
Optimal Constructions for Active Diagnosis∗

Stefan Haar1, Serge Haddad1, Tarek Melliti2, and Stefan Schwoon1

1 LSV (CNRS & ENS Cachan) & INRIA, France
2 IBISC (Univ Evry Val-Essonne), France

Abstract
The task of diagnosis consists in detecting, without ambiguity, occurrence of faults in a partially
observed system. Depending on the degree of observability, a discrete event system may be dia-
gnosable or not. Active diagnosis aims at controlling the system in order to make it diagnosable.
Solutions have already been proposed for the active diagnosis problem, but their complexity re-
mains to be improved. We solve here the active diagnosability decision problem and the active
diagnoser synthesis problem, proving that (1) our procedures are optimal w.r.t. to computational
complexity, and (2) the memory required for the active diagnoser produced by the synthesis is
minimal. We then focus on the delay between the occurrence of a fault and its detection by the
diagnoser. We construct a memory-optimal diagnoser whose delay is at most twice the minimal
delay, whereas the memory required for a diagnoser with optimal delay may be highly greater.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Diagnosis, Control theory, Automata theory, Games

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In monitoring discrete event systems, one of the central tasks is that of diagnosis: Given a
finite labeled transition system A (also called “plant”) whose events are partially observable,
our task is to decide - based on the stream of observation labels - whether or not particular
unobservable events, called faults, have occurred. More precisely, the system is considered
k-diagnosable iff at most k events after the occurrence of a fault, the observation is sufficient
to detect that occurrence with certainty, i.e. all possible system runs compatible with the
partial observation collected so far are faulty. The system A is diagnosable iff there exists
k ≥ 1 such that A is k-diagnosable. As the system may be insufficiently observable, or the
observation not discriminating enough, diagnosability verification has received considerable
attention since the seminal paper by Sampath et al [11]; see also [4, 3]. Those works construct
a dedicated deterministic version of the original plant, a so-called diagnoser ; the absence of
indeterminate cycles in this auxiliary automaton is equivalent to diagnosability.

On the other hand, once a system has been shown to be undiagnosable - in a sense that
we will formalize later - several actions can follow, such as complete redesign of the system, or
adding further sensors to enhance observability. Sampath et al [10] have initiated a different
approach, that of active diagnosis: if the given plant A is not diagnosable, synthesize a
partial-observation controller C that forces A to stay within a diagnosable subset of its
behaviors (or, equivalently, such that the controlled plant AC is diagnosable). The pair
consisting of the controller and the diagnoser is called an active diagnoser. Later, Chanthery
and Pencolé [5] have proposed a planning-based approach via a twin plant construction.

∗ This work has been supported by project ImpRo ANR-2010-BLAN-0317 and the European Union
Seventh Framework Programme [FP7/2007-2013] under grant agreement 257462 HYCON2 NOE.

© Stefan Haar, Serge Haddad, Tarek Melliti, and Stefan Schwoon;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Optimal Constructions for Active Diagnosis

Our contributions We follow the approach of Sampath et al [10], but via a different method
based on automata and game theory. This allows us to improve the construction of dia-
gnosers and moreover establish complexity results, which were not treated in previous work:

1. We build a deterministic Büchi automaton that accepts the sublanguage of infinite un-
ambiguous observable sequences, i.e. those that are either (i) triggered by a set of correct
runs or (ii) triggered by a set of faulty runs. Its size is upper-bounded by 2O(n), where
n is the number of states, which is better than all previous constructions. In addition
we show the optimality of our construction proving that there is a family of systems for
which any corresponding deterministic Büchi automaton must have a size in 2Ω(n).

2. We then design a Büchi game, where a winning strategy yields an active diagnoser for
the system, and vice versa. We thus solve the active diagnosis problem by deciding
whether there exists a winning strategy, and the synthesis problem by giving an active
diagnoser associated with a positional strategy. The size of the active diagnoser is singly
exponential w.r.t. the size of the system, while that of [10] is doubly exponential. We
also prove that the decision procedure is EXPTIME-complete and that the synthesis
procedure is optimal w.r.t. the number of states of the active diagnoser (still in 2O(n)).

3. We then study the delay between a fault and its detection by an active diagnoser. We first
present a family of systems for which a minimal-delay diagnoser must have 2Ω(n log(n))

states. However, refining our earlier construction yields an active diagnoser with size
2O(n), whose delay is at most twice the minimal possible delay. In addition, we sketch
the construction of a minimal-delay active diagnoser with at most 2O(n2) states.

Organization Section 2 recalls notions related to diagnosis and active diagnosis. In Sec-
tion 3, we establish the lower bounds related to the computational complexity, the memory
requirements and the index. Section 4.1 presents the construction of the deterministic Büchi
automaton. Then in Section 4.2, we solve the decision and the synthesis problems for active
diagnosis. After that, Section 4.3 refines the synthesis problem w.r.t. the delay. Section 5
gives some perspectives of this work. A long version with all proofs is available [6].

