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Abstract. For a large Markovian model, a “product form” is an explicit description of the steady-
state behaviour which is otherwise generally untractable.Being first introduced in queueing net-
works, it has been adapted to Markovian Petri nets. Here we address three relevant issues for
product-form Petri nets which were left fully or partially open: (1) we provide a sound and complete
set of rules for the synthesis; (2) we characterise the exactcomplexity of classical problems like
reachability; (3) we introduce a new subclass for which the normalising constant (a crucial value for
product-form expression) can be efficiently computed.
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1. Introduction

Product-form for stochastic models. Markovian models of discrete events systems are powerful for-
malisms for modelling and evaluating the performances of such systems. The main goal is the equi-
librium performance analysis. It requires to compute the stationary distribution of a continuous time
Markov process derived from the model. Unfortunately the potentially huge (sometimes infinite) state
space of the models often prevents the modeller from computing explicitly this distribution. To cope
with the issue, one can forget about exact solutions and settle for approximations, bounds, or even sim-
ulations. The other possibility is to focus on subclasses for which some kind of explicit description is
indeed possible. In this direction, the most efficient and satisfactory approach may be theproduct-form
method: for a model composed of modules, the stationary probability of a global state may be expressed
as a product of quantities depending only on local states divided by anormalising constant.

Such a method is applicable when the interactions between the modules are “weak”. This is the
case for queueing networks where the interactions between queues are described by a random rout-
ing of clients. Various classes of queueing networks with product-form solutions have been exhib-
ited [18, 6, 19]. Moreover efficient algorithms have been designed for the computation of the normalising
constant [25].
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Product-form Petri nets. Due to the explicit modelling of competition and synchronisation, the Marko-
vian Petri nets formalism [1] is an attractive modelling paradigm. Similarly to queueing networks,
product-form Markovian Petri Nets were introduced to cope with the combinatorial explosion of the
state space. Historically, works started with purely behavioural properties (i.e. by an analysis of the
reachability graph) as in [20], and then progressively moved to more and more structural characteri-
sations [21, 17]. Building on the work of [17], the authors of[14] establish the first purely structural
condition for which a product form exists and propose a polynomial time algorithm to check for the
condition, see also [22] for an alternative characterisation. These nets are calledΠ2-nets.

Product-form Petri nets have been applied for the specification and analysis of complex systems.
From a modelling point of view, compositional approaches have been proposed [3, 5] as well as hi-
erarchical ones [16]. Application fields have also been identified like (1) hardware design and more
particularly RAID storage [16] and (2) software architectures [4].
Open issues related to product-form Petri nets.

• From a modelling point of view, it is more interesting to design specific types of Petri nets by
modular constructions rather than checking a posteriori whether a net satisfies the specification.
For instance, in [12], a sound and complete set of rules is proposed for the synthesis of live and
bounded free-choice nets. Is it possible to get an analog forproduct-form Petri nets?

• From a qualitative analysis point of view, it is interestingto know the complexity of classical
problems (reachability, coverability, liveness, etc.) for a given subclass of Petri nets and to compare
it with that of general Petri nets. For product-form Petri nets, partial results were presented in [14]
but several questions were left open. For instance, the reachability problem isPSPACE-complete
for safe Petri nets but in safe product-form Petri nets it is only proved to beNP-hard in [14].

• From a quantitative analysis point of view, an important anddifficult issue is the computation of
the normalising constant. Indeed, in product-form Petri nets, one can directly compute relative
probabilities (e.g. available versus unavailable service), but determining absolute probabilities
requires to compute the normalising constant (i.e. the sum over reachable states of the relative
probabilities). In models of queueing networks, this can beefficiently performed using dynamic
programming. In Petri nets, it has been proved that the efficient computation is possible when
the linear invariants characterise the set of reachable markings [11]. Unfortunately, all the known
subclasses of product-form nets that fulfill this characterisation are models of queueing networks!

Our contribution. Here we address the three above issues. In Section 3, we provide a set of sound and
complete rules for generating anyΠ2-net. We also use these rules for transforming a general Petri net
into a related product-form Petri net. In Section 4, we solverelevant complexity issues. More precisely,
we show that the reachability and liveness problems arePSPACE-complete for safe product-form nets
and that the coverability problem isEXPSPACE-complete for general product-form nets. From these
complexity results, we conjecture that the problem of computing the normalising constant does not admit
an efficient solution for the general class of product-form Petri nets. However, in Section 5, we introduce
a large subclass of product-form Petri nets, denotedΠ

3-nets, for which the normalising constant can be
efficiently computed. We emphasise that contrary to all subclasses related to queueing networks,Π

3-nets
may admitspuriousmarkings (i.e. that fufill the invariants while being unreachable).

The above results may change our perspective on product-form Petri nets. It is proved in [22] that
the intersection of free-choice and product-form Petri nets is the class of Jackson networks [18]. This
may suggest that the class of product-form Petri nets is somehow included in the class of product-form
queueing networks. In the present paper, we refute this belief in two ways. First by showing that some
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classical problems are as complex for product-form Petri nets as for general Petri nets whereas they
become very simple for product-form queueing networks. Second by exhibiting the large class ofΠ3-
nets which can model complex behaviours (e.g. illustrated by the presence of spurious markings).

A conference version of the paper appeared in [15]. The present version includes additional results
(Subsection 2.2) together with full proofs of the results. (There is one exception, Proposition 4.3, for
which the proof can be found in the arXiv version of the paper available athttp://arxiv.org/abs/
1104.0291)

Notations. We often denote a vectoru ∈ RS by
∑

s u(s)s. The support of vector u is the subset
S′ ≡ {s ∈ S | u(s) 6= 0}.

2. Petri nets, product-form nets, andΠ2-nets

Definition 2.1. (Petri net)
A Petri netis a 5-tupleN = (P, T,W−,W+,m0) where:

• P is a finite set ofplaces;
• T is a finite set oftransitions, disjoint fromP ;
• W−, resp.W+, is aP × T matrix with coefficients inN;
• m0 ∈ NP is theinitial marking.

Below, we also callPetri netthe unmarked quadruple(P, T,W−,W+). The presence or absence of
a marking will depend on the context.

A Petri net is represented in Figure 1. The following graphical conventions are used: places are
represented by circles and transitions by rectangles. There is an arc fromp ∈ P to t ∈ T (resp. from
t ∈ T to p ∈ P ) if W+(p, t) > 0 (resp.W−(p, t) > 0), and the weightW+(p, t) (resp.W−(p, t)) is
written above the corresponding arc except when it is equal to 1 in which case it is omitted. The initial
marking is materialised: ifm0(p) = k, thenk tokens are drawn inside the circlep. LetP ′ ⊂ P andm
be a marking thenm(P ′) is defined bym(P ′) ≡

∑
p∈P ′ m(p).

The matrixW = W+ −W− is theincidence matrixof the Petri net. Theinput bag•t (resp.output
bagt•) of the transitiont is the column vector ofW− (resp.W+) indexed byt. For a placep, we define
•p andp• similarly. A T-semi-flow(resp.S-semi-flow) is aQ-valued vectorv such thatW.v = (0, . . . , 0)
(resp.v.W = (0, . . . , 0)).

A symmetricPetri net is a Petri net such that:∀t ∈ T, ∃t− ∈ T, •t = (t−)•, t• = •t−. A free-
choice netis a Petri net such that:∀t, t′ ∈ T , either•t ∩ •t′ = ∅, or •t = •t′. A state machineis a Petri
net such that:∀t ∈ T, |•t| = |t•| = 1. A marked graphis a Petri net such that:∀p ∈ P, |•p| = |p•| = 1.

Definition 2.2. (Firing rule)
A transitiont is enabledby the markingm if m ≥ •t (denoted bym

t
−→); an enabled transitiont may

fire which transforms the markingm intom− •t+ t•, denoted bym
t

−→ m′ = m− •t+ t•.

A markingm′ is reachablefrom the markingm if there exists afiring sequenceσ = t1 . . . tk (k ≥ 0)

and a sequence of markingsm1, . . . ,mk−1 such thatm
t1−→ m1

t2−→ · · ·
tk−1

−−−→ mk−1
tk−→ m′. We write in

a condensed way:m
σ
−→ m′.
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Figure 1. Petri net.

We denote byR(m) the set of markings which are reachable from the markingm. The reacha-
bility graph of a Petri net with initial markingm0 is the directed graph with nodesR(m0) and arcs

{(m,m′)|∃t ∈ T : m
t
−→ m′}.

