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We characterize the importance of resources (like counters, channels, or alphabets) when
measuring the expressiveness of Well-Structured Transition Systems (WSTS). We establish,
for usual classes of well partial orders, the equivalence between the existence of order
reflections (non-monotonic order embeddings) and the simulations with respect to
coverability languages. We show that the non-existence of order reflections can be proved
by the computation of order types. This allows us to extend the current classification of
WSTS, in particular solving some open problems, and to unify the existing proofs.
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1. Introduction

WSTS. Infinite-state systems appear in many models and applications: stack automata, counter systems, Petri nets or VASSs,
reset/transfer Petri nets, fifo (lossy) channel systems, parameterized systems . . . . Among these infinite-state systems, some
of them, called Well-Structured Transition Systems (WSTS) [1], enjoy two nice properties: there is a well partial ordering
(wpo) on the set of states and the transition relation is monotone with respect to this wpo.

The theory of WSTS has been successfully applied to the verification of safety properties of numerous infinite-state mod-
els like Lossy Channel Systems (LCS), extensions of Petri nets like reset/transfer and Affine Well Structured Nets (AWN) [2],
or broadcast protocols. Most of the positive results are based on the decidability of the coverability problem (whether an
upward closed set of states is reachable from the initial state) for WSTS, under natural effectiveness hypotheses. The reach-
ability problem, on the contrary, is undecidable even for the class of Petri nets extended with reset or transfer transitions.

Expressiveness. Well Structured Languages [3] were introduced as a measure of the expressiveness of subclasses of WSTS.
More precisely, the language of an instance of a model is defined as the class of finite words accepted by it, with coverability
as accepting condition, that is, generated by traces that reach a state which is greater than a given final state. Convincing
arguments show that the class of coverability languages is the right one. For instance, though reachability languages are
more precise than coverability languages, the class of reachability languages is RE, the class of Recursively Enumerable
languages, for almost all Petri nets extensions containing Reset Petri Nets or Transfer Petri Nets. We would like to answer
the two following questions: (1) What are the (proper) inclusions between different subclasses of WSTS like LCS, AWN,
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reset/transfer Petri nets, Data nets [4], identifying some types of languages which are not in some classes. Knowing that a
particular kind of languages is not in a given class of WSTS may prevent us from looking for a model which does not exist.
(2) Another natural question when confronted to an extension of a model is whether the additional resources actually yield
an increase in expressiveness. For instance, for counter machines, it is well known that 1-counter machines, whose set of
states is Q ×N, where Q is a finite set, are strictly less powerful than 2-counter machines (i.e., Minsky machines), which
operate on Q × N2. Another example, if we look at Timed Automata, is that clocks are a strict resource: Timed Automata
with k clocks are less expressive that Timed Automata with k+ 1 clocks [5]. Surprisingly, no similar results exist for well-
known models like Petri Nets (with respect to the number of places) or Lossy Channel Systems (with respect to the number
of channels, or number of symbols in the alphabet) except in some particular recent works [6].

Even if we will not study the following problem, let us mention it is connected to expressiveness: given a case study
modelled (for instance) by a Lossy Channel System with p places, communicating through k lossy fifo channels, is there
an equivalent (in some sense depending on the property we are interested in) Lossy Channel System with p′ < p places
communicating through k′ < k lossy fifo channels? If we could answer this question, it would be possible to find a minimal
model for the case study. This is not only of theoretical interest, since minimizing the size of the model (i.e., the number of
places and channels in this example) is crucial when we want to verify it.

Finally, let us remark that the expressive power of WSTS comes from two natural sources: from the structure of the
state space and from the semantics of the transition relation. These two notions were often extremely intertwined in the
proofs. We propose ourselves to separate them in order to have a formal and generalizable method for comparing the
expressiveness of WSTS.

Ordinal theory for partial orders. Ordinals are a well-known representation of well-founded total orders. Thanks to de Jongh,
Parikh, Schmidt [7,8] and others, this representation has been extended to well partial orders. We are mainly interested in
the order type of a wpo, which can be understood as the “size” of the order. The order types of the union, product, and
finite words have been determined by de Jongh and Parikh. Recently, Weiermann [9] has completed this view by computing
the order type for multisets.

Our contribution. First, we introduce order reflections, a variation of order embeddings that are allowed to be non-
monotonic. We define a notion of witnessing, that reflects the ability of a WSTS to recognize a wpo through a coverability
language. We establish the equivalence between the existence of order reflections and the simulations with respect to
coverability languages, modulo the ability of the WSTS classes to witness their own state space.

Second, we show how to use results from the theory of ordinals, and more precisely the properties of maximal order
types, studied by de Jongh, Parikh and Schmidt [7,8], to easily prove the absence of reflections.

Then, we study Lossy Channel Systems and extensions of Petri nets. We show that all the classes of WSTS considered
are self-witnessing. In the first place, this allows us to unify and simplify the existing proofs regarding the classification
of WSTS. Using our framework, we can easily prove that AWN are strictly less expressive than LCS and ν-Petri nets [10]
(an extension of Petri nets with unordered data). Moreover, it allows us to solve the open problem [11] of the relative
expressiveness of ν-Petri Nets and Data Nets [4] (an extension of Petri nets with ordered data). Apart from these qualitative
results, we obtain new quantitative results stating that the number of unbounded places for these Petri nets extensions, and
the size of the alphabet and number of channels for LCS, are relevant resources when considering their expressiveness.

Finally, we complete our view by putting Timed Petri nets [12] in our picture. By a close study of the state space of Timed
Petri nets, we conclude that it is isomorphic to the state space of Data nets, even if these two models are quite different.
We prove that both models are actually equivalent, hence strengthening our guiding principle about the importance of
resources for the expressiveness on WSTS.

Related work. Coverability languages have been used to discriminate the expressive power of several WSTS, like Lossy
Channel Systems or several monotonic extensions of Petri Nets. In [3] several pumping lemmas are proved to discriminate
between extensions of Petri Nets. In [13–15] the expressive power of Petri Nets is proved to be strictly below that of Affine
Well Nets, and Affine Well Nets are proved to be strictly less expressive than Lossy Channel Systems. Similar results are
obtained in [11], though some significant problems are left open, like the distinction between ν-Petri Nets [10] and Data
Nets [4] that we solve here. Recently, the study of the complexity of WSTS with states spaces equal to Nn or equal to Σ∗ has
begun in [16,6]: it consists in measuring, with multiple-recursive functions, the length of bad sequences (i.e., sequences of
states that do not contain any increasing subsequence) in the wpos Nn and Σ∗ . These complexity results can be sometimes
used for proving strict inclusions between subclasses of WSTS.

Outline. The rest of the paper is organized as follows. In Section 2 we introduce wpos, WSTS and ordinals. Then in Section 3
we develop the study of reflections and its links to expressiveness of WSTS. Afterwards, in Section 4, we apply our result
to the classical models of Petri Nets and Lossy Channel Systems. Section 5 presents the extension of our results applicable
to more recent models of WSTS. In Section 6 we prove the equivalence between Data Nets and Timed Petri Nets. Finally we
conclude and give perspectives to this work in Section 7.

This work is based on [17] and on the research report [18].
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2. Preliminaries and WSTS

Well orders. (X,�X ) is a quasi-order (qo) if �X is a reflexive and transitive binary relation on X . For a qo we write x <X y
iff x �X y and y �X x. A partial order (po) is an antisymmetric quasi-order. Given any qo (X,�X ), the quotient set X/≡�X

is a po where x≡�X y is defined by x �X y ∧ y �X x. Hence, in all the paper, we will suppose that (X,�X ) is a po.
The downward closure of a subset A ⊆ X is defined as ↓A = {x ∈ X | ∃x′ ∈ A, x � x′}. A subset A is downward closed iff

↓A = A. A po (X,�X ) is a well partial order (wpo) if for every infinite sequence x0, x1, . . . ∈ X there are i and j with i < j
such that xi � x j . Equivalently, a po is a wpo when there are no strictly decreasing (for inclusion) sequences of downward
closed sets.

We will shorten (X,�X ) to X when the underlying order is obvious. Similarly, � will be used instead of �X when X
can be deduced from the context.

If X and Y are wpos, their Cartesian product, denoted X × Y is well ordered by (x, y) �X×Y (x′, y′) ⇐⇒ x �X x′ ∧
y �Y y′ . Their disjoint union, denoted X � Y is well ordered by:

z �X�Y z′ ⇐⇒
{

z, z′ ∈ X

z �X z′
or

{
z, z′ ∈ Y

z �Y z′

A po (X,�) is total (or linear) if for any x, x′ ∈ X either x � x′ or x′ � x. If (Xi,�i) are total po for i ∈ N we can define
the (irreflexive) total order <lex in

⋃
k X1 × · · · × Xk by (x1, . . . , xp) <lex (x′1, . . . , x′q) iff there is i ∈ {1, . . . ,min(p,q)} such

that x j = x′j for j < i and xi <i x′i or (x1, . . . , xp)= (x′1, . . . , x′p) and q > p. Then �lex given by x �lex x′ iff x= x′ or x <lex x′
is a total order.

Functions. Given a partial function (shortly: function) f : X → Y , the domain of f is defined by dom( f )= {x ∈ X | ∃y ∈ Y ,

f (x) = y} and its range by range( f ) = {y ∈ Y | ∃x ∈ X, f (x) = y}. A function f is surjective if range( f ) = Y and it is
total if dom( f ) = X . Total functions are called mappings. A mapping f is injective if for all x, x′ , f (x) = f (x′) �⇒ x = x′ .
If X and Y are ordered, a mapping f : X → Y is increasing (resp. strictly increasing) if x �X y �⇒ f (x) �Y f (y) (resp. if
x <X y �⇒ f (x) <Y f (y)); f is an order embedding (shortly: embedding) if f (x) �Y f (x′) ⇐⇒ x �X x′ . A bijective order
embedding is called an order isomorphism (shortly: isomorphism).

Multisets. Given a set X , we denote by X⊕ the set of finite multisets of X , that is, the set of mappings m : X → N with a
finite support sup(m) = {x ∈ X |m(x) �= 0}. We use the set-like notation {| . . . |} for multisets when convenient, with {|xn|}
describing the multiset containing x n times. We use + and − for multiset addition and subtraction, respectively defined by
(m+m′)(x)=m(x)+m′(x) and (m−m′)(x)=max(m(x)−m′(x),0). If X is a wpo then so is X⊕ ordered by �⊕ defined by
{|x1, . . . , xn|}�⊕ {|x′1, . . . , x′m|} if there is an injection h : {1, . . . ,n}→ {1, . . . ,m} such that xi �X x′h(i) for each i ∈ {1, . . . ,n}.