2 The active diagnosis problem

Labeled transition systems

When dealing with discrete event systems (DES) diagnosis, systems are often modeled using
labeled transition systems (LTS). So we define LTS, their properties and languages.

I Definition 1. A labeled transition system is a tuple A = 〈Q, q0,Σ, T 〉 where:
Q is a set of states with q0 ∈ Q the initial state;
Σ is a finite set of events;
T ⊆ Q× Σ×Q is the set of transitions.

We note q a−→ q′ for (q, a, q′) ∈ T ; this transition is then said to be enabled in q. A run
over the word σ = a1a2 . . . ∈ Σω is a sequence of states (qi)i≥0 such that qi

ai+1−−−→ qi+1 for
all i ≥ 0, and we write q0

σ=⇒ if such a run exists. A finite run over w ∈ Σ∗ is defined

analogously, and we write q w=⇒ q′ if such a run ends at state q′. A state q is reachable if

there exists a run q0
w=⇒ q for some w.

S.Haar, S. Haddad, T. Melliti, and S. Schwoon 3

I Definition 2 (Languages of an LTS). Let A = 〈Q, q0,Σ, T 〉 be an LTS. The finite language
L∗(A) ⊆ Σ∗ of A and the infinite language Lω(A) ⊆ Σω of A are defined by:

L∗(A) = {w ∈ Σ∗ | ∃q : q0
w=⇒ q } Lω(A) = {σ ∈ Σω | q0

σ=⇒}

An LTS A is live if for any reachable state there exists a transition enabled in that state.
An LTS A is deterministic if for every pair q ∈ Q, a ∈ Σ there is at most one q′ such that
q
a−→ q′. For a deterministic automaton we write T (q, a) = q′ if q a−→ q′.

Observations
In order to formalize problems related to diagnosis, we partition Σ into two disjoint sets
Σo and Σuo, the sets of observable and of unobservable events, respectively. Moreover, we
distinguish a special fault event f ∈ Σuo. Let σ be a finite word; its length is denoted |σ|.
For Σ′ ⊆ Σ, define PΣ′(σ) inductively by: PΣ′(ε) = ε; for a ∈ Σ′, PΣ′(σa) = PΣ′(σ)a;
and PΣ′(σa) = PΣ′(σ) for a /∈ Σ′. Write |σ|Σ′ for |PΣ′(σ)|, and for a ∈ Σ, write |σ|a for
|σ|{a}. When σ is an infinite word, its projection is the limit of the projections of its finite
prefixes. This projection can be either finite or infinite. As usual the projection is extended
to languages. PΣo will be more simply denoted by P.

q2q0 q1

a, b b c

f a

Figure 1 An LTS.

An LTS A is convergent if Lω(A)∩Σ∗Σωuo = ∅ (i.e.
no infinite sequence of unobservable events from any
reachable state). When A is convergent, then for all
σ ∈ Lω(A), one has P(σ) ∈ Σωo . We shall assume that
the system under diagnosis is live and convergent.

I Example 3. Figure 1 shows a live and convergent
LTS with Σo = {a, b, c} and Σuo = {f}.

Diagnosability
A finite (resp. infinite) sequence σ is correct if it belongs to (Σ \ {f})∗ (resp. (Σ \ {f})ω).
Otherwise σ is called faulty. An observation sequence may be the projection of both a correct
and a faulty sequence, hence ambiguous.

I Definition 4 (ambiguous and surely faulty sequence). Let A be an LTS, σ1, σ2 ∈ Lω(A) be
two sequences and σ ∈ Σωo be an observable sequence such that:

(1) P(σ1) = P(σ2) = σ, (2) σ1 is correct and (3) σ2 is faulty.
Then σ is called ambiguous and the pair (σ1, σ2) is a witness for the ambiguity of σ. Am-
biguous finite observable sequences are defined analogously.
A sequence σ′ ∈ P(L∗(A)) is surely faulty iff P−1(σ′) ∩ L∗(A) ⊆ Σ∗fΣ∗.

I Definition 5 (Diagnosability). Let k ∈ N. An LTS A is k-diagnosable if:
∀σ = σ′fσ′′ ∈ L∗(A) |σ′′|Σo ≥ k ⇒ P(σ) is a surely faulty sequence,

Furthermore, A is diagnosable if there exists a k such that A is k-diagnosable.

Our definition of diagnosability is a slight variation of the one given in [11]. Indeed the
number k above is related to observable events while in former works, it is related to any
kind of events. However for finite-state convergent systems (which are the ones addressed
by both works) the definitions of diagnosability coincide.

I Example 6. The LTS of Figure 1 is not diagnosable since the correct infinite trace bω and
the faulty infinite trace fbω have the same projection.

4 Optimal Constructions for Active Diagnosis

Active diagnosability
We suppose that Σo is partitioned into subsets Σc ⊆ Σo of controllable and Σuc = Σo\Σc
of uncontrollable actions. Intuitively, a controller may forbid a subset of the controllable
actions based on the observations made so far, thereby restricting the behaviour of A.