Given(N ,m0) andm1, thereachability problemis to decide ifm1 ∈ R(m0), and thecoverability
problemis to decide if∃m2 ∈ R(m0),m2 ≥ m1.

A Petri net(N ,m0) is live if every transition can always be enabled again, that is:∀m ∈ R(m0),∀t ∈

T, ∃m′ ∈ R(m), m′ t
−→. A Petri net(N ,m0) is bounded ifR(m0) is finite. It issafeor 1-boundedif:

∀m ∈ R(m0), ∀p ∈ P, m(p) ≤ 1.

2.1. Product-form Petri nets

There exist several ways to define timed models of Petri nets,see [2]. We consider the model of Marko-
vian Petri nets withrace policy. Roughly, with each enabled transition is associated a “countdown clock”
whose positive initial value is set at random according to anexponential distribution whose rate depends
on the transition. The first transition to reach 0 fires, whichmay enable new transitions and start new
clocks. We adopt here thesingle-server policywhich means that the rate of a transition does not depend
on the enabling degree of the transition. In the more generaldefinition of product-form Petri nets [14,
Definition 8], rates may depend on the current marking in a restricted way. For the sake of readability,
we have chosen a simpler version. Results of sections 3 and 4 still hold with the general definition. On
the other hand, it is well-known that the complexity of the computation of the normalisation constant
highly increases even for the simple case of queuing networks. Here also the results of section 5 are only
valid with constant rates.

Definition 2.3. (Markovian PN)
A Markovian Petri net (with race policy)is a Petri net equipped with a set ofrates(µt)t∈T , µt ∈ R∗

+.
The firing time of an enabled transitiont is exponentially distributed with parameterµt. The marking
evolves as a continuous-time jump Markov process with statespaceR(m0) and infinitesimal generator
Q = (qm,m′)m,m′∈R(m0), given by:

∀m, ∀m′ 6= m, qm,m′ =
∑

t such thatm
t
−→m′

µt, ∀m, qm,m = −
∑

m′ 6=m

qm,m′ . (2.1)

W.l.o.g., we assume that there is no transitiont such that•t = t•. Indeed, the firing of such a
transition does not modifiy the marking, so its removal does not modify the infinitesimal generator. We
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also assume that(•t1, t•1) 6= (•t2, t
•
2) for all transitionst1 6= t2. Indeed, if it is not the case, the two

transitions may be replaced by a single one with the summed rate.
An invariant measureis a non-trivial solutionν to the balance equations: νQ = (0, . . . , 0). A

stationary distributionπ is an invariant probability measure:πQ = (0, . . . , 0),
∑

m π(m) = 1.

Definition 2.4. (Product-form PN)
A Petri net is aproduct-form Petri netif for all rates (µt)t∈T , the corresponding Markovian Petri net
admits an invariant measureν satisfying:

∃(up)p∈P , up ∈ R+, ∀m ∈ R(m0), ν(m) =
∏

p∈P

u
mp
p . (2.2)

The existence ofν satisfying (2.2) implies that the marking process is irreducible (in other words, the
reachability graph is strongly connected). In (2.2), the mass of the measure, i.e.ν(R(m0)) =

∑
m ν(m),

may be either finite or infinite. For a bounded Petri net, the mass is always finite. But for an unbounded
Petri net, the typical situation will be as follows: structural conditions on the Petri net will ensure that
the Petri net is a product-form one. Then, for some values of the rates,ν will have an infinite mass, and,
for others,ν will have a finite mass. In the first situation, the marking process will be either transient
or recurrent null (unstable case). In the second situation,the marking process will be positive recurrent
(stable or ergodic case).

When the mass is finite, we callν(R(m0)) the normalising constant. The probability measure
π(·) = ν(R(m0))

−1ν(·) is the unique stationary measure of the marking process. Computing explicitly
the normalising constant is an important issue, see Section5.

The goal is now to get sufficient conditions for a Petri net to be of product-form. To that purpose, we
introduce three notions:weak reversibility, deficiency, andwitnesses.

Let (N,m0) be a Petri net. The set ofcomplexesis defined byC = {•t | t ∈ T} ∪ {t• | t ∈ T}. The
reaction graphis the directed graph whose set of nodes isC and whose set of arcs is{(•t, t•)|t ∈ T}. It
can be viewed as a state machine.

Definition 2.5. (Weak reversibility: Π-nets)
A Petri net isweakly reversible (WR)if every connected component of its reaction graph is strongly
connected. Weakly reversible Petri nets are also calledΠ-nets.

The notion and the name “WR” come from the chemical literature. In the Petri net context, it was
introduced in [7, Assumption 3.2] under a different name andwith a slightly different but equivalent for-
mulation. WR is a strong constraint. It should not be confused with the classical notion of “reversibility”
(the marking graph is strongly connected). In particular WR, a structural property, implies reversibility,
a behavioural one! Observe that all symmetric Petri nets areWR.

The notion of deficiency is due to Feinberg [13].

Definition 2.6. (Deficiency)
Consider a Petri net with incidence matrixW and set of complexesC. Let ℓ be the number of connected
components of the reaction graph. Thedeficiencyof the Petri net is defined by:|C| − ℓ− rank(W ).

The notion of witnesses appears in [14].
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Definition 2.7. (Witness)
Let c be a complex. Awitnessof c is a vectorwit(c) ∈ QP such that for all transitiont:





wit(c) ·W (t) = −1 if •t = c

wit(c) ·W (t) = 1 if t• = c

wit(c) ·W (t) = 0 otherwise,

whereW (t) denotes the column vector ofW indexed byt.

Examples. Consider the Petri net of Figure 1. First, it is WR. Indeed, the set of complexes isC =
{p1, p2, 2p1, 2p2} and the reaction graph is:

p1 ↔ p2 , 2p1 ↔ 2p2 ,

with two connected components which are strongly connected. Second, the deficiency is 1 since|C| = 4,
ℓ = 2, and rank(W ) = 1. Last, one can check that none of the complexes admit a witness.

The Petri net of Figure 4 is WR and has deficiency 0. Note that the witnesses may not be unique.
Possible witnesses are:wit(2p1 + q1) = q1,wit(p1 + q2) = q2,wit(p2 + q3) = q3,wit(2p2 + q4) = q4.
Another possible set of witnesses is{q1, q2,−q2,−q1}.

Proposition 2.8. (deficiency 0⇐⇒ witnesses, in [22, Prop. 3.9])
A Petri net admits a witness for each complex iff it has deficiency 0.

Next Theorem is a combination of Feinberg’s Deficiency zero Theorem [13] and Kelly’s Theo-
rem [19, Theorem 8.1]. (It is proved under this form in [22, Theorem 3.8].)

Theorem 2.9. (WR + deficiency 0=⇒ product-form)
Consider a Markovian Petri net with rates(µt)t∈T , µt > 0, and assume that the underlying Petri net is
WR and has deficiency 0. Then there exists(up)p∈P , up > 0, satisfying the equations:

∀c ∈ C,
∏

p:cp 6=0

u
cp
p

∑

t:•t=c

µt =
∑

t:t•=c

µt
∏

p:•tp 6=0

u
•tp
p . (2.3)

The marking process has an invariant measureν s.t.:∀m, ν(m) = Φ(m)−1
∏

p∈P u
mp
p .

Checking the WR, computing the deficiency, determining the witnesses, and solving the equations
(2.3), all of these operations can be performed in polynomial-time, see [14, 22].

Summing up the above, it seems worth to isolate and christen the class of nets which are WR and
have deficiency 0. We adopt the terminology of [14].

Definition 2.10. (Π2-net)
A Π

2-net is a Petri net which is WR and has deficiency 0.
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2.2. Some properties of WR and deficiency zero nets

LetN = (P, T,W−,W+) be a Petri net. LetW = W+ −W− be the incidence matrix ofN and letA
be the incidence matrix of the reaction graph.

Consider at first free-choice nets. It was shown in [22, Section 4.3] that for free-choice nets, WR
implies deficiency zero. The converse does not hold for general free-choice nets. For instance, state
machines always have deficiency zero [22, Prop. 3.2], and maynot be WR. For marked graphs, however,
the converse is true, and stated below.

Proposition 2.11. The deficiency of a connected marked graph is either 0 or 1. A marked graph has
deficiency zero if and only if it is WR.

Proof:
Let N be a marked graph. According to [9, Prop. 3.16], the only T-semi-flows ofN area(1, · · · , 1),
a ∈ Q, hence rank(W ) = |T | − 1. SinceA is aC × T matrix, rank(A) ≤ |T |. Henceδ = rank(A) −
rank(W ) ≤ 1.

