
Parametric Interrupt Timed Automata?

B. Bérard1, S. Haddad2, A. Jovanović3, and D. Lime3

1 Université Pierre & Marie Curie, LIP6/MoVe, CNRS, Paris, France
2 ENS Cachan, LSV, CNRS, INRIA, Cachan, France

3 LUNAM Université, École Centrale de Nantes, IRCCyN, CNRS, Nantes, France

Abstract. Parametric reasoning is particularly relevant for timed mod-
els, but very often leads to undecidability of reachability problems. We
propose a parametrised version of Interrupt Timed Automata (an ex-
pressive model incomparable to Timed Automata), where polynomials
of parameters can occur in guards and updates. We prove that different
reachability problems, including robust reachability, are decidable for
this model, and we give complexity upper bounds for a fixed or variable
number of clocks and parameters.

1 Introduction

Parametric verification. Getting a complete knowledge of a system
is often impossible, especially when integrating quantitative constraints.
Moreover, even if these constraints are known, when the execution of the
system slightly deviates from the expected behaviour, due to implemen-
tation choices, previously established properties may not hold anymore.
Additionally, considering a wide range of values for constants allows for
a more flexible and robust design.

Introducing parameters instead of concrete values is an elegant way of
addressing these three issues. Parametrisation however makes verification
more difficult. Besides, it raises new problems like parameter synthesis,
i.e. finding the set (or a subset) of values for which some property holds.
Parameters for timed models. Among quantitative features, paramet-
ric reasoning is particularly relevant for timing requirements, like network
delays, time-outs, response times or clock drifts.

Pioneering work on parametric real time reasoning was presented in [1]
for the now classical model of timed automata [2] with parameter expres-
sions replacing the constants to be compared with clock values. Since then,
many studies have been devoted to the parametric verification of timed
models [3,4,5], mostly establishing undecidability results for questions like
parametric reachability, even for a small number of clocks or parameters.

? This work has been supported by project ImpRo ANR-2010-BLAN-0317

Relaxing completeness requirement or guaranteed termination, several
methods and tools have been developed for parameter synthesis in timed
automata [6,7,8], as well as in hybrid automata [9,10]. Another research
direction consists in defining subclasses of parametric timed models for
which some problems become decidable [11,12,13]. Unfortunately, these
subclasses are severely restricted. It is then a challenging issue to de-
fine expressive parametric timed models where reachability problems are
decidable.
Contributions. The model of interrupt timed automata (ITA) [14,15]
was proposed as a subclass of hybrid automata, incomparable with the
class of timed automata, where task interruptions are taken into account.
Hence ITA are particularly suited for the modelling of scheduling with
preemption.

We propose a parametric version of ITA where polynomial parame-
ter expressions can be combined with clock values both as additive and
multiplicative coefficients. The multiplicative setting is much more expres-
sive and useful in practice, for instance to model clock drifts. We prove
that reachability in parametric ITA is decidable as well as its robust
variant, an important property for implementation issues. To the best
of our knowledge, this is the first time such a result has been obtained
for a model including a multiplicative parametrisation. Furthermore, we
establish upper bounds for the algorithms complexity: 2EXSPACE and
PSPACE when the number of clocks is fixed, which become respectively
2EXPTIME and PTIME for additive parametrisation, when the number
of clocks and parameters is fixed. Our technique combines the construc-
tion of symbolic class automata from the ITA case and the first order
theory of real numbers. Finally, considering only additive parametrisa-
tion, we reduce reachability to the same problem in basic ITA.
Outline. The parametric ITA model is introduced in Section 2 and deci-
sion procedures are presented in Section 3 with complexity analysis. We
conclude and give some perpectives for this work in Section 4. All proofs
are given in the appendix.

2 Parametric Interrupt Timed Automata

2.1 Notations

The sets of natural, rational and real numbers are denoted respectively
by N, Q and R. Given two sets A,B, we denote by Pol(A,B), the set
of polynomials with variables in A and coefficients in B. We also denote
by Lin(A,B) the subset of polynomials with degree at most one and by

Frac(A,B), the set of rational functions with variables in A and coeffi-
cients in B (i.e. quotients of polynomials).

Clock and parameter constraints. Let X be a finite set of clocks and let
P be a finite set of parameters. An expression over clocks is an element∑

x∈X ax · x+ b of Lin(X,Pol(P,Q)). In the sequel we also consider two
other sets of expressions: Lin(X,Q) and Lin(X ∪ P,Q). The former is
the subset of expressions without parameters while the latter can be seen
as a subset of expressions where ax ∈ Q for all x ∈ X and b ∈ Lin(P,Q).
We denote by C(X,P) the set of constraints obtained by conjunctions
of atomic propositions of the form C ./ 0, where C is an expression of
Lin(X,Pol(P,Q)) and ./∈ {>,≥,=,≤, <}.

Updates and valuations. An update is a conjunction (over X) of assign-
ments of the form x := Cx, where x is a clock and Cx ∈ Lin(X,Pol(P,Q)).
The set of updates is written U(X,P). For an expression C and an up-
date u, the expression C[u] is obtained by “applying” u to C, i.e., sub-
stituting each x by Cx in C, if x := Cx is the update for x in u. Ob-
serve that an update is performed simultaneously on all clocks. For in-
stance, for clocks X = {x1, x2}, parameters P = {p1, p2, p3}, expression
C = p2x2−2x1+3p1 and the update u defined by x1 := 1∧x2 := p3x1+p2,
applying u to C yields the expression C[u] = p2p3x1 + p22 + 3p1 − 2.