I Definition 7 (Controller). Let A be an LTS. A controller for A is a mapping cont :
P(L∗(A)) → 2Σ such that for all σ, Σuc ∪ Σuo ⊆ cont(σ). The controlled LTS Acont =
〈Qcont , q0cont ,Σ, Tcont〉 is defined by:

Qcont is the smallest subset of Σ∗o ×Q such that
1. (ε, q0) ∈ Qcont ;
2. (σ, q) ∈ Qcont ∧ a ∈ cont(σ) ∧ q a−→ q′ implies (P(σa), q′) ∈ Qcont .
q0cont = (ε, q0)
((σ, q), a, (σ′, q′)) ∈ Tcont iff q a−→ q′ ∧ a ∈ cont(σ) ∧ σ′ = P(σa)

In the diagnosis framework, the goal of our controller is to make the system diagnosable,
and to perfom diagnosis. However, one requires that the control cannot introduce deadlocks.

I Definition 8 (Pilot and Active Diagnoser). Let A be an LTS. We call h = 〈cont, diag〉
a pilot for A if cont is a controller and diag is a mapping from P(L∗(Acont)) to {⊥,>}.
Moreover, h is called an active diagnoser if:
1. Acont is live;
2. P(Lω(Acont)) does not contain any ambiguous sequence;
3. diag(σ) = > if and only if σ is a surely faulty sequence for σ ∈ P(L∗(Acont)).
For k ≥ 1, we say that h is a k-active diagnoser, if for all σ = σ′fσ′′ ∈ L∗(Acont) with
|σ′′|Σo ≥ k, diag(P(σ)) = >, i.e. every fault is diagnosed after at most k observations. The
minimal k such that h is a k-active diagnoser is called the delay of h. We call A (k-)actively
diagnosable if a (k-)active diagnoser exists, and the minimal such k the index of A.

I Example 9. In the LTS of Figure 1, assume that Σc = {a, b}. Let hn = 〈contn, diag〉,
with n ≥ 1, be the pilot defined by:

contn(σbn) = {a, c, f} for σ ∈ Σ∗c and contn(σ) = Σ otherwise;
diag(σ) = > iff σ ∈ Σ∗ocΣ∗o.

Then hn is an active diagnoser with delay n+ 2.

Notice that an active diagnoser does not necessarily have a finite delay. For instance, in
Figure 1, there is an active diagnoser that admits the sequence bab2ab3a · · · and is not an
k-active diagnoser for any k. However, we will see that if A is actively diagnosable, there
does exist a k-active diagnoser (for some k). We come back to this point in Section 4.3.

We are now in a position to formally state the relevant problems for active diagnosis.
Let A be a live and convergent LTS with finitely many states. We are interested in:

the active diagnosis decision problem, i.e. decide whether A is actively diagnosable;
the synthesis problem, i.e. decide whether A is actively diagnosable and in the positive
case build an active diagnoser.
the minimal-delay synthesis problem, i.e. decide whether A is actively diagnosable and
in the positive case build an active diagnoser with minimal delay.

We introduce the notion of state-based pilot as finite representation of an active diagnoser.

I Definition 10 (state-based pilot). A state-based pilot C = 〈B, contC , diagC〉 consists of a
deterministic LTS B = 〈Qc, qc0,Σo, T c〉 and labellings contC , diagC : Qc → 2Σ×{⊥,>}, such
that for all q ∈ Qc, Σuc ∪ Σuo ⊆ contC(q). The pilot hC = 〈cont, diag〉 associated with C is

S.Haar, S. Haddad, T. Melliti, and S. Schwoon 5

Σ,> Σ,⊥
b

a

c
bΣ\{b},⊥

a
c

c

Figure 2 A state-based pilot.

a, b

a, b

a, b

a, b c

c, d

d

d

c

qn

rn

ln ln+1 b

qn+1 a

rn+1 b

a, b a, b a, b

a, b a, b

a, ba, ba

b

f

f

f

f

ff

f f

q0 q1 q2 qn−1

r0 r1 r2 rn−1

l0 l1 l2 ln−1
a, b

a, b
· · ·

· · ·

· · ·

Figure 3 An LTS An with Σo = {a, b, c, d}, Σc = {c, d} used in Theorem 14.

given by cont(σ) = contC(q) and diag(σ) = diagC(q) for all σ ∈ P(L∗(A)), where q is the
unique state such that qc0

σ=⇒ q.

I Example 11. Figure 2 shows a state-based pilot for the LTS of Figure 1. Observe that
there is an outgoing transition b from the rightmost state (to fulfil the language inclusion
requirement) but b is disabled in this state (in order to implement the active diagnoser h1).

3 Lower bounds

We first establish that the active diagnosis decision problem is EXPTIME-hard. The proof
[6] relies on a reduction from safety games with imperfect information [1].

I Theorem 12 (hardness). The active diagnosis decision problem is EXPTIME-hard.

The next theorems focus on the memory required for synthesis problems related to active
diagnosis. We start with the language of unambiguous sequences of an LTS.