The “if” direction of the second claim is trivial since a marked graph is a free-choice net. Consider the
“only if” direction. Let N be a deficiency zero marked graph. Let1 be the column vector(1, . . . , 1) of
sizeT . SinceN is a marked graph, we haveW · 1 = (0, . . . , 0). By Proposition 2.8,A = BW for
someQ-valued matrixB. So we haveA · 1 = BW · 1 = (0, . . . , 0). This implies that the connected
components of the reaction graph must be strongly connected. Indeed pick a connected component which
is not strongly connected. It admits a partition of its complexes into two subsetsC1 andC2 such that
there at least one transitiont from C1 to C2 and no transition fromC2 toC1. Then vectorx defined by
x(c) = 0 for c ∈ C1 andx(c) = 1 for c ∈ C2 fulfills x.A ≥ 0 andx.A(t) > 0. Thusx.A.1 > 0 yields a
contradiction. SoN is WR. ⊓⊔

Proposition 2.12. For a live and bounded Petri net, deficiency zero implies weakreversibility.

Proof:
Let mo be a marking such that(N ,m0) is live and bounded. We assume thatN has deficiency 0 but
is not WR. Then there exists a terminal strongly connected componentC of the reaction graph and a
transitiont0 such thatt•0 ∈ C and•t0 /∈ C.
We claim that for every vectorv ∈ QT such that for allt ∈ T , v(t) ≥ 0 andv(t0) > 0, we have
Av 6= (0, . . . , 0). Indeed,

∑

c∈C

(Av)(c) =
∑

c∈C

(
∑

t∈T

v(t)
(
1t•=c − 1•t=c

)
)

=
∑

t∈T−{t0}

v(t)

(
∑

c∈C

(
1t•=c − 1•t=c

)
)

+ v(t0) .

SinceC is a terminal strongly connected component,
∑

c∈C 1t•=c − 1•t=c is either0 or 1 for all t ∈ T .
Hence

∑
c∈C(Av)(c) ≥ v(t0) > 0. The claim is proved.
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Since(N ,m0) is live and bounded, there exists a strictly positive T-semi-flow v ∈ QT [9, Theorem
2.38], that is:∀t, v(t) > 0, W · v = (0, . . . , 0). Now recall that the deficiency ofN is 0. According to
Proposition 2.8, there exists aC × P matrixB such thatA = BW . We getAv = BWv = (0, . . . , 0).
This contradicts the above claim. ⊓⊔

A home markingis a marking which is reachable from every reachable marking. Having a home
marking is an important property for Markovian Petri nets. Indeed, a Petri net has a home marking iff
its reachability graph has only one terminal strongly connected component. And this last condition is
required for the marking process to be ergodic.

Proposition 2.13. Let N be a deficiency zero Petri net. ThenN is WR iff there exists a markingm0

such that(N ,m0) is live andm0 is a home marking.

Proof:
Suppose thatN is WR. Letm0 be a marking which enables every transition. The definition of weak
reversibility implies that every arc of the reachability graph belongs to a cycle, so the reachability graph
is strongly connected, that ism0 is a home marking. The liveness follows trivially.

Now suppose that there exists a markingm0 such that(N ,m0) is live andm0 is a home marking butN
is not WR. We proceed as in the proof of Prop. 2.12. LetC be a terminal strongly connected component
of the reaction graph and lett be a transition such thatt• ∈ C and•t /∈ C. Since(N ,m0) is live there
is a pathγ1 in the reachability graph fromm0 to m1 which enablest. Letm′

1 be the marking reached
by the firing oft, sincem0 is a home marking there is a pathγ2 from m′

1 to m0. Thusγ = γ1tγ2 is a
(directed) cycle of the reachability graph of(N ,m0). Let v be theNT column vector such that:∀u ∈ T ,
v(u) is the number of occurrences ofu in γ. Clearly,v(t) > 0 andW.v = (0, . . . , 0). The end of the
argument follows from the claim inside the proof of Prop. 2.12. ⊓⊔

The interest of Prop. 2.13 is twofold. On the one hand, it connects weak reversibility and deficiency
zero which are two independent properties ([22]). On the other hand, it shows that the only deficiency
zero and live Markovian Petri nets which are ergodic are theΠ

2-nets.

Figure 2 recapitulates the relations between deficiency andweak reversibility. The shaded cells
correspond to impossibilities. For instance, no WR free-choice nets have strictly positive deficiency.

3. Synthesis and regulation ofΠ2-nets

The reaction graph, defined in Section 2.1, may be viewed as a Petri net (state machine). Let us formalise
this observation. Thereaction Petri netof N is the Petri netA = (C, T,W

−
,W

+
), with for everyt ∈ T :

• W
−
(•t, t) = 1 and∀u 6= •t, W

−
(u, t) = 0

• W
+
(t•, t) = 1 and∀u 6= t•, W

+
(u, t) = 0

3.1. Synthesis

In this subsection, we consider unmarked nets. We define three rules that generate all theΠ2-nets. The
first rule adds a strongly connected state machine.
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WR Not WR

δ = 0

δ > 0

State machines

WR Not WR

δ = 0

δ > 0

Marked graphs

WR Not WR

δ = 0

δ > 0

Free-choice nets

WR Not WR

δ = 0

δ > 0

Live and bounded nets
and nets which have a live home marking

Figure 2. Relations between deficiency (δ) and WR for some classes of Petri nets.

Definition 3.1. (State-machine insertion)
Let N = (PN , TN ,W

−
N ,W

+
N ) be a net andM = (PM, TM,W−

M,W+
M) be a strongly connected state

machine disjoint fromN . The ruleS-add is always applicable andN ′ = S-add(N ,M) is defined by:
• P ′ = PN ⊔ PM, T ′ = TN ⊔ TM;
• ∀p ∈ PN , ∀t ∈ TN , W

′−(p, t) =W−
N (p, t), W ′+(p, t) =W+

N (p, t);
• ∀p ∈ PM, ∀t ∈ TM, W ′−(p, t) =W−

M(p, t), W ′+(p, t) =W+
M(p, t);

• All other entries ofW ′− andW ′+ are null.

The second rule consists in substituting to a complexc the complexc + λp. However in order
to be applicable some conditions must be fulfilled. The first condition requires thatc(p) + λ is non-
negative. The second condition ensures that the substitution does not modify the reaction graph. The
third condition preserves deficiency zero. Observe that thethird condition can be checked in polynomial
time, indeed it amounts to solving a system of linear equations inQ for every complex.

Definition 3.2. (Complex update)
Let N = (P, T,W−,W+) be aΠ2-net,c be a complex ofN , p ∈ P , λ ∈ Z \ {0}. The ruleC-update
is applicable when:

1. λ+ c(p) ≥ 0;
2. c+ λp is not a complex ofN ;
3. For every complexc′ there exists a witnesswit(c′) s.t.wit(c′)(p) = 0.

The resulting netN ′ = C-update(N , c, p, λ) is defined by:
• P ′ = P , T ′ = T ;
• ∀t ∈ T s.t.W−(t) 6= c, W ′−(t) =W−(t), ∀t ∈ T s.t.W−(t) = c, W ′−(t) = c+ λp

• ∀t ∈ T s.t.W+(t) 6= c, W ′+(t) =W−(t), ∀t ∈ T s.t.W+(t) = c, W ′+(t) = c+ λp.

The last rule “cleans” the net by deleting an isolated place.We call this operationP-delete.

Definition 3.3. (Place deletion)
Let N = (P, T,W−,W+) be a net and letp be an isolated place ofN , i.e. W−(p) = W+(p) = 0.
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Then the ruleP-delete is applicable andN ′ = P-delete(N , p) is defined by:
• P ′ = P \ {p}, T ′ = T ;
• ∀q ∈ P ′, W ′−(q) =W−(q), W ′+(q) =W+(q).

Proposition 3.4 shows the interest of the rules for synthesis ofΠ2-nets.

Proposition 3.4. (Soundness and Completeness)
LetN be aΠ2-net.

• If a ruleS-add, C-update or P-delete is applicable onN then the resulting net is still aΠ2-net.
• The netN can be obtained by successive applications of the rulesS-add, C-update, P-delete

starting from the empty net.