A clock valuation is a mapping v : X 7→ Pol(P,R), with 0 the valu-
ation where all clocks have value 0. For a valuation v and an expression
C ∈ Lin(X,Pol(P,Q)), v(C) ∈ Pol(P,R) is obtained by evaluating C
w.r.t. v. Given an update u and a valuation v, the valuation v[u] is de-
fined by v[u](x) = v(Cx) for x in X if x := Cx is the update for x in u.
For instance, let X = {x1, x2, x3} be a set of three clocks. For valuation
v = (2p2, 1.5, 3p

2
1) and update u defined by x1 := 1 ∧ x2 := x2 ∧ x3 :=

p1x3 − x1, applying u to v yields the valuation v[u] = (1, 1.5, 3p31 − 2p2).
A parameter valuation is a mapping π : P 7→ R. For a parameter

valuation π and an expression C ∈ Lin(X,Pol(P,Q)), π(C) ∈ Lin(X,R)
is obtained by evaluating C w.r.t. π. If C ∈ Pol(P,Q), then π(C) ∈ R.
Given a parameter valuation π, a clock valuation v and an expression
C ∈ Lin(X,Pol(P,Q)) we write π, v |= C ./ 0 when π(v(C)) ./ 0.

2.2 Parametric Interrupt Timed Automata

Definitions. The behaviour of an ITA can be viewed as the one of an
operating system with interrupt levels. At a given level, exactly one clock
is active (rate 1), while the clocks at lower levels are suspended (rate 0),

and the clocks at higher levels are not yet activated and thus contain value
0. The enabling conditions of transitions, called guards, are constraints in
Lin(X,Q) over clocks of levels lower than or equal to the current level.
Transitions can update the clock values. If the transition decreases (resp.
increases) the level, then each clock which is relevant after (resp. before)
the transition can either be left unchanged or take a linear expression of
clocks of strictly lower level.

Parametric ITA include parameters in guards and updates.

Definition 1. A parametric interrupt timed automaton (PITA) is a tu-
ple A = 〈Σ,P,Q, q0, X, λ,∆〉, where:

– Σ is a finite alphabet, P is a finite set of parameters,
– Q is a finite set of states, q0 is the initial state,
– X = {x1, . . . , xn} consists of n interrupt clocks,
– the mapping λ : Q → {1, . . . , n} associates with each state its level;

we assume λ(q0) = 1, Xλ(q) = {xi | i ≤ λ(q)} is the set of relevant
clocks at this level and xλ(q) is called the active clock in state q;

– ∆ ⊆ Q×C(X,P)× (Σ ∪ {ε})×U(X,P)×Q is the set of transitions.

Let q
ϕ,a,u−−−→ q′ in ∆ be a transition with k = λ(q) and k′ = λ(q′). The

guard ϕ is a constraint in C(Xk, P) (using only clocks from levels less
than or equal to k). The update u is of the form ∧ni=1xi := Ci with:
• if k > k′, i.e. the transition decreases the level, then for 1 ≤ i ≤ k′,
Ci is either of the form

∑i−1
j=1 ajxj+b or Ci = xi (unchanged clock

value) and for i > k′, Ci = 0;
• if k ≤ k′ then for 1 ≤ i ≤ k, Ci is of the form

∑i−1
j=1 ajxj + b or

Ci = xi, and for i > k, Ci = 0.

An ITA is a PITA with P = ∅. When all expressions occurring in
guards and updates are in Lin(X∪P,Q), the PITA is said to be additively
parametrised, in contrast to the general case, which is called multiplica-
tively parametrised.

We give a transition system describing the semantics of a PITA w.r.t.
a parameter valuation π. A configuration (q, v) consists of a state q of the
PITA and a clock valuation v.

Definition 2. The semantics of a PITA A w.r.t. a parameter valuation
π is defined by the (timed) transition system TA,π = (S, s0,→). The set of
configurations is S =

{
(q, v) | q ∈ Q, v ∈ RX

}
, with initial configuration

s0 = (q0,0). The relation → on S consists of two types of steps:

Time steps: Only the active clock in a state can evolve, all other clocks
are suspended. For a state q with active clock xλ(q), a time step of

duration d is defined by (q, v)
d−→ (q, v′) with v′(xλ(q)) = v(xλ(q)) + d

and v′(x) = v(x) for any other clock x. We write v′ = v +q d.

Discrete steps: A discrete step (q, v)
e−→ (q′, v′) can occur for some tran-

sition e = q
ϕ,a,u−−−→ q′ in ∆ such that π, v |= ϕ and v′(x) = π(v[u](x)).

A run of A is a finite path in the transition system TA,π, for some pa-
rameter valuation π, where (possibly null) time steps and discrete steps
alternate. A state q ∈ Q is reachable from q0 for π if there is a path from
(q0,0) to (q, v) in TA,π, for some valuation v.

Example 1. A PITA A1 is depicted in Fig. 1(a), with two interrupt levels.