I Definition 13 (Büchi automaton). A Büchi automaton over Σ is a tuple B = 〈B′, F 〉, where
B′ = 〈S, s0,Σ, δ〉 is an LTS such that S is finite, and F ⊆ S an acceptance condition. A run
(qi)i≥0 is accepting if qi ∈ F for infinitely many values of i. The language L(B) consists of
all words in Lω(B′) for which there exists an accepting run. A Büchi automaton is called
deterministic (live) if its underlying LTS is.

I Theorem 14 (lower bound for determinization). There exists a family (An)n≥1 of LTS
with the size of An in O(n) such that any deterministic Büchi automaton recognizing the
unambiguous sequences of An has at least 2n states.

The family of LTS (An)n≥1 is depicted in Figure 3. During the n first steps a fault can
occur leading to the upper (resp. lower) “branch” of the LTS when followed by a (resp.
b). However the corresponding observable sequence becomes definitively ambiguous if n

6 Optimal Constructions for Active Diagnosis

steps later the LTS performs d (resp. c). So any deterministic automaton should lead to
different states when reading two different words of length n. With an appropriate choice of
controllable events, this family also provides a lower bound for a state-based active diagnoser.

I Theorem 15 (lower bound for pilots). There exists a family (An)n≥1 of actively diagnosable
LTS with the size of An in O(n) such that the LTS of any state-based pilot C, where hC is
an active diagnoser for A, has at least 2n states.

We shall now see that the lower bound is even higher when one tries to minimize the
fault-detection delay. The LTS An of Figure 4 contains the observable (and uncontrollable)
observation sequence aπ(1) . . . aπ(n), where π is a permutation. Such a sequence is ambiguous
since a fault may have occurred before any observable event. To remove ambiguity with
minimal delay (i.e. n + 2) an active diagnoser must disallow at time n + i all events in B
except bπ(i) that forces the potential faulty sequence to reach state s where only c is possible.
Thus, any active diagnoser for An must remember the permutation π.

I Theorem 16 (minimal-delay diagnoser). There exists a family (An)n≥1 of f(n)-actively
diagnosable LTS (for some function f) with O(n) states such that the LTS of any state-
based pilot C, where hC is an f(n)-active diagnoser for A, has at least n! states.

Note that in Figure 4 the alphabet size depends on n; however Theorem 16 also holds
for a fixed-size alphabet [6]. While the previous examples exhibit an index linear w.r.t. the
size of the LTS, this index may be exponential in the worst case (and no more as shown in
the Section 4). An example for this is shown in [6].

I Theorem 17 (lower bound for index). There exists a family (An)n≥1 of actively diagnosable
LTS with O(n) states such that the index of An is at least 2n.

4 Size-Optimal Controller

4.1 Characterization of unambiguous sequences
In this section, we characterize the infinite unambiguous sequences in an efficient way. Fix
a finite-state live, convergent LTS A = 〈Q, q0,Σ, T 〉 for the rest of the section. We build a

A, B \ {bn}

c

b2

f

a2

· · ·
A A A A

Bp1 p2 pn r

q1 q2 A, B \ {b2} qn

s

f

b1 bn

a1 an

f

· · ·

B = {b1, . . . , bn}

A = {a1, . . . , an}

A, B \ {b1}

Figure 4 An LTS An with Σo = A ∪ B ∪ {c}, Σc = B whose minimal-delay active diagnoser
requires at least O(n!) states.

S.Haar, S. Haddad, T. Melliti, and S. Schwoon 7

Büchi automaton B = (B′, F) that accepts the unambiguous observation sequences. Since B
is the base of the active diagnoser constructed in Section 4.2, we want B to be deterministic.

A potential procedure for obtaining a deterministic automaton accepting unambigu-
ous sequences is as follows: First, build a non-deterministic Büchi automaton that accepts
observable sequences explainable by both a correct and a faulty sequence. This leads to
a quadratic blow up w.r.t. the size of A. Then, determinize it by the Safra procedure [9],
yielding a deterministic Rabin automaton, and complement it so it accepts the unambiguous
sequences. However, we now provide the construction of a simpler and smaller deterministic
Büchi automaton. More precisely, the automaton that we build has the following properties:
B′ is deterministic;
B′ “reads” the observable sequences of A, i.e. Lω(B′) = P(Lω(A));
B accepts exactly the unambiguous observation sequences.

We first give some intuition about the way B works. Its states are triples 〈U, V,W 〉,
where U, V,W ⊆ Q. The states in U represent states reachable by non-faulty traces in
A, whereas V ∪W are states reachable by committing a fault. Let σ = a1a2 . . . ∈ Σωo be
an observation sequence. An ambiguous prefix of σ will lead to a state in which both U

and V ∪W are non-empty, and if σ is ambiguous, then its run will eventually remain in
such states forever. Unfortunately, the reverse implication is not true, as the example from
Figure 1 shows: every finite prefix of the sequence aω is ambiguous, but aω is not. In order
to distinguish ambiguous sequences from those that merely have infinitely many ambiguous
prefixes, V and W assume different functions: W represents a “watchlist”, initially empty.
Suppose that the observation a1 . . . aj , for some j, corresponds to some faulty execution.
Then we put the state reachable by that faulty execution into W and trace its successor
states there while making further observations. If W never becomes empty, then indeed
there exists a faulty element of P(σ) in Lω(A). On the other hand, if some observation aj′ ,
for j′ > j, is impossible in all states of W , then we can conclude that no fault has occurred
before aj . In the meantime, V serves as a “waiting room”: it stores states that can be
reached by faulty sequences where the fault has occurred between observations aj and aj′ .
When W becomes empty, those states are shifted from V to W to form the new watchlist.