Proof:
Soundness.The case ofP-delete is straightforward. Since we delete an isolated place, the reaction
graph is unchanged. So the net is still WR. Assume that we delete an isolated placep and thatp occurs
in a witnesswit(c) of some complexc. Thenwit(c) − wit(c)(p) is also a witness ofc.

Let us examine the application of ruleS-add(N ,M). The state machineM constitutes a new com-
ponent of the reaction graph. SinceM is strongly connected, the new net is still WR. The witness of
complexes associated withN are unchanged. Letq be a place ofM; by definition of state machines this
place is self-witnessing i.e.wit(q) = q. Thus the new net has deficiency zero.

Let us examine the application of the ruleC-update(N , c, p, λ). By the second condition of its applica-
tion the reaction graph of the new net is the same as the original one (withc + λp instead ofc). So the
new net is WR. Due to the third condition, the witness ofc′ 6= c is unchanged and the witness ofc+λ · p
is the one ofc.

Completeness.Let N = (P, T,W−,W+) be aΠ2-net. We proceed as follows to generateN via our
rules. At any stage of the generation,Ncur denotes the current net. InitiallyNcur is the empty net.

First step. LetA1, . . . ,An be the strongly connected state machines corresponding to the components of
the reaction net ofN . Given a complexc of N , the corresponding place in the state machine is denoted
qc. We apply the rulesS-add(Ncur,Ai) for i from 1 ton. At this stage,Ncur hasT for set of transitions
and a placeqc for every complexc of N . Furthermore,qc has for input (resp. output) transitions the
input (resp. output) transitions ofc in N . The complexes ofNcur are the placesqc and they are their
own witnesses.

Second step.It consists in adding the places ofP in such a way that the netNcur restricted to the places
of P is N . At every stage of this step, given a complexc =

∑
p∈P c(p)p of N , there is a corresponding

complexc′ = qc +
∑

p∈P∩Pcur
c(p)p in Ncur. For every placep ∈ P , we addp to Ncur by rule

S-add (an isolated place is a strongly connected state machine) and for every complexc of N such that
c(p) > 0, we apply the ruleC-update(Ncur, c

′, p, c(p)). Let us check that this rule is applicable. First,
c′(p) + c(p) = c(p) is positive. Second,c′ + c(p)p is not a complex ofNcur by construction. Third, for
every complexc′ of Ncur, there is a witness consisting in the single placeqc which is in a state machine
Ai (thus different fromp). At the end of this step,Ncur is the netN enlarged with the places of the state
machinesAi. Otherwise stated, every complexc′ of Ncur is equal toc+ qc.

Third step. This step consists in deleting the places of the state machines. We observe that the placeqc
only occurs in the complexc + qc. The netN being aΠ2-net, every complexc′ has a witnesswit(c′)
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in N . Thenwit(c′) is a witness forc′ + qc′ in Ncur whose support does not containqc. Thus the rule
C-update(Ncur, c + qc, qc,−1) is applicable. After its application,qc becomes isolated and can be
deleted by the ruleP-delete(Ncur, qc). At the end, we have obtainedN . ⊓⊔

Figure 3. How to synthetise aΠ2-net.

Example. We illustrate the synthesis process using our rules on the net numbered 5 in Figure 3. We have
also indicated on the right upper part of this figure, the fourcomplexes and their witnesses. Since the
reaction Petri graph of this net has two state machines, we start by creating it using twice the insertion of
a state machine (net 1). Then we add the placep1 (a particular state machine). We update the complex
c1 (the single one wherep1 appears in the original net) by adding3p1 (net 2). Iterating this process, we
obtain the net 3. Observe that this net is a fusion (viaT the set of transitions) of the original net and
its reaction Petri net. We now iteratively update the complexes. The net 4 is the result of transforming
c1 + 3p1 into 3p1. Oncec1 is isolated, we delete it. Iterating this process yields theoriginal net.

For modelling purposes, we could define more general rules like the refinement of a place by a
strongly connected state machine. Here the goal was to design a minimal set of rules.

3.2. From nonΠ2-nets toΠ2-nets

Below we propose a procedure which takes as input any Petri net and returns aΠ2-net. The important
disclaimer is that the resulting net, although related to the original one, has a different structural and timed
behaviour. So it is up to the modeller to decide if the resulting net satisfies the desired specifications.
In case of a positive answer, the clear gain is that all the associated Markovian Petri nets have a product
form.

Consider a Petri netN = (P, T,W−,W+,m0) with set of complexesC. Assume thatN is not
WR. For each transitiont, add a reverse transitiont− such that•t− = t• and(t−)• = •t (unless such
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a transition already exists). The resulting net is WR. In theMarkovian Petri net, the added reverse
transitions can be given very small rates, to approximate more closely the original net. However, there
is no theoretical guarantee of the convergence of steady-state distributions and in fact counter-examples
can be exhibited.

Now, to enforce deficiency 0, the idea is to compose a general Petri net with its reaction graph as in
the illustration of Proposition 3.4.

Definition 3.5. Consider a Petri netN = (P, T,W−,W+,m0). Letm0 be an initial marking for the
reaction Petri netA. TheregulatedPetri net associated withN is defined as follows:

A⊙N =
(
P ⊔ C, T, W̃−, W̃+, (m0,m0)

)
, W̃− =

[
W−

W
−

]
, W̃+ =

[
W+

W
+

]
.

Proposition 3.6. The regulated Petri netA⊙N is WR iff N is WR. The regulated Petri netA⊙N has
deficiency 0.

Proof:
By construction the reaction graph of the regulated Petri net A ⊙ N is the reaction graph ofN , i.e. A,
modulo a node renaming. SoA⊙N is WR iff N is WR.
Now let us prove that the deficiency is 0. We use the characterization by witnesses, see Prop. 2.8. LetC̃
be the set of complexes ofA⊙N . Consider̃c ∈ C̃ and letc be the corresponding element inC. Define
wit(c̃) ∈ QP⊔C by: wit(c̃)c = 1, ∀u 6= c, wit(c̃)u = 0. By direct inspection, we check thatwit(c̃) is
indeed a witness of̃c. ⊓⊔

p1

p2

q2

q3

q1

q4

t1 t2 t3 t4

2

2

2

2

Figure 4. Regulated Petri net associated with the Petri net of Fig 1.

The behaviours of the original and regulated Petri nets are different. In particular, the regulated Petri
net is bounded, even if the original Petri net is unbounded. Roughly, the regulation imposes some control
on the firing sequences. Consider the example of Figures 1 (original net) and 4 (regulated net). The
placesq1, q2, q3, q4 correspond to the complexes2p1, p1, p2, 2p2, respectively. The transitionst1 and
t4 belong to the same simple circuit in the reaction graph. Letw be an arbitrary firing sequence. The
quantity|w|t1 − |w|t4 is unbounded for the original net, and bounded for the regulated net.
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4. Complexity analysis ofΠ2-nets

All the nets that we build in this section are symmetric henceWR. For every depicted transitiont, the
reverse transition exists (sometimes implicitly) and is denotedt−. It is well known that reachability and
liveness of safe Petri nets arePSPACE-complete [10]. In [14], it is proved that reachability and liveness
arePSPACE-hard for safeΠ-nets andNP-hard for safeΠ2-nets. The next theorem and its corollary
improve on these results by showing that the problem is not easier for safeΠ2-nets than for general safe
Petri nets.

Theorem 4.1. The reachability problem for safeΠ2-nets isPSPACE-complete.

Proof:
Our proof ofPSPACE-hardness is based on a reduction from theQSAT problem [24].QSAT consists
in deciding whether the following formula is true

ϕ ≡ ∀xn∃yn∀xn−1∃yn−1 . . . ∀x1∃y1ψ
whereψ is a propositional formula over{x1, y1 . . . , xn, yn} in conjunctive normal form with at most
three literals per clause.

Observe that in order to check the truth ofϕ, one must check the truth ofψ w.r.t. the2n interpretations
of x1, . . . , xn while the corresponding interpretation of anyyi must only depend on the interpretation of
{xn, . . . , xi}.

Counters modelling. First we design aΠ2-netNcnt that “counts” from 0 to2k − 1. This net is defined
by:

• P = {p0, . . . , pk−1, q0, . . . , qk−1};
• T = {t0, . . . , tk−1};
• For every0 ≤ i < k, •ti = pi +

∑
j<i qj andt•i = qi +

∑
j<i pj ;

• For every0 ≤ i < k,m0(pi) = 1 andm0(qi) = 0.

Figure 5. A3-bit counter (without the reverse transitions).