Words. Given a set X , any u = x1 · · · xn with n � 0 and xi ∈ X , for all i ∈ {1, . . . ,n}, is a finite word on X . We denote by X∗
the set of finite words on X . If n= 0 then u is the empty word, which is denoted by ε. We write Xε = X ∪{ε}. A language L
on X is a subset of X∗ . Given L and L′ two languages on X∗ , we define the language LL′ = {uv | u ∈ L, v ∈ L′}. If X is a wpo
then so is X∗ ordered by �X∗ which is defined as follows: x1 . . . xn �X∗ x′1 . . . x′m if there is a strictly increasing mapping
h : {1, . . . ,n}→ {1, . . . ,m} such that xi �X x′h(i) for each i ∈ {1, . . . ,n} (Higman’s lemma).

WSTS. A Labelled Transition System (LTS) is a tuple S = 〈X,Σ,→〉 where X is the set of states, Σ is the labelling alphabet
and →⊆ X×Σε× X is the transition relation. We write x a−→ x′ to say that (x,a, x′) ∈→. This relation is extended to u ∈Σ∗
by x u−→ x′ ⇐⇒ x

a1−−→ x1 · · · xk−1
ak−−→ x′ and u = a1a2 · · ·ak (note that some ai ’s can be ε). A Well Structured Transition System

(shortly a WSTS) is a tuple S = (X,Σ,→,�), where (X,Σ,→) is an LTS, and � is a wpo on X , satisfying the following
monotonicity condition: for all x1, x2, x′1 ∈ X, u ∈Σ∗ , x1 � x′1, x1

u−→ x2 implies the existence of x′2 ∈ X such that x′1
u−→ x′2

and x2 � x′2. For a class X of wpos, we will denote by WSTSX the class of WSTS with state space in X, or just WSTSX for
WSTS{X} .

Coverability and reachability languages. Trace languages, reachability languages and coverability languages are natural can-
didates for measuring the expressive power of classes of WSTS. Given a WSTS S and two states x0 and x f , the reachability

language is LR(S, x0, x f ) = {u ∈ Σ∗ | x0
u→ x f } while the coverability language is L(S, x0, x f ) = {u ∈ Σ∗ | x0

u→ x, x � x f }.
Finally, the trace language is given by LT (S, x0)= {u ∈Σ∗ | ∃x f . x0

u−→ x f }. Let us remark that all trace languages are cover-
ability languages in taking x f =⊥ where ⊥ is the least element of X (if there is one). Also, assuming it is possible to have
transitions that test whether the state is greater than some x f , coverability languages can be obtained from trace languages
by intersecting by some regular language (and WSTS are closed under intersection [3]).

To justify our choice of coverability languages as measure of expressiveness, we note that the class of reachability lan-
guages is the set of recursively enumerable languages for all Petri nets extensions containing reset Petri nets or transfer Petri
nets. Thus, such a criterion does not discriminate sufficiently. One could consider infinite coverability languages. A sensible
accepting condition in this case could be repeated coverability, that is, the capacity of covering a given marking infinitely
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often, in the style of Büchi automata. However, analogously to what happens with reachability, repeated coverability is gen-
erally undecidable (except for some notable exceptions, like Petri nets), which makes ω-languages a bad candidate to study
the relative expressive power of WSTS. In conclusion, we will use the class of coverability languages, as in [3,13,14,11].
Because of our remarks on the relation between coverability languages and trace languages, it will generally be possible to
translate results on coverability languages to results on trace languages.

For two classes of WSTS S1 and S2, we write S1 � S2 whenever for every language L(S1, x1, x′1) with S1 ∈ S1, and x1, x′1
two states of S1, there exists another system S2 ∈ S2 and two states x2, x′2 of S2 such that L(S2, x2, x′2) = L(S1, x1, x′1).
When S1 � S2 and S2 � S1, one denotes the equivalence of classes by S1 � S2. We write S1 ≺ S2 for S1 � S2 and S2 �� S1.
Clearly, � is reflexive and transitive.

The lossy semantics. The lossy semantics Sl of an LTS S with state space X endowed with a wpo � is the original system

S completed by all ε-transitions x
ε→ y, for all x, y ∈ X such that y < x. We observe that Sl satisfies the monotonicity

condition, hence Sl is a WSTS. Moreover, due to the lossy semantics one has: for all x1, x2 ∈ X, u ∈ Σ∗ , x1
u→ x2 implies

x1
u→ x′2 for all x′2 � x2. This implies that L(Sl, x0, x f )= LR(Sl, x0, x f ) for any x0, x f ∈ X . Moreover, if S was already a WSTS,

we also have: L(S, x0, x f )= L(Sl, x0, x f ).

3. A method for comparing WSTS

In this section we propose a method to compare the expressiveness of WSTS mainly based on their state space. We will
prove some results that provide us with tools to establish strict relations between classes of WSTS.

3.1. A new tool: order reflections

Definition 1 (Order reflections). Let (X,�X ) and (Y ,�Y ) be two partially ordered sets. A mapping ϕ : X → Y is an order
reflection (shortly: reflection) if ϕ(x) �Y ϕ(x′) implies x �X x′ for all x, x′ ∈ X .

We will write X � Y if there is an embedding from X to Y and X �refl Y if there is a reflection from X to Y . We will
use �� and ��refl for their negation and � and �refl for their antisymmetric version (i.e. X � Y ⇐⇒ X � Y ∧ Y �� X ). Here
are some basic properties of reflections we will use throughout the paper: for any set X , any injective mapping to (X,=) is
a reflection; every reflection is injective; the composition of two reflections is a reflection (so �refl is transitive).

Furthermore, if ϕ is an embedding from X to Y then X is isomorphic to ϕ(X) and hence can be identified to it. Clearly,
existence of embeddings is a stronger requirement than the existence of reflections. In particular, it can be the case that a
wpo X cannot be embedded in another wpo Y , even if there are reflections from X to Y , as implied by the following result.

Proposition 1. The following properties hold:

• Nk �refl N⊕ , for any k > 0.
• Nk ��N⊕ for any k � 3 (but N2 �N⊕).

Proof. The proof of N3 ��N⊕ is technical and of little interest for the remainder of the paper. It is available in Appendix A,
Proposition 17.

The mapping ϕ :N2 →N⊕ given by ϕ(a,b)= {|a+ 2,1b|} is an order-embedding, so the only part remaining is to show
that there is an order reflection from Nk to N⊕ , for any k > 0.

Let us take a fixed k ∈N. There are k! possible relative orders of x1, . . . , xk . Let us denote Nk = k! and let ok be a mapping
that associates with each tuple (x1, . . . , xk) a number between 0 and Nk − 1 such that ok(x1, . . . , xk)= ok(x′1, . . . , x′k) means
that x1, . . . , xk and x′1, . . . , x′k are in the same relative order.

We define ac : {0, . . . , Nk − 1} → N⊕ by ac(n) = {|2Nk − (n + 1),n|}. Note that ac(m) and ac(n) are incomparable with
respect to the multiset order if m and n are different numbers between 0 and Nk − 1.

Now we define ϕ by:

ϕ(x1, . . . xk)=
{∣∣(2Nk + x1), (2Nk + x2), . . . , (2Nk + xk)

∣∣}+ ac
(
ok(x1, . . . xk)

)
We claim this is an order reflection. Indeed, let us take X = (x1, . . . , xk) and X ′ = (x′1, . . . , x′k) and assume that we have

ϕ(X)�N⊕ ϕ(X ′). Then, there is a bijective mapping σ : ϕ(X)→ ϕ(X ′) with:

ϕ(X)= {∣∣2Nk + x1, . . . ,2Nk + xk,2Nk −
(
ok(X)+ 1

)
,ok(X)

∣∣}
ϕ

(
X ′

)= {∣∣2Nk + x′1, . . . ,2Nk + x′k,2Nk −
(
ok

(
X ′

)+ 1
)
,ok

(
X ′

)∣∣}
∀x ∈ ϕ(X). x � σ(x)
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The cardinalities of ϕ(X) and ϕ(X ′) are the same, and the elements of the form 2Nk + xi can only be mapped to one of
their counterpart, so:

σ
(
2Nk −

(
ok(X)+ 1

))= 2Nk −
(
ok

(
X ′

)+ 1
)

σ
(
ok(X)

)= ok
(

X ′
)

This means that ok(X) = ok(X ′). The components of X and X ′ are thus in the same relative order. Without loss of
generality, we will assume this order is x1 � x2 � · · ·� xk . Let us assume by contradiction that X � X ′ , so that there exists i
such that x j � x′j for all j > i and xi > x′i . Then, xi is mapped by σ to some x′m , so we have xi � x′m for some m. Two cases
may occur:

• m > i: Then by cardinality, we have an element xp in {xi+1, . . . , xk} that is mapped by σ to an element x′p′ with p′ � i.
Thus, we have xi � xp � x′p′ � x′i , contradicting our assumption that x′i < xi .

• m < i: Then, we have xi � x′m � x′i , contradicting again our assumption.

Thus, we have xi � x′i for all i, concluding our demonstration. �
3.2. Expressiveness of WSTS and order reflections

Reflections are more appropriate than embeddings for the comparison of WSTS. In particular, the existence of a reflection
implies the relation between the corresponding classes of WSTS.

Theorem 1. Let X and Y be two wpo. We have:

X �refl Y �⇒ WSTSX � WSTSY

Proof. Let L = L(S, x0, x f ) for some WSTS S = 〈X,Σ,→∗,�〉 with state space X with x0, x f ∈ X , respectively. Because a
WSTS has the same coverability languages as its lossy version, we can assume that S is a lossy WSTS.

Let ϕ be a reflection from X to Y . Since ϕ is an injection, we can consider the following labelled transition system Sϕ ,
of states ϕ(X)⊆ Y , with initial and final states ϕ(x0) and ϕ(x f ), respectively, and whose transitions a ∈Σ are defined by:

ϕ(x)
a→Sϕ ϕ

(
x′

) ⇐⇒ x
a→S x′

It holds that Sϕ ∈ WSTSY . Indeed, if we take ϕ(x1), ϕ(x′1) and ϕ(x2) such that ϕ(x1)
u→Sϕ ϕ(x′1) and ϕ(x2) � ϕ(x1), then

we have by definition of Sϕ , and because ϕ is a reflection, that x1
u→S x′1 and x2 � x1, which means, by well-structure

of S , that there exists x′2 � x′1 such that x2
u→S x′2. By the lossiness property of S , we have x2

u→S x′1, and thus ϕ(x2)
u→Sϕ

ϕ(x′1). Moreover, S and Sϕ clearly recognize the same language, so that L = L(Sϕ,ϕ(x0),ϕ(x f )) with Sϕ ∈WSTSY , which
concludes our proof. �

We would like to obtain the converse of the previous result: X ��refl Y �⇒ WSTSX �� WSTSY . First, we only present this
result for “simple” state spaces. The case of more complex state spaces will be handled in Subsection 3.3. In both cases, the
result makes use of a class of languages, that we call witness languages.