Let S′ ⊆ S, a ∈ Σo, and L ⊆ Σ∗uo be a language of unobservable actions. We denote
δL(S′, a) := { q ∈ Q | ∃q′ ∈ S′, w ∈ L : q′ wa==⇒ q }, and introduce the abbreviations

δn for L = (Σuo \ {f})∗ (non-faulty executions),
δf for L = Σ∗uofΣ∗uo (faulty executions),
and δ∗ for L = Σ∗uo (arbitrary executions).

We can now state the formal construction of B = 〈〈S, s0,Σo, δ〉, F 〉 as follows:
S = 2Q × 2Q × 2Q \ {〈∅, ∅, ∅〉} and s0 = 〈{q0}, ∅, ∅〉;
F = { 〈∅, S1, S2〉, 〈S1, S2, ∅〉 | S1, S2 ⊆ Q };
for s = 〈U, V,W 〉 ∈ S and a ∈ Σo such that δ∗(U ∪ V ∪W,a) 6= ∅, let ∆ := δf (U, a) ∪
δ∗(V, a); then

δ(s, a) =
{
〈δn(U, a), ∅,∆〉 if W = ∅;
〈δn(U, a),∆ \ δ∗(W,a), δ∗(W,a)〉 otherwise.

Observe that disregarding the acceptance condition, the sequences read by B exactly
correspond to observable sequences of A, i.e. P(Lω(A)).

I Theorem 18. A sequence of observations σ ∈ Σωo is accepted by B iff it is unambiguous.

8 Optimal Constructions for Active Diagnosis

〈1, ∅, ∅〉

〈1, ∅, 3〉 〈1, 3, ∅〉

〈1, ∅, 2〉 〈1, 2, ∅〉

〈∅, ∅, 3〉

c

cb

b
b

a

c

b

b

a

a

a

a

Figure 5 Büchi automaton resulting from Figure 1; accepting states have double frames.

I Example 19. Figure 5 shows the result of the construction on the system from Figure 1.
Since all non-empty sets are singletons we have represented them by their item. Notice that
any sequence ending in bω is ambiguous in Figure 1 and hence not accepted in Figure 5. On
the other hand, e.g., sequence aω is accepted: while every prefix ai, for i ≥ 1, is ambiguous,
we always know after i+1 observation that no fault has occurred before the i-th observation.

We briefly discuss the relationship of our determinization construction with other stand-
ard constructions in diagnosis and automata theory. In [14], diagnosability of an LTS A is
decided by building two automata: one is a modification of A that accepts the projections
all non-faulty sequences, the other accepts the projections of all faulty sequences, remem-
bering whether a fault has occurred in the current state. The cross product of these two is
a non-deterministic Büchi automaton of size 2n2 (for |Q| = n) that accepts all ambiguous
sequences. A direct determinization [9] of that cross product would yield a Rabin auto-
maton of size 2O(n2 logn). However, given that the cross product is weak in the sense that
all its strongly connected components are either fully accepting or fully non-accepting, one
could apply the breakpoint construction of Miyano and Hayashi [7] to obtain a deterministic
Büchi automaton of its complement language, of size 32n2 . Our construction, while similar
in spirit to that of [7], is more efficient than that: for a reachable Büchi state 〈U, V,W 〉 ∈ S,
any LTS state q ∈ Q may or may not appear in U , and it may appear in at most one
of V or W , but not in both. Thus, the number of reachable states in B is bounded by
2n · 3n = 6n = 2O(n). Theorem 14 shows that an exponential blowup in n is unavoidable in
general, i.e. our construction is optimal up to a constant factor in the exponent.

4.2 Synthesizing the controller
We simultaneously solve the decision and synthesis problems. As before, we fix an LTS
A = 〈Q, q0,Σ, T 〉. We shall try to construct a state-based pilot C such that hC is an active
diagnoser for A. The construction succeeds iff A is actively diagnosable. According to
Definition 8, the main challenges in building an active diagnoser are to ensure that (i) the
controlled system remains live, (ii) the controller excludes the ambiguous sequences, and
(iii) diagnosis information is provided. For this, we introduce Büchi games.