Observe that for every reachable markingm and every indexi, we havem(pi) +m(qi) = 1. Therefore
m can be coded by the binary wordω = ωk−1 . . . ω0 in which ωi = m(qi). The wordω is interpreted
as the binary expansion of an integer between 0 and2k − 1. We denote byval(ω) the integer value
associated withw. Considerw 6∈ {0k, 1k}, there are two markings reachable fromw which arew+ and
w− such thatval(w−) = val(w) − 1 andval(w+) = val(w) + 1.

The figure below represents the reachability graph of the3-bit counter. For ak-bit counter, the shortest
firing sequence from0k to 1k is σk defined inductively by:σ1 = t0 andσi+1 = σitiσi.



14 author / short title

For every complexc ≡ pi +
∑

j<i qj (resp. c ≡ qi +
∑

j<i pj), a possible witness iswit(c) ≡ pi +∑
j>i 2

j−i−1pj (resp.wit(c) ≡ qi +
∑

j>i 2
j−i−1qj). Thus this subnet has deficiency 0.

To manage transition firings between the update of counters,we duplicate the counter subnet and we
synchronize the two subnets as indicated in the figure below.For a duplicatedk-bit counter, the shortest
firing sequence from the marking with the two counters set to0k and placego marked to the marking
with the two counters set to1k and placego marked is obtained by:σ1 = t0 andσn+1 = σntnσn where
ti = tit

′
i.

This net has still deficiency 0 since the complexes are just enlarged by the placesgo or go′ and their
witnesses remain the same.

Variable modelling. For reasons that will become clear later on, the two counter subnets containn+ 3
bits indexed from0 to n + 2. The bits1, . . . , n of countercnt correspond to the value of variables
x1, . . . , xn. Managing the value of variablesy1, . . . , yn is done as follows. For every variableyi, we
add the subnet described below on the left (observe thatsi = r−i ) and modify the two counter subnets as
described on the right.

When placeyi (resp. nyi) is marked, this corresponds to interpreting variableyi as true (resp. false).
Changes of the interpretation are possible when placeui is marked. This is the role of the modification
done on the counter subnet: between a firing ofti andt′i places{uj}j≤i are marked. With this construc-
tion, we get the expected behaviour: the interpretation of avariableyi can only be modified when the
interpretation of a variablexj with j ≥ i is modified. The complexes of the counter subnet are enlarged
with placesui and their witnesses remain the same since places in the support of these witnesses are not
modified by transitionssi andri. The new complexyi + ui (resp. nyi + ui) has for witnessyi (resp.
nyi). Thus the new net has still deficiency 0.
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Figure 6. ClauseCj (left), synchronisation witht0 (right) and with variables (below)

Modelling the checking of the propositional formula. We now describe the subnet associated with
the checking of propositional formulaψ ≡

∧
j≤mCj where we assume w.l.o.g.: (1) that every clause

Cj ≡ lj,1 ∨ lj,2 ∨ lj,3 has exactly three literals (i.e. variables or negated variables); and (2) that every
variable or negated variable occurs at least in one clause. The left upper part of Figure 6 shows the Petri
net which describes clauseCj of the formulaψ. Placesℓj,k(k = 1, 2, 3) represent the literals while
placesnℓj,k represent the literalused as a proof of the clause, the placemutexj avoids to choose several
proofs of the clause (and thus ensuring safeness), and finally placesuccessj can be marked if and only
if the evaluation of the clause yields true for the current interpretation and one of its true literal is used
as a proof.

The complexes of this subnet aremutexj + ℓj,k (resp. successj + nℓj,k) with witness−nℓj,k (resp.
nℓj,k). So the subnet has deficiency 0.

We now synchronise the clause subnets with the previous subnet in order to obtain the final net. Observe
that in the previous subnet, transitiont0 (andt′0) must occur after every interpretation change. This is
in fact the role of bit 0 of the counter. Thus we constrain its firing by requiring the placessuccessj to
be marked as presented in the right upper part of Figure 6. Adding loops simply enlarges the complexes
associated witht0 and does not modify the incidence matrix. So the net has stilldeficiency 0.

It remains to synchronise the value of the variables and the values of the literals where the variables occur
either positively or negatively. This is done in two steps. First ℓj,k is initially marked if the interpretation
of the initial marking satisfiesℓj,k. Then we synchronize the value changes as illustrated in thelower
part of Figure 6. Once again the complexes are enlarged and the witnesses are still valid since the places
ℓj,k do not belong to the support of any witness.
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Choice of the initial and final marking for the net. Let us develop a bit the sequenceσn+3 in the two
counter subnet in order to explain the choice of initial marking for this subnet:

σn+3 = σn+1tn+1t
′
n+1σn+1tn+2t

′
n+2σn+1tn+1t

′
n+1σn+1

We want to check all the interpretations ofxi’s guessing the appropriate values ofyi’s (if they exist). We
have already seen that changing from one interpretation to another one (i.e. a counter incrementation or
decrementation) allows to perform the allowed updates ofyi. However given the initial interpretation of
thexi’s we need to make an initial guess of all theyi’s. So our initial marking restricted to the counter
subnet will correspond to the marking reached afterσn+1tn+1, i.e. corresponding tocnt = 2n+1 (i.e.
word 010 . . . 0), cnt′ = 2n+1 − 1 (i.e. word001 . . . 1) with in addition placesgo′, ui’s, mutexj ’s and
yi’s 1-marked; placesℓj,k are marked according to the initial marking of placesxi’s andyi’s as explained
before. All the other places are unmarked. This explains therole of bitn+ 1.

Furthermore, if we have successfully checked all the interpretations of thexi’s, the counters will have
reached the value2n+2 − 1 (corresponding to a firing sequence obtained fromt′n+1σn+1 with possible
updates ofyi during change of interpretations). However we do not know what is the final guess for the
yi’s. So firing transitiontn+2 allows to set theyi’s in such a way that the final marking will correspond
to cnt = 2n+2 (i.e. word10 . . . 0), cnt′ = 2n+2 − 1 (i.e. word01 . . . 1) with in addition placesgo′,
ui’s mutexj ’s andyi’s 1-marked; placesℓj,k are marked accordingly. All the other places are unmarked.
This explains the role of bitn+ 2.

By construction, the net reaches the final marking iff the formula is satisfied. Observe that the checking
of clauses can be partially done concurrently with the change of interpretation. However as long as, in the
net, a clauseCj is “certified” by a literalℓj,k (i.e. marking placesuccessj and unmarking placeℓj,k) the
value of the variable associated with the literal cannot change, ensuring that whent0 is fired, the marking
of any placesuccessj corresponds to the evaluation of clauseCj with the current interpretation. ⊓⊔

Corollary 4.2. The liveness problem for safeΠ2-nets isPSPACE-complete.

Proof:
Observe that the transitions of the net of the previous proofare fireable at least once and so live by
reversibility, implied by weak reversibility iffϕ is true. ⊓⊔

Let us now consider general (non-safe) Petri nets. Reachability and coverability of symmetric nets
is EXPSPACE-complete [23]. In [14], it is proved that both problems areEXPSPACE-complete for
WR nets (which include symmetric Petri nets). The next proposition establishes the same result for the
coverability ofΠ2-nets. The proof is complex and too long to be included here. The interested reader
may refer to the arXiv version of the paper instead.

Proposition 4.3. The coverability problem forΠ2-nets isEXPSPACE-complete.

The complexity of reachability forΠ2-nets remains an open issue (indeed the proof ofEXPSPACE-
hardness does not work for reachability).
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5. The subclass ofΠ3-nets

In this section, we introduceΠ3-nets, a subclass of product-form Petri nets for which the normalising
constant can be efficiently computed. The first subsection defines the subclass; the second one studies its
structural properties and the third one is devoted to the computation of the normalising constant.

5.1. Definition and properties

Definition 5.1. (OrderedΠ-net)
Consider an integern ≥ 2. An n-level orderedΠ-net is aΠ-netN = (P, T,W−,W+) such that:

1. P =
⊔

1≤i≤n

Pi , T =
⊔

1≤i≤n

Ti andPi 6= ∅ for all 1 ≤ i ≤ n,

2. Mi = (Pi, Ti,W
−
|Pi×Ti

,W+
|Pi×Ti

) is a strongly connected state machine,
3. ∀1 ≤ i ≤ n ,∀t ∈ Ti ,∀p ∈ P , •t(p) > 0 impliesp ∈ Pi or p ∈ Pi−1 (P0 = ∅),
4. ∀2 ≤ i ≤ n ,∃t ∈ Ti ,∃p ∈ Pi−1 s.t. •t(p) > 0,
5. ∀1 ≤ i ≤ n ,∀t, t′ ∈ Ti, (•t ∩ •t′) ∩ Pi 6= ∅ implies•t = •t′.