Given an alphabet Σ = {a1, . . . ,ak}, we define Σ by Σ = {a1, . . . ,ak} where ai ’s are fresh symbols (i.e. Σ ∩ Σ = ∅).
This notation is extended to words by u = a1 · · ·ak for u = a1 · · ·ak ∈Σ∗ . In the same way, given L ⊆Σ∗ , we have L = {u |
u ∈ L} ⊆Σ∗ .

Definition 2 (Witness languages). Let X be a wpo and Σ a finite alphabet. A Σ-representation of X is any surjective partial
function γ : Σ∗ → X . For a Σ-representation γ of X , we define Lγ = {uv | u, v ∈ dom(γ ) and γ (v) � γ (u)}. A language
L ∈ (Σ ∪Σ)∗ is a γ -witness (shortly: witness) of X if L ∩ dom(γ )dom(γ )= Lγ .

Intuitively, given a witness L of X , the fact that a WSTS can recognize L witnesses that the WSTS can represent the
structure of X : it is capable of accepting all words starting with some u (representing some state γ (u)), followed by some
v that represents γ (v) � γ (u). Witness languages are useful for proving strict relations between classes of WSTS:

Theorem 2. Let L be a witness of X . If X ��refl Y then there are no y0, y f ∈ Y and no S ∈WSTSY such that L = L(S, y0, y f ).

Proof. Assume by contradiction that L is a γ -witness of X which is the coverability language of a WSTS S whose state
space is Y , with y0 and y f as initial and final states, respectively. For each x ∈ X , let us pick a ux ∈Σ∗ such that γ (ux)= x.

The word uxux is recognized by S , hence we can find yx and y′x such that y0
ux−−→ yx

ux−−→ y′x � y f .
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We define ϕ(x)= yx . Let us prove that ϕ is an order reflection from X to Y , thus reaching a contradiction. Assume that

ϕ(x) � ϕ(x′). We have y0
ux−−→ yx

ux−−→ y′x � y f and y0
ux′−−→ yx′

ux′−−→ y′x′ � y f with ϕ(x) = yx � yx′ = ϕ(x′). Since S is a
WSTS, the sequence ux , which is fireable from yx , is also fireable from yx′ , and the state reached by this subsequence is
greater or equal than y′x . Hence, the state reached after ux′ux is greater or equal than the one reached after uxux , which
means that ux′ux ∈ L ∩ dom(γ )dom(γ )= Lγ . By definition of Lγ , this implies that γ (ux)= x � x′ = γ (ux′ ), so that ϕ is an
order reflection. �

The simple state spaces we mentioned before are the ones produced by the following grammar:

Γ ::= Q (finite set with equality)

| N (naturals with the standard order)

| Σ∗ (words on a finite set with the order defined in Section 2)

| Γ × Γ (Cartesian product with the order defined in Section 2)

As N is isomorphic to Σ∗ when Σ is a singleton, any set produced by Γ is isomorphic to a set Q × Σ∗
1 × · · · ×Σ∗

k
where Q and each Σi are finite sets.

Proposition 2. Let X be a set produced by the grammar Γ . Then, there is a witness of X that is recognized by a WSTS of state space X.

Proof. We have X = Q ×Σ∗
1 × · · · ×Σ∗

k , ordered by its canonic order �X (which is the Cartesian product of equality on
Q and subword ordering on Σ∗

i for all i). Without loss of generality, we assume that the Σi ’s are disjoint. We also define
ΣT =⋃

1�i�k Σi and ΣQ = {aq | q ∈ Q } (ΣT and ΣQ disjoint). Finally, we choose arbitrarily a q0 ∈ Q .
We define a WSTS S = 〈X,Σ,→,�X 〉 by:

• Σ =ΣT ∪ΣQ ∪Σ T ∪Σ Q .
• For a ∈ΣT ,

(q, u1, . . . , uk)
a−→ (

q′, u′1, . . . , u′k
) ⇐⇒

⎧⎪⎨
⎪⎩

q= q′

u′i = uia if a ∈Σi

u′j = u j otherwise

• For a ∈Σ T ,

(q, u1, . . . , uk)
a−→ (

q′, u′1, . . . , u′k
) ⇐⇒

⎧⎪⎨
⎪⎩

q= q′

ui = au′i if a ∈Σi

u j = u′j otherwise

• For ap ∈ΣQ ,

(q, u1, . . . , uk)
ap−→ (

q′, u′1, . . . , u′k
) ⇐⇒

⎧⎪⎨
⎪⎩

q= q0

q′ = p

u′i = ui

• For ap ∈ΣQ ,

(q, u1, . . . , uk)
ap−→ (

q′, u′1, . . . , u′k
) ⇐⇒

⎧⎪⎨
⎪⎩

q= p

q′ = q0

u′i = ui

• s ε−→ s′ ⇐⇒ s′ � s.

Indeed, S is a WSTS because it is defined by the lossy semantics (last item) of an LTS. We define γ (x)= (q, u1, . . . , uk)

iff x ∈ aq‖u1‖ · · · ‖uk , where ‖ denotes the shuffling operation (i.e. z ∈ u‖v ⇐⇒ z = u1 v1u2 · · ·up v p with u = u1u2 · · ·up

and v = v1 v2 · · · v p , with ui, vi ∈Σ∗). γ is a (ΣT ∪ΣQ )-representation of X .
We define L = L(S, (q0, ε, . . . , ε), (q0, ε, . . . , ε)) and we have:

L ∩ dom(γ )dom(γ )= {
uv

∣∣ u, v ∈ dom(γ ) and γ (v)� γ (u)
}

This concludes the demonstration. �
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WSTS that can recognize witnesses of their own state spaces are especially interesting. Indeed, in this case one can use
Theorem 2 to obtain an equivalence between the existence of an order reflection, and inclusion for the sets of recognized
languages. In particular:

Proposition 3. Let X be a wpo produced by Γ and Y any wpo. Then,

X �refl Y ⇐⇒ WSTSX � WSTSY

Proof. The direction from left to right is given by Theorem 1. Conversely, let us prove that X ��refl Y �⇒ WSTSX �� WSTSY .
We can find a witness L of X recognized by a WSTS of state space X (Proposition 2). By Theorem 2, this language cannot
be recognized by a WSTS of state space Y , hence the result. �
3.3. Self-witnessing WSTS classes

The reason we were able to build our equivalence between the existence of a reflection from X to Y and WSTSX � WSTSY

for any wpo X produced by Γ was Proposition 2. However, we conjecture that this result is no longer true for any state
space X that embeds N⊕ , that is, that there is no WSTS of state space X that can recognize a witness of X . This prompts
us to define a new notion:

Definition 3 (Self-witnessing). Let X be a class of wpos and S a class of WSTS whose state spaces are included in X. (X,S) is
self-witnessing if, for all X ∈ X, there exists S ∈ S that recognizes a witness of X .

In particular, Proposition 2 states that (WSTSX , {X}) is self-witnessing for any X produced by the grammar Γ . We will
shorten (X,S) as S when the state space is not explicitly needed. We extend the relation �refl to classes of wpo by X�refl X′
if for any X ∈ X, there exists X ′ ∈ X′ such that X �refl X ′ . Next, we prove the result analogous to Proposition 2 for self-
witnessing classes.

Proposition 4. Let (X,S) be a self-witnessing WSTS class and S′ a WSTS class using state spaces inside X′ . Then, S � S′ �⇒ X�refl X′ .
Moreover, if S′ =WSTSX′ , S � S′ ⇐⇒ X�refl X′ .

Proof. Let us show the first implication. Let X ∈ X. Since (X,S) is self-witnessing, there is S ∈ S that recognizes L, a witness
of X . Because S � S′ , there is S ′ ∈ S′ recognizing L. S ′ has state space X ′ ∈ X′ , and by Theorem 2, X �refl X ′ .

For the second implication, for any X ∈ X, we have X ′ ∈ X′ such that X �refl X ′ . Because of Theorem 1, WSTSX � WSTSX ′ .
Hence, WSTSX � WSTSX′ . Since clearly S � WSTSX , we conclude. �

We will see in Section 4 and Section 5 that many usual classes of WSTS, even those outside the algebra Γ , are self-
witnessing.

3.4. How to prove the non-existence of reflections?

Because of Proposition 3 and Proposition 4, the non-existence of reflections will be a powerful tool to prove strict
relations between WSTS. We will use some results from set-theoretical ordinals to get a simple way of disproving the
existence of such reflections. First, we recall a few properties of these objects.

Each ordinal α is equal to the set of ordinals {β | β < α} below it, and the class of ordinals is totally ordered by inclusion.
Every total well order (X,�X ) is isomorphic to a unique ordinal ot(X,�X ), called the order type of X .

In the context of ordinals, we define 0= ∅, n= {0, . . . ,n− 1} and ω=N, ordered by the usual order. Moreover, given α
and α′ ordinals, we define α+α′ as the order type of ({0}×α)∪({1}×α′) ordered by �lex . In the same way, α∗α′ is defined
as the order type of α′ × α ordered by �lex . Note that these operations are not commutative: we have 1+ω = ω �= ω+ 1.

The definitions of + and ∗ coincide with the usual operations on N for ordinals below ω, and we have α+ k· · · +α = α ∗ k.
We can also define exponentiation by having αβ be the order type of the set of functions from β to α ordered by �lex
defined by:

f <lex g ⇐⇒ ∃x ∈ β.

{
f (x) < g(x)

∀y < x. f (y)= g(y)

We will work with ordinals below ε0, that is, those that can be bounded by a tower ωω··
·ω

. These can be represented by
the hierarchy of ordinals in Cantor Normal Form (CNF), that is recursively given by the following rules:
C0 = {0}.
Cn+1 = {ωα1 + · · · +ωαp | p ∈N, α1, . . . ,αp ∈ Cn and α1 � · · ·� αp} ordered by:
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ωα1 + · · · +ωαp �ωα′1 + · · · +ωα′q ⇐⇒ (α1, . . . ,αp) �lex (α′1, . . . ,α′q)

Each ordinal below ε0 has a unique CNF. If α =ωβ1 + · · · +ωβn , we denote by Cantor(α) the multiset {|β1, . . . , βn|}.
Let us recall that a linearization of a po �X is a total order �′X on X such that x �X y �⇒ x �′X y. A linearization of a

wpo is a well total order, hence isomorphic to an ordinal. We extend the definition of order types to non-total wpos:

Definition 4. Let (X,�X ) be a wpo. The maximal order type (shortly: order type) of (X,�X ) is ot(X,�X )= sup{ot(X,�′X ) |�′X
linearization of �X }.