I Definition 20 (game). A game G (between two players called Control and Environment)
is a tuple 〈VC , VE , E, v0, VF 〉, where VC , VE are the vertices owned by Control and Environ-
ment, respectively; VG denotes all vertices, and v0 ∈ VC is an initial vertex. E ⊆ VG × VG
are directed edges such that for all v ∈ VC there exists some (v, w) ∈ E, and VF ⊆ VG is a
winning condition. A play is a function ρ : N → VG such that ρ(0) = v0 and 〈ρi, ρi+1〉 ∈ E
for all i ≥ 0; we call ρk := ρ(0) · · · ρ(k), for some k ≥ 0, a partial play if ρ(k) ∈ VC , and set
state(ρk) := ρ(k). We write Play∗(G) for the set of partial plays of G. A play ρ is called
winning (for Control) if ρ(i) ∈ VF for infinitely many i.

S.Haar, S. Haddad, T. Melliti, and S. Schwoon 9

I Definition 21 (strategy). Let G = 〈VC , VE , E, v0, VF 〉 be a game. A strategy (for Control)
is a function θ : Play∗(G) → VG such that 〈state(ξ), θ(ξ)〉 ∈ E for all ξ ∈ Play∗(G). A play
ρ adheres to θ if ρ(i) ∈ VC implies ρ(i + 1) = θ(ρi) for all i ≥ 0. A strategy is called
winning if every play ρ that adheres to θ is winning. A positional strategy is a function
θ′ : VC → VG such that 〈v, θ′(v)〉 ∈ E for all v ∈ VC ; we call θ′ winning if the strategy θ with
θ(ξ) = θ′(state(ξ)) is winning.

In the game that we have defined, a play can only be stuck in a state of Environment.
Thus we do not consider finite maximal plays for defining the winning strategies of Control.
Let B = 〈B′, F 〉, with B′ = 〈S, s0,Σo, δ〉, be the deterministic Büchi automaton constructed
from A in Section 4.1. We shall take B′ as the LTS component of C. To determine contC ,
we construct a Büchi game based on B. The objective of Control is to obtain an accepting
run by suitably restricting the possible actions, and any winning strategy will be a suitable
candidate for contC . Intuitively, a round of the game is played as follows:

1. Control restricts the set of possible actions to Σ′.
2. Environment chooses an action a ∈ Σ′ to determine the next state of B.

The choices of Control are subject to some restrictions. Indeed, each state s = 〈U, V,W 〉
represents Control’s knowledge about the current potential states of A. To ensure that
the controlled system remains live, Σ′ must not cause deadlocks in any state reachable by
unobservable events from U∪V ∪W . Also, Control cannot prevent the uncontrollable events.
So we define the admissible sets and the game as follows.

I Definition 22 (admissible action set). Let s = 〈U, V,W 〉 be a state of B. We call Σ′ ⊆ Σo
admissible for s if (i) Σuc ⊆ Σ′ and (ii) for all states q′ of A with q

w=⇒ q′ for some

q ∈ U ∪ V ∪W and w ∈ Σ∗uo, there exists a ∈ Σ′ and q′′ ∈ Q with q′ a−→ q′′. The admissible
sets for s are denoted adm(s).

I Definition 23 (controller-synthesis game). Let B = 〈〈S, s0,Σo, δ〉, F 〉 be a Büchi auto-
maton. We denote G(B) the game 〈VC , VE , E, s0, F 〉, where VC = S, VE = (S × 2Σo)∪ (S ×
Σo), and E = E1 ∪ E2 ∪ E3, where

E1 = { 〈s, 〈s,Σ′〉〉 | s ∈ S, Σ′ ∈ adm(s) };
E2 = { 〈〈s,Σ′〉, 〈s, a〉〉 | s ∈ S, a ∈ Σ′ };
E3 = { 〈〈s, a〉, s′〉 | δ(s, a) = s′ }.

The set E3 is only introduced to record the sequence of observable actions that occur
during a play. Furthermore Environment can be stuck in a vertex of E3 meaning that the
action chosen by Environment does not correspond to a possible behavior of the system.

I Example 24. Figure 6 depicts an excerpt of the game for Example 1. In the initial state,
there are three possible admissible sets, all including c, the uncontrollable observable action.
{c} is not an admissible set as it blocks the system. If Environment chooses action c, it
immediately loses since c is not possible initially even after a fault.

We can now address the decision and synthesis problems. The next theorem is based on
the following: (1) Büchi games can be solved in polynomial time, (2) a positional winning
strategy can always be chosen for Control if it wins and (3) there is a tight correspondence
between winning strategies and active diagnosers.

I Theorem 25. Let A be an LTS with n states and m controllable actions. The active
diagnosis decision and synthesis problems for A can be solved in 2O(n+m) time. Moreover,
if A is actively diagnosable, then one can synthesize a state-based pilot C with at most 6n
states such that hC is an active diagnoser for A.

10 Optimal Constructions for Active Diagnosis

〈1, ∅, ∅〉

〈1, ∅, ∅〉,
{b, c}

〈1, ∅, ∅〉,
{a, b, c}

〈1, ∅, ∅〉,
{a, c}

〈1, ∅, ∅〉,
b

〈1, ∅, ∅〉,
c

〈1, ∅, ∅〉,
a 〈1, ∅, 3〉

〈1, ∅, 2〉

Figure 6 Excerpt of the Büchi game for Example 1.