We callMi the leveli state machine. The elements ofPi (resp.Ti) are leveli places (resp. transi-
tions). The complexes•t with t ∈ Ti are leveli complexes.

By weak reversibility, the constraints 3, 4, and 5 also applyto the output bagst•. An orderedΠ-net
is a sequence of strongly connected state machines. Connections can only be made between a leveli
transition and a level(i− 1) place (points 1, 2, 3). By construction, anorderedΠ-net is connected (point
4). Fori > 1, each leveli place belongs to one and only one leveli complex (point 5). An example of
orderedΠ-net can be found on figure 7.

Lemma 5.2. The reaction net ofN is isomorphic to the disjoint union of state machinesMi. Conse-
quently, aT -semi-flow ofMi is also aT -semi-flow ofN . If a transition ofTi is enabled by a reachable
marking then every transition ofTi is live.

Proof:
Consider the mappingf which maps each complext•, t ∈ Ti, to p the output place oft in Pi. By
construction of orderedΠ-nets,f is a bijection fromC toP . Moreover, each arcc1 → c2 of the reaction
graph corresponds to the transitiont = f(c1)

• = •f(c2). This proves the first point of the lemma.
To prove the second point, recall that for a state machine, theT -semi-flows correspond to circuits of the
Petri net graph. From this and from the first point, aT -semi-flow ofMi defines a circuit of the reaction
graph ofN , which yields aT -semi-flow ofN .
The set of transitionsTi is the set of transitions occurring in a component of the reaction graph. The third
point follows. ⊓⊔

An orderedΠ-net may be interpreted as a multi-level system. The transitions represent jobs or events
while the tokens in the places represent resources or constraints. A leveli job requires resources from
level (i − 1) and relocates these resources upon completion. On the contrary, events occurring in level
(i − 1) may make some resources unavailable, hence interrupting activities in level i. The dependency
of an activity on the next level is measured bypotentials, defined as follows.
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Definition 5.3. (Interface, potential)
A placep ∈ Pi, 1 ≤ i ≤ n − 1, is aninterface placeif p ∈ t• for somet ∈ Ti+1. For a placep ∈ Pi,
2 ≤ i ≤ n, and a placeq ∈ Pi−1, set:

pot(p, q) =

{
t•(q) if p andq have a common input transitiont ∈ Ti
0 otherwise.

The potential of a placep ∈ Pi, 2 ≤ i, is defined by:pot(p) =
∑

q∈Pi−1
pot(p, q) . By convention,

pot(p) = 0 for all p ∈ P1 .

By the definition of orderedΠ-nets, the quantityt•(q) does not depend on the choice oft, so the
potential is well-defined. Indeed, by weak reversibility, the constraint 5 also applies to the output bags
t•.

Example. The Petri net in Figure 7 is a 3-level orderedΠ-net. The potentials are written in parentheses.
To keep the figure readable, the arcs between the placep1 and the level 2 transitions are not shown.

p3(2)

q3(1)

r3(0)

p2(2)

q2(2)

r2(1) p1

2

2

level 3 level 2 level 1

Figure 7. OrderedΠ-net.

Definition 5.4. (Marking witness)
Themarking witnessof a markingm, denoted bỹm, is defined as follows. For alli ≤ n andp ∈ Pi,

m̃(p) = m(p) +
n−i∑

j=1

(
(−1)j

∑

r1∈Pi+1
...

rj∈Pi+j

m(rj)
(j−1∏

k=1

pot(rk+1, rk)
)
pot(r1, p)

)
. (5.1)

Remark. Note that a marking witness is not necessarily non-negative. It can be showed by induction
that:

∀p ∈ Pn , m̃(p) = m(p) and∀p ∈ Pi , i < n , m̃(p) = m(p)−
∑

r∈Pi+1
m̃(r)pot(r, p)

Lemma 5.5. Letm, m′ be two vectors such thatm′ = m+W (t) for somet ∈ Ti (1 ≤ i ≤ n). Let p1
andp2 denote the input place and the output place oft in Pi, respectively. Then for every placep:

m̃′(p) = m̃(p)− 1 if p is p1, m̃(p) + 1 if p is p2, m̃(p) otherwise. (5.2)

Proof:
Sincem andm′ have the same restriction on∪j>iPj , we havem̃′(p) = m̃(p) ∀p ∈ (∪j≥iPj) \ {p1, p2}.
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It follows thatm̃′(p1)− m̃(p1) = m′(p1)−m(p1) = −1 andm̃′(p2)− m̃(p2) = m′(p2)−m(p2) = 1.
Forp ∈ Pi−1 ∩ t

•, we havem′(p)−m(p) = pot(p2, p)− pot(p1, p), hence

m̃′(p)− m̃(p) = m′(p)−m(p)−
[
(m̃′(p1)− m̃(p1))pot(p1, p)

+(m̃′(p2)− m̃(p2))pot(p2, p)
]

= 0

Similarly, m̃′(p)− m̃(p) = 0 for p ∈ Pi−1 ∩
•t.

For all other places,m′(p) = m(p) andm̃′(r) = m̃(r) ∀r s.t.pot(r, p) 6= 0, thusm̃′(p) = m̃(p). ⊓⊔

The above lemma applies in particular whenm andm′ are markings such thatm
t

−→ m′. Equa-
tions (5.2) look like the equations for witnesses. Since each level i complex contains exactly one leveli
place, one guesses that every complex admits a witness, i.e.thatN is aΠ2-net. This is confirmed by the
next proposition.

Proposition 5.6. Let B denote theP × P integer matrix of the linear transformationm 7→ m̃ defined
by (5.1). Forp ∈ Pi, the line vectorB(p) is a witness for thei-level complex containingp. In particular,
N is aΠ2-net.

Proof:
Denote byA ∈ Z(C × T ) the incidence matrix of the reaction graph. From Lemma 5.5, we have:

m
t
−→ m′ =⇒ m̃′ − m̃ = A(t) .

We have to show thatBW (t) = A(t) ∀t ∈ T . Indeed, letm andm′ be two markings such thatm
t
−→ m′,

we have:BW (t) = B(m′ −m) = m̃′ − m̃ = A(t). ⊓⊔

Lemma 5.5 allows to derive relevant S-semi-flows ofN and S-invariants.

Corollary 5.7. Letm0 be the initial marking ofN . We have:
∀m ∈ R(m0), ∀i ∈ {1, . . . , n}, m̃(Pi) = m̃0(Pi)

More generally, for alli, the vectorvi =
∑

p∈Pi
B(p) is a S-semi-flow ofN .

Using this corollary, it can be shown that an orderedΠ-net is bounded.

Example. Consider the orderedΠ-net in Figure 7 with the initial markingm0 = p3 + q3 + r3 + 4p1.
The marking witness ofm0 is m̃0 = p3+ q3+ r3− 2p2− q2+10p1. Any reachable markingm satisfies
the invariants:

m(P3) = 3
m(P2)− 2m(p3)−m(q3) = −3

m(p1)− 2m(p2)− 2m(q2)−m(r2) + 4m(p3) + 2m(q3) = 10
We shown that{vi, 1 ≤ i ≤ n} is a basis of the S-semi-flows ofN .

Proposition 5.8. Let v be an S-semi-flow ofN , i.e. v.W = 0. There exist unique rational numbers
a1, . . . , an such thatv =

∑n
i=1 aivi.
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Proof:
The matrixB is aP × P unit lower triangular matrix, so it is invertible.
We have:

v.W = 0 =⇒ (v.B−1)(BW ) = 0 =⇒ (v.B−1)A = 0 ,

hencev.B−1 is an S-semi-flow of the disjoint union of the state machinesMi. But since a state machine’s
only S-semi-flows area(1, . . . , 1), a ∈ Q, there exist rational numbersa1, . . . , ak such that

v.B−1 =
n∑

i=1

aiwi , (5.3)

wherewi ∈ QP are defined bywi(p) = 1Pi
(p).

Right-multiplying both sides of (5.3) byB, we getv =
∑n

i=1 aivi.
The independence of the set{vi , 1 ≤ i ≤ n} follows from the fact that the vectorsviB−1 have non-
empty disjoint supports. ⊓⊔

We now consider only orderedΠ-nets in which the interface places inPi have maximal potential
among the places ofPi. From the technical point of view, this assumption is crucial for the reachability
set analysis presented later. From the modelling point of view, it is a reasonable restriction. Consider the
multi-level model, the assumption means that during the executions of leveli jobs, the level(i − 1) is
idle, therefore the amount of available resource is maximal.

