem(P;) = ¢;, soa < ¢;.
Moreover, ifm(p;;) < m(F;) thenm must mark some plagg, with v < j, soj > 2. These prove the
first and the second cases.
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The fourth case is trivial.

Let us address the third case, we have to show that:

Vm € E such thatn(p;j) = a, (m — apsj) € E(i,5 — 1,c1 — vi(apsj), ..., ¢ —vi(apij))  (5.6)
vm' € E(i,j —1,c1 — vi(apyj), .., ¢ — vi(apy)), (m' + apy) € E (5.7)

The values:; — vy (ap;j), ..., c; — vi(ap;;) are obtained by:

Vm ="ci,...,¢,0,...,0)
— V(m —ap;j) = t(cl —wvi(apij), ..., ¢ —vi(api;),0,...,0).

We have to show thap, (m — ap;;) < (m — ap;;j)(P,—1) V2 < v < i andy,(m’ + ap;;) < (m' +
apl-j)(P,,,l) V2 S v S 7.

Sincem and(m — ap;;) only differ atp;,;, it suffices to show thap; (m — ap;;) < (m —ap;;)(Pi—1). In-
deed;(m—ap;;) = ¢i(m) because both markings mark somgwith v < j, and(m—ap;;)(Pi—1) =
m(P;—1) because the two markings are identical®n; .

Similarly, givenm’ € E(i,j —1,c1 —vi(apij), - - -, ¢i — vi(apsj)), to prove (5.7), it suffices to show that
@i(m'+api;) < (m'+api;)(Pi-1). Indeed,(m/ +ap;) (Pi—1) = m/(Pi_1) < @i(m’) < @i(m/ +ap;j).

The fifth case is similar. It suffices to show that | (m — ap;;) < (m — api;)(Pi—2) and g;(m’ +
api;j) < (m’ +ap;j)(P;—1). The firstinequality is immediate sin¢e: — ap;;) is the restriction ofn on
Ui<,<;_1 P Toprove the second one, note that +ap;;)(Pi—1) = m'(P;,—1) = ¢i—1 —vi—1(apij) =
m(P;—1) andep;(m’ + ap;;) = pi(m). U

Proposition 5.15 induces the following relations betwdensums=(i, j, c1, ..., ¢;).

Corollary 5.16. If ¢; < 0thenG(i, j,c1,...,¢) = 0. If ¢; > 0 then:
e Case2 <i<n,2<j<k:

ci—1

G(i,j,c1s... ¢) = Z up, G(i,j —1,c1 —v1(vpij), ... i — vi(vpij))
v=0
+uy: G(i — 1 ki—1, 1 —vileipig), - -+, cim1 — vie1(€ipig) -
e Case2<i<n,j=1:

G(’i, 1, Cly.-., Ci) = u;ﬂG(z — 1, ki—l; C1 — U1(01p11)7 ey Ci—1 — Ui_l(cipﬂ)) .

e Casei=1,7>2 G(1,j,¢1) = X b, G(1,j— 11— v) +ugt .

e Casei=1,7=1:G(1,1,¢1) = ugl, .

Complexity. Sincei < n, j < K = max{ky,...,k,}, the number of evaluations is bounded by
n x K x -, wherevy upper bounds the;'s. Let « denote the global maximal potential. From (5.1), we
obtainy = O(mo(P)K"a"™). So the complexity of a dynamic programming algorithm usiag. 5.16

is O(mo(P)nK" ta™), i.e. pseudo-polynomial for a fixed number of state machines
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6. Perspectives

This work has several perspectives. First, we are intatastextending and applying our rules for
a modular modelling of complex product-form Petri nets. Wi avant to obtain characterisation of
product-form Petri nets when stochastic Petri nets areppgdiwith infinite-server policy. Then we want
to validate the formalism of13-nets showing that it allows to express standard pattermistributed
systems. We plan to implement analysisitnets and integrate it into a tool for stochastic Petri nets
like GreatSPN [8]. Finally we conjecture that reachabilstye XPSPACE-complete forl1%-nets and we
want to establish it.
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