The existence of the sup comes from ordinal theory. Moreover, de Jongh and Parikh [7] even show that this sup is
actually attained. Let Down(X) be the set of downward closed subsets of X . Then, another well-known characterization of
the maximal order type is the following:

Proposition 5. ot(X)+ 1= sup{α | ∃ f :α→ Down(X), f strictly increasing}.

Proof. We first prove that ot(X)+ 1 � sup{α | ∃ f :α→ Down(X), f strictly increasing}.
Let �′ be a linearization of � of order type ot(X). Let ϕ be an isomorphism from ot(X) to (X,�′). We define f :

ot(X)+ 1→ Down(X) by:

f (β)= {
x ∈ X

∣∣ x <′ ϕ(β)
}

for β < ot(X)

f
(
ot(X)

)= X

f is strictly increasing, which means that: ot(X)+ 1 ∈ {α | ∃ f :α→ Down(X), f strictly increasing} and concludes the first
part of the proof.

We now prove that ot(X)+ 1 � sup{α | ∃ f :α→ Down(X), f strictly increasing}.
Let α be an ordinal and f be a strictly increasing mapping from α to Down(X). We define the quasi-order � f on X by:

x � f y iff ∀β < α, y ∈ f (β) �⇒ x ∈ f (β)

� f is clearly reflexive and transitive. Let �tie be a linearization of �X . We define the order �′f by:

x �′f y ⇐⇒
{

x � f y ∧ y � f x or,

x � f y ∧ y � f x∧ x �tie y

�′f is clearly reflexive and antisymmetric. Let us show transitivity. Assume that x �′f y and y �′f z. If they are all three in
the same equivalence class (resp. in different equivalence classes) of ≡� f , x �′f z comes from transitivity of �tie (resp. � f ).
If x and y are � f -equivalent, and y < f z we immediately get x <′

f z. The last case is similar.
Let us prove that �′f is a linear order. Pick any x and y. If they are equivalent w.r.t. � f , we get the result by linearity

of �tie . So assume by symmetry that there exists β, x ∈ f (β) and y /∈ f (β). Then for any β ′ such that y ∈ f (β ′), β < β ′
since f is strictly increasing and ordinals are totally ordered. Thus x ∈ f (β ′). Since β ′ is arbitrary, this shows that x �′f y.

Let us prove that �′f is a linearization of �X . Pick any x �X y (and thus x �tie y). Because for all β , f (β) is downward
closed, we have x � f y, which leads to x �′f y.

Choose some xmax /∈ X , and X ′ = X ∪ {xmax}. We extend �′f on X ′ by x �′f xmax for all x ∈ X . We define ϕ : α→ (X ′,�′f )
by:

ϕ(β)=min
�′

f

{
x ∈ X ′

∣∣ x /∈ f (β)
}

The min is defined because X ′ is well-ordered and at least xmax /∈ f (β) for any β . Because f is increasing, ϕ is also
monotonic.

Let us show that ϕ is an order embedding. Assume β < β ′ . Then there exists y such that y ∈ f (β ′) and y /∈ f (β). This
means ϕ(β) �′f y. As y ∈ f (β ′) and f (β ′) is downward closed, ϕ(β) ∈ f (β ′), which implies ϕ(β) < ϕ(β ′).

We have an order embedding from α to (X ′,�′f ) which means α � ot(X ′)= ot(X)+ 1. �
The reason that order types are particularly useful to prove the absence of order reflections is that these reflections

preserve strict inclusions of downward closed sets (and by Proposition 5, we have seen that order types can be defined by
strictly increasing sequences of downward closed sets).

Lemma 1. Let X and Y be two wpos and ϕ a reflection from X to Y . Let A � X with A =↓A. Then ↓ϕ(A)� Y
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Proof. Let us assume that ↓ϕ(A) = Y . Let us take x ∈ X , x /∈ A. Since ϕ(x) ∈ Y and ↓ϕ(A) = Y , there is x′ ∈ A such that
ϕ(x) � ϕ(x′). Since ϕ is a reflection we have x � x′ and since A is downward closed x ∈ A, hence the contradiction. �

This leads us to the proposition that we use to separate many classes of WSTS (originally found in [9]):

Proposition 6. (See [9].) Let X and Y be two wpos. Then,

X �refl Y �⇒ ot(X) � ot(Y )

Proof. Let ϕ : X → Y be a reflection and let us consider an ordinal α and a mapping f : α→ Down(X), strictly increasing.
We define g : α→ Down(Y ) by g(β)=↓ϕ( f (β)). By Lemma 1, g is strictly increasing. By the characterization of order types
in Proposition 5, we have ot(X) � ot(Y ). �

The order types of the usual state spaces used for WSTS are known. We will recall some classic results on these order
types, but we need the following definitions of addition and multiplication on ordinals to be able to characterize the order
types of X � Y and X × Y . Remember (Section 2) that an ordinal α below ε0 is uniquely determined by Cantor(α), hence
the validity of the following definition.

Definition 5 (Hessenberg 1906). (See [7].) The natural addition, denoted ⊕, and the natural multiplication, denoted ⊗, are
defined by:

Cantor
(
α⊕ α′

)= Cantor(α)+ Cantor
(
α′

)
Cantor

(
α⊗ α′

)= {∣∣β ⊕ β ′
∣∣ β ∈ Cantor(α), β ′ ∈ Cantor

(
α′

)∣∣}
We already know that the order type of a finite set (with any order) is its cardinality and that the order type of N is ω.

De Jongh and Parikh [7], and Schmidt [8] have shown a way to compose order types with the disjoint union, the Cartesian
product, and the Higman ordering. A more recent and difficult result, by Weiermann [9], provides us with the order type of
multisets. These results are summed up here:

Proposition 7. (See [7–9].)

• ot(X � Y )= ot(X)⊕ ot(Y ),
• ot(X × Y )= ot(X)⊗ ot(Y ),

•

ot
(

X∗
)=

{
ωωot(X)−1

if X finite

ωωot(X)
otherwise

(for ot(X) < ε0),

• ot(X⊕)=ωot(X) for ot(X) < ε0 .

Formulas exist even for ot(X) � ε0. We refer the interested reader to [7] and [9] for the complete formulas. With these
general results we can obtain many strict relations between wpo.

Corollary 1. The following strict relations hold for any k > 0:

(1) Nk �refl Nk+1 (4) Nk �refl N⊕

(2)
(
Nk

)⊕ �refl
(
Nk+1

)⊕
(5) Nk �refl Σ∗ (

for |Σ |> 1
)

(3)
(
Nk

)∗ �refl
(
Nk+1

)∗
Proof. The non-strict relations in (1)–(3) are clear, and (4) comes from Proposition 1. For (5), ϕ(n1, . . . ,nk)= an1 b . . .bank is
a reflection. Strictness follows from Proposition 6 and the following order types, obtained according to the previous results:

ot(Nk)=ωk , ot((Nk)⊕)=ωωk
, ot((Nk)∗)=ωωωk

, and ot(Σ∗)=ωω|Σ |−1
. �

4. Petri Nets and Lossy Channel Systems

The state spaces described by Proposition 3 are exactly those of Petri Nets and Lossy Channel Systems. We will look
more closely at these systems to see the implication of this result regarding their expressiveness.
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4.1. Petri Nets

Definition 6 (Petri Nets). A Petri net is a tuple 〈P , T ,Pre,Post,Σ,λ〉 where:

• P is a finite set of places,
• T is a finite set of transitions,
• Pre and Post are mappings from P × T to N,
• Σ is a finite alphabet of labels, and
• λ : T →Σε is the labelling function.

A marking of a Petri Net is usually defined as a mapping from P to N. We assume here that P = {1, . . . ,d}, and we see
this marking as a vector x ∈Nd .

A transition t is enabled in the marking x if for all p ∈ {1, . . . ,d}, x(p) � Pre(p, t). The transition relation → of the WSTS
associated with the Petri Net is defined by x a−→ y if there is a transition t ∈ T with λ(t)= a enabled in x, such that for all
p ∈ {1, . . . ,d}, y(p)= x(p)− Pre(p, t)+ Post(p, t).

We denote by PN (PNk) the class of transition systems associated to Petri Nets (with k places). Then we have the
following:

Theorem 3. For any k > 0, PNk �� WSTS
Nk−1 .

Proof. We remark that the WSTS defined in the proof of Proposition 2 is actually the lossy semantics of a Petri Net when
X = Nk . This induces that we can take the non-lossy version of this Petri net, which is still a WSTS. Hence, PNk is self-
witnessing. Since Nk ��refl Nk−1, we conclude by Proposition 4. �

Moreover, if we consider Affine Well Nets (AWN) [2] (an extension of Petri Nets with whole-place operations like transfers
or resets), and denote by AWNk the class of AWN with k unbounded places, we can obtain from the previous result the
following simple consequence:

Corollary 2. PNk ≺ PNk+1 �� AWNk for all k > 0.

4.2. Lossy Channel Systems

Communicating Finite State Machines [19], FIFO Petri Nets [20] and FIFO automata [21] are (almost equivalent) models
for systems of processes communicating through (perfect) FIFO (First In First Out) channels; all these models may simulate
Turing machines by using the FIFO channel to simulate the tape and the transitions of a Turing machine. Given an alphabet
(i.e., a finite set) M of messages, let A be the following (finite) set A = ({!, ?} × M) ∪ {⊥} of (channel) elementary actions
which can be of three different types: (!,m), shortly written !m (resp. (?,m), shortly written ?m) is the sending (resp.
receiving) action of message m in (resp. from) a channel c (which will be specified); the action ⊥ is an internal action
which does not modify the channels: at each step, a FIFO automaton is able to make at least one action on each channel.
Suppose now that there are k channels. A (vector) action a ∈ Ak is a vector a= (a1, . . . ,ak) of k elementary actions ai , where
each ai is the unique action on channel ci .

Definition 7 (FIFO Automata). A FIFO Automaton with k channels is a tuple (Q , M, T , δ,Σ,λ) where

• Q is a finite (and non-empty) set of states,
• M is a finite set of messages,
• T is a finite set of transitions,
• δ : T → Q × Ak × Q ,
• Σ is a finite alphabet of labels, and
• λ : T →Σε is the labelling function.