Definition 5.9. (Π3-net)
An orderedΠ-netN is aΠ3-net if:

∀i,∀p ∈ Pi : p ∈ •Ti+1 =⇒ pot(p) = max{pot(q), q ∈ Pi} .

5.2. The reachability set

From now on,N is an-levelΠ3-net withM1, . . . ,Mn being its state machines.

Definition 5.10. (Minimal marked potential)
Consideri ∈ {2, . . . , n}. Theleveli minimal potential marked bym is:

ϕi(m) =

{
max{pot(p), p ∈ Pi} if m(Pi) = 0 ,

min{pot(p), p ∈ Pi,m(p) > 0} if m(Pi) > 0 .

The next lemma gives a necessary condition for reachability.

Lemma 5.11. If ϕi(m) ≤ m(Pi−1) thenϕi(m
′) ≤ m′(Pi−1) for all m′ ∈ R(m).

Proof:
W.l.o.g., assume thatm

t
−→ m′.

First, suppose thatt /∈ Ti. If t /∈ Ti+1 then firingt does not modify the marking onPi, soϕi(m
′) =

ϕi(m). If t ∈ Ti+1, firing t either leaves the marking ofPi unchanged or moves tokens between places
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of maximal potential inPi; in both casesϕi(m
′) = ϕi(m). Sincet /∈ Ti, m′(Pi−1) = m(Pi−1). So

ϕi(m
′) ≤ m′(Pi−1) if t /∈ Ti.

Now considert ∈ Ti, let p andq be the input and output places oft in Pi. We haveϕi(m
′) ≤ pot(q) ≤

m(Pi−1)− pot(p) + pot(q) = m′(Pi−1). ⊓⊔

We now define the partial liveness and partial reachability.

Definition 5.12. (i-reachability set, i-liveness)
Letm be a marking. Thei-reachability set ofm, denoted byRi(m), is the set of all markings reachable
from m by a firing sequence consisting of transitions in

⋃
1≤j≤i Tj. We say thatm is i-live if for any

transitionst in
⋃

1≤j≤i Tj , there exists a marking inRi(m) which enablest. By convention,R0(m) =
{m} and every marking is0-live.

Thei-live markings are characterised by the following proposition.

Proposition 5.13. A markingm is i-live if and only if it satisfies the following inequalities,called the
i-condition:

m(Pi) > 0 ∧ ∀2 ≤ j ≤ i : m(Pj−1) ≥ ϕj(m) (5.4)

If m satisfies thei-condition then for everyp, q ∈ Pi such thatp 6= q,m(p) > 0 andpot(p) ≤ m(Pi−1),
there existsm′ ∈ Ri(m) such that:

m′(p) = m(p)− 1 , m′(q) = m(q) + 1 , ∀r ∈ Pi \ {p, q}, m
′(r) = m(r) . (5.5)

A marking is live if and only if it satisfies then-condition.

Proof:
Consider ani-live markingm. For anyj ≤ i, there is a markingm′ ∈ Ri(m) which enables a transition
of Tj . This marking satisfiesϕj(m

′) ≤ m′(Pj−1). By (weak) reversibility,m ∈ R(m′), soϕj(m) ≤
m(Pj−1) (Lemma 5.11). Since the number of tokens inPi is the same for all the markings ofRi(m),
m(Pi) > 0 (otherwise, the transitions ofTi would be dead).

We prove the reverse direction and the second part of the proposition by induction oni ≥ 1, i.e. :
If m satisfies thei-condition then:
(1) for everyp, q ∈ Pi such thatp 6= q,m(p) > 0 andpot(p) ≤ m(Pi−1), there existsm′ ∈ Ri(m) such
that:m′(p) = m(p)− 1 , m′(q) = m(q) + 1 , ∀r ∈ Pi \ {p, q}, m

′(r) = m(r) .
(2)m is i-live.

The casei = 1 is trivial.
Suppose that the claim has been proven for allj ≤ i − 1. Let m be a marking which satisfies the
i-condition. Consider two cases:pot(p) = 0 andpot(p) > 0.
If pot(p) = 0 then the output transitions ofp are enabled bym. For any arbitraryq 6= p, fire the
transitions along a path fromp to q in Ti, we obtain a markingm′ satisfying (5.5). So we have proved
assertion (1). Now choose someq such thatpot(q) > 0 (there is at least one). Thenm′(Pi−1) ≥
pot(q) > 0. By the induction hypothesis,m′ is (i− 1)-live. Moreover,m′ enables the output transitions
of q. Hencem′ is i-live, which impliesm is i-live.
If pot(p) > 0 thenm(Pi−1) > 0, hencem is (i− 1)-live by the induction hypothesis. It remains to find
a marking inRi−1(m) which enables the output transitions ofp. If for all r ∈ Pi−1, m(r) ≥ pot(p, r)
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then choosem. Otherwise, choose a marked placeq of Pi−1 such thatpot(q) ≤ m(Pi−2) and a level
(i − 1) interface placeq′, then apply the induction hypothesis on (5.5) to findm1 ∈ Ri−1(m) such that
m1(q) = m(q)− 1, m1(q

′) = m(q′) + 1 andm1(r) = m(r) for every other placesr of Pi−1. We have
ϕi−1(m1) = max{pot(r), r ∈ Pi−1}. Now starting fromm1, repeat the following procedure:

• Step 1: Find two placer1, r2 in Pi−1 such thatm̄(r1) < pot(p, r1) andm̄(r2) > pot(p, r2), m̄
denoting the current marking.

• Step 2: Use the induction hypothesis on (5.5) to findm̄′ ∈ Ri−1(m̄) such that̄m′(r1) = m̄(r1)+1,
m̄′(r2) = m̄(r2)− 1 andm̄′(r) = m̄(r) for all r ∈ Pi−1 \ {r1, r2}.

All the intermediate markings are(i − 1)-live. Sincem̄(Pi−1) ≥ pot(p), if there existsr1 ∈ Pi−2

such thatm̄(r1) < pot(p, r1) then there existsr2 ∈ Pi−2 such thatm̄(r2) > pot(p, r2) ≥ 0 as well.
Because the interface places have maximal potential, at thebeginning of each iteration, we always have
ϕi−1(m̄) = max{pot(r), r ∈ Pi−1}, hencepot(r2) ≤ ϕi−1(m̄) ≤ m̄(Pi−2). Each iteration strictly
diminishes the number of “missing” tokens in the places ofPi−1 synchronised withp, so the procedure
eventually stops at a markingm2 such thatm2(r) ≥ pot(p, r) for every placer ∈ Pi−1. This marking
enables the output transitions ofp. ⊓⊔

Example: The orderedΠ-net in Figure 7 is aΠ3-net. Consider two markings:m1 = p3 + q3 + r3 +4p1
andm2 = 3q3+4p1. These markings agree on all the S-invariants, but onlym1 satisfies the 3-condition.
It is easy to check thatm1 is live whilem2 is dead.

We conclude this subsection by showing that the reachability problem forΠ3-nets can be efficiently
decided as well.

Theorem 5.14. Suppose that the initial markingm0 is live. Then the reachability setR(m0) coincides
with the setS(m0) of markings which satisfy then-condition and agree withm0 on the S-invariants
given by Corollary 5.7.

Proof:
The inclusionR(m0) ⊂ S(m0) is the combination of the results of Corollary 5.7 and Proposition 5.13.
To prove the converse, we look for a marking which is reachable from every marking ofS(m0). Let
pj, 1 ≤ j ≤ n, be a place of maximal potential ofPj , that is,pot(pj) = max{pot(p), p ∈ Pj}. Let
m′

0 denote the unique marking inS(m0) such thatm′
0(p) = 0 for everyp /∈ {p1, . . . , pn}. Consider an

arbitrary markingm in S(m0). We prove by a reverse induction oni ≤ n and by using the second part
of Proposition 5.13 that there exists a markingm′ ∈ R(m) such thatm′(p) = 0 ∀p /∈ {p1, . . . , pn}. The
inductive claim is:

There exists a markingm′
i ∈ R(m) such that∀p ∈ ∪i≤j≤nPj \ {pi, . . . , pn}m

′
i(p) = 0

andm′
i satisfies thei− 1 condition.