A possible trajectory, symbolically presented as: (q0, 0, 0)
17−→ (q0, 17, 0)

a−→
(q1, 17, 0)

3−→ (q1, 17, 3)
b−→ (q1, 17, 18p2 + 17

68p
2
1), is to stay in state q0 until

the value of x1 increases from 0 to 17, giving the constraint p1 > 17 for
firing a. After transition a occurs, the value of x1 is frozen in state q1,
while x2 increases. When x2 reaches 3, the only value for p2 satisfying
the guard x1 + p2x2 = 2 is p2 = −5. After the occurrence of transition
b, x2 is updated to x2 = 18p2 + 17

68p
2
1. Let us fix the parameter valuation

π: p1 = 20 and p2 = −5. Hence, the clock x2 is updated to x2 = 10. A
geometric view of this trajectory w.r.t. π is given in Fig. 1(b).

q0, 1

q1, 2

x1 < p1
a

(x2 := 0)

x1 + p2x2 = 2
b

x2 := (p2 + 1
68
p21)x1 + p2

(a) A PITA A1 with two interrupt levels

x1

x2

17

3

10

202

x
1
−

p
1

=
0

x1 + p2x2 = 2

(b) A possible trajectory in A1

Fig. 1. An example of PITA and a possible execution

Problems. We consider here reachability problems for PITA. Let A be a
PITA with initial state q0 and q be a state of A. The Existential (resp.
Universal) Reachability Problem asks whether q is reachable from q0 for
some (resp. all) parameter valuation(s). Scoped variants of these problems
are obtained by adding as input a set of parameter valuations given by
either a first order formula of the reals or a polyhedral constraint. The
Robust Reachability Problem asks whether there exists a parameter val-
uation π and a real ε > 0 such that for all π′ with ‖π − π′‖∞ < ε, q is
reachable from q0 for π′. When satisfied, this last property ensures that
small parameter perturbations do not modify the reachability result.

3 Reachability Analysis

To decide reachability for a PITA A, we build a finite family of class
automata related to a finite partition of parameter valuations. Any item of
this partition is specified by a satisfiable first-order formula over (R,+,×)
with the parameters as variables. The specification of classes depends on
the expressions occurring in the guards and updates of A. In any of them,
a class is defined by a state q and a family {�k}k≤λ(q) of preorders, where
�k orders Ek, a set of expressions in Lin(X,Frac(P,Q)). The formulas
defining the partition are based on E1 and a set of polynomials PolPar.

3.1 Construction of PolPar and {Ek}k≤n

The normalisation is an operation relative to some level k, operating on
an expression. The resulting expressions are obtained by first forgetting
terms related to clocks from levels above and then operating transforma-
tions depending on the leading coefficient of the truncated expression.

Definition 3 (Normalisation). Let k ≤ n be some level and let C =∑
i≤n aixi + b be an expression in Lin(X,Frac(P,Q)), with ak = rk

sk
,

for some rk and sk in Pol(P,Q). The k-normalisation of C produces the
following expressions:

– lead(C, k) = rk;
– if lead(C, k) /∈ Q \ {0}, comp(C, k) =

∑
i<k aixi + b;

– If lead(C, k) 6= 0 then compnorm(C, k) = −
∑

i<k
ai
ak
xi − b

ak
.

The first expression is the numerator of the coefficient of xk, the active
clock at level k, while the other two expressions could need to be compared
to the value of xk or 0 when some transition is fired at level k, assuming
that C ./ 0 occurs in its guard. If lead(C, k) is equal to 0 (resp. is a non
constant polynomial), then comp(C, k) must (resp. could) be compared to
0 (resp. when this polynomial has value 0). Otherwise, xk must or could
be compared to compnorm(C, k).

The construction of PolPar and {Ek}k≤n proceeds top down from
level n to level 1 after initialising PolPar = ∅ and Ek = {xk, 0} for all k.
When handling level k, we add new terms to Ei for 1 ≤ i ≤ k.

1. At level k the first step consists in adding new expressions to Ek
and new polynomials to PolPar. More precisely, let C be any expres-
sion occurring in a guard of an edge leaving a state of level k. We
add lead(C, k) to PolPar when it does not belong to Q and we add
comp(C, k) and compnorm(C, k) to Ek when they are defined.

2. The second step consists in iterating the following procedure until no
new term is added to any Ei for 1 ≤ i ≤ k.

(a) Let q
ϕ,a,u−−−→ q′ with λ(q) ≥ k and λ(q′) ≥ k, and let C ∈ Ek. Then

we add C[u] to Ek (recall that C[u] is the expression obtained by
applying update u to C).

(b) Let q
ϕ,a,u−−−→ q′ with λ(q) < k and λ(q′) ≥ k. Let C and C ′ be

two different expressions in Ek. We compute C ′′ = C[u] − C ′[u],
choosing an arbitrary order between C and C ′ in order to avoid
redundancy. Then we proceed with C ′′ w.r.t. λ(q) as done for C
w.r.t. k in step 1 above.

Example 2. For the automaton of Fig. 1(a), initially, we have PolPar = ∅,
E1 = {x1, 0} and E2 = {x2, 0}. We start with level k = 2. In step 1,
we consider the single edge leaving the state of level 2. The expression
occurring in its guard is C2 = p2x2+x1−2. We compute lead(C2, 2) = p2,
comp(C2, 2) = x1−2, and compnorm(C2, 2) = −x1−2

p2
. We obtain PolPar =

{p2} and E2 = {x2, 0, x1 − 2,−x1−2
p2
}.

We proceed with step 2(a) and consider again the same edge. We
apply its update x2 := (p2 + 1

68p
2
1)x1 + p2 to every expression of E2

that contains x2, add them to E2, and thus obtain E2 = {x2, 0, x1 −
2,−x1−2

p2
, (p2 + 1

68p
2
1)x1 + p2}.