We briefly discuss the relationship of our construction with that of [10]. There, an active
diagnoser is built on the basis of a powerset construction that is similar to ours but without
splitting the possibly faulty states into a ‘watchlist’ W and a ‘waiting room’ V . However,
they then face the aforementioned problem of distinguishing sequences with infinitely many
ambiguous prefixes (like aω in Example 1) from truly ambiguous sequences (like bω), which
they resolve by examining each cycle of the automaton. Since the number of states in that
automaton is 3n,1 and there can be exponentially many cycles, this procedure is doubly
exponential in n. Our construction is only singly exponential in n.

Using Theorems 12 and 25, we get the following corollary.

I Corollary 26. The active diagnosis decision problem is EXPTIME-complete.

4.3 Index and waiting time
We assume that A is actively diagnosable and develop the construction of an active diagnoser
with a delay close to the index of A, and a computational complexity still in 2O(n). For
simplicity, we denote the game G(B) by G. Let G′ be any game. Given a strategy θ for G′,
we denote by Playωθ (G′) the set of plays that adhere to strategy θ, and by R(θ) the subset of
states of S that are visited by a play of Playωθ (G′). We are now in the position to introduce
the main concept of this section, the waiting time of a strategy: the maximal number of
states visited without encountering an accepting state.

I Definition 27 (waiting time). Let θ be a strategy for G. Then the waiting time K(θ) is
defined as sup(|{k | i ≤ k ≤ j ∧ ρ(k) ∈ S}| | ∃i, j ∃ρ ∈ Playωθ (G) F ∩ {ρ(k)}i≤k≤j = ∅) with
the convention sup(∅) = 0.

Observe that K(θ) may be infinite for a non-positional winning strategy. However, it is
finite and strictly smaller than |S| (since there is at least one accepting state) for a winning
positional strategy. In fact, for θ a winning positional strategy, K(θ) can be computed in
linear time (with appropriate data structures) w.r.t. the size of G. In order to present it
and for subsequent use, we introduce the following notation. Let s be a state of the Büchi
automaton, Out(s) := {a ∈ Σo | δ(s, a) is defined }. First one computes, by increasing
values, the minimal solution of the following equation system:

Vθ(s) =
{

0 if s ∈ R(θ) ∩ F ;
1 + max(Vθ(δ(s, a)) | a ∈ Σ′ ∩Out(s) s.t. (s,Σ′) = θ(s)) if s ∈ R(θ) \ F .

Then K(θ) = max(Vθ(s) | s ∈ R(θ)). Denote by D(θ) the delay of the active diagnoser
related to strategy θ. Lemma 28 shows that K(θ) provides useful information about D(θ).

1 This is the result when only one fault type is considered; [10] actually provides for several fault types,
which we omit here for sake of simplicity.

S.Haar, S. Haddad, T. Melliti, and S. Schwoon 11

I Lemma 28. Let θ be a strategy for game G with finite waiting time. Then:
1 +K(θ) ≤ D(θ) ≤ 1 + 2K(θ)

Intuitively, the upper bound is potentially due to a fault staying in the “waiting room” of
B for at most K(θ) steps, then in the “watchlist” for at most K(θ) + 1 steps. The lower
bound is due to the fact that along a subrun with a non-empty watchlist, a possible fault
could have occurred before this subrun.

Define KA = min(K(θ)), where θ ranges over the winning strategies for G. Since a
positional such strategy exists, we know that KA is finite and belongs to 2O(n). Let us note
DA = min(D(θ)) the index of A. The following corollary provides a tight frame for DA and
shows that the index is in 2O(n).

I Corollary 29. Let A be actively diagnosable. Then: 1 +KA ≤ DA ≤ 1 + 2KA

Let us compute an active diagnoser or, equivalently, a strategy θ that achieves K(θ) =
KA. To this aim, we introduce a family of games {Gi}i∈N defined as follows. The set of
vertices of Gi are: VGi

= {vj | v ∈ VG ∧ 0 ≤ j ≤ i} ∪ {lost} where the subset of vertices
owned by Control are {vj | v ∈ VC ∧ 0 ≤ j ≤ i} ∪ {lost}, the initial vertex is s0

0, and the set
of accepting states are {s0 | s ∈ F}. Its set of edges E′ = E′1 ∪ E′2 ∪ E′3 is defined by:

for all j ≤ i, 〈vj , wj〉 belongs to E′1 iff 〈v, w〉 belongs to E1;
for all j ≤ i, 〈vj , wj〉 belongs to E′2 iff 〈v, w〉 belongs to E2;
for all j ≤ i, 〈〈s, a〉j , s′0〉 ∈ E′3 iff 〈〈s, a〉, s′〉 ∈ E3 and s′ ∈ F ;
for all j < i, 〈〈s, a〉j , s′j+1〉 ∈ E′3 iff 〈〈s, a〉, s′〉 ∈ E3 and s′ /∈ F ;
〈〈s, a〉i, lost〉 belongs to E′3 iff 〈〈s, a〉, s′〉 belongs to E3 and s′ /∈ F ;
〈lost, lost〉 belongs to E′3 and there is no other edge.