Let us address the basis casei = n. Assume that there existsp 6= pn such thatm0(p) > 0. Using
proposition 5.13, we move a token fromp to pn. Furthermore by lemma 5.11, then-condition is still
satisfied. Iterating this process, we obtain a markingm′

n such that∀p ∈ Pn \ {pn} m
′
n(p) = 0 and the

n-condition is still satisfied. The inductive case is similarby observing that the sequence that moves the
tokens ofPi does not use transitions ofTj for j > i.
Sincem′ is also an element ofS(m0),m′ = m′

0. Som′
0 is reachable from every marking inS(m0). By

(weak) reversibility, every marking inS(m0) is reachable fromm′
0. SoS(m0) ⊂ R(m′

0) = R(m0). ⊓⊔
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5.3. Computing the normalising constant

The normalising constant of a product-form Petri net (see Section 2.1) isG =
∑

m 1m∈R(m0)

∏
p∈P u

m(p)
p .

It is in general a difficult task to computeG, as can be guessed from the complexity of the reachabil-
ity problem. However, efficient algorithms may exist for nets with a well-structured reachability set.
Such algorithms were known for Jackson networks [25] and theS-invariant reachablePetri nets defined
in [11]. We show that is is also the case for the class of liveΠ

3-nets which is strictly larger than the
class of Jackson networks (which correspond to 1-level ordered nets) and is not included in the class of
S-invariant reachable Petri nets.

Suppose thatm0 is a live marking. Suppose that the places of each level are ordered by increasing
potential:Pi = {pi1, . . . , piki} such that∀1 ≤ j < ki, pot(pij) ≤ pot(pi(j+1)).

Let V denote then × P -matrix thei-th row of which is the S-invariantvi defined in Corollary 5.7.
For 1 ≤ i ≤ n, setCi = vim0 = m̃0(Pi). Then the reachability set consists of alln-live markingsm
such thatV m = t(C1, . . . , Cn).

For 1 ≤ i ≤ n, 1 ≤ j ≤ ki andc1, . . . , ci ∈ Z, defineE(i, j, c1, . . . , ci) as the set of markingsm
such that 




m(piν) = 0 for all ν > j

V m = t(c1, . . . , ci, 0 . . . , 0)

ϕν(m) ≤ m(Pν−1) for all 2 ≤ ν ≤ i .

The elements ofE(i, j, c1, . . . , ci) are the markings which satisfy the second part of thei-condition and
the S-invariants constraints(c1, . . . , ci, 0, . . . , 0) and concentrate tokens inP1, . . . , Pi−1 and{pi1, . . . , pij}.

With eachE(i, j, c1, . . . , ci) associate

G(i, j, c1, . . . , ci) = π(E(i, j, c1 , . . . , ci)) =
∑∏

p∈P u
m(p)
p

the sum being taken over allm ∈ E(i, j, c1, . . . , ci).

We propose to computeG(n, kn, C1, . . . , Cn) by dynamic programming. It consists in breaking each
G(i, j, c1, . . . , ci) into smaller sums. This corresponds to a partition of the elements ofE(i, j, c1, . . . , ci)
by the number of tokens inpij.

Proposition 5.15. Let be givenE = E(i, j, c1, . . . , ci). If ci < 0 thenE = ∅. If ci ≥ 0 then for every
non-negative integera:

1. If a > ci thenE ∩ {m|m(pij) = a} = ∅.
2. If a < ci andj = 1 thenE ∩ {m|m(pij) = a} = ∅.
3. If a < ci andj ≥ 2 then
E ∩ {m|m(pij) = a} = {m+ apij | m ∈ E(i, j − 1, c1 − v1(apij), . . . , ci − vi(apij))}.

4. If a = ci andi = 1 thenE ∩ {m|m(pij) = a} = {c1p1j}.
5. If a = ci andi > 1 then
E ∩ {m|m(pij) = a} = {m+ apij | m ∈ E(i− 1, ki−1, c1 − v1(apij), . . . , ci−1 − vi−1(apij))}.

Proof:
Suppose thatE 6= ∅. Letm be an element ofE such thatm(pij) = a. We havem(Pi) = ci, soa ≤ ci.
Moreover, ifm(pij) < m(Pi) thenm must mark some placepiν with ν < j, soj ≥ 2. These prove the
first and the second cases.
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The fourth case is trivial.

Let us address the third case, we have to show that:

∀m ∈ E such thatm(pij) = a, (m− apij) ∈ E(i, j − 1, c1 − v1(apij), . . . , ci − vi(apij)) (5.6)

∀m′ ∈ E(i, j − 1, c1 − v1(apij), . . . , ci − vi(apij)), (m
′ + apij) ∈ E (5.7)

The valuesc1 − v1(apij), . . . , ci − vi(apij) are obtained by:

V m = t(c1, . . . , ci, 0, . . . , 0)

⇐⇒ V (m− apij) =
t(c1 − v1(apij), . . . , ci − vi(apij), 0, . . . , 0) .

We have to show thatϕν(m − apij) ≤ (m − apij)(Pν−1) ∀2 ≤ ν ≤ i andϕν(m
′ + apij) ≤ (m′ +

apij)(Pν−1) ∀2 ≤ ν ≤ i.
Sincem and(m−apij) only differ atpij, it suffices to show thatϕi(m−apij) ≤ (m−apij)(Pi−1). In-
deed,ϕi(m−apij) = ϕi(m) because both markings mark somepiν with ν < j, and(m−apij)(Pi−1) =
m(Pi−1) because the two markings are identical onPi−1.
Similarly, givenm′ ∈ E(i, j−1, c1− v1(apij), . . . , ci− vi(apij)), to prove (5.7), it suffices to show that
ϕi(m

′+apij) ≤ (m′+apij)(Pi−1). Indeed,(m′+apij)(Pi−1) = m′(Pi−1) ≤ ϕi(m
′) ≤ ϕi(m

′+apij).

The fifth case is similar. It suffices to show thatϕi−1(m − apij) ≤ (m − apij)(Pi−2) andϕi(m
′ +

apij) ≤ (m′ + apij)(Pi−1). The first inequality is immediate since(m− apij) is the restriction ofm on⋃
1≤ν≤i−1 Pν . To prove the second one, note that(m′+apij)(Pi−1) = m′(Pi−1) = ci−1−vi−1(apij) =

m(Pi−1) andϕi(m
′ + apij) = ϕi(m). ⊓⊔

Proposition 5.15 induces the following relations between the sumsG(i, j, c1, . . . , ci).

Corollary 5.16. If ci < 0 thenG(i, j, c1, . . . , ci) = 0. If ci ≥ 0 then:
• Case2 ≤ i ≤ n, 2 ≤ j ≤ ki:

G(i, j, c1, . . . , ci) =

ci−1∑

ν=0

uνpij
G(i, j − 1, c1 − v1(νpij), . . . , ci − vi(νpij))

+ ucipij
G(i − 1, ki−1, c1 − v1(cipij), . . . , ci−1 − vi−1(cipij)) .

• Case2 ≤ i ≤ n, j = 1:

G(i, 1, c1, . . . , ci) = ucipi1
G(i − 1, ki−1, c1 − v1(cipi1), . . . , ci−1 − vi−1(cipi1)) .

• Casei = 1, j ≥ 2: G(1, j, c1) =
∑c1−1

ν=0
uνp1j

G(1, j − 1, c1 − ν) + uc1p1j
.

• Casei = 1, j = 1: G(1, 1, c1) = uc1p11
.

Complexity. Since i ≤ n, j ≤ K = max{k1, . . . , kn}, the number of evaluations is bounded by
n ×K × γ, whereγ upper bounds theci’s. Letα denote the global maximal potential. From (5.1), we
obtainγ = O(m0(P )K

nαn). So the complexity of a dynamic programming algorithm usingCor. 5.16
isO(m0(P )nK

n+1αn), i.e. pseudo-polynomial for a fixed number of state machines.
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6. Perspectives

This work has several perspectives. First, we are interested in extending and applying our rules for
a modular modelling of complex product-form Petri nets. We also want to obtain characterisation of
product-form Petri nets when stochastic Petri nets are equipped with infinite-server policy. Then we want
to validate the formalism ofΠ3-nets showing that it allows to express standard patterns ofdistributed
systems. We plan to implement analysis ofΠ

3-nets and integrate it into a tool for stochastic Petri nets
like GreatSPN [8]. Finally we conjecture that reachabilityis EXPSPACE-complete forΠ2-nets and we
want to establish it.
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