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a b s t r a c t

We investigate expressiveness questions for time Petri nets (TPNs) and some of their most
useful extensions. We first introduce generalised time Petri nets (GTPNs) as an abstract
model that encompasses variants of TPNs such as self modifications and read, reset and
inhibitor arcs.

We give a syntactical translation from bounded GTPNs to timed automata (TA) that
generates isomorphic transition systems. We prove that the class of bounded GTPNs is
strictly less expressive than TA w.r.t. weak timed bisimilarity. We prove that bounded
GTPNs, bounded TPNs and TA are equally expressive w.r.t. timed language acceptance.
Finally, we characterise a syntactical subclass of TA that is equally expressive to bounded
GTPNs ‘‘à la Merlin’’ w.r.t. weak timed bisimilarity. These results provide a unified
comparison of the expressiveness of many variants of timedmodels often used in practice.
It leads to new important results for TPNs. Among them are: 1-safe TPNs and bounded-
TPNs are equally expressive; ε-transitions strictly increase the expressive power of TPNs;
self modifying nets as well as read, inhibitor and reset arcs do not add expressiveness to
bounded TPNs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, a number of extensions of Petri Nets (PNs) with time have been proposed; among them are Stochastic
Petri Nets, as well as several variants of the so-called time or timed Petri nets. Stochastic Petri nets are nowwell-known and
a large body of work is devoted to this model whereas the theoretical properties of the other timed extensions have not
been as thoroughly investigated.
Petri Nets with Time. Previous studies [2–4] consider timed arc Petri nets where each token has a clock representing its
‘‘age’’ but a lazy (non-urgent) semantics of the net is assumed: this means that the firing of transitions may be delayed, even
if this implies that some transitions are disabled because their input tokens become too old. The semantics for this class of
Petri nets enjoys nicemonotonicity properties and they fall into a class of systems for which many problems are decidable.

In comparison, the other timed extensions of Petri nets (apart from Stochastic Petri Nets), i.e. time Petri nets (TPNs) [5]
and timed Petri nets [6], do not have such nice monotonicity properties although the number of clocks to be considered is
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finite (one per transition). Also those models are very popular in the Discrete Event Systems and industrial communities
[7–9] as they allow to model real-time systems in a simple and elegant way and there are tools to check properties of time
Petri Nets [10–12].

For TPNs, a transition can fire within a time interval whereas for timed Petri nets it fires as soon as possible. For timed
Petri nets, time can be considered relative to places (P-timed Petri nets), arcs (A-timed Petri nets) or transitions (T-timed
Petri nets) [13,14]. The same classes are defined for TPNs i.e. T-TPNs [5,15], A-TPNs [16] and P-TPNs [17]. A comparison of
the expressiveness of these variants w.r.t. (weak) timed bisimilarity can be found in [18].

In this paper, we address the class of T-TPNs, which is the most commonly-used subclass of TPNs. It will henceforth be
referred to as TPNs.

PNs with read, inhibitor and reset arcs, self-modifying nets. Petri nets can be extended by adding new types of arcs: read
arcs enable to check the contents of a place without removing the tokens in it; inhibitor arcs prevent the firing of a transition
if a place contains some tokens; reset arcs flush the input places. Petri nets with at least two inhibitor arcs (or ‘‘zero test’’)
are Turing-powerful [19]. Moreover, in [20], the authors prove that the reachability problem is undecidable for PNs with
reset arcs. In [21], it has been proved that for any PN N with reset arcs, there is a PN N ′ with inhibitor arcs s.t. N and N ′

are (weakly) bisimilar. Moreover read arcs do not add expressivity to PNs since a read arc between a place p and a transition
t can be simulated by two arcs (p, t) and (t, p). This simulation does not hold for TPNs since reading the place p imposes to
fire t and this will reset all clocks associated with transitions enabled by p. More broadly, the expressiveness of these arcs
(read, reset and logical inhibitor) associated with TPNs is still an open problem.

Self-modifying nets [22] are yet another extensions of PNs in which the weights of the arcs can be specified either
as constants or as the current marking of some place of the net. It has been shown that self-modifying nets are strictly
more expressive w.r.t language acceptance than (standard) Petri nets [22]. As for the read/reset/inhibitor arcs above, the
expressiveness of this extension for TPNs is also an open problem.

Timed automata. Timed automata (TA) were introduced by Alur & Dill [23,24] and have since been extensively studied.
This model is an extension of finite automata with (dense time) clocks for the specification of real-time systems. Theoretical
properties of various classes of TA have been considered in the last two decades. For instance, classes of determinizable TA
such as Event Clock Automata are investigated in [25] and form a strict subclass of TA.

TA vs. TPNs. In a previous work [26] we have proved that TPNs form a subclass of TA in the sense that every TPN can be
translated in a strongly timed bisimilar TA. This translation however needs a full state-space computation. A similar result
can be found in [27], with a syntactical translation, but gives only a weak timed bisimulation. In another line of work, in [28],
the authors compare timed state machines and time Petri nets. They give a translation from one model to another that
preserves timed languages. However, they consider only constraints with closed intervals and do not deal with general
timed languages (i.e. Büchi timed languages).

In the preliminary version of this paper [1] we showed that TA are strictly more expressive than TPNs w.r.t. weak timed
bisimilarity andwe proposed a translation fromTA to TPNs,which preserves timed language acceptance. In [29], Berthomieu
et al. extend the TPNmodel with specific priorities to establish an equivalencewith TAw.r.t. weak timed bisimilarity. In [30],
a strict subclass of TA is identified which is equivalent to bounded TPNs w.r.t. weak timed bisimilarity. In [31] the authors
provide a translation fromTAwith diagonal constraints and general resets of clocks to TPNs,which preserves timed language
acceptance. However, this translation does not include invariants in TA, introduces new deadlocks into the system and does
not consider infinite timed words. Finally, [32] provides an overview of the known results about the relationships among
these models.

Our contribution. In this article, we introduce generalised time Petri nets (GTPNs) as an abstract model that encompasses
many of the variants of TPNs described previously. We then precisely compare the expressive power of TA vs. generalised
TPNs using the notions of timed language acceptance and timed bisimilarity. This extends the previously mentioned results
of [1,27] to GTPNs.

The results of the paper are summarised in Table 2: all the results are new, except the ones followed by [27] or [1] (which
is the preliminary version of this paper). The names of the classes used in the sequel are defined in Table 1, where the
following conventions apply: an ε subscript means that ε-transitions are allowed in the class (and not allowed otherwise),
a B indicates a subclass of bounded Petri nets (and no boundedness assumption otherwise).

In the table, ≼L, ≼W and ≼S with ≼∈ {<, ≤} means ‘‘less expressive’’ for ≤ and ‘‘strictly less expressive’’ for <, w.r.t.
respectively timed language acceptance, weak timed bisimilarity and strong timed bisimilarity (the relations can also be
used the other way around: >L means ‘‘strictly more expressive’’); =L means ‘‘equally expressive as’’ w.r.t. language
acceptance and =W ‘‘equally expressive as’’ w.r.t. weak timed bisimilarity. Fig. 1 gives a picture on how the different classes
are intertwined with each other (2CM stands for 2-counter machines).

Outline of the paper. Section 2 gives notations and introduces timed languages and timed bisimulation. Section 3 introduces
TA and generalised time Petri nets and show how they supersede all the extensions of TPNs (with self-modification and
read/reset/inhibitor arcs). In Section 4, we extend the result of [27] to the generalised class B-GTPN and give a syntactical
translation that preserves isomorphismof the underlying timed transitions systems. In Section 6we focus on timed language
acceptance and we propose a structural translation from TAε to 1-B-TPNε preserving timed language acceptance. We then
prove that TAε and bounded GTPNε are equally expressive w.r.t. timed language acceptance. This enables us to obtain new
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Table 1
Names of the different classes of TPNs and TA.

Name Class

GTPNε generalised labelled time Petri nets (with ε-transitions)

B-GTPNε bounded GTPNε

TPNε labelled time Petri nets (with ε-transitions)

B-TPNε bounded TPNε

1-B-TPNε subclass of B-TPNε with at most one token in each place
(one safe TPN)

TAε timed automata (with ε-transitions)

Class for any class Classε above, Class is the subclass of Classε
without ε-transitions

Class(≤, ≥)
for any class Class above, Class(≤, ≥) is the subclass of
Classwith only non-strict temporal constraints

TAsyn
ε (≤, ≥)

syntactical subclass of TAε that is equivalent to
B-TPNε(≤, ≥) (see Section 7)

Table 2
Summary of the results.

Timed language acceptance Timed bisimilarity

B-GTPN ≤L TA
<S TA

<L 1-B-TPNε

B-GTPNε
=L TAε <W TAε
=L 1-B-TPNε =L B-TPNε

B-GTPNε(≤, ≥)
=L TAsyn

ε (≤, ≥) =W TAsyn
ε (≤, ≥)

=L 1-B-TPNε(≤, ≥) =W 1-B-TPNε(≤, ≥)

TPNε >L TAε
incomparable with
TAεGTPNε

Emptiness Problem Universality Problem

B-TPNε Decidable [27] Undecidable [1]

B-GTPNε Decidable Undecidable

(a) w.r.t. timed language acceptance. (b) w.r.t. timed bisimilarity.
Fig. 1. Expressiveness of TPNε vs. TAε .

results on TPNs given by Corollaries 2 to 3, page 16. Finally, in Section 7, we characterise a syntactical subclass TAsyn
ε (≤, ≥)

of TA that is equivalent, w.r.t. timed bisimilarity, to the original version of bounded TPNs (with closed intervals) i.e. TPNs ‘‘à
la Merlin’’[5]. This enables us to obtain new results on TPNs ‘‘à la Merlin’’ given by Corollaries 7 to 10, page 19.
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2. Basic notations and definitions

2.1. Notations

Let Σ be a finite alphabet, Σ∗ (resp. Σω) denotes the set of finite (resp. infinite) sequences of elements (or words) of Σ

and Σ∞
= Σ∗

∪ Σω . For w ∈ Σ∞ we write |w| for the length of w, which is ∞ if w ∈ Σω . We also use Σε = Σ ∪ {ε} with
ε ∉ Σ , where ε is both the empty word and the silent letter.

If A and B are two sets, BA stands for the set of mappings from A to B. If A is finite and |A| = n, an element of BA can be
viewed as a vector of Bn. The usual operators +, −, < and = are used on vectors of An with A ∈ {N, Q, R} (which denote
respectively the sets of natural, rational and real numbers) and are the point-wise extensions of their counterparts in A. The
set B denotes the boolean values {tt, ff}, R≥0 denotes the set of non-negative reals and R>0 = R≥0 \ {0}.