Game Gi has the following properties: an infinite play either ends up in lost or visits the
accepting states infinitely often, with at most i visits of the set {vj | v ∈ S \ F, 0 ≤ j ≤ i}
between two visits of accepting states. The following lemma relates strategies in G and Gi.
Based on it an efficient computation of an optimal strategy w.r.t. K(θ) can be performed.

I Lemma 30. There is a winning strategy θ in G with K(θ) ≤ i iff there is a winning
strategy θi in Gi. Moreover, in the positive case, θ can be chosen to be positional.

I Theorem 31. If A is actively diagnosable, there exists a positional strategy θ that fulfills
K(θ) = KA. Moreover, such a strategy can be computed in 2O(n).

This construction represents a reasonable tradeoff, since, due to Theorem 16, an active
diagnoser that realizes a delay equal to the index of A may need to be much larger, i.e.
2Ω(n log(n)). We sketch the construction of a controller with minimal delay once one knows
that the system is actively diagnosable. One iteratively builds a safety game G′i parametrized
by increasing values of i. A controller state of this game is defined by (U, d) where U is the
set of states reached by a correct sequence while d associates with every state s reached by a
faulty sequence a duration d(s) ≤ i+ 1 since the occurrence of the earliest fault that would
lead to s. As in the previous games the controller selects a subset of observable actions
letting the environment select an action among them. The aim of the controller is to avoid
states with some d(s) = i + 1. The first i for which G′i has a winning strategy is the index
and the winning strategy yields an active diagnoser with minimal delay. Observe that since
the index is bounded by 2O(n), in the worst case the final game has 2O(n2) states.

12 Optimal Constructions for Active Diagnosis

5 Conclusion and Perspectives

We have developed an active-diagnosis method for finite-state systems and shown it to be
optimal w.r.t. several criteria. For instance, our work allows to minimize the delay between
the occurrence of a fault and its detection. In general, striving for a minimal delay may lead
to an overly restrictive controller, e.g., in Figure 1 the controller could completely forbid
the action b. We have therefore undertaken work to allow for parametrized active diagnosis,
which constructs the most permissive controller that respects a user-specified delay. This
work, not included here for space reasons, is contained in the long version [6].

Future work has some research leads to address. First, it remains to determine the precise
memory requirements for the minimal-delay diagnoser since we showed that it lies between
2Θ(n log(n)) and 2Θ(n2). Second, the control for active diagnosis could be refined into a safe
control, i.e. one that does not “encourage” the faulty behaviours. Last we aim at addressing
infinite-state systems or systems with quantitative features, as for passive diagnosability in
pushdown systems [8], Petri nets [2], timed [15, 13] and probabilistic systems [12].

References
1 D. Berwanger and L. Doyen. On the power of imperfect information. In Proc. FSTTCS,

volume 2 of LIPICS, Bangalore, India, 2008.
2 M.P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu. Diagnosability analysis of unbounded

Petri nets. In CDC09: 48th IEEE Conf. on Decision and Control, pages 1267–1272, 2009.
3 C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems - Second

Edition. Springer, 2008.
4 F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundamenta

Informaticae, 88:497–540, 2008.
5 E. Chanthery and Y. Pencolé. Monitoring and active diagnosis for discrete-event systems.

In Proc. SafeProcess’09, 2009.
6 Stefan Haar, Serge Haddad, Tarek Melliti, and Stefan Schwoon. Optimal constructions for

active diagnosis. Research Report LSV-13-12, ENS Cachan, September 2013.
7 S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer

Science, 32:321–330, 1984.
8 C. Morvan and S. Pinchinat. Diagnosability of pushdown systems. In Proceedings of the

Haifa Verification Conference, LNCS 6405, 2009.
9 S. Safra. On the complexity of omega-automata. In FOCS, pages 319–327. IEEE, 1988.

10 M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems.
IEEE Transactions on Automatic Control, 43(7):908–929, July 1998.

11 M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnos-
ability of discrete-event systems. IEEE Trans. Aut. Cont., 40(9):1555–1575, 1995.

12 D. Thorsley and D. Teneketzis. Diagnosability of stochastic discrete-event systems. IEEE
Transactions on Automatic Control, 50(4):476–492, 2005.

13 S. Xu, S. Jiang, and R. Kumar. Diagnosis of dense-time systems using digital clocks. IEEE
Transactions on Automation Science and Engineering, 7(4):870–878, 2010.

14 T-S. Yoo and S. Lafortune. Polynomial-time verification of diagnosability of partially
observed discrete-event systems. IEEE Trans. Automat. Contr., 47(9):1491–1495, 2002.

15 S. Hashtrudi Zad, R.H. Kwong, and W.M. Wonham. Fault diagnosis in discrete-event
systems: Incorporating timing information. Trans. Aut. Cont., 50(7):1010–1015, 2005.

	Introduction
	The active diagnosis problem
	Lower bounds
	Size-Optimal Controller
	Characterization of unambiguous sequences
	Synthesizing the controller
	Index and waiting time

	Conclusion and Perspectives