Step 2(b) considers the single edge from q0 to q1 increasing from a level
lower than 2 to a level greater than or equal to 2. We compute the differ-
ences between any two expressions from E2 (after applying an update of
the edge) and normalise them. Similarly to step 1, we update PolPar and
E1, which yields: PolPar = {p2, p2 + 1, 1− p2 − 1

68p
2
1,−p22 − 1

68p
2
1p2 − 1}

and E1 = {x1, 0, 2,−2(p2+1)
p2

,−2− p2, 2+p2
1−p2− 1

68
p21
,
2−p22
p2

,
2−p22

1+p22+
1
68
p21p2
}.

We continue with level 1. Since the guard of the considered edge is
x1 − p1 < 0, there is no term to add to PolPar.
We add compnorm(C1, 1) = p1 to E1. As a result, we obtain:

E1 = {x1, 0, 2,−2(p2+1)
p2

,−2− p2, 2+p2
1−p2− 1

68
p21
,
2−p22
p2

,
2−p22

1+p22+
1
68
p21p2

, p1},

E2 = {x2, 0, x1 − 2,−x1−2
p2

, (p2 + 1
68p

2
1)x1 + p2} and,

PolPar = {p2, p2 + 1, 1− p2 − 1
68p

2
1,−p22 − 1

68p
2
1p2 − 1}.

Lemma 1 below is used for the class automata construction. Its proof
is obtained by a straightforward examination of the above procedure.
The other two lemmata are related to the termination and complexity
of this procedure and used in the computation of the upper bound of
the reachability algorithm. In lemma 3, we give bounds for the size of

integers and polynomials produced by the previous construction, since
our algorithms manipulate rationals (resp. rational functions) as pairs of
integers (resp. polynomials).

Lemma 1. Let C belong to Ek for some k and c = r
s be a coefficient

of C with s /∈ Q. Then s is the product of items of PolPar up to some
constant in Q \ {0}.

Lemma 2. The construction procedure of {Ek}k≤n terminates and the

size of every Ek is bounded by (2E+ 2)2
n(n−k+1)+1 where E is the number

of atomic propositions in edges of the PITA.

Lemma 3. Let b (resp. d) be the number of bits of an integer constant
(resp. the degree of a polynomial) occurring in an expression of PolPar or
some Ek. Then b ≤ (n+2)!2nb0 (resp. d ≤ (n+2)!d0), where b0 (resp. d0)
is the maximal number of bits for integers (resp. degree of polynomials)
occurring in the PITA.

3.2 Construction of class automata for PITA

Class definition. LetA be a PITA. Starting from the (finite) set PolPar,
we first consider the partition obtained by splitting the set of parameter
valuations according to the positions of the polynomials in PolPar with
respect to 0. Thus, if PolPar contains p elements, there are at most 3p

parameter regions in the partition. Then, we compute the subset of non
empty regions (by solving an existential formula of the first-order theory
of reals).

Given a non empty parameter region preg, we consider the following
subset of Ek for 1 ≤ k ≤ n: Ek,preg = {C ∈ Ek | the denominators of
coefficients of C are non null in preg}. Due to Lemma 1, these subsets
are obtained by examining the specification of preg.

Observe that expressions in E1,preg \ {x1} belong to Frac(P,Q). We
now refine preg according to a linear pre-order�1 on the set of expressions
E1,preg\{x1} which is satisfiable within preg. We denote this refined region
by (preg,�1) and we build a class automaton R(preg,�1) for any such
pair.

In R(preg,�1), a state, called a class, is a syntactical representation
of a subset of reachable configurations. More precisely, a class is defined
as a pair R = (q, {�k}1≤k≤λ(q)) where q is a state of A and �k is a total
preorder over Ek,preg, for 1 ≤ k ≤ λ(q). The class R describes a subset of
configurations in TA,π, for a parameter valuation π ∈ (preg,�1):

[[R]]π= {(q, v) | ∀k ≤ λ(q) ∀(g, h) ∈ Ek,preg, π(v(g)) ≤ π(v(h)) iff g �k h}

The initial state of this automaton is defined by the class R0, such
that [[R0]]π contains (q0,0), which can be straightforwardly determined
by extending �1 to E1,preg with x1 = 0.

As usual, there are two kinds of transitions in R(preg,�1), corre-
sponding to discrete steps and time steps.

Discrete step. Let R = (q, {�i}1≤i≤λ(q)) and R′ = (q′, {�′i}1≤i≤λ(q′)) be

two classes. There is a transition R
e−→ R′ for a transition e : q

ϕ,a,u−−−→ q′

if for some π ∈ (preg,�1), there is some (q, v) ∈ [[R]]π and (q′, v′) ∈ [[R′]]π
such that (q, v)

e−→ (q′, v′). In this case, for all (q, v) ∈ [[R]]π there is a
(q′, v′) ∈ [[R′]]π such that (q, v)

e−→ (q′, v′). We prove in the sequel that the
existence of transition R

e−→ R′ is independent of π ∈ (preg,�1) and of
(q, v) ∈ [[R]]π. It can be decided as follows.

Firability condition. Write ϕ =
∧
j∈J Cj ./j 0. For a given j, let us write

Cj =
∑

i≤λ(q) aixi + b. We consider three cases.

• Case aλ(q) = 0. Then Cj = comp(Cj , λ(q)) ∈ Eλ(q),preg and using the
positions of 0 and Cj w.r.t. �λ(q), we can decide whether Cj ./j 0.