The set of configurations of a FIFO Automaton is Q × (M∗)k . Given two configurations x = (p, u1, . . . , uk) and y =
(q, v1, . . . , vk), we may fire the transition t ∈ T from x and we reach y, written x

λ(t)−−−→ y, iff δ(t)= (p,a,q) and for every
i ∈ {1, . . . ,k}, we have: (ai =⊥�⇒ ui = vi ), (ai =?m�⇒ ui =mvi ) and (ai =!m�⇒ uim= vi ).

The lossy semantics (as defined in Section 2) of a FIFO automaton is well known under the name of Lossy Channel System
(LCS) [22]. Completely specified protocols [23,24] are a variant of LCS, and are sometimes called front-lossy Channel System
because the messages of M can only be lost when they reach the front of the fifo channel.

We define LCS(k, p) as the set of transition systems associated to lossy channel systems with k channels and p messages.
A classic result is that one can encode many channels into one, as long as an additional character (a separator) becomes
available for the channel alphabet.
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Proposition 8. Let S ∈ LCS(k, p) and x0, x f states of S . Then there is S ′ ∈ LCS(1, p + 1) and x′0, x′f states of S ′ such that

L(S, x0, x f )= L(S ′, x′0, x′f ).

Proof. Let M be the set of messages of S . We order the k channels of S , C1, . . . , Ck . We recursively define Ck+i = Ci .
We keep a notion of “active channel” through the control states. We pick a message # /∈ M . Messages of S ′ are M ∪ {#} and
a state of S ′ is (q, i, ui#ui+1# . . . #ui+k−1) where q is the original control state of S , 1 � i � k is the current active channel
and u j is the content of channel C j . Reading a character in Ci requires i to be the active channel; writing a character in Ci
requires Ci+1 to be the active channel.

The system can change the active channel from Ci to C j ( j > i) at any time by iterating j− i times the following sequence
of ε-transitions:

• Write #.
• Read a word in M∗ and copy it to the end of the channel.
• Read #.

As long as exactly k− 1 separators # stay in the channel, the described system simulate S . However, one can lose these
separators. To remove spurious traces, we add a final checking procedure, starting from the final states of S , that reads k−1
symbols # and, if successful, puts the system in its real final state. �

Thanks to our framework, we can sharpen this result by adding strict inclusions:

Theorem 4. LCS(k, p)≺ LCS(k+ 1, p)≺ LCS(1, p + 1).

Proof. LCS(k, p) � LCS(k + 1, p) clearly holds. We have already shown that LCS(k + 1, p) � LCS(1, p + 1). For the strictness,
we remark again that the WSTS introduced in the proof of Proposition 2 is actually a LCS, that is, given a state space
X = Q × (M∗

p)k , we can find S in LCS(k, p) and a witness L of X such that S recognizes L. This implies that LCS(k, p) is

self-witnessing. For all k and p, ot(Q × (M∗
p)k)= ωωp−1∗k ∗ |Q |. This implies that (M∗

p)k+1 ��refl Q × (M∗
p)k and M∗

p+1 ��refl

Q × (M∗
p)k for all Q . To conclude we only need to apply Proposition 4. �

Moreover, in [14] the authors prove that AWN ≺ LCS. We can easily get back the strictness:

Proposition 9. LCS(1,2) �� AWN.

Proof. As in the previous result, we remark that LCS(1,2) is self-witnessing. Thus, we only need to apply Proposition 4,
considering that for any k > 0, M∗

2 ��refl Nk (Corollary 1). �
This result is tight: LCS(0, p)� FA (Finite Automata), LCS(k,1)� PNk .

5. Petri Net extensions with data

Many extensions of Petri nets with data have been defined in the literature to gain expressive power for better modelling
capabilities. Data Nets (DN) [4] are a monotonic extension of Petri nets in which tokens are taken from a linearly ordered
and dense domain, and transitions can perform whole place operations like transfers, resets or broadcasts. A similar model,
in which tokens can only be compared with equality, is that of ν-Petri Nets (ν-PN) [10]. The relative expressive power of
DN and ν-PN has been an open problem since [11]. In this section we prove that ν-PN ≺ DN. We work with the subclass of
DN without whole place operations, called Petri Data Nets (PDN), since DN � PDN [14].

5.1. Petri Data Nets and ν-Petri Nets

5.1.1. Petri Data Nets
We denote by 0 the null vector in Nk for any k, and for a word w = x1 · · · xn we write |w| = n and w(i)= xi .
A Petri Data Net (PDN) is a Petri net where each token carries an identity from a linearly ordered and dense domain D.

A marking s of a PDN can be seen, e.g., as a multiset of pairs in D× P , or as a map s ∈ (NP )D . However, two key features
of PDNs will guide our choice for marking representation:

1. a marking s only has finitely many tokens. Thus, denoting d1 < · · · < dm the identities that occur in s and gathering
all tokens carrying the same identity di , one obtains a (non-null) place vector vi in N|P | . Therefore, s can be written
(d1, v1) · · · (dm, vm), implicitly associating the null vector 0 with any d ∈D \ {d1, . . . ,dm};
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Fig. 1. Firing of a Petri data net transition (assuming a < c < b).

2. the concrete identities di are irrelevant, and only their relative order is useful w.r.t. the dynamics of the net. Thus, s can
be safely abstracted as the sequence v1 · · · vm in (N|P | \ 0)∗ . (Also the choice for set D is irrelevant.)

Every transition t of a PDN specifies a sequence of n ordered potential identities and for any such identity specifies the
tokens Pre(t) to be consumed and Post(t) to be produced. Thus, Pre(t) and Post(t) are two sequences of n (possibly null)
place vectors.

Definition 8 (Petri Data Nets). A k-dimensional Petri Data Net (k-PDN) is a tuple N = (P , T ,Pre,Post,Σ,λ), where:

• P is a finite set of k= |P | places,
• T is a finite set of transitions with P ∩ T = ∅,
• for every t in T , Pre(t) and Post(t) are finite sequences in (Nk)∗ with |Pre(t)| = |Post(t)|,
• Σ is a finite alphabet, and
• λ : T →Σε is the labelling function.

Consider now a marking s ∈ (Nk \ 0)∗ . In order to fire a transition t with |Pre(t)| = n, one nondeterministically selects
n identities, consumes some of their tokens as indicated by Pre(t), and produces new tokens with the identities specified
by Post(t). However, some of these n identities might not be present in s, and we should introduce null vectors wherever

necessary: s′ ∈ (Nk)∗ is a 0-extension of s ∈ (Nk \ 0)∗ (or s is the 0-contraction of s′) def⇔ s is obtained by removing all 0’s
from s′ . Once an extension s′ is built, one selects in it a subword of n vectors x1, . . . , xn s.t. every vector contains enough
tokens, i.e. with xi � Pre(t)(i). If the condition is fulfilled, the corresponding tokens are consumed and Post(t)(i) is added to
the resulting vector, yielding a new sequence s′′ . This s′′ may contain null vectors, e.g. when all tokens with some identity
have been consumed. Hence, the marking one really reaches is the 0-contraction of s′′ . Note that any way of firing t requires
at most n insertions.

Definition 9 (Transition system of a PDN). Let N be a k-PDN. Then the labelled transition system S(N )= 〈X,Σ,→〉 is defined
by:

• X = (Nk \ 0)∗ .

• Let s, s′ ∈ X and t ∈ T with n= |Pre(t)|. Then s
λ(t)−−−→ s′ iff:

1. there exists u0x1u1 · · ·un−1xnun a 0-extension of s with ui ∈ (Nk)∗ and xi ∈Nk for all i;
2. for i ∈ {1, . . . ,n}, xi � Pre(t)(i);
3. and defining yi = xi − Pre(t)(i)+ Post(t)(i), s′ is the 0-contraction of u0 y1u1 · · ·un−1 ynun .

We rely on the standard graphical depiction of high level nets and use (pictures of) Petri nets where arcs connected
to a transition t are labelled with bags of variables that must be instantiated by ordered identities. The number of these
variables is exactly |Pre(t)| and the ordering of the corresponding identities is carried by the transition. For concision and
readability, it is convenient to allow orderings of the variables that are not total: this stands for all possible linearizations.
For instance, we can simulate a transition t in which two unrelated variables x and y appear, by having a non-deterministic
choice between three transitions t1, t2 and t3, the first one assuming x < y, the second one assuming y < x and the last one
with y substituted by x. Analogously, a transition with variables x and y so that x � y, can be simulated by two transitions
one assuming x < y and the other one with y substituted by x.

Using these graphical conventions, Fig. 1 depicts a PDN with a single transition t given by:

Pre(t)= (1,0,0)(0,0,0)(0,1,0) and Post(t)= (0,0,0)(0,0,1)(0,0,0)

(with places of P ordered by their index).

5.1.2. ν-Petri Nets
ν-Petri Nets can be seen as a restriction of PDNs where the domain of identities D still infinite is now unordered. In

this restricted framework, we need variables to establish a correspondence between the identities of the tokens in the
different places. We introduce a countable set Var of variables including a subset of special variables Υ ⊂ Var with |Υ | =
|Var \Υ | =∞. The role of Υ is to select identities that are not present in the current marking.
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Fig. 2. Firing in a ν-Petri net (with σ(x)= a, σ(y)= b, σ(ν)= d).

Definition 10 (ν-Petri net). A ν-Petri net is a tuple N = 〈P , T ,Pre,Post,Σ,λ〉, where:

• P is a finite set of places,
• T is a finite set of transitions with P ∩ T = ∅,
• for every p ∈ P and every t ∈ T , Pre(p, t) ∈ (Var \Υ )⊕ and Post(p, t) ∈ Var⊕ ,
• Σ is a finite alphabet, and
• λ : T →Σε is the labelling function.

Var(t) denotes the set of variables x for which there is a place p such that (Pre(p, t) + Post(p, t))(x) is not empty.
A marking is a mapping M : P →D⊕ .

Definition 11 (Transition system of a ν-Petri net). Let N be a ν-Petri net. Then, the labelled transition system S(N ) =
〈X,Σ,→〉 is defined by:

• X = (D⊕)P .

• Let s, s′ ∈ X and t ∈ T . Then s
λ(t)−−−→ s′ iff there exists an injection σ : Var(t)→D such that for every p ∈ P :

1. for every x ∈ Var(t) \Υ , s(p)(σ (x)) � Pre(p, t)(x) and s′(p)(σ (x))= s(p)(σ (x))− Pre(p, t)(x)+ Post(p, t)(x),
2. for every ν ∈ Υ ∩ Var(t), s(p)(σ (ν))= 0 and s′(p)(σ (ν))= Post(p, t)(ν),
3. for every d ∈D \ σ(Var(t)), s′(p)(d)= s(p)(d).

The graphical representation of a ν-Petri net is similar to that of a Petri net with expressions in (Var)⊕ defining the
incidence matrices labelling the arcs of the net. Fig. 2 illustrates the firing of a transition in such nets. Observe that σ(ν)

cannot belong to {a,b, c}.
In ν-Petri Nets, markings can be identified up to renaming of identities. Thus, markings of a ν-PN with k places can

be represented as elements in (Nk)⊕ , each tuple representing the occurrences in each place of one identity [25]. For in-
stance, if P = {p1, p2} and marking s is such that s(p1) = {|a,a,b|} and s(p2) = {|b|}, then its abstract representation is
{|(2,0), (1,1)|}.

5.1.3. Classes of nets
Given a net N with identities and an initial marking, a place p of N is bounded if there exists some positive integer b

such that for every reachable marking and identity, the number of tokens in p carrying this identity is at most b. Therefore,
a bounded place may contain arbitrarily many identities, provided each of them appears an a priori bounded number of
times. If a PDN (resp. a ν-Petri net) has k unbounded places and m places bounded by some b, then we can use as state
space (Q ×Nk)∗ (resp. (Q ×Nk)⊕) with Q = {0, . . . ,b}m .

We denote the class of initialized PDN with k unbounded places by PDNk and their state space by X∗k = {(Q × Nk)∗ |
Q finite}. We denote the class of initialized ν-PN with k unbounded places by ν-PNk and their state space by X⊕k =
{(Q ×Nk)⊕ | Q finite}. Moreover, we take X∗ = {(Nk)∗ | k > 0} and X⊕ = {(Nk)⊕ | k > 0}.

5.2. Self-witnesses and consequences

Proposition 10. For every k � 0, ν-PNk and PDNk are self-witnessing.

Proof. We start with ν-PNk . Let (Q × Nk)⊕ ∈ X⊕k . We consider an alphabet Σ = {aq | q ∈ Q } ∪ {a1, . . . ,ak} and we define
γ :Σ∗ → (Q ×Nk)⊕ by:

γ
(
aq1a

n1
1

1 . . .a
nk

1
k . . .aql a

n1
l

1 . . .a
nk

l
k

)= {∣∣(q1,n1
1, . . . ,nk

1

)
, . . . ,

(
ql,n1

l , . . . ,nk
l

)∣∣}
Let us build N in ν-PNk such that L(N)∩dom(γ )dom(γ )= Lγ . Assume Q = {q1, . . . ,qr}. Fig. 3 shows the case with k= 1

and r = 2.
The only unbounded places of N are p1, . . . , pk (hence N ∈ ν-PNk). We consider q1, . . . ,qr as places, a place st that

stores all the names that have been used (once each name, hence bounded), and places c0, c1, . . . , ck containing one name
in mutual exclusion. When the name is in c0 it is non-deterministically copied in some q (action labelled by aq), and moved
to c1. For every, 1 � i � k, when the name is in ci it can be copied arbitrarily often to pi (action labelled by ai ). At any
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Fig. 3. Net in ν-PN1 recognizing a witness of (Q ×N)⊕ with |Q | = 2.

Fig. 4. PDN recognizing a witness of N∗ .

time, this name can be transferred to ci+1 when i < k or to st for i = k (action labelled by ε). In the last case a fresh name
is put in c0 (thanks to ν ∈ Υ ).

The second phase is analogous, with control places d0,d1, . . . ,dk+1, marked in mutual exclusion with names taken
from st . At any point, the name in dk+1 can be removed, and one name moved from st to d0 (action labelled by ε).
That name must appear in some q. Thus, for each q we have a transition that removes the name from d0 and q and puts it
in d1 (action labelled by aq). For each 1 � i � k, the name in di can be removed zero or more times from pi (action labelled
by ai ). At any point, the name is transferred from di to di+1 (actions labelled by ε).

The initial and final marking is that with a name in c0 and another name in dk+1 (and empty elsewhere). It holds that
L(N)∩ dom(γ )dom(γ )= Lγ , so we conclude.

The case of PDNk is analogous to that of ν-PNk . Let (Q × Nk)∗ ∈ X∗k . We define Σ = {aq | q ∈ Q } ∪ {a1, . . . ,ak} and
γ :Σ∗ → (Q ×Nk)∗ by:

γ
(
aq1a

n1
1

1 . . .a
nk

1
k . . .aql a

n1
l

1 . . .a
nk

l
k

)= (
q1,n1

1, . . . ,nk
1

) · · · (ql,n1
l , . . . ,nk

l

)
The net N in PDNk that we build is similar to the ν-PN we built in the case of ν-PNk , except for two differences: On the

one hand, whenever a fresh name was put in c0, now we put a greater name (that is, we replace ν by a variable y such
that x < y). On the other hand, whenever we took from st another name, now we take a greater name (that is, we assume
x < y). Finally, the initial and final marking is that with one name in c0 and a smaller name in dk+1. Again, it holds that
L(N)∩ dom(γ )dom(γ )= Lγ , and we conclude. �

Fig. 4 shows a PDN recognizing a witness of N∗ . Notice that since ν-PNk and PDNk are self-witnessing for every k � 0,
so are ν-PN and PDN.

Proposition 11. X∗1 ��refl X⊕ , X⊕k+1 ��refl X⊕k and X∗k+1 ��refl X∗k for all k.

Proof. X∗1 ��refl X⊕ holds because ot(N∗)= ωωω
�ωωk = ot((Nk)⊕), so that N∗ ��refl (Nk)⊕ for all k. The others are obtained

similarly, considering that ot((Q ×Nk)⊕)=ωωk∗|Q | and ot((Q ×Nk)∗)=ωωωk∗|Q |
. �

Corollary 3. ν-PN ≺ PDN. Moreover, PDN1 �� ν-PN.

Proof. ν-PN � PDN is from [11]. PDN1 �� ν-PN is a consequence of Proposition 4, considering that both classes are self-
witnessing, and that X∗ ��refl X⊕ . �
1
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We can even be more precise in the hierarchy of Petri Nets extensions.

Proposition 12. For any k � 0, ν-PNk ≺ ν-PNk+1 and PDNk ≺ PDNk+1 .

Proof. Clearly ν-PNk � ν-PNk+1 and PDNk � PDNk+1 for any k � 0. For the converses, again we can apply Proposition 4,
considering that all the classes considered are self-witnessing and that X⊕k+1 ��refl X⊕k and X∗k+1 ��refl X∗k hold. �

Finally, we can strengthen the result AWN ≺ ν-PN proved in [11] in a very straightforward way.

Proposition 13. ν-PN1 �� AWN.

Proof. ν-PN1 is self-witnessing, and X⊕1 ��refl {Nk | k > 0} because N⊕ ��refl Nk for all k (indeed, ot(N⊕)=ωω �ωk = ot(Nk)).
By Proposition 4 we conclude. �

Again, the previous result is tight. Indeed, a ν-PN with no unbounded places can be simulated by a Petri net, so that
ν-PN0 � PN.

6. Timed Petri nets

A timed Petri net [12] is a Petri net whose tokens have an age that evolves synchronously with time elapsing. The
transition system of such a net has two kinds of transitions. Either time elapses (with no restriction) and all the token
ages are updated accordingly; or a net transition is fired, consuming and producing tokens as in ordinary nets. However the
ages of tokens to be consumed can be required to belong to time intervals while the ages of tokens to be produced can
be selected non-deterministically in time intervals. Consequently, the arcs of a timed Petri net are labelled by multisets of
intervals. In this section, I is the set of intervals with bounds in N∪ {∞}.

Definition 12 (Timed Petri nets). A timed Petri net (TdPN) N is a tuple (P , T ,Pre,Post, λ) where:

• P is a finite set of places,
• T is a finite set of transitions with P ∩ T = ∅,
• Pre, the backward incidence mapping, is a mapping from T to (I⊕)P ,
• Post, the forward incidence mapping, is a mapping from T to (I⊕)P ,
• λ : T →Σε is a labelling function.

Since (I⊕)P is isomorphic to (P × I)⊕ , Pre(t) and Post(t) may also be considered as multisets. Given a place p and a
transition t , if the multiset Pre(t)(p) (resp. Post(t)(p)) is non-null then it defines a pre-arc (resp. post-arc) of t connected
to p.

A configuration μ of a TdPN is an item of (R⊕�0)
P (or equivalently (P ×R�0)

⊕). Intuitively, a configuration is a marking
extended with age information for the tokens. We will write (p, τ ) for a token which is in place p and whose age is τ .
A configuration is then a finite sum of such pairs. A token (p, τ ) then belongs to the configuration μ whenever (p, τ ) � μ
(in terms of multisets). For a configuration μ and d ∈R�0 we write μ+ d to denote the configuration obtained from μ by
increasing the age of all tokens by d. Given a configuration μ ∈ (P × R�0)

⊕ and a multiset f ∈ (P × I)⊕ , we say that μ
satisfies f , and write μ |� f , if and only if there exists a multiset x ∈ (P ×R�0 × I)⊕ verifying the following conditions:⎧⎪⎨

⎪⎩
π1,2(x)=μ

π1,3(x)= f

∀(p, τ , I) ∈ sup(x), τ ∈ I

Here πi, j is the mapping that, given a multiset of tuples x, outputs the multiset of pairs corresponding to the projection of
the tuples over their ith and jth components. The intuition underlying the satisfaction relation is that a multiset of aged
tokens exactly corresponds to a multiset of timed requirements specified by intervals.

We now describe the semantics of a TdPN as a transition system. As discussed above, this system consists of timed and
discrete transitions. The timed transitions are silent transitions (i.e. labelled by ε).

Definition 13 (Transition system of a TdPN). Let N be a TdPN. The labelled transition system S(N ) = 〈X,Σ,→〉 is defined
by:

• X = (P ×R�0)
⊕ .

• The transitions are defined as follows:
1. For each d ∈R�0, there is a delay transition μ ε−→μ+ d.
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2. Given a transition t ∈ T and two configurations μ,μ′ ∈ (P × R�0)
⊕ , we write μ

λ(t)−−−→ μ′ , if and only if there exist
two multisets •μ,μ• ∈ (P ×R�0)

⊕ such that:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

•μ |� Pre(t)

μ• |� Post(t)
•μ�μ

μ′ =μ− •μ+μ•

The intuition of the previous definition is as follows: •μ is the set3 of tokens which is removed from the configuration
μ when firing transition t , whereas μ• is the set of tokens that are created by the transition firing. Moreover, the ages of all
these tokens need to satisfy the constraints specified by the various arcs (conditions written using the |� operator defined
above). Finally, the new configuration is given by μ′ computed as μ′ =μ− •μ+μ• .

A path in the TdPN N is a sequence μ0
ε−→ μ0 + d1

λ(t1)−−−→ μ1
ε−→ μ1 + d2

λ(t2)−−−→ μ2 . . . in the above transition sys-
tem, which alternates between delay and discrete transitions. A timed transition sequence is a finite timed word over
the alphabet T , the set of transitions of N . A firing sequence is a timed transition sequence (t1, τ1)(t2, τ2) . . . such that

μ0
ε−→μ0 + τ1

λ(t1)−−−→μ1
ε−→μ1 + (τ2 − τ1)

λ(t2)−−−→μ2 . . . is a path. If (p, τ ) �μ is a token of a configuration μ, it is a dead
token whenever for every interval I labelling a pre-arc of p, τ is strictly greater than the upper bound of I . This means
that this token cannot be used anymore by a pre-arc to fire a transition. The untimed word which is read along a path

μ0
ε−→μ0 + d1

λ(t1)−−−→μ1
ε−→μ1 + d2

λ(t2)−−−→μ2 . . . is the projection over Σ of the timed word, i.e., λ(t1)λ(t2) . . . .

Definition 14 (Untimed language of a TdPN). Let N be a TdPN and μ0,μ f be two configurations with integer ages. Then
L(N ,μ0,μ f ) is the untimed coverability language associated with S(N ), μ0 the initial configuration and μ f the configura-
tion to be covered.

We have required that the ages of tokens in the two configurations are integer. Indeed, in order to represent these
configurations, we could simply require that the ages are rational. However with a standard change of scale time, rationals
can be transformed to integers (both in the configurations and in the net) without modifying the language.

Now the key observation is that w.r.t. the untimed language of a TdPN (as in timed automata), it is sufficient to look
at an abstraction of the configurations, called regions. By max we denote the maximal integer appearing in the bounds of
intervals of the net and in the age of tokens in μ0 and μ f . In the following, we denote by 0 the empty multiset {| |}.

Definition 15 (Regions of TdPNs). A region R for a TdPN N is a sequence a0a1 . . .ana∞ where n ∈N and:

• a0 ∈ (P × Fmax)
⊕ with Fmax = {0,1, . . . ,max};

• for all 0 < i � n, ai ∈ (P × Fmax−1)
⊕ with Fmax−1 = {0,1, . . . ,max−1} and ai �= 0;

• a∞ ∈ (P × F∞)⊕ with F∞ = {∞}.

We informally explain the semantics of a region. Given the multiset of tokens defining a configuration, we obtain its
associated region as follows. We put in a∞ all the tokens whose ages are strictly greater than max and forget their ages.
We then put in a0 the tokens with integral ages and add the information about their ages. Finally, we order the remaining
tokens depending on the fractional part of their ages in a1, . . . ,an , forget their fractional part, and only store the integral
part of their ages. Hence n is the number of different positive fractional values for ages of the remaining tokens. For instance,
consider the multiset of tokens (p,1)+ (p,2.8)+ (q,0.8)+ (q,5.1)+ (r,1.5). Then, if the maximal constant is 4, its region
encoding will be a0a1a2a∞ where a0 = (p,1) (because there is a single token with integral age), a∞ = (q,∞) (because the
age of token (q,5.1) is 5.1, hence above the maximal constant), a1 = (r,1) (among all fractional parts, 0.5 is the smallest
one), and a2 = (p,2)+ (q,0) (all tokens with fractional part 0.8).

Furthermore we can define an (infinite but countable) transition system over regions that generate the untimed words
of the net. Rather than giving a formal cumbersome definition, we informally present it:

• We associate silent transitions with time elapsing. Since we can split the time elapsing, we consider two kinds of such
transitions.
1. Given a region a0a1 . . .ana∞ , when a0 �= 0 we first partition a0 = b0+ c0 where b0 (resp. c0) is the multiset of tokens

with age strictly less than max (resp. equal to max). The new region is now the word 0b0a1 . . .an(a∞+ c′0) where c′0
is the bag of tokens of c0 with max substituted by ∞. This transition corresponds to a small time elapsing that does
not let the ages of tokens of an to reach or overcome an integral value.

3 This is a language misuse, the right term should be “multiset”, as there can be several tokens with the same age.
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2. Given a region 0a1 . . .ana∞ when n > 0, the new region is now the word b0a1 . . .an−1a∞ where b0 is the bag of
tokens of an with their integral component increased by one. This transition corresponds to the time elapsing that
lets the ages of tokens of an reach an integral value.

• The information associated with the age of tokens in a region is sufficient to know whether they belong to an interval
labelling a pre-arc. So given a region a0a1 . . .ana∞ , in order to fire t:
1. We must constitute a word b0b1 . . .bnb∞ with bi � ai for every i ∈ {0, . . . ,n} ∪∞ such that for every place p there

is a bijective mapping from the intervals of the multiset Pre(t)(p) to the tokens labelled by p in b0,b1, . . . ,bn,b∞ .
The first step of the firing consists then in deleting these tokens, leading to an intermediate region c0c1 . . . cnc∞ =
(a0 − b0)(a1 − b1) · · · (an − bn)(a∞ − b∞) where the ci ’s for 1 � i � n such that ci = 0 are then deleted.

2. Then for every place p and every interval of the multiset Post(t)(p), we choose a token whose fractional part may
be either null, either a non-null existing one or a new non-null one, in this last case increasing n and choosing any
position in the fractional order. The choice must lead to an age belonging to the interval. These new tokens “added”
to c0c1 . . . cnc∞ lead to the region reached by this firing of t (as there are non-deterministic choices, several but
finitely many firings of t are possible).

Given R0 (resp. R f ) the abstraction of μ0 (resp. μ f ), it is routine to check that the corresponding coverability language is
exactly L(N ,μ0,μ f ). Furthermore, the state space of this abstract transition system is a wpo and this system is a WSTS.
Since the abstract transition rule is effective, the family of untimed languages of TdPN fulfils the same standard decidability
properties as the ones already presented. We refer to [12,26] for more information.

Looking more carefully at this state space it appears to be isomorphic to the one of a Petri Data Net. This suggests that
these models could be equally expressive w.r.t. their coverability languages and this is what we prove in the next theorems.

Theorem 5. Let N be a Petri Data Net and m0,m f be two markings of N . There exists N ′ a TdPN and two configurations μ0,μ f
such that L(N ′,μ0,μ f )= L(N ,m0,m f ).

Proof. Let us first describe the principles of the simulation. Places of N ′ will contain two kinds of tokens: the tokens of
age belonging to [0,1] will be relevant while the older tokens will be irrelevant. We define the relevant part of a marking
of N ′ as the marking where the irrelevant tokens have been deleted.

The simulation of a transition firing will last 1 time unit (t.u.), so the markings of N ′ at instants 0,1,2, . . . are the basis
of the simulation.

Our simulation is lossy in the following sense. If there is a firing sequence m0
σ−→m in N , then there is at least one

perfect simulation μ0
σ−→ μ in N ′ with the same associated word. Furthermore all firing sequences of N ′ will be perfect

or lossy simulations. A lossy simulation is a sequence that leads to markings at integer instants whose relevant parts are
covered by the relevant part of markings reached by a perfect simulation with the same associated word.

For technical reasons, a place p of N will be simulated by two places p0, p1 of N ′ . Let m0
σ−→m be a firing sequence

in N , with n current identities x1 < · · ·< xn in m and denote m by the word (
∑

p∈P λ1
p · p) · · · (∑p∈P λn

p · p).
Let μ0

σ−→μ be some perfect simulation of σ in N ′ . There will be exactly n fractional parts of ages of relevant tokens
in μ. Assume that the length of the firing sequence σ is even (resp. odd). Let us denote a0a1 . . .ana∞ be the region
associated with μ. Then the word ai fulfils ai =∑

p∈P λi
p · (p0,0) (resp. ai =∑

p∈P λi
p · (p1,0)). a0 will contain tokens of

control places (to be detailed later) and a∞ will be equal to 0.
Let us describe the control places:

• time0, time1 are the places that schedule the operations. At an even (resp. odd) instant, place time0 (resp. time1) has a
token with age 0. Then after one t.u., a transition tt0 (resp. tt1) ending the simulation process is fired getting this token
and producing a token with age 0 in time1 (resp. time0).

• Place idle0 (resp. idle1) has a token only present at even (resp. odd) instants. The consumption of this token by transition
t0 (resp. t1) starts the simulation process of transition t . When a simulation is started, a token (whose time is irrelevant)
is produced in place trans0 (resp. trans1). This token enables to transfer relevant tokens that will not be used in the
transition firing. When such a token (say in place q0) has age 1 it is consumed by tr.q0 and a token is produced in q1.
At the end of the simulation the token has the same age as the original one at the beginning of the simulation. Observe
that some tokens may be forgotten (case of a lossy simulation). These forgotten tokens cannot be used in the sequel
since their ages become greater than 1.

• Let us recall that all variables occurring in a transition t of N are totally ordered. Thus the transition simulation con-
sumes and produces the tokens required by variables, beginning by the greatest variable. Let us illustrate this simulation
in the example of Fig. 5. The token “with identity Z ” in place q which must be consumed will be the first one to reach
age 1, so it is deleted by transition simZ.t0. Then transition simY.t0 produces the token “with identity Y ” in place s1.
Finally, transition simX.t0 consumes the token “with identity X” in place p0 and simultaneously produces the token in
place r1. Observe that these transitions must let time elapse due to the interval constraints. This avoids to use the same
identity for X , Y and Z .
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Fig. 5. Simulation of a transition at even instants.

Fig. 6. Test of covering p(q+ r) at even instants.

Let us now explain by an example (see Fig. 6) how to check coverability of marking p(q+ r) in N . At even (resp. odd)
instants one consumes the token in idle0 (resp. idle1) and proceeds to test the coverability. First one lets time elapse until
we obtain a token in q and r with age 1. Then after some time elapsing we must obtain a token in p with age 1 and we
conclude positively by covering marking (success,0). The generalization is straightforward.

The specification of the initial marking of N ′ is immediate and left to the reader. �
In order to prove the reverse implication, we recall that for any TdPN N there is a TdPN N ′ with the same language and

such that the only interval occurring in post-arcs is [0,0] (Theorem 4 of [27]).