An interval is a convex subset of R≥0. In the sequel, we mainly use the set I(Q≥0) of intervals with lower bound in Q≥0
and upper bound in Q≥0 ∪ {∞}. Open intervals do not contain their bounds, closed intervals contain them and semi-open
(or semi-closed) intervals contain only one of the bounds. For an interval I , we let I↓ = {x | 0 ≤ x ≤ y for some y ∈ I} to be
the (positive) downward closure of I and I↑ = {x | x ≥ y for some y ∈ I} to be the upward closure of I . As I is convex we have
I = I↓ ∩ I↑.

A valuation ν over a set of variables X is an element of RX
≥0. For ν ∈ RX

≥0 and d ∈ R≥0, ν +d denotes the valuation defined
by (ν + d)(x) = ν(x) + d, and for X ′

⊆ X , ν[X ′
→ 0] denotes the valuation ν ′ with ν ′(x) = 0 for x ∈ X ′ and ν ′(x) = ν(x)

otherwise. 0X denotes the valuation s.t. ∀x ∈ X, ν(x) = 0, and we omit the subscript X when it is clear from the context.
An atomic constraint is a formula of the form x ◃▹ c for x ∈ X , c ∈ Q≥0 and ◃▹∈ {<, ≤, ≥, >}. The constraint is said to
be non-strict if ◃▹∈ {≤, ≥} and strict if ◃▹∈ {<, >}. The set of constraints over a set X of variables is denoted by C(X) and
consists of conjunctions of atomic constraints. Given a constraint ϕ ∈ C(X) and a valuation ν ∈ RX

≥0, we denote ϕ(ν) ∈ B
the truth value obtained by substituting each occurrence of x in ϕ by ν(x). We let [[ϕ]]= {ν ∈ RX

≥0 | ϕ(ν) = tt}.

2.2. Timed languages and timed transition systems

A timed word w over Σ is a finite or infinite sequence w = (a0, d0)(a1, d1) · · · (an, dn) · · · s.t. for each i ≥ 0, ai ∈ Σ ,
di ∈ R≥0 and di+1 ≥ di.

A timed word w = (a0, d0)(a1, d1) · · · (an, dn) · · · over Σ can be viewed as a pair (v, τ ) ∈ Σ∞
× R∞

≥0 s.t. |v| = |τ |. The
value dk gives the absolute time (considering the initial instant is 0) at which the action ak occurs. We write Untimed(w) =

a0a1 · · · an · · · for the untimedpart ofw, andDuration(w) = supdk∈τ dk for the duration of the timedwordw.We let TW ∗(Σ)
(resp. TWω(Σ)) for the set of finite (resp. infinite) timed words over Σ and define TW∞(Σ) = TW ∗(Σ)∪ TWω(Σ). A timed
language L over Σ is a subset of TW∞(Σ).
Definition 1 (Timed Transition System). A timed transition system (TTS) over the alphabet Σ is a tuple S = (Q ,Q0, Σε, −→,
F,R) where:

• Q is a set of states,
• Q0 ⊆ Q is the set of initial states,
• Σ is disjoint from R≥0,
• −→⊆ Q × (Σε ∪ R≥0) × Q is a set of edges. If (q, e, q′) ∈−→, we also write q

e
−→ q′;

• F ⊆ Q and R ⊆ Q are respectively the set of final and repeated states. �

Notice that q
d

−→ q′ with d ∈ R≥0 denotes a delay transition and not an absolute time. Moreover, in the sequel, we
assume that TTS satisfy the classical time-related conditions where d, d′

∈ R≥0:

• time determinism: if q
d

−→ q′ and q
d

−→ q′′ then q′
= q′′;

• time additivity: if q
d

−→ q′ and q′
d′

−→ q′′ then q
d+d′

−−−→ q′′;
• null delay: ∀q : q

0
−→ q;

• time continuity: if q
d

−→ q′ then ∀d′
≤ d, ∃q′′, q

d′

−→ q′′ and q′′
d−d′

−−−→ q′.

A run ρ from q0 is a finite or infinite sequence of alternating time and discrete transitions of the form:

ρ = q0
d0

−−→ q′

0
a0

−→ q1
d1

−−→ q′

1
a1

−→ · · · qn
dn

−−→ q′

n · · · .

We write first(ρ) = q0. We assume that a finite run ends with a delay transition dn and in this case we let last(ρ) = q′
n

and write ρ as q0
d0a0···dn
−−−−−→ q′

n. We also write q
∗
−→ q′ for any run ρ s.t. first(ρ) = q and last(ρ) = q′. Given a run ρ, we can

define the sequence abs(ρ) = (a0,D0)(a1,D1) · · · (an,Dn) · · · with Di =
i

k=0 di; notice that some actions ai may be equal
to ε. The trace of a run ρ, denoted by trace(ρ), is the timed word obtained from abs(ρ) by deleting the ε actions (thus it is
a timed word over Σ). We define Untimed(ρ) = Untimed(trace(ρ)) and Duration(ρ) =


dk∈R≥0

dk (this way the trace of ρ
can be a finite word and at the same time the run ρ can have an infinite duration).
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A run is initial if first(ρ) ∈ Q0. An initial run ρ is accepting if:

• either ρ is a finite run and last(ρ) ∈ F,
• or ρ is infinite and there exists q ∈ R that appears infinitely often on ρ.

A timed wordw is accepted by S if there is an accepting run ρ in S of tracew. The timed language L(S) of S is the set of timed
words accepted by S.

2.3. Simulation, bisimulation and isomorphism

In this section, we recall the definitions of isomorphism, similarity and bisimilarity for timed systems.
Let S = (Q , q0, A, →, F,R) be a TTS. Let →

∗ be the reflexive and transitive closure of →. We denote Reach(q0) = {q ∈

Q |q0 →
∗ q}, the set of reachable states in S.

Definition 2 (Isomorphism of TTS). Let S1 = (Q1, q10, A, →1, F1,R1) and S2 = (Q2, q20, A, →2, F2,R2) be two TTSs. S1 and S2
are isomorphic (we write S1 ∼= S2) whenever there is a bijection g : Reach(q10) → Reach(q20) such that ∀q ∈ Reach(q10) we

have q ∈ F1 (Resp. R1) iff g(q) ∈ F2 (Resp. R2) and ∀q, q′
∈ Reach(q10) we have: q

a∈A
−−→1 q′ iff g(q)

a
−→2 g(q′) and q

d∈R≥0
−−−→1 q′

iff g(q)
d
−→2 g(q′). �

Definition 3 (Strong Timed Similarity). Let S1 = (Q1, q10, Σε, −→1, F1,R1) and S2 = (Q2, q20, Σε, −→2, F2,R2) be two TTS
and ≼ be a binary relation over Q1 × Q2. We write s ≼ s′ for (s, s′) ∈ ≼. The relation ≼ is a strong (timed) simulation relation
of S1 by S2 if:

1. (a) if s1 ∈ F1 and s1 ≼ s2 then s2 ∈ F2;
(b) if s1 ∈ R1 and s1 ≼ s2 then s2 ∈ R2;

2. if s1 ∈ q10 there is some s2 ∈ q20 s.t. s1 ≼ s2;
3. if s1

a
−→1 s′1 with a ∈ Σε ∪ R≥0 and s1 ≼ s2 then s2

a
−→2 s′2 for some s′2, and s′1 ≼ s′2.

A TTS S2 strongly simulates S1 if there is a strong (timed) simulation relation of S1 by S2. We write S1 ≼S S2 in this case. �

When there is a strong simulation relation ≼ of S1 by S2 and ≼
−1 is also a strong simulation relation1 of S2 by S1, we say that

≼ is a strong (timed) bisimulation relation between S1 and S2. Two TTS S1 and S2 are strongly (timed) bisimilar if there exists a
strong (timed) bisimulation relation between S1 and S2. We write S1 =S S2 in this case.

Let S = (Q ,Q0, Σε, −→, F,R) be a TTS. The relation −→ε is defined by:

• q
d
−→ε q′ with d ∈ R≥0 iff there is a run ρ of the form q

∗
−→ q′ with Untimed(ρ) = ε and Duration(ρ) = d,

• q
a
−→ε q′ with a ∈ Σ iff there is a run ρ of the form q

∗
−→ q′ with Untimed(ρ) = a and Duration(ρ) = 0.

Definition 4 (Weak Timed Similarity). Let S1 = (Q1, q10, Σε, −→1, F1,R1) and S2 = (Q2, q20, Σε, −→2, F2,R2) be two TTS.
A binary relation ≼ over Q1 × Q2 is a weak (timed) simulation relation of S1 by S2 if

1. (a) if s1 ∈ F1 and s1 ≼ s2 then s2 ∈ F2;
(b) if s1 ∈ R1 and s1 ≼ s2 then s2 ∈ R2;

2. if s1 ∈ q10 there is some s2 ∈ q20 s.t. s1 ≼ s2;
3. if s1

a
−→1,ε s′1 with a ∈ Σ ∪ R≥0 and s1 ≼ s2 then s2

a
−→2,ε s′2 for some s′2, and s′1 ≼ s′2.

A TTS S2 weakly simulates S1 if there is a weak (timed) simulation relation of S1 by S2. We write S1 ≼W S2 in this case. �

Note that S1 ∼= S2 implies S1 ≼S S2 implies S1 ≼W S2 implies L(S1) ⊆ L(S2).
When there is a weak simulation relation ≼ of S1 by S2 and ≼

−1 is also a weak simulation relation of S2 by S1, we say that
≼ is a weak (timed) bisimulation relation between S1 and S2. Two TTS S1 and S2 are weakly (timed) bisimilar if there exists a
weak (timed) bisimulation relation between S1 and S2. We write S1 =W S2 in this case.

3. Time Petri nets and timed automata

3.1. Time Petri nets

We consider here an extended version2 of TPNs with accepting and repeated markings.

1 s2 ≼
−1 s1 ⇐⇒ s1 ≼ s2 .

2 This is required to be able to define Büchi timed languages, which is not possible in the original version of TPNs of [5].
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Time Petri nets (TPNs) were introduced by Merlin in [5] and extend Petri nets with timing constraints on the firings of
transitions. In this model, a clock is associatedwith each enabled transition, and gives the elapsed time since themost recent
date at which it became enabled. An enabled transition can be fired if the value of its clock belongs to the interval associated
with the transition. Furthermore, time can only progress if the enabling duration still belongs to the downward closure of
the interval associated with any enabled transition.

There are different possible semantics for TPNs [33] and also various extensions of the original model (self-
modification, read/inhibitor/reset arcs) and we introduce here generalised labelled TPNs which enable us to encompass
the different semantics and variations in a single formalism.We then define classical TPNs and TPNs with self-modification,
read/inhibitor/reset arcs as particular cases of generalised labelled TPNs.

3.1.1. Generalised labelled time Petri nets (GTPNs)
We denote by GTPNε the class of generalised labelled time Petri nets.

Definition 5 (Generalised Labelled Time Petri Net). A generalised labelled time Petri net N ∈ GTPNε is a tuple (P, T , Σε, En,
Intermediate,Next, M0, Λ, I, F,R) where:

• P = {p1, p2, . . . , pm} is a finite set of places. Amarking of the net is an element of NP ;
• T = {t1, t2, . . . , tn} is a finite set of transitionswith P ∩ T = ∅;
• Σ is a finite set of actions;
• En : NP

→ 2T is the enabling function. For a marking M , a transition in En(M) is said to be enabled byM;
• Intermediate : (NP

× T ) → NP is the intermediate firing function and we require that Intermediate(M, t) ≤ M for each
t ∈ T ;

• Next : (NP
× T ) → NP is the firing function;

• M0 ∈ NP is the initialmarking;
• Λ : T → Σε is the labelling function;
• I : T → I(Q≥0) associates with each transition a firing interval;
• F ⊆ NP is the set of final markings and R ⊆ NP is the set of repeated markings. �

GTPNs are designed for an easy parametrisation of the key features of TPNs through the En, Intermediate and Next
functions. En generalises the criteria for a transition to be enabled and Next generalises the computation of the marking
resulting from the firing of a transition. Intermediate is more subtle and addresses the issue of the reset of the clock implicitly
associated with an enabled transition: a transition enabled before and after the firing of some other transition, but not
enabled by the intermediate marking, has its clock reset. Different variants of the semantics for TPNs, based on this notion
of intermediate marking, are investigated in [33].

Under some timing constraints (see Definition 6), a transition t , enabled by marking M , can be fired leading to the new
marking M ′

= Next(M, t). A transition tk is said to be newly enabled by the firing of the transition ti from the marking
M , (denoted by ↑ enabled(tk,M, ti)), if the transition is enabled by the new marking M ′

= Next(M, ti) but was not by
Intermediate(M, ti). Formally,

↑enabled(tk,M, ti) = tk ∈ En(Next(M, ti))


(tk = ti) ∨ ¬

tk ∈ En(Intermediate(M, ti)))


. (1)

For a markingM in NP ,M(pi) can be seen as a number of tokens in place pi. To decide whether a transition t can be fired,
we need to know for how long it has been continuously enabled: if this amount of time lies into the interval I(t), t can
actually be fired and we say that it is firable, otherwise it cannot. On the other hand, time can progress only if the enabling
duration still belongs to the downward closure of the interval associated with any enabled transition.

Wedefine valuations ν ∈ (R≥0)
T over T so that the value ν(t) is the time elapsed since transition t was last enabled. A state

of the GTPN N is a pair (M, ν) ∈ NP
× (R≥0)

T . An admissible state of a GTPN is a state (M, ν) s.t. ∀t ∈ En(M), ν(t) ∈ I(t)↓.
We let ADM(N ) be the set of admissible states of N .
Definition 6 (Semantics of a GTPN). The semantics of a generalised labelled time Petri netsN ∈ GTPNε withN = (P, T , Σε,
En, Intermediate,Next, M0, Λ, I, F,R) is the timed transition system SN = (Q , {q0}, Σε, →, F′,R′) where:

• Q = ADM(N ),
• q0 = (M0, 0), where 0 denotes the valuation with value 0 for all transitions enabled byM0,
• F′

= {(M, ν) ∈ Q |M ∈ F} and R′
= {(M, ν) ∈ Q |M ∈ R},

• −→∈ Q × (Σε ∪ R≥0) × Q consists of the discrete and continuous transition relations:
1. the discrete transition relation is defined ∀t ∈ T by:

(M, ν)
Λ(t)
−−→ (M ′, ν ′) iff


t ∈ En(M),

M ′
= Next(M, t),

ν(t) ∈ I(t),

∀t ′ ∈ En(M ′), ν ′(t ′) =


0 if ↑enabled(t ′,M, t),
ν(t ′) otherwise.
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(a) A simple TPN. (b) TPN with an inhibitor arc. (c) TPN with a read arc.

Fig. 2. Examples of TPN with read and inhibitor arcs.

2. the continuous transition relation is defined ∀d ∈ R≥0 by:

(M, ν)
d
−→ (M, ν ′) iff


ν ′

= ν + d
∀t ∈ En(M), ν ′(t) ∈ I(t)↓.

A run of N is an initial run of SN and the language accepted by N is L(N ) = L(SN ). �

We simplywrite (M, ν)
w
−→ to emphasise that there is a sequence of transitionsw that can be fired in SN from (M, ν). The

resulting state (M ′, ν ′) is said to be reachable from (M, ν). The duration of the corresponding run in the TTS is also denoted
by Duration(w). If Duration(w) = 0 we say that w is an instantaneous firing sequence.

Definition 7 (Reachable State, Reachable Marking). The set of reachable states of N ∈ GTPNε is Reach(N ) = {(M, ν) ∈

NP
× (R≥0)

T
| (M0, 0) −→

∗
(M, ν)}. The set of reachable markings of N is mReach(N ) = {M ∈ NP

| ∃ν ∈ (R≥0)
T
| (M, ν) ∈

Reach(N )}. �

Definition 8 (Bounded Generalised Time Petri Nets (B-GTPNε)). Like for standard Petri nets, the GTPN N is said to be K-
bounded if for any reachable marking M and for each place p, M(p) ≤ K . It is bounded if there exists some K such that
it is K -bounded. We denote by B-GTPNε , for the class of bounded generalised time Petri nets. �

These two previous definitions hold for all the subclasses of GTPNε listed in Table 1.

3.1.2. Time Petri Nets (TPNs)
We denote by TPNε the class of time Petri nets.

Definition 9 (Time Petri Nets). A time Petri net N ∈ TPNε is a generalised labelled time Petri net (P, T , Σε, En, Intermediate,
Next,M0, Λ, I, F,R) for which there exist two mappings •(.), (.)• : T → NP , called respectively the backward and forward
incidence mappings, and such that ∀M ∈ NP and ∀t ∈ T :

• En(M) = {t | (M ≥
•t)},

• Next(M, t) = M −
•t + t•,

• Intermediate(M, t) = M −
•t .

On the other hand, setting ∀M ∈ NP , ∀t ∈ T , Intermediate(M, t) = M yields the so-called atomic semantics of TPNs [33].
The TPN Fig. 2(a) illustrates the notion of intermediate marking. For this net, the transition t2 is never fired even if it is

enabled in all reachable markings. Indeed, for each firing of the transition t1, we have Intermediate(M, t1) < •t2 and the
value ν(t2) is reset to zero.

Finally, the original definition of TPN byMerlin [5] (i.e. TPN ‘‘à laMerlin’’) is the class B-TPNε(≤, ≥) of TPNswithout strict
constraints in the firing intervals I .

3.1.3. Time Petri nets with self-modification, read/logical inhibitor/reset arcs
A read arc functions as an input arc for the enabling of transitions. The tokens in the input place of such arcs are however

not consumed when the transition fires. Inhibitor arcs are dual to read arcs in the sense that enough (w.r.t. the weight
of the arc) tokens in the input place of such an arc prevents the transition to be enabled. As for read arcs, inhibitor arcs
are only involved in the enabling of transitions, not in their firing. Conversely, reset arcs are ignored when deciding if a
transition is enabled but empty their input places when the transition fires, regardless of their previous contents. Finally, in
self-modifying nets [22], theweight of the input or output arcs is a function of the currentmarking: the weight of the arc can
either be an integer, as usual, or a reference to some place of the net. In the latter case, the weight is the number of tokens
that are currently in the referenced place.

Let us now consider some illustrative examples. The TPN Fig. 2(b) has an inhibitor arc between p3 and t1. Then, the
transition t1 cannot be fired before the firing of t2 since it is inhibited by the token in p3. A corresponding run is (each
markingM is presented as (M(p1)M(p2)M(p3)M(p4)))

(1010)
3.7

−−→ (1010)
t2

−→ (1001)
1.12

−−−→ (1001)
t1

−→ (0101).
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(a) TPN with a reset arc. (b) A self modifying TPN.

Fig. 3. Examples of TPN with reset and self modifying TPN.

The TPN Fig. 2(c) has a read arc between p3 and t1. Then, if t2 is fired first, after its firing, the firing of t1 is not possible
since the transition t1 is not enabled anymore. The sequence t1, t2 is possible however since firing t1 does not consume the
token in p3. The TPN Fig. 3(a) has a reset arc between p3 and t1. Then, if t1 is fired first, after its firing, the firing of t2 is not
possible since there is no token anymore in p3. The sequence t2, t2, t1 is possible however since firing t1 does not require
any token in p3. The self modifying TPN Fig. 3(b) has an arc between p3 and t2 with a weight equal to the marking of place
p1. Then t2 cannot be fired first. After the firing of t1 the transition t2 can be fired whereas t1 has to wait at least 3 time units.
A corresponding run is:

(2010)
3.7

−−→ (2010)
t1

−→ (1110)
1.8

−−→ (1110)
t2

−→ (1101)
1.3

−−→ (1101)
t1

−→ (0201).

In [34], the authors showed that for Petri nets, inhibitor arcs can simulate reset arcs (and conversely). Thus reset
arcs increase the expressiveness of Petri net (they are Turing-powerful) and reachability and boundedness problems are
undecidable for Petri net with reset arcs. It is easy to show in the untimed setting that a read arc between a place p and a
transition t is equivalent to having both an arc from p to t and an arc from t to p. In the timed setting however, this result
obviously does not hold as the firing of t might disable other transitions enabled by p and thus reset their clocks. It has been
shown that self-modifying nets are more expressive w.r.t language acceptance than (standard) Petri nets [22]. Here we will
consider the more general setting where the weight of any arc is an arbitrary function of the current marking, i.e., a function
in N(NP ).

We propose to study the expressiveness of self-modifying time Petri netswith reset, logical inhibitor, and read arcswhich
are classically used to extend time Petri nets. For this purpose, in this paragraph, we define these several specific types of
arcs and we show how they can be seen as particular cases of GTPNs.

Definition 10 (Self-modifying TPN with Read/Inhibitor/Reset Arcs). A labelled self-modifying time Petri net with read/logical
inhibitor/reset arcs N is a tuple (N , ◦(.), ∗(.), ▽(.)) where:

• N = (P, T , Σε,
•(.), (.)•,M0, Λ, I, F,R) is a TPN

•
◦(.) : T → (N(NP ))P is the read incidence mapping;

•
∗(.) : T → (N(NP ))P is the logical inhibitor incidence mapping;

•
▽(.) : T → {0, 1}P is the reset incidence mapping; �

For any transition t , •t, t•, ◦t and ∗t are vectors of functions associating an integer to a marking. For any marking M , we
denote by •t(M), t•(M), ◦t(M) and ∗t(M) the vectors of integers obtained by applying each component of the vectors toM .

Then, this can be easily defined in the framework of generalised TPNs. A labelled self-modifying time Petri net with
read/logical inhibitor/reset arcs N = (P, T , Σε,

•(.), (.)•, ◦(.), ∗(.), ▽(.), M0, Λ, I, F,R) is the generalised labelled time Petri
net (P, T , Σε, En, Intermediate,Next,M0, Λ, I, F,R) such that ∀M ∈ NP ,

• En(M) = {t | ((M ≥
•t(M)) and (M ≥

◦t(M)) and (M < ∗t(M)) },
• ∀ti ∈ T , Next(M, ti) = M − max(▽ti × M t , •ti(M)) + ti•(M) where M t is the transposed matrix of M , × is the matrix

multiplication between two vectors andmax(▽ti×M t , •ti(M)) is defined as follows :∀pj ∈ P,max(▽ti×M t , •ti(M))(pj) =

max(▽ti × M t(pj), •ti(M)(pj)).
• ∀ti ∈ T , Intermediate(M, ti) = M − max(▽ti × M t , •ti(M)).

Notice that the requirement Intermediate(M, t) ≤ M for each t ∈ T of Definition 5 is satisfied. Thus, labelled self-modifying
time Petri nets with read, logical inhibitor and reset arcs belong to the class of generalised TPNs.

3.2. Timed automata

Timed automata were first introduced by Alur and Dill in [23,24] and extend finite automata with a finite number of
clocks. We consider the model of [35] in which transitions and locations are decorated by constraints on clocks specifying
respectively when the transition can be taken (guards) and when sojourn in the location is allowed (invariants).
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Definition 11 (Timed Automaton). A timed automaton A is a tuple (L, l0, X, Σε, E, Inv, F,R) where:

• L is a finite set of locations;
• l0 ∈ L is the initial location;
• X is a finite set of nonnegative real-valued clocks;
• Σε is a finite set of actions;
• E ⊆ L × C(X) × Σε × 2X

× L is a finite set of edges, e = ⟨l, γ , a, R, l′⟩ ∈ E represents an edge from the location l to the
location l′ with the guard γ ∈ C(X), the label a and the reset set R ⊆ X;

• Inv ∈ C(X)L assigns an invariant to any location; we restrict the invariants to conjuncts of terms of the form x ≼ r for
x ∈ X and r ∈ N and ≼∈ {<, ≤};

• F ⊆ L is the set of final locations and R ⊆ L is the set of repeated locations. �

Definition 12 (Semantics of a Timed Automaton). The semantics of the timed automaton A = (L, l0, X, Σε, E, Inv, F,R) is
the timed transition system SA = (Q , q0, Σε, →, F′,R′) with:

• Q = {(l, v) ∈ L × (R≥0)
X

| Inv(l)(v) = tt},
• q0 = (l0, 0) is the initial state,
• F′

= {(ℓ, ν) | ℓ ∈ F} and R′
= {(ℓ, ν) | ℓ ∈ R},

• and → is defined by:

1. the discrete transitions relation (l, v)
a
−→ (l′, v′) iff ∃ (l, γ , a, R, l′) ∈ E s.t. v ∈[[γ ]], v′

= v[R → 0] and v′
∈[[Inv(l′)]];

2. the continuous transition relation (l, v)
t

−→ (l′, v′) iff l = l′, v′
= v + t and v′

∈[[Inv(l)]].

A run of A is an initial run of SA and the language accepted by A is L(A) = L(SA). �

3.3. Expressiveness and equivalence problems

If B, B′ are two timed models, TPNs or TA, we write B =S B′ (resp. B =W B′) for SB =S SB′ (resp. SB =W SB′ ) where SB and
SB′ are the TTS semantics of B and B′. We write B =L B′ when L(B) = L(B′).

Let C and C ′ be two classes of timed model and ◃▹ ∈ {L, W, S, I} respectively for timed language, weak and strong
timed bisimilarity and isomorphism of TTS.

Definition 13 (Expressiveness w.r.t. ◃▹). C is more expressive than C ′ w.r.t. ◃▹, written C ′
≤◃▹ C, if for all B′

∈ C ′ there is a
B ∈ C s.t. B =◃▹ B′. If moreover there is some B ∈ C s.t. there is no B′

∈ C ′ with B =◃▹ B′, then C ′ <◃▹ C (read ‘‘strictly more
expressive’’). If both C ′

≤◃▹ C and C ≤◃▹ C ′ then C and C ′ are equally expressive w.r.t. ◃▹ and we write C =◃▹ C ′. �

4. From generalised time Petri nets to timed automata

We first recall the following theorem from [27]:

Theorem 1 ([27]). For any N ∈ B-TPNε there is a TA A ∈ TAε s.t. N =W A, hence B-TPNε ≤W TAε . Moreover, we also have
that B-TPNε(≤, ≥) ≤W TAε(≤, ≥).

This previous result was obtained by a structural translation from TPNs to TA preserving weak timed bisimilarity. In this
paper, we extend and strengthen this previous result: we give a syntactical translation from B-GTPNε to (products of) timed
automata that preserves isomorphism of the semantics and thus strong timed bisimilarity.

We define our translation using products of timed automata with a finite number of shared bounded integer variables.
They are equally expressive as timed automata, since each variable can be encoded by a finite automaton. A TA with shared
variables has an additional set of integer variablesV andwe therefore extend its notation toA = (L, l0, C, V , Σε, E, Inv, F,R).
We classically allow tests and updates of integer variables on transitions. To synchronise transitions, we use a distinct
synchronisation alphabet Σs. An edge of such a TA component in the product is therefore a tuple ⟨l, γ , s, a,U, R, l′⟩ ∈ E
from the location l to the location l′ with the guard γ ∈ C(X), the synchronisation action s ∈ {b!, b?} with b ∈ Σs, the label
a ∈ Σε , the update of shared variables U (where U is either ∅ or the conjunction of atomic updates v := k with v ∈ V and
k ∈ N) and the reset set R ⊆ X . We also impose that all the transitions of the product are synchronised.

Definition 14 (Synchronised Product of Timed Automata with Variables). Let A1, . . . , An be n timed automata with Ai = (Li,
li,0, Ci, V , Σε ∪ Σs, Ei, Invi, Fi,Ri), The synchronised product of TA (A1| . . . |An) is a timed automaton A = (L, l0, C, V , Σε,
E, Inv, F,R) where:

• L = L1 × L2 × · · · × Ln,
• the initial location of A is l0 = (l1,0, l2,0, . . . , ln,0),
• the set of clocks of A is C = ∪

n
i=1Ci,

• l
γ ,a,U,R
−−−−→ l′ ∈ E iff ∀i, ∃(l[i], γi, si, ai,Ui, Ri, l′[i]) ∈ Ei s.t.:
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Fig. 4. Automaton Ai – Translation of a transition ti .

– there exists a unique j such that sj = b! and aj = a,
– ∀i ≠ j, we have si = b?, ai = ε and Ui = ∅,
– γ =


i γi and R =


i Ri.

• for all l = (l1, . . . , ln) ∈ L, Inv(l) =
n

i=1 Inv(li),
• F ⊆ L and R ⊆ L are arbitrary sets and they will be defined on a product when necessary. �

Assume we are given a GTPNε N = (P, T , Σε, En, Intermediate,Next,M0, Λ, I, F,R) with P = {p1, . . . , pm} and T =

{t1, . . . , tn}.
We build one timed automaton Ai for each transition ti (Fig. 4) and synchronise them to faithfully simulate N . The

idea of the translation is as follows: the current marking of the net is given by a shared/global array variable p of size m:
p[k], 1 ≤ k ≤ m gives the number of tokens in place pk (note that we consider bounded TPN then p can be Each Ai has its
own local clock xi that records the time since transition ti was last enabled (it holds the value of ν(ti)). Furthermore, each
transition is either enabled or disabled, and Ai has two locations to represent this status.

We associate a synchronisation action fire[i]with each transition ti. To simulate the firing of ti (and the update of tj, j ≠ i)
we let Ai make the action fire[i]! and force the other automata to make fire[i]?. To ensure this, we make sure that the
automata Aj, j ≠ i, can all make fire[i]? and thus are forced to synchronise: this is achieved by ensuring that fire[i]? is
always enabled in any location of Aj, j ≠ i.

We first explain what happens when transition ti is fired. This corresponds to the two transitions labelled with fire[j]!.
First, notice that clock xi of Ai holds the value of ν(ti) and thus ti is firable iff xi ∈ I(ti) which is enforced by the guard
xi ∈ I(ti) and the invariant xi ∈ I(ti)↓ in the Enabled location. The automaton is in location Enabled iff transition ti ∈ En(p)
and we maintain this invariant for any transition.

There are two possible results when firing ti: either the transition is disabled and in this case we reach location Disabled
or it is still enabled after the firing and we stay in location Enabled. In the latter case, the transition is newly enabled (Eq. (1)
evaluates to true) and we reset its clock. In the other case, xi is not used in location Disabled and we may safely reset it or
leave it unchanged.

Now consider that another transition tj ≠ ti is fired. This corresponds to the other transitions labelled with fire[j]?.
As required earlier, in each location, fire[j]?, j ≠ i is enabled: the guards of all transitions are disjoint and their union is
equivalent to tt. The target location when firing another transition j ≠ i is fully determined by the formal definitions of En,
Intermediate and Next. Notice that there is one copy of each transition in Fig. 4 for each j ≠ i.

The whole (synchronised) system is obtained by the synchronisation of the timed automata Ai, 1 ≤ i ≤ n. The final and
repeated states are those for which the marking p ∈ F and p ∈ R respectively.

Let ∆(N ) = (A1 | A2 | · · · · · · | An) be the product of timed automata with shared variables obtained by the translation
of the GTPNε N . The size of each automaton Ai is linear w.r.t. the number of transitions of N and since the product is
synchronised on all transitions, in each state of the product, at most one edge per transition of the net can be effectively
taken. The size of the product is therefore exponential w.r.t. the size of the net. Moreover, since we consider bounded nets,
p can be encoded by a finite automaton with one state per marking and the size of this finite automaton is then exponential
w.r.t. the number of places of the net N . Thus the size of ∆(N ) is exponential w.r.t. the size of N .

Let SN be the TTS that gives the semantics of N . Let ∆(N ) = (A1 | A2 | · · · · · · | An) be the product of timed automata
obtained by the translation above and S∆(N ) its semantics.

Proposition 1. SN and S∆(N ) are isomorphic.

Proof. We relate the states of N to the states of ∆(N ). Let (M, ν) and (p, q, x) be, respectively, a state of SN and a state of
S∆(N ) where q gives the product location of (A1| · · · |An) i.e. for 1 ≤ i ≤ n, q[i] gives the location of Ai, and x[i], i ∈ [1..n]
gives the value of the clock xi.
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Fig. 5. The timed automaton A0 .

Let g be the mapping defined by g

(M, ν)


= (p, q, x) iff:

• ∀1 ≤ i ≤ m, p[i] = M(pi),

• ∀1 ≤ i ≤ n, q[i] =


Enabled if ti ∈ En(M),

Disabled otherwise.
• ∀1 ≤ i ≤ m, x[i] = ν(ti).

It is easy to see that g is a bijection. Let R∆ and F∆ be respectively the final and repeated states of ∆(N ). As defined pre-
viously, these sets are respectively those for which the marking p ∈ F and p ∈ R. Then for all states (M, ν) of SN we have
(M, ν) ∈ F (Resp. R) iff g((M, ν)) ∈ R∆ (Resp. F∆). To prove isomorphism (Definition 2), we have to prove that continu-
ous transitions and discrete transitions can be executed by each of the transitions systems. Let (M, ν) be a state of SN and
g

(M, ν)


= (p, q, x).

Continuous transitions. First notice that if a continuous transition of duration d is allowed in S∆(N ) from (p, q, x), (p, q, x) d
−→

(p, q, x′) and allowed in SN from (M, ν), (M, ν)
d

−→ (M, ν ′), we have (M, ν ′) = (M, ν + d) and (p, q, x + d) = (p, q, x′)
and thus g


(M, ν ′)


= (p, q, x′).

It remains to prove that SN can make a transition of duration d from (M, ν) iff S∆(N ) can do the same from (p, q, x). SN

can make a transition of duration d from (M, ν) iff ∀1 ≤ i ≤ n:

ti ∈ En(M) =⇒ ν(ti) + d ∈ I(ti)↓

[ti ∈ En(M) ⇐⇒ q[i] = Enabled] ⇐⇒ q[i] = Enabled =⇒ ν(ti) + d ∈ I(ti)↓

[x[i] = ν(ti)] ⇐⇒ q[i] = Enabled =⇒ x[i] + d ∈ I(ti)↓

which is equivalent to S∆(N ) can make a transition of duration d.

Discrete transitions. Let us now consider the discrete transition (M, ν)
Λ(ti)
−−−→ (M ′, ν ′). As ti can be fired we must have: (1)

ti ∈ En(M), (2) ν(ti) ∈ I(ti). As g

(M, ν)


= (p, q, x), this is equivalent to (1) q[i] = Enabled and (2) x[i] ∈ I(ti) and

thus fire[i]! can be triggered in S∆(N ) and we have (p, q, v)
Λ(ti)
−−−→ (p′, q′, x′). The updates in ∆(N ) are directly computed

using the functions En, Intermediate and Next defined for GTPNε , then we have: (1) p′
= Next(p, ti) (i.e. M ′

= Next(M, ti))
and ∀tj ∈ En(Next(p, ti)), (2) x′

[j] = 0 if tj ∉ Intermediate(p, ti) ( i.e. ↑enabled(tj,M, ti)), and x′
[j] = x[j] otherwise. Thus

g

(M ′, ν ′)


= (p′, q′, x′). �

This enables us to obtain the following results:

Theorem 2. For any N ∈ B-GTPN (resp. B-GTPNε) there is a TA ∆(N ) ∈ TA (resp. TAε) s.t. SN
∼= SA.

Theorem 2 implies:

Theorem 3. B-GTPN ≤I TA and B-GTPNε ≤I TAε .

Remark 1. Isomorphism of TTS implies all the other equivalences, and thus Theorem 2 also implies the same order for
all other equivalences. Notice also that the order applies to subclasses of B-GTPN where the constraints are restricted: for
instance B-GTPN(≤, ≥) ≤I TA(≤, ≥) as the same comparison operators are used in N and ∆(N ).

Remark 2. Starting from a GTPN N ∈ B-GTPNε(≤, ≥) the translation from GTPN to TA gives a TA A in the subclass
TAsyn

ε (≤, ≥) defined in Section 7 (Definition 15). Thus B-GTPN(≤, ≥) ≤I TAsyn
ε (≤, ≥) .

5. Strict ordering results

In this section, we recall some results from [1] and extend them to bounded GTPNs proving that they are strictly less
expressive w.r.t. weak timed bisimilarity than timed automata.

Consider the timed automata A0 of Fig. 5 and A1 which is as A0 with the guards x < 1 replaced by x ≤ 1.
Theorem 4 as been proved in [1] for TPNs and easily extends to GTPNs:

Theorem 4. There is no GTPNε weakly timed bisimilar to A0 ∈ TA (Fig. 5) or to A1 ∈ TA(≤, ≥).

We can deduce several new interesting results from the previous theorems. These new results are expressed by the
following corollaries:
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(a) Widget Nx>c . (b) Widget Nx≥c (with c > 0).
Fig. 6. Widgets for Nx>c and Nx≥c .

Fig. 7.Widget Nx<c (resp. Nx≤c ).

Corollary 1. B-GTPN <S TA, B-GTPNε <W TAε and B-GTPNε(≤, ≥) <W TAε(≤, ≥).

Proof. Theorem 3 states that B-GTPN ≤S TA and B-GTPNε ≤W TAε and Theorem 4 implies the strict relation. By Remark 1
B-GTPNε(≤, ≥) ≤W TAε(≤, ≥) and Theorem 4 implies the strict relation. �

Following these ‘‘negative’’ results, we compare the expressiveness of bounded TPNs and TA w.r.t. to timed language
acceptance and then characterise a subclass of TA that admits bisimilar bounded TPNs.

6. Equivalence w.r.t. timed language acceptance

In this section, we prove that TA, safe TPNs and bounded GTPNs are equally expressive w.r.t. timed language acceptance,
and give an effective syntactical translation from TA to a subclass of GTPNs (1-safe TPNs). The result of Proposition 2, page 13
already appeared in [1], and in this paper we improve the translation, give the full proof, and some new consequences of
this result.

Let A = (L, l0, X, Σε, E, Act, Inv, F,R) be a TA. Since we are only concerned in this section with the language accepted
by A we assume the invariant function Inv is uniformly true and the original constraints of the invariants are instead added
to the guards of transitions. Let Cx be the set of atomic constraints on clock x that are used in A. The TPN resulting from
our translation is built from ‘‘elementary blocks’’ modelling the truth value of the constraints of Cx. Then we link themwith
other blocks for resetting clocks.

Encoding atomic constraints. Let ϕ ∈ Cx be an atomic constraint on x. From ϕ, we define the TPN Nϕ , given by the widgets
of Figs. 6 and 7. In the figures, a transition is written t(σ , I) where t is the name of the transition, σ ∈ Σε and I ∈ I(Q≥0).

To avoid drawing too many arcs, we have adopted the following notation: the grey box is seen as a macro place; an arc
from this grey box means that there are as many copies of the transition as places in the grey box. For instance the TPN of
Fig. 6(b) has 2 copies of the transition r: one with input places Px and rb and output places re and Px and another fresh copy
of r with input places rb and γtt and output places re and Px. Note that in the widgets of Fig. 7 we put a token in γtt when
firing r only on the copy of r with input place Pi (otherwise the number of tokens in place γtt could be unbounded).

We also assume that the automaton A has no constraint x ≥ 0 (as it evaluates to true they can be safely removed) and
thus that the widget of Fig. 6(b) only appears with c > 0. Each of these TPNs basically consists of a ‘‘constraint’’ sub-part (in
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Fig. 8.Widget NReset(R) to reset the widgets of the constraints of clocks xi , 1 ≤ i ≤ m.

Fig. 9. Widget Ne of an edge e = (ℓ, γ , a, R, ℓ′).

the grey boxes for Fig. 6 and in the dashed box for Fig. 7) that models the truth value of the atomic constraint, and another
‘‘reset’’ sub-part that will be used to update the truth value of the constraint when the clock x is reset.
The ‘‘constraint’’ sub-part features the place γtt : the intended meaning is that when a token is available in this place, the
corresponding atomic constraint ϕ is true.
When a clock x is reset, all the grey blocks modelling a constraint on x must be set to their initial marking which has one
token in Px for Fig. 6 and one token in Px and γtt for Fig. 7. Our strategy to reset a block modelling a constraint is to put a
token in the place rb (rb stands for ‘‘reset begin’’). Time cannot elapse from there on (strong semantics for TPNs), as there
will be a token in one of the places of the grey block and thus transition r will be enabled.

Resetting clocks. In order to reset all the blocks modelling constraints on a clock x, we chain all of them in some arbitrary
order, the re place of the ith block is linked to the rb place of the i + 1th block, via a 0 time unit transition ε. Assume R ⊆ X
is a non empty set of clocks. To reset all the widgets in the scope of R, we connect the reset chains in some arbitrary order
as illustrated in Fig. 8. For an edge (ℓ, γ , a, R, ℓ′), we denote by R0

ℓℓ′ the first place of this widget and Rm
ℓℓ′ the last one. The

picture inside the dashed box in Fig. 8 denotes the widget NReset(R). To update the (truth value of the) widgets of D(R) it then
suffices to put a token in R0

ℓℓ′ . In null duration it will go to Rn
ℓℓ′ and have the effect of updating each widget of D(R) on its

way.

The complete construction. First we create fresh places Pℓ for each ℓ ∈ L. Then we build the widgets Nϕ , for each atomic
constraint ϕ that appears in A. Finally for each R ⊆ X s.t. there is an edge e = (ℓ, γ , a, R, ℓ′) ∈ E we build a reset widget
NReset(R). Then for each edge (ℓ, γ , a, R, ℓ′) ∈ E with γ = ∧i=1,nϕi and n ≥ 0 we proceed as follows:

1. create a transition f (a, [0, ∞[) and if m ≥ 1 (i.e. R ≠ ∅) another one rℓℓ′(ϵ, [0, 0]),
2. connect them to the places of the widgets Nϕi and NReset(R) as described on Fig. 9. In case γ = tt (or n = 0) there is only

one input place to f (a, [0, ∞[) which is Pℓ. In case R = ∅ there is no transition rℓℓ′(ϵ, [0, 0]) and the output place of
f (a, [0, ∞[) is Pℓ′ .

To complete the construction we just need to put a token in the place Pℓ0 if ℓ0 is the initial location of the automaton, and
set each widget Nϕ to its initial marking, for each atomic constraint ϕ that appears in A, and this defines the initial marking
M0. The set of final markings is defined by the set of markings M s.t. M(Pℓ) = 1 for ℓ ∈ F and the set of repeated markings
by the set of markingsM s.t.M(Pℓ) = 1 for ℓ ∈ R.

We note ∆(A) the TPN obtained as described previously. Notice that by construction (1) ∆(A) is 1-safe and moreover
(2) in each reachable markingM of ∆(A)


ℓ∈L M(Pℓ)


≤ 1.

A widget related to an atomic constraint has a constant size, a clock resetting widget has a linear size w.r.t. the number
of atomic constraints of the clock and a widget associated with an edge has a linear size w.r.t. its description size. Thus the
size of ∆(A) is linear w.r.t. the size of A improving the quadratic complexity of the (restricted) translation in [28]. Finally,
to prove L(∆(A)) = L(A) we build two simulation relations ≼1 and ≼2 s.t. ∆(A) ≼1 A and A ≼2 ∆(A).

Proposition 2. L(A) = L(∆(A)).

Proof. The proof works as follows: we first show that ∆(A) weakly simulates A which implies L(A) ⊆ L(∆(A)). Then,
we show thatAweakly simulates∆(A)which entailsL(∆(A)) ⊆ L(A) and thusL(A) = L(∆(A)). It is sufficient to give
the proof for the case A has no ε transitions. In case A has ε transitions, ε is treated as an ordinary action.
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Let A = (L, l0, C, A, E, Act, Inv, F,R) and ∆(A) = (P, T , Aε,
•(.), (.)•,M0, Λ, Γ , F∆, R∆). Assume C = {x1, . . . , xk}, P =

{p1, . . . , pm} and T = {t1, . . . , tn}. We denote the set of atomic constraints of A by CA and the set of atomic constraints of
A on clock x by CA(x).

In the sequel, the name of places and transitions of a widget Nϕ are superscripted by ϕ. For example, for a constraint
ϕ = x ≥ c , the places γtt and Pu of a widget Nϕ are respectively written γ

ϕ
tt and Pϕ

u .

Proof of ∆(A) simulates A. We define the relation ≼ ⊆ (L × Rn
≥0) × (Np

× Rm
≥0) by:

(ℓ, v) ≼ (M, ν) ⇐⇒


(1)M(Pℓ) = 1
(2) ∀ϕ ∈ {x < c, x ≤ c}, M(Pϕ

u ) = 0
(3) ∀ϕ ∈ CA, v ∈[[ϕ]] ⇐⇒ M(γ

ϕ
tt ) = 1

(4) ∀ϕ ∈ CA(x), ν(tϕx ) = v(x).

(I)

We can now prove that ≼ is a weak simulation relation of A by ∆(A):

1. final and repeated states: by definition of ∆(A) and the definition of ≼;
2. initial states: it is clear that (l0, 0) ≼ (M0, 0);
3. continuous transitions: let (ℓ, v)

d
−→ (ℓ, v + d). Take (M, ν) s.t. (ℓ, v) ≼ (M, ν). As the widgets Nϕi are non-

blocking, time d can elapse from (M, ν), and there is a run ρ = (M, ν)
∗
−→ (M ′, ν ′) with Duration(trace(ρ)) = d

and Untimed(trace(ρ)) = ε. We can choose ρ without any transitions f (a, [0, ∞[) so that a token remains in Pℓ and
M ′(Pℓ) = 1. Thus to prove (ℓ, v + d) ≼ (M ′, ν ′) it remains to prove items (2) and (3) of Eq. (I).

Let ϕ = x ◃▹ c with ◃▹∈ {<, ≤}.
• if v ∈[[ϕ]] and v + d ∉[[ϕ]], then, from item (4), there is some d′

≤ d s.t. transition tϕx of widget Nϕ is enabled and it
must be fired before ϕ becomes false. Thus tϕx is fired at d′ (which is possible as there is no token in Pϕ

u and thus the
token is in Pϕ

x ) and subsequently uϕ in the same widget, thus transferring the tokens from Pϕ
x , γ

ϕ
tt to Pϕ

i .
• if v ∈[[ϕ]] and v + d ∈[[ϕ]], it is possible to do nothing in widget Nϕ and let the token in Pϕ

x and γ
ϕ
tt .

• if v ∉[[ϕ]] then v + d ∉[[ϕ]], then there must be a token in Pϕ

i and we let time elapse without firing any transition.
Let ϕ = x ◃▹ c with ◃▹∈ {>, ≥}.

• if v ∈[[ϕ]] then v + d ∈[[ϕ]] and M(γ
ϕ
tt ) = 1. We just let time elapse in Nϕ .

• if v ∉[[ϕ]] and v + d ∈[[ϕ]], there is d′
≤ d s.t. transitions tϕx must be fired (and t ′ϕ can be fired at d′

+ ξ with ξ > 0
for Nx>c). We fire those transitions at d′ and let d − d′ elapse.

• if v ∉[[ϕ]] and v + d ∉[[ϕ]] we also let time elapse and leave a token in Pϕ
x .

This way for each constraint ϕ = x ◃▹ c , there is a run ρϕ = (M, ν)
d
−→ε (Mϕ, νϕ) s.t. (Mϕ, νϕ) satisfies requirements (2)

and (3) of Eq. (I). Taken separately we have for each constraint (ℓ, v) ≼ (Mϕ, νϕ). It is not difficult3 to build a run ρ with

an interleaving of the previous runs ρϕ s.t. ρ = (M, ν)
d
−→ε (M ′, ν ′) and (M ′, ν ′) satisfies requirements (2) and (3) of

Eq. (I) for each constraint ϕ, and thus (ℓ, v) ≼ (M ′, ν ′).
4. discrete transitions: Let (ℓ, v)

a
−→ (ℓ′, v′) and (ℓ, v) ≼ (M, ν). Then there is an edge e = (ℓ, γ , a, R, ℓ′) ∈ E s.t.

γ = ∧i=1,nϕi, n ≥ 0 and ϕi is an atomic constraint. By Definition 12, v ∈[[ϕi]] for 1 ≤ i ≤ n. This implies M(γ
ϕi
tt ) = 1

(definition of ≼). Thus the transition f (a, [0, ∞[) is firable in the widget Ne leading to (M ′, ν ′). From there on we do not
change the markings of widgets Nϕi for the constraints ϕi that do not need to be reset (the clock of ϕi is not in R). We also
use the widget NReset(R) to reset the constraints ϕi with a clock in R and finally put a token in Pℓ′ . The new state (M ′′, ν ′′)
obtained this way satisfies (ℓ′, v′) ≼ (M ′′, ν ′′).

This completes the proof that ∆(A) simulates A and thus L(A) ⊆ L(∆(A)).

Proof of L(∆(A)) ⊆ L(A). We can now build a simulation relation of ∆(A) by A. We first define the following boolean
conditions for a clock x ∈ X , for all the widgets of ∆(A) involving the clock x (and associated with a constraint ϕ ∈ CA(x)),
and given a state (M, ν) ∈ (Np

× Rm
≥0) of ∆(A) and a state (ℓ, v) ∈ (L × Rn

≥0) of A:

C1(x) =


∀ϕ = (x > c), v ∈[[ϕ]] ⇐⇒ M(γ

ϕ
tt ) = 1 ∨ (M(Pϕ

x≥c) = 1 ∧ ν(t ′ϕ) > 0)


C2(x) =


∀ϕ = (x ≥ c), v ∈[[ϕ]] ⇐⇒ M(γ

ϕ
tt ) = 1 ∨ (M(Pϕ

x ) = 1 ∧ ν(tϕx ) = c)


C3(x) =


∀ϕ ∈ {x < c, x ≤ c}, v ∉[[ϕ]]⇒ M(Pϕ

i ) = 1

.

Note that these conditions imply for all widgets:M(γ
ϕ
tt ) = 1 ⇒ v ∈[[ϕ]].

3 Just find an ordering for all the date d′ at which a transition must be fired and fire those transitions in this order with time elapsing between them.
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We define the relation ≼ ⊆ (Np
× Rm

≥0) × (L × Rn
≥0) by:

(M, ν) ≼ (ℓ, v) ⇐⇒



M(Pℓ) = 1 ⇒ ∀x ∈ X,


C1(x) ∧ C2(x) ∧ C3(x)
∀ϕ ∈ CA(x), ν(tϕx ) = v(x)

M(Pℓ) = 0 ⇒



∃e = (ℓ•, γ , a, R, ℓ) ∈ E

st


m
i=0

M(Ri
ℓ•ℓ) = 1

∀x ∉ R,

C1(x) ∧ C2(x) ∧ C3(x)
∀ϕ ∈ CA(x), ν(tϕx ) = v(x).

(II)

We now prove that ≼ is a weak simulation relation of ∆(A) by A.

• the property on final and repeated states is satisfied by definition of A,
• for the initial configuration, it is clear that (M0, 0) ≼ (l0, 0),

• continuous time transitions: let (M, ν)
d
−→ (M ′, ν ′) with d ≥ 0 and M = M ′. Let (M, ν) ≼ (ℓ, v). Since the traversal of a

resetwidget is in null duration, and since time can elapse from (M, ν), we haveM(Pℓ) = 1. As there are no invariants inA,
time d can elapse from (ℓ, v). For all widgets associated to a constraint ϕ ∈ CA(x), we have ν ′(tϕx ) = ν(tϕx )+d = v(x)+d
(even if tϕx is not enabled). If no ε transition fires in the TPN, then either the truth values of the constraints stay unchanged
or three cases can occur:
– there is some clock x and constraintϕ = (x > c) such that v(x) = c andM(Pϕ

x≥c) = 1 and ν(t ′ϕ) = 0. Then v+d ∈[[ϕ]]

and ν(t ′ϕ) = d and ∀x ∈ X the condition C1(x) is respected.
– there is some clock x and constraint ϕ = (x ≥ c) such that v(x) < c and v(x) + d = c andM(Pϕ

x ) = 1. Then we have
v ∉[[ϕ]] and ν(txϕ) = v(x) < c. Moreover we have ν ′(txϕ) = ν(txϕ) + d = c , v′(x) = c and v′

∈[[ϕ]] and the condition
C2(x) remains true.

– there is some clocks x and constraints ϕ ∈ {(x < c), (x ≤ c)} such that v(x) < c , v(x) + d > c and M(Pϕ

i ) = 1 (it
means that the guard was true in A whereas the widget of ∆(A) considered the guard false and the guard becomes
false for both). Then v + d ∉[[ϕ]] and sinceM(Pϕ

i ) = 1, the condition C3(x) remains true.
Then, the condition C1(x) ∧ C2(x) ∧ C3(x) remains true.

Thus (ℓ, v)
d
−→ (ℓ, v + d) in A s.t. (M ′, ν ′) ≼ (ℓ, v + d).

• discrete transitions: let (M, ν)
a
−→ (M ′, ν ′). We distinguish the cases a = ε and a ∈ Σ and when a = ε, we distinguish

the cases M(Pℓ) = 0 andM(Pℓ) = 1.
If a = ε and M(Pℓ) = 1 then we are updating some widget Nϕ (ε transition is not a reset transition because a reset can
only occur whenM(Pℓ) = 0). We split the cases according to the different types of widgets:
– update of a widget Nx>c : either t

ϕ
x or t ′ϕ is fired. If tϕx is fired then the time elapsed since the x was last reset is equal

to c . ThusM(γ
ϕ
tt ) = 0 and v(x) ≤ c and v ∉[[x > c]]. This implies (M ′, ν ′) ≼ (ℓ, v).

If t ′ is fired on the contrary, v′(x) > c but again (M ′, ν ′) ≼ (ℓ, v).
– update of a widget Nx≥c : the same reasoning as before can be used and leads to (M ′, ν ′) ≼ (ℓ, v).
– update of awidgetNx<c : In this case either tϕx or uϕ is fired. Assume tϕx is fired. ThusM ′(Pϕ

i ) = 0. The time elapsed since
x was last reset is strictly less than c and v ∈[[ϕ]]. Thus (M ′, ν ′) ≼ (ℓ, v). Now assume uϕ is fired. Again M(Pϕ

i ) = 0
and thus v(x) < c. This time M ′(Pϕ

i ) = 1 and C3(x) is true. From this state, the automaton A has more behaviours
than ∆(A) but we have (M ′, ν ′) ≼ (ℓ, v). The same reasoning applies for Nx≤c .
If a ∈ Σ then the transition is f (a, [0, ∞[) for somewidgetNe for e = (ℓ, γ , a, R, ℓ′). Since the transition f (a, [0, ∞[)

is firable from (M, ν), all the widgets Nϕ of atomic constraints ϕ that appears in the guard γ have a token in the place
γ

ϕ
tt . By Eq. (II), the conditions C1(x), C2(x) and C3(x) are true for (M, ν) and we have M(γ

ϕ
tt ) = 1 ⇒ v ∈[[ϕ]]. It means

that the guard γ is true and we can fire the matching transition in A leading to a state (ℓ′, v′). The firing of f has left
the input places γtt unchanged. Since, ∀x ∈ X , x ∉ R, the truth values of the constraints involving x stay unchanged and
conditions C1(x), C2(x) and C3(x) remain true for these clocks. Thus (M ′, ν ′) ≼ (ℓ′, v′).

We can now consider the case a = ε and M(Pℓ) = 0. It means that the last transition fired in A corresponds to an
edge e = (ℓ•, γ , a, R, ℓ). The ϵ transition is either an update of a widget or the transition rℓℓ′(ϵ, [0, 0]) of the widget Ne
(Fig. 9) or a transition of the widget NReset(R) of Fig. 8 (either (ϵ, [0, 0]) or r).
– If the ϵ transition is an update of a widget, then we can go back to the case a = ε andM(Pℓ) = 1 and apply the same

reasoning for all clocks x ∉ R and, for these clocks we have C1(x), C2(x) and C3(x) and thus (M ′, ν ′) ≼ (ℓ, v).
– If the ϵ transition is a transition r(ϵ, [0, 0]) or (ϵ, [0, 0]) of the widget NReset(R) (Fig. 8) then it is the reset of a widget

corresponding to a clock x ∈ R. There exists i ∈ [0,m] such that M(Ri
ℓ•ℓ) = 1 and after the firing of the transition we

have either M ′(Ri
ℓ•ℓ) = 1 or M ′(Ri+1

ℓ•ℓ ) = 1. Then for all the widgets in the scope of a clock x ∈ X such that x ∉ R, the
firing of this transition has left the input places γtt unchanged and conditions C1(x), C2(x) and C3(x) remain true for
these clocks. Thus (M ′, ν ′) ≼ (ℓ, v).
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– If the ϵ transition is the transition rℓℓ′(ϵ, [0, 0]) of the widget Ne (Fig. 9), then M(Rm
ℓ•ℓ) = 1, M ′(Pℓℓ′) = 1 and C1(x),

C2(x) and C3(x) are true ∀x ∉ R. Moreover, ∀x ∈ R, all the widgets of the constraints involving the clock x are in the
state M ′(Px) = 1 and then we have C1(x), C2(x) and C3(x) for all x ∈ R. Since these conditions remain true ∀x ∉ R,
we have (M ′, ν ′) ≼ (ℓ, v).

This completes the proof that A simulates ∆(A). It follows that L(∆(A)) ⊆ L(A). We can thus conclude that L(∆(A))
= L(A), which ends the proof of Proposition 2. �

Proposition 2 implies many new interesting results expressed by the following corollaries:

Corollary 2. B-GTPNε =L B-TPNε =L 1-B-TPNε =L TAε .

Proof. Let N ∈ B-GTPNε , thanks to the translation of Section 4 and to Theorem 2, there is a TA AN ∈ TAε s.t. L(N) = L(AN )
which can effectively be built. From AN we use Proposition 2 and obtain ∆(AN ) (again effective) which is 1-safe (∆(AN ) ∈

1-B-TPNε) and then in B-GTPNε . �

It follows that Self-modification, read, logical inhibitor and reset arcs do not add expressiveness to bounded TPNs w.r.t.
timed language acceptance: as shown in Section 3.1.3, bounded self-modifying TPNs with read, logical inhibitor and reset
arcs forms a subclass of B-GTPNε which is equally expressive to 1-B-TPNε and as B-TPNε .

Some counterparts of important Theorems for TA can be obtained for TPNs:

Corollary 3 (ε-transitions add Expressiveness to Bounded TPNs).
B-GTPN <L 1-B-TPNε (and thus B-TPN <L 1-B-TPNε).

Proof. From Theorem 3, we have B-GTPN ≤L TA. A main result of [36] states that TA <L TAε and thus we have B-GTPN
<L TAε . Using Corollary 2 we get B-GTPN <L 1-B-TPNε . �

Given a TTS S = (Q ,Q0, Σε, →, F,R), the universal language problem asks whether L(S) = TW∞(Σ), i.e. whether S
accepts every timed word.

Corollary 4. The universal language problem is undecidable for 1-B-TPNε .

Proof. From the well-known result of Alur & Dill [24] the universal language problem is undecidable fro TA. By Corollary 2,
we can reduce the language universal problem for 1-B-TPNε to the universality problem on the equivalent automaton. The
construction of the equivalent automaton is effective. �

Finally we recall the following theorem from [19]:

Theorem 5 ([19]). TPNs can simulate 2-counter-machines (2CM) and they are Turing powerful.

This implies that unbounded TPNs can generate non regular (untimed) languages. This does not hold for timed automata
[24] and thus:

Corollary 5. TAε <L TPNε .

Proof. TPNε can simulate 2-counter-machines (Theorem 5) but not TAε and Corollary 2 states that TAε =L B-TPNε <L

TPNε . �

On the other hand, since there is no TPN (and no GTPN) weakly timed bisimilar to A0 (Fig. 5):

Corollary 6. The classes GTPNε and TAε (as well as TPNε and TAε) are incomparable w.r.t. timed bisimilarity.

7. Equivalence w.r.t. timed bisimilarity

FromTheorem4,we know that there is no translation fromTA to TPNpreserving timedbisimilarity. This can be illustrated
by considering the widget Nx<c of Fig. 7: the firing of transitions tx then u indeed leads to a state where γtt is not marked,
while x < c and the corresponding guard in the TA is therefore true.

Thus, in this section, we consider the original definition of TPN by Merlin [5] i.e. the class B-TPNε(≤, ≥) of TPNs without
strict constraints.

First recall (Remark 2) that starting from a GTPN N ∈ B-GTPNε(≤, ≥) (and in particular from a TPN ‘‘à la Merlin’’), the
translation proposed in Section 4 gives a TA A with a particular form, belonging to the following subclass TAsyn

ε (≤, ≥):

Definition 15. The subclass TAsyn
ε (≤, ≥) of TA is defined by the set of TA of the form (L, l0, X, Σε, E, Inv, F,R) where:

• guards are conjunctions of atomic constraints of the form x ≥ c and invariants are conjunctions of atomic constraints of
the form x ≤ c.

• the invariants satisfy the following property: ∀e = (ℓ, γ , a, R, ℓ′) ∈ E, if x ∉ R and x ≤ c is an atomic constraint in
Inv(ℓ), then either Inv(ℓ′) does not constrain x or the constraint on x is of the form x ≤ c ′ with c ′

≥ c. �
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(a) Widget Nx≤c . (b) Widgets for Inv(ℓ) = ϕk ∧ · · · ∧ ϕk′ .
Fig. 10. Widgets for an invariant.

Fig. 11. New widget Ne for an edge e = (ℓ, γ , a, R, ℓ′).

We now adapt the construction of Section 6 to define a translation from TAsyn
ε (≤, ≥) to B-TPNε(≤, ≥) preserving timed

bisimilarity. The widget Nx≤c is modified as depicted in Fig. 10(a). The widget Nx≥c is the one of Section 6 in Fig. 6(b).
Moreover, for each invariant, a widget depicted in Fig. 10(b) prevents timed from elapsing when the border value of the
invariant is reached.

In the sequel, the place Px and the transition tx of a widget Nϕ for ϕ ∈ CA are respectively written Pϕ
x and tϕx . Moreover,

for a constraint ϕ = (x ≥ c), the place γtt of a widget Nϕ is written γ
ϕ
tt , and the place urg of a widget Nϕ is written urgϕ .

Edges and resetting clocks. The reset of all the blocks in the scope of a set of clocks R can be done in one step by merging4
all the transitions r(ε, [0, 0]) and (ε, [0, 0]) of the widget NReset(R) of Fig. 8. Since the marking of a widget, when the reset
occurs, is not unique, and since a clock x of an automaton can be reset in more than one transition, we create copies of these
(ε, [0, 0]) transitions in such a way that, given an edge e = (ℓ, γ , a, R, ℓ′) and given a marking of widgets in scope of R, the
reset of these widgets can be done by the firing of one transition which we denote Rℓℓ′(ε, [0, 0]). Then there is one copy of
Rℓℓ′ per possible marking of the set of blocks in the scope of R. Finally, for each edge (ℓ, γ , a, R, ℓ′)we create, as in Section 6,
a transition f (a, [0, ∞[) and we merge it with Rℓℓ′(ε, [0, 0]) leading to a transition fr(a, [0, ∞[) as depicted in Fig. 11. We
obtain one copy of fr(a, [0, ∞[) per possible marking of the set of blocks in the scope of R. It is represented in Fig. 11 by
starting the input arcs of fr(a, [0, ∞[) from the border of boxes Nϕj and Nϕj′

.

The construction. As in Section 6, we create a place Pℓ for each location ℓ ∈ L. Then we build the block Nϕ for each atomic
constraint ϕ = (x ≥ c) (Fig. 6(b)) that appears in the guards of A and for each atomic constraint ϕ = (x ≤ c) (Fig. 10(a))
that appears in an invariant of A.

For each edge (ℓ, γ , a, R, ℓ′) ∈ E, we create the transition fr(a, [0, ∞[) and we connect it to the widgets in the scope of
R as described in the paragraph above (see Fig. 11). Now, assume γ = ∧i=1,nϕi and n ≥ 0, we connect fr(a, [0, ∞[) to the
places γ

ϕi
tt of the widgets Nϕi as described on Fig. 11. In case γ = tt (or n = 0) there is only one input place to fr(a, [0, ∞[)

which is Pℓ.
Finally, for each location ℓ ∈ L with Inv(ℓ) = ϕk ∧ · · · ∧ ϕk′ , (as a shorthand we denote ϕk ∈ Inv(ℓ) when Inv(ℓ) =

· · · ∧ ϕk ∧ · · · .) we proceed as follows (see Fig. 10(b)):
1. create a transition Iϕk

ℓ (ε, [0, 0]) for each ϕk ∈ Inv(ℓ);
2. connect Iϕk

ℓ (ε, [0, 0]) to Pℓ and to the place urgϕk of block Nϕk .

4 The merging of two transitions t1 and t2 gives one transition t1,2 such that •t1,2 =
•t1 +

•t2 and t1,2•
= t1•

+ t2• . Here, temporal intervals are [0, 0]
and labels are ε both for the merged transitions and for the result of the merging.
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Let A = (L, ℓ0, X, Σε, E, Inv, F,R) and assume that the set of atomic constraints of A is CA = CA(≥) ∪ CA(≤) where
CA(◃▹) is the set of atomic constraints x ◃▹ c , ◃▹∈ {≤, ≥}, of A and X = {x1, . . . , xk}.

We denote ∆+(A) = (P, T , Σε,
•(.), (.)•, M0, Λ, I, F∆, R∆) the TPN built as described previously.

As for the language preserving translation, we have, by construction: (1) ∆+(A) is 1-safe and moreover (2) in each
reachable markingM of ∆+(A)


ℓ∈L M(Pℓ)


≤ 1.

Each widget related to an atomic constraint has a constant size. However each widget associated with an edge has an
exponential number of copies of fr w.r.t. the number of atomic constraints of A. Thus the size of ∆+(A) is exponential w.r.t.
the size of A.

We can now build a bisimulation relation ≈ between A and ∆+(A).
Let (ℓ, v) be a state of A and (M, ν) be a state of ∆+(A). We define the relation ≈ ⊆ (Np

× Rm
≥0) × (L × Rn

≥0) by:

(M, ν) ≈ (ℓ, v) ⇐⇒



(1)M(Pℓ) = 1
(2) ∀ϕ ∈ CA, ν(tϕx ) = v(x)
(3) ∀ϕ = (x ≥ c) ∈ CA(≥), v ∈[[ϕ]] ⇐⇒

M(γ
ϕ
tt ) = 1 ∨ (M(Pϕ

x ) = 1 ∧ ν(tϕx ) = c)
(4) ∀ϕ = (x ≤ c) ∈ Inv(ℓ), v ∈[[ϕ]] ⇐⇒

M(Pϕ
x ) = 1∨

(M(urgϕ) = 1 ∧ ν(tϕx ) = c).

(III)

Let us notice that item 2 of this equation is true even when the transition tϕx is not enabled.

Proposition 3. The relation ≈ of Eq. (III) is a weak timed bisimulation relation.

Proof. We prove that ≈ is a weak timed bisimulation between A and ∆(A):

1. final and repeated states: by definition of ∆+(A) and the definition of ≈;
2. initial states: it is clear that (M0, 0) ≈ (l0, 0),
3. continuous transitions: let (ℓ, v)

d
−→ (ℓ, v + d). Take (M, ν) such that (ℓ, v) ≈ (M, ν). For ϕ = (x ≤ c) ∈ Inv(ℓ), we

have v ∈[[ϕ]], and v + d ∈[[ϕ]]. According to ν(tx) = v(x), we have ν(tx) + d = v(x) + d ≤ c then M(urgϕ) = 0 and
time d can elapse in Nϕ . In ∆+(A), from (M, ν), there is a run: (M, ν)

d
−→ε (M ′, ν ′) with M(Pℓ) = M ′(Pℓ) = 1 and the

following evolutions of widgets:
For ϕ = (x ≤ c) ∈ Inv(ℓ),
• If v(x) + d = ν(tϕx ) + d < c thenM ′(urgϕ) = 0.
• If v(x) + d = ν(tϕx ) + d = c then we obtain either M(urgϕ) = 1 or M(urgϕ) = 0 and v′(x) = ν ′(tϕx ) = c . The

transition Iϕℓ is enabled or will be enabled after the immediate firing of tx, thus blocking time as long asM(Pℓ) = 1.
For ϕ = (x ≥ c),

• v ∈[[ϕ]] and v + d ∈[[ϕ]]. If M(γ
ϕ
tt ) = 1 time d can elapse in Nϕ . If M(γ

ϕ
tt ) = 0 then M(Pϕ

x ) = 1 and (as d > 0) tϕx is
fired before the total elapsing of d.

• v ∉[[ϕ]] and v +d ∈[[ϕ]], iff there is d′
≤ d s.t. transition tx must be fired at d′. Transition tx is fired and let d−d′ elapse.

• v ∉[[ϕ]] and v + d ∉[[ϕ]] iff time d elapse and leave a token in Px.
For ϕ = (x ≤ c) ∉ Inv(ℓ), according to the subclass of TA we consider, ϕ is a constraint which will not be used any

more before the next reset of x.
• v ∉[[ϕ]] and then v + d ∉[[ϕ]]. Then M(urgϕ) = 1 but there is no transition Iϕℓ and for all possible transition Iϕ

ℓ′ , we
haveM(Pℓ′) = 0 and a time d can elapsed.

• v + d ∉[[ϕ]]. If M(urgϕ) = 1 then a time d can elapsed. If M(urgϕ) = 0 then there is d′
≤ d s.t. transition tϕx must be

fired at d′. Transition tϕx is fired and let d − d′ elapse.
• v ∈[[ϕ]] and v + d ∈[[ϕ]]. This case is similar to ϕ ∈ Inv(ℓ) but there is no transition Iϕℓ .

This way for each constraint, there is a run ρϕ = (M, ν)
d
−→ε (Mϕ, νϕ) s.t. (Mϕ, νϕ) satisfies requirements (2) and (3)

of Eq. (III). For all interleavings of previous runs ρϕ we obtain a run ρ = (M, ν)
d
−→ε (M ′, ν ′) s.t. (ℓ, v) ≈ (M ′, ν ′).

1. discrete transitions: Let (ℓ, v)
a
−→ (ℓ′, v′) and (ℓ, v) ≈ (M, ν). There is an edge e = (ℓ, γ , a, R, ℓ′) ∈ E s.t. γ = ∧i=1,nϕi,

n ≥ 0 where ϕi is an atomic constraint. According to the subclass of TA we consider, invariants of ℓ′ can be ignored for
allowing the firing of a as (by definition) they are true if invariants of ℓ are true. From the semantics of timed automata
(Definition 12), v ∈[[ϕi]] for 1 ≤ i ≤ n. From the definition of the bisimulation relation≈wehave then, eitherM(γ

ϕi
tt ) = 1,

or M(γ
ϕi
tt ) = 0 and transition tϕi

x is immediately firable leading to M(γ
ϕi
tt ) = 1. Thus, transition fr(a, [0, ∞[) is fired in

widget Ne leading to (M ′, ν ′). We have then M ′(Pℓ) = 0 and M ′(P ′

ℓ) = 1. Then for all the widgets in the scope of R, we
have M ′(Pϕ

x ) = 1 and ν ′(tϕx ) = v′(x) = 0. Moreover, for all clocks x ∉ R, the truth values of the constraints involving x,
as well as the corresponding widgets, stay unchanged. Thus we have (ℓ′, v′) ≈ (M ′, ν ′).

This completes the proof that ∆+(A) ≈ A. �
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From the previous results we can state the following corollaries:

Corollary 7. TAsyn
ε (≤, ≥) is a syntactical subclass of TAε equally expressive to B-TPNε(≤, ≥) w.r.t. weak timed bisimilarity, i.e.

TAsyn
ε (≤, ≥) =W B-TPNε(≤, ≥).

Proof. LetA ∈ TAsyn
ε (≤, ≥) . From the previous construction and Proposition 3, page 18, we obtain∆+

1 (A) ∈ B-TPNε(≤, ≥)

with A =W ∆+

1 (A). Let N ∈ B-TPNε(≤, ≥), from Theorem 1 or Theorem 2, we obtain ∆+

2 (N ) ∈ TAsyn
ε (≤, ≥) with

N =W ∆+

2 (N ). �

Corollary 8. The classes 1-B-TPNε(≤, ≥), B-TPNε(≤, ≥) and B-GTPNε(≤, ≥) are equally expressive w.r.t. weak timed
bisimilarity i.e. 1-B-TPNε(≤, ≥) =W B-TPNε(≤, ≥) =W B-GTPNε(≤, ≥).

Proof. LetN ∈ B-GTPNε(≤, ≥), thanks to the translation of Section 4 and to Theorem 2, there exists a TA AN ∈ TAsyn
ε (≤, ≥)

s.t. N =W AN which can effectively be built. From the previous construction and Proposition 3, we obtain ∆+(AN ) ∈