• Case aλ(q) ∈ Q\{0}. Then compnorm(Cj , λ(q)) ∈ Eλ(q),preg, hence using
the sign of aλ(q) and the positions of xλ(q) and compnorm(Cj , λ(q)) w.r.t.
�λ(q), we can decide whether Cj ./j 0.

• Case aλ(q) /∈ Q. According to the specification of preg, we know the
sign of aλ(q) as it belongs to PolPar. In case aλ(q) = 0, we decide as in
the first case. Otherwise, we decide as in the second case.

Successor definition. R′ is defined as follows.
Let k ≤ λ(q′) and g′, h′ ∈ Ek,preg.

1. Either k ≤ λ(q), by step 2(a) of the construction, g′[u], h′[u] ∈ Ek,preg.
Then g′ �′k h′ iff g′[u] �k h′[u].

2. Or k > λ(q), let D = g′[u]− h′[u] =
∑

i≤λ(q) aixi + b.

• Case aλ(q) = 0. Then D = comp(D,λ(q)) ∈ Eλ(q),preg, so we can
decide whether D �λ(q) 0 and g′ �′k h′ iff D �λ(q) 0.

• Case aλ(q) ∈ Q \ {0}. Then compnorm(D,λ(q)) ∈ Eλ(q),preg. There
are four subcases to consider. For instance if aλ(q) > 0 and xλ(q) �λ(q)
compnorm(D,λ(q)) then g′ �′k h′. The other subcases are similar.

• Case aλ(q) /∈ Q. Let us write aλ(q) =
rλ(q)
sλ(q)

. According to the

specification of preg, we know the sign of aλ(q) as rλ(q) belongs to
PolPar and sλ(q) is a product of items in PolPar. In case aλ(q) = 0,
we decide g′ �′k h′ as in the first case. Otherwise, we decide in a
similar way as in the second case. For instance if aλ(q) > 0 and
xλ(q) �λ(q) compnorm(D,λ(q)) then g′ �′k h′.

Observation 1. Let π ∈ (preg,�1) and (q, v) ∈ [[R]]π. If there exists a
transition (q, v)

e−→ (q′, v′) then for some R′, there is a transition R
e−→ R′

in R(preg,�1) and (q′, v′) belongs to [[R′]]π.

Conversely, if there is a transition R
e−→ R′ in R(preg,�1) then for

each π ∈ (preg,�1) and each (q, v) ∈[[R]]π there exists (q′, v′) ∈ [[R′]]π
such that (q, v)

e−→ (q′, v′).

Time step. Let R = (q, {�k}1≤k≤λ(q)). There is a transition R
succ−−→

Post(R) for Post(R) = (q, {�′k}1≤k≤λ(q)), the time successor of R, which
is defined as follows.

For each i < λ(q), �′i=�i. Now let ∼ be the equivalence relation
�λ(q) ∩ �−1λ(q) induced by the preorder. On equivalence classes, this (to-

tal) preorder becomes a (total) order. Let V be the equivalence class
containing xλ(q).

1. Either V =
{
xλ(q)

}
and it is the greatest equivalence class. Then

�′λ(q)=�λ(q) (thus Post(R) = R).

2. Either V =
{
xλ(q)

}
and it is not the greatest equivalence class. Let

V ′ be the next equivalence class. Then �′λ(q) is obtained by merging

V and V ′, and preserving �λ(q) elsewhere.

3. Either V is not a singleton. Then we split V into V \
{
xλ(q)

}
and{

xλ(q)
}

and “extend” �λ(q) by V \
{
xλ(q)

}
�′λ(q)

{
xλ(q)

}
.

Observation 2. Let π ∈ (preg,�1) and (q, v) ∈[[R]]π. There exists d > 0
such that (q, v +q d) ∈[[Post(R)]]π and for each d′ with 0 ≤ d′ ≤ d,
(q, v +q d

′) ∈[[R]]π ∪ [[Post(R)]]π.

Example 3. This construction is illustrated on automaton A1 of Fig. 1(a).
We consider the parameter region preg of PolPar defined by:
p2 < 0, p2 + 1 < 0, 1 − p2 − 1

68p
2
1 > 0 and −1 − p22 − 1

68p
2
1p2 > 0 and

the ordering �1 of the expressions in E1,preg = E1 specified by the line
below. Region (preg,�1) is non empty since it includes parameter values
p1 = 20 and p2 = −5.

2+p2
1−p2− 1

68
p21

−2(p2+1)
p2

0 2 −2− p2 2−p22
p2

2−p22
1+p22+

1
68
p21p2

p1

A part of the resulting class automaton R(preg,�1), including the
trajectory in Fig. 1(b), is depicted in Fig. 2, where dashed lines indicate
time steps. In state q0, the only relevant clock is x1 and the initial class
is R0 = (q0, Z0) with Z0 is �1 extended with x1 = 0 Time successors of
the initial state are obtained by moving x1 to the right along the line:

R0

R1
0

...

R9
0

...

R11
0

q1, Z1, Z2 ∧
x2 = 0

q1, Z1, Z2 ∧
0 < x2 < −x1−2

p2

q1, Z1, Z2 ∧
x2 = −x1−2

p2

q1, Z1, Z2 ∧
x2 = (p2 + 1

68
p21)x1 + p2

q1, Z1, Z2 ∧
(p2 + 1

68
p21)x1 + p2 < x2 < x1 − 2

q1, Z1, Z2 ∧
x2 = x1 − 2

q1, Z1, Z2 ∧
x1 − 2 < x2

a

a

b

a

Fig. 2. An initial part of R(preg,�1) for A1

R1
0 = (q0,�1 ∧0 < x1 < 2), R2

0 = (q0,�1 ∧x1 = 2), . . . , up to R11
0 =

(q0,�1 ∧p1 < x1). Transition a can be fired from all these classes except
from R10

0 and R11
0 . In Fig. 2, we represent only the one from R9

0. The
given region of PolPar and the class from which a is fired determine the
ordering of the expressions in E2,preg \ {x2} = E2 \ {x2}, specified by the

line below. We denote by Z1 the ordering �1 extended with
2−p22

1+p22+
1
68
p21p2

<

x1 < p1 and Z2 the ordering defined below. This firing produces class
R1 = (q1, (Z1, Z2 ∧ x2 = 0)). Transition b is fired from the (second) time
successor of R1 for which x2 = −x1−2

p2
.

0 −x1−2
p2

(p2 + 1
68
p21)x1 + p2 x1 − 2

Based on the decidability of first-order theory of the real numbers and
the class automata construction, we obtain decidability for the considered
reachability problems. When only additive parametrisation is considered,
the existential reachability problem reduces to reachability for ITA, in-
ducing a lower complexity.

Theorem 1. The (scoped) existential, universal and robust reachabil-
ity problems for PITA are decidable and belong to 2EXPSPACE and
PSPACE when the number of clocks is fixed.

Theorem 2. The (polyhedral scoped) existential reachability problem is
decidable for additively parametrised PITA, and belongs to 2EXPTIME
and PTIME when the number of clocks and parameters is fixed.

4 Conclusion

While seminal results on parametrised timed models leave little hope for
decidability in the general case, we provide here an expressive formalism
for the analysis of parametric reachability problems. Our setting includes
a restricted form of stopwatches and polynomials in the parameters occur-
ring as both additive and multiplicative coefficients of the clocks in guards
and updates. We plan to investigate which kind of timed temporal logic
would be decidable on PITA.

References

1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proc.
of ACM Symp. on Theory of Computing, ACM (1993) 592–601

2. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Proc. of
ICALP’90, Springer (1990) 322–335

3. Bérard, B., Fribourg, L.: Automated verification of a parametric real-time program:
The ABR conformance protocol. In: Proc. of CAV’99. Volume 1633 of LNCS.,
Springer (1999) 96–107

4. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Proc. of HSCC 2000. Volume 1790 of LNCS. (2000)
296–309

5. Doyen, L.: Robust Parametric Reachability for Timed Automata. Information
Processing Letters 102(5) (2007) 208–213

6. André, É., Chatain, Th., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. Int. J. of Foundations of Comp. Sci. 20(5) (2009) 819–836

7. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: A tool for analyz-
ing robustness in scheduling problems. In: Proc. of FM’12. Volume 7436 of LNCS.,
Springer (2012) 33–36

8. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed au-
tomata. In: Proc. of TACAS’13. Volume 7795 of LNCS., Springer (2013) 391–405

9. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic Symbolic Verification of Embedded
Systems. IEEE Transactions on Software Engineering 22 (1996) 181–201

10. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A Model-Checker for Hybrid
Systems. Software Tools for Technology Transfer 1 (1997) 110–122

11. Bozzelli, L., Torre, S.L.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design 35(2) (2009) 121–151

12. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. J. of Logic and Alg. Prog. 52-53 (2002) 183–220

13. Jovanović, A., Faucou, S., Lime, D., Roux, O.H.: Real-time control with parametric
timed reachability games. In: Proc. of WODES’12, IFAC (2012) 323–330

14. Bérard, B., Haddad, S.: Interrupt Timed Automata. In: Proc. of FoSSaCS’09.
Volume 5504 of LNCS., York, GB, Springer (2009) 197–211

15. Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata: Verification and
expressiveness. Formal Methods in System Design 40(1) (2012) 41–87

16. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Twen-
tieth ACM Symp. on Theory of Computing. (1988) 460–467

A Proofs

Lemma 2. The construction procedure of {Ek}k≤n terminates and the

size of every Ek is bounded by (2E+ 2)2
n(n−k+1)+1 where E is the number

of atomic propositions in edges of the PITA.

Proof. Given some k, we prove the termination of the stage relative to k.
Observe that the step 2(b) only adds new expressions to Ek′ for k′ < k.
Thus the steps 2(a) and 2(b) can be ordered. Let us prove the termination
of the step 2(a) of the saturation procedure. We define E0

k as the set Ek
after step 1 and Eik as this set after insertion of the ith item in step
2(a). With each added item C[u] can be associated its father C. Thus
we can view Ek as an increasing forest with finite degree (due to the
finiteness of the edges) and finitely many roots. We claim that the length
of any branch is at most 2k. Let C0, C1, . . . be an arbitrary branch where
Ci+1 = Ci[ui] for some update ui such that Ci+1 6= Ci. Observe that the
number of updates that change the variable xk is either 0 or 1 since once
xk disappears it cannot appear again. We split the branch into two parts
before and after this update or we still consider the whole branch if there
is no such update. In these (sub)branches, we conclude with the same
reasoning that there is at most one update that change the variable xk−1.
Iterating this process, we conclude that the number of updates is at most
2k − 1 and the length of the branch is at most 2k.

For the sake of readability, we set B = 2E + 2. The final size of Ek is
thus at most |E0

k | ×B2k since the width of the forest is bounded by B.
In the second step, we add at most B× (|Ek| × (|Ek| − 1))/2 to Ei for

every i < k. The final bound is obtained by an induction similar to the
one for ITA [15]. ut

Lemma 3. Let c be an integer constant occurring in an expression of
PolPar or some Ek. Then the number of bits required for c is at most
(n+2)!2nb0 where b0 is the maximal number of bits for integers occurring
in the PITA.

The maximal degree of polynomials occurring in these expressions is at
most (n+ 2)!d0 where d0 is the maximal degree of polynomials occurring
in the PITA.

Proof. Assume that before the level n−k is performed, the number of bits
of an integer occurring in some expression is bk. We establish a relation
between bk and bk+1. At level n−k, step 1 does not induce any increasing
since it applies normalisation on guards. More precisely the numerators of

rational fractions are unchanged while the denominators are numerators
of some previous expressions.
Let us examine an expression C =

∑
i≤n−k aixi + b built after step 2(a).

Examining the successive updates, the numerator of coefficient ai can be
expressed as

∑
d∈D

∏
j∈d cd,j where D is the set of subsets of {i, . . . , n−k}

containing i and cd,j are either coefficients of the updates or coefficients
of an expression built before this step. The same reasoning applies to the
numerator of b. So the number of bits of the coefficients of the rational
functions ai’s and b is bounded by: (n−k)(bk + 1). The denominators are
denominators of expressions previously built.
At step 2(b), the difference C[u] − C ′[u] requires to compute the lcm of
two denominators (bounded by their product). So the difference operation
leads to a bound 2 + (n− k)(bk + 1) for the numerators of its coefficients
and 2bk for the denominators.
The final normalisation at step 2(b) consists in multiplying a numerator
and a denominator of some coefficients leading to a bound (n−k+2)(bk+
1). So bk+1 ≤ (n − k + 2)(bk + 1) ≤ (n − k + 2)2bk yielding the desired
bound.

Assume that before the level n − k is performed, the number of bits
of an integer occurring in some expression is dk. We establish a relation
between dk and dk+1. At level n−k, step 1 does not induce any increasing
since it applies normalisation on guards. More precisely the numerators of
rational fractions are unchanged while the denominators are numerators
of some previous expressions.
Let us examine an expression C =

∑
i≤n−k aixi + b built after step 2(a).

Examining the successive updates, the numerator of coefficient ai can be
expressed as

∑
d∈D

∏
j∈d cd,j where D is the set of subsets of {i, . . . , n−k}

containing i and cd,j are either coefficients of the updates or coefficients
of an expression built before this step. The same reasoning applies to the
numerator of b. So the degree of the ai’s and b is bounded by: (n− k)bk.
The denominators are denominators of expressions previously built.
At step 2(b), the difference C[u] − C ′[u] requires to compute the lcm of
two denominators (bounded by their product). So the difference operation
leads to a bound (n− k)bk for the numerators of its coefficients and 2bk
for the denominators.
The final normalisation at step 2(b) consists in multiplying a numerator
and a denominator of some coefficients leading to a bound (n− k+ 2)bk.
So bk+1 ≤ (n− k + 2)bk yielding the desired bound. ut

Proposition 1 (Soundness and completeness). Let (preg,�1) be a
non empty parameter region of a PITA A and π ∈ (preg,�1). Then:

– For any class R of automaton R(preg,�1) there exists a configuration
(q, v) reachable from (q0,0) in TA,π, such that (q, v) ∈ [[R]]π.

– For any (q, v) reachable from (q0,0) in TA,π, there exists a class R of
automaton R(preg,�1) such that (q, v) ∈ [[R]]π.

Proof. Using observations 1 and 2 related to the construction above, we
directly obtain the given proposition.

Theorem 1. The (scoped) existential, universal and robust reachabil-
ity problems for PITA are decidable and belong to 2EXPSPACE and
PSPACE when the number of clocks is fixed.

Proof. Using lemma 2 and proposition 1 we design a non deterministic
procedure for existential reachability of q:

1. Build PolPar and {Ek}1≤k≤n.
2. Guess a parameter region (preg,�1).
3. Check non emptiness of (preg,�1).
4. Build the class automaton R(preg,�1) and check whether q occurs in

some class.

For universal reachability of q in step 4, one checks whether q does not
occur in any class. This gives us a non deterministic procedure for the
complementary problem. For robust reachability in step 2, one guesses an
open parameter region i.e. only specified by strict inequalities.
Let us analyse the complexity of these procedures. Due to lemmas 2 and 3,
the first step is performed in 2EXPTIME and in PTIME when the number
of clocks is fixed. Guessing has the same complexity.
The satisfiability problem for a first-order formula is in PSPACE [16]. Let
s be the number of (in)equalities specifying the region, due to lemma 2,

s = (2E)2
O(n2)

where E is the number of atomic propositions in edges of
the PITA. Let b be the maximal number of bits of an integer occurring in
the specification of the region, due to lemma 3, b = 2O(n log(n)b0 where b0 is
the maximal number of bits for an integer occurring in the PITA. Let d be
the maximal degree of the polynomials occurring in the specification of the
region due to the same lemma, d = 2O(n log(n)d0 where d0 is the maximal
degree for a polynomial occurring in the PITA. So the emptiness problem
for a region is performed in 2EXPSPACE which becomes PSPACE when
the number of clocks is fixed.
Observe now that the class automaton R(preg,�1) is isomorphic to the
class automaton of the ITA that would be obtained by applying any
parameter valuation in (preg,�1). It has been proved in [14] that this

automaton can be built in polynomial time w.r.t. the size of the represen-
tation of any class. As the size of the representation of a class of a PITA
has the same order as the one of the corresponding ITA (dominated by
the doubly exponential number of expressions) and the construction algo-
rithms perform similar operations, this yields a complexity of 2EXPTIME
and PTIME when the number of clocks is fixed.

So the dominating factor of this non deterministic procedure is the empti-
ness check done in 2EXPSPACE. By Savitch theorem this procedure can
be determinised with the same complexity.

ut

Proposition 2. For every additively parametrised PITA A, with states
Q and initial state q0, there exist a (non-parametric) ITA A′, with states
Q′, containing Q, and initial state q′0 fulfilling the following equivalence.
For every q ∈ Q:

there exists π such that q is reachable from q0 in A for π
iff q is reachable from q′0 in A′

Proof. We propose a transformation of an additively parametrised PITA
A with n clocks (and thus n levels), and k parameters p1, ..., pk, into an
equivalent ITA A′ with n + k + 1 levels. This transformation is a way
to reduce the parametric reachability problem of additively parametrised
PITA to the reachability problem of ITA, that is known to be decidable
[15], and the construction is shown in Fig. 3.

ITA A′ consists of a prefix (the first k + 1 levels) and the original
automaton A (n levels), where we put clocks in the place of parameters.
To that end, we introduce k new clocks, for simplicity we also call them
p1, ..., pk, and new auxiliary clock p0. Each clock pi is active in level i+ 1
in (the prefix of) A′.

In the first level of A′, clock p0 is active. After some (arbitrary) time,
a transition, with no guard, is taken to the state of the second level and
clock p0 is stopped. In the second level, clock p1 is active and the same
procedure continues: after some time a transition to the next level is taken,
and clock p1 is stopped, and so on for the first k levels. Level k+1 consists
of k states and a clock pk is active. In the first k levels we have chosen the
absolute value for the clocks (parameters in A), and level k + 1 serves to
choose the final sign of clocks, which is done by assigning pi−1 or −pi−1
to clock pi, between each two consecutive states, for all i ∈ [1..k− 1], in a
run without a delay in any of the states of level k+1 (the other runs, with
delays in those states, overlap on those corresponding to other parameter
valuations and are therefore not a problem). In the last state of level k+1,

the stopped clocks p1, ..., pk can therefore have any arbitrary real value
assigned. The automaton immediately proceeds to the initial state of A
keeping the values of clocks. The obtained automaton A′ is an ITA, since
parameters of A are modeled as clocks in A′, for which the reachability
problem is decidable.

p0

p1

pk−1

pk

An levels

true

true

true

k + 1 levels

pk := pk−1

pk := −pk−1

pk−1 := pk−2

pk−1 := −pk−2

p1 := p0

p1 := −p0

Fig. 3. An equivalent ITA A′

Let X be the set of clocks in A and X ′ be the set of clocks in A′ (thus
X ′ = X∪{p0, ..., pk}). For any subset Y ⊆ X and a valuation v, we define
the restriction of v to Y as the unique valuation v on Y such that v|Y (x) =
v(x). Now will now show that a configuration s = (q, v) is reachable in A
for π (which we note Aπ) iff the corresponding configuration s′ = (q′, v′),
such that q′ = q,∀x ∈ X, v′|X(x) = v(x), is reachable in A′.

We first state that for all (r1, ..., rk) ∈ Rk, there exists a run in A′ from
the initial configuration of A′ to a configuration (q0, v), such that (q0, v|X)
is the initial configuration of Aπ and ∀i, v|X′\X(pi) = π(pi) = ri. Then,
if there exists a path to reach s′ in A′, then there exists a parameter
valuation π such that the state s is reachable in Aπ. A value for each
parameter pi in Aπ corresponds to the value of the clock pi in A′ assigned
in the level k + 1. On the other hand, if there is no path to reach s′ in
A′ then for all the possible prefixes corresponding to the first k+ 1 levels
of a path, the possible continuations never lead to s, which is equivalent
to for all parameter valuations π, the related configuration in Aπ is not
reachable in Aπ. This, in turn, means that the set of parameter valuations
is empty. This shows that the two problems are indeed equivalent. ut

Theorem 2. The (polyhedral scoped) existential reachability problem is
decidable for additively parametrised PITA, and belongs to 2EXPTIME
and PTIME when the number of clocks and parameters is fixed.

Proof. Following Proposition 2, every additively parametrised PITA can
be transformed into an equivalent ITA, and the (unscoped) reachability
problem of additively parametrised PITA is thus reduced to the reach-
ability problem of ITA, already known to be decidable. The complexity
results follow from the complexity results of ITA [15], since the size of A′
is only linear in the size A: if there are n clocks, k parameters, x states
and y transitions in A, the number of clocks, states and transitions in A′
is n+ k + 1, x+ 2k + 1 and y + 3k + 1, respectively.

With a polyhedral scope, given as a finite union of polyhedra, we need
to guard the transition between the last state of the prefix and the initial
state of A, in A′, by the given polyhedra (each polyhedra of the union
could guard a different transition, as well). ut