Theorem 6. Let N be a TdPN and two configurations μ0,μ f (with integer ages) of N . Then there exists N ′ a Petri Data Net and
m0,m f two markings of N ′ such that L(N ′,m0,m f )= L(N ,μ0,μ f ).
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Fig. 7. Simulation of time elapsing.

Proof. As in the previous proof, our simulation is a lossy simulation allowing to “lose” tokens of N in the simulating
net N ′ , as it does not change the coverability language. We first describe the principle of the simulation.

After some initialization stage, places low,high and int always contain a single token. In the sequel of the proof we denote
the identity contained in such a place by the name of the place. Every non-null fractional part of the current configuration
of N is represented by an identity x such that: low � x � high. The order of such identities is the reverse order of the
fractional part: for two identities of fractional parts x < y the fractional part of x is greater than the fractional part of y. For
every simulation, low is just a lower bound of the identity with the highest fractional part but if there is at least a token
in N whose age has a non-null fractional part then there is always a simulation for which low is equal to this identity.
Furthermore, identity int corresponds to tokens whose ages (less or equal than max) have a null fractional part.

During the simulation, int only decreases while low only increases, and as in the initialization step we ensure that
int < low, this inequation will always be fulfilled. At any instant of the simulation, the identities that label tokens are
between int and high and only tokens which have identities between low and high or equal to int are still relevant for the
simulation.

Let max be the maximal constant occurring in N , μ0 and μ f . For every place p of N , N ′ has the following places:
p0, p1, . . . , pmax, p∞ . Place pk contains the tokens of N in p with age less or equal than max and integral part equal to k.
Place p∞ contains the tokens of N in p with age greater than max; this place contains black tokens as the fractional part
of the age is irrelevant for such tokens in N .

During the simulation, place disc is either empty or contains a black token that allows the simulation of discrete transi-
tions of N . Let us first describe the simulation of time elapsing as illustrated in Fig. 7. Transition el0 begins to perform the
simulation of a small elapse of time whose only effect (see above the definition of the transition system over regions) is that
there is no more tokens (with age less or equal than max) with integral ages. It increases high in order to assign this value to
the tokens with integral ages. While time0 is marked, transition t f p,k with k < max “updates” tokens with integer age in pk
changing their identity to high. Transition t f p,max transfers tokens with age max from pk to p∞ . As said before, some tokens
can be forgotten but they will not perturb the simulation since at the end of the transfer int is decreased (transition el1).
Then either we stop the time elapsing simulation (transition el2) or proceed (transition el3) to let an additional amount of
time that corresponds to letting the tokens with greatest fractional part reach their next integral value by changing their
identity from low to int and moving tokens from pk to pk+1. When low is different from the identity of tokens with greatest
fractional part, no transfer occurs. At the end of a simulation, a new value is chosen for low greater than the former value
and less or equal than high (transition el4). When this choice corresponds to the identity of the new greatest fractional part
the simulation is exact. Otherwise, the tokens whose fractional parts have associated identities less than low are “lost”.

The simulation of a transition of N is straightforward. In order to simplify its presentation, we can assume w.l.o.g. that
pre-arcs are labelled by multisets of intervals [0], ]0,1[, [1], . . . , [max], ]max,∞[. This can be easily obtained by duplicating
transitions (see for instance [27]). As said before, post-arcs are labelled by a multiset over interval [0]. Rather than defining
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Fig. 8. Simulation of a transition.

Table 1
Summary of results.

Quantitative results. (All results are new)
For every k ∈N VASSk ≺ VASSk+1 �� AWNk

For every k, p ∈N LCS(k, p)≺ LCS(k+ 1, p)≺ LCS(1, p + 1)

For every k ∈N ν-PNk ≺ ν-PNk+1 and PDNk ≺ PDNk+1

Qualitative results. (New results are ν-PN ≺ DN and PDN� TdPN)
VASS≺M≺ DN� PDN� TdPN
where M is either ν-PN or LCS

it formally we illustrate the translation on Fig. 8. For instance, since the arc from p to t is labelled by ]2,3[, we are looking
for a token in place p2 with identity between low and high. The other cases are similar. Observe that since post-arcs are
labelled by 0, there is no new fractional part. This avoids to handle the undesirable case where a new fractional part would
be the greatest one, as it would require to decrease low, which is forbidden by our simulation.

Checking the coverability condition is performed by stopping the simulation and then consuming tokens in places pk
with identity int corresponding to the (integral-age valued) tokens of μ f . �
7. Conclusion and perspectives

To show a strict hierarchy of WSTS classes, we have proposed a generic method based on two principles: the ability
of WSTS to recognize some specific witness languages linked to their state space, and the use of order theory to show the
absence of order reflections from one wpo to another. This allowed us to unify some existing results, while also solving open
problems. We summarize the current picture on expressiveness of WSTS in Table 1 w.r.t. number of resources and type of
resources. On the other hand, showing equivalence between WSTS classes is a problem deeply linked to the semantics of
the models, and hence that remains to be solved on a case-by-case basis.

An interesting case that remains open is the relative expressiveness of LCS and ν-PN. Their state space are quite distinct
but their order type are the same for some values of their parameters. We conjecture that there is no reflection from one
to the other, but such a proof would require more than order type analysis.

All the models that we have studied in this paper use a state space whose order type is bounded by ε0. However, the
theory that we have developed can equally address state spaces with a greater state space. For instance, it is known that
the Kruskal ordering has an order type greater than ε0 [8], even for unlabelled binary trees. Thus, it is tempting to look at
WSTS based on trees [28–30]. We believe some interesting problems might lie in this direction.

Appendix A. Complements to the proof of Proposition 1

We first introduce a few additional notations that we need for the proof of this section.4

Let A be a well-ordered set. X ⊆ A is a directed subset of A if ∀x, y ∈ X , ∃z ∈ X , x � z ∧ y � z. A downward closed
directed subset of A is called an irreducible ideal5 of A. We denote by Idl(A) the set of irreducible ideals of A.

Proposition 14. Let A be a well-ordered set. Then any downward closed subset of A is a finite union of irreducible ideals.

Note that νI : A → Idl(A) given by νI (x)=↓x is an order-embedding. Because of this, we will identify x with ↓x.

4 Although the notations vary slightly from “Forward Analysis for WSTS: Part I: Completions” by A. Finkel and J. Goubault-Larrecq (STACS’09), the begin-
ning of this section is a straight rewriting of results from this paper.

5 Some authors have been using the term “ideal” as a shortcut for either a downward closed subset, or for a directed one. To avoid any confusion, we
will only speak of irreducible ideals and of downward closed subsets.
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Proposition 15. Let I ∈ Idl(Nk). I can be written as (x1, . . . , xk) with xi ∈N∪ {ω}, and:

(y1, . . . , yk) ∈ (x1, . . . , xk) ⇐⇒ (∀i, xi ∈N�⇒ yi � xi)

For example, (ω,4) denotes the subset of N2 whose elements are those with 4 or lower as their second coordinate. This
can be seen as an extension of the classic ordinal representation, where ω=N.

Proposition 16. Let I ∈ Idl(A⊕). I can be written as {Iω1 , . . . , Iωp , J1, . . . , Jq} where I1, . . . , I p, J1, . . . , Jq are irreducible ideals of A,
and with

x ∈ �{
Iω1 , . . . , Iωp , J1, . . . , Jq

}� ⇐⇒

⎧⎪⎨
⎪⎩

x= x1 ∪ · · · ∪ xp ∪ y1 ∪ · · · ∪ yq

∀1 � k � p, a ∈ xk �⇒ a ∈ Ik

∀1 � k � q, yk = ∅∨ (yk = {a} ∧ a ∈ Jk)

For example {1ω,3} describes the subset of N⊕ whose elements are those that contain any number of 0 or 1, and at
most one element equal to 2 or 3. Note that an irreducible ideal has more than one possible representation. We have for
example {2ω,1} = {2ω}.

Proposition 17. N3 ��N⊕ .

Proof. Assume ϕ is an order-embedding from N3 to N⊕ .
We consider the following sets:

• Ax = {(n,0,0) | n ∈N},
• A y = {(0,n,0) | n ∈N},
• Az = {(0,0,n) | n ∈N}.

For any α ∈ {x, y, z}, ϕ(Aα) is an infinite chain of N⊕ with least upper bound an element of Idl(N⊕). If this element is
the entire set, for any element x of N3, we can find an element x′ of Aα such that ϕ(x) � ϕ(x′), contradicting the order
embedding.

Thus, let {ωkα ,k′α
ω} ∪ Bα be this element.

We remark that for any three pairs of integers, we can choose one of these pairs that is less or equal than the least
upper bound of the two others.

This means, that we can find α, β and γ , such that:(
kα,k′α

)
�

(
max{kβ,kγ },max

{
k′β,k′γ

})
Without loss of generality, we will assume α = x, β = y and γ = z. Then, we define A y,z[a] = {(a,n,n) | n ∈N}.
In the same way as before, we have the image of A y,z[a] an infinite chain of N⊕ , with least upper bound

{ωky,z[a], (k′y,z[a])ω} ∪ B y,z[a]. Because ϕ is an order embedding, for any a ∈ N, this least upper bound is greater than

both {ωky ,k′y
ω} ∪ B y and {ωkz ,k′z

ω} ∪ Bz , implying that:

∀a ∈N, kx � ky,z[a] and k′x � k′y,z[a]
As we have ϕ(n,0,0)→ωkx .k′x

ω
.Bx , we can find an a0 such that ϕ(a0,0,0)= {p1, . . . , pkx ,q1, . . . ,qr} ∪ Bx with:

• r ∈N,
• ∀1 � i � kx , pi � max(k′x, M), where M is the greatest value in Bx ,
• ∀1 � i � r, qi � k′x .

We define P = {p1, . . . , pkx } and Q = {q1, . . . ,qr}. We have:

P ∪ Q ∪ Bx �
{
ωky,z[a0],k′y,z[a0]ω

}∪ B y,z[a0]
Elements of P are greater than all elements in Q and B0, thus:

Q ∪ Bx �
{
ωky,z[a0]−kx ,k′y,z[a0]ω

}∪ B y,z[a0]
Because k′x � k′y,z[a0], we have:{

k′x
ω}∪ Bx �

{
ωky,z[a0]−kx ,k′y,z[a0]ω

}∪ B y,z[a0]
�⇒ {

ωkx ,k′x
ω}∪ Bx �

{
ωky,z[a0],k′y,z[a0]ω

}∪ B y,z[a0]
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and because that means that each image of an element of Ax can be compared to an element of A y,z[a0], we get a contra-
diction that concludes the demonstration. �
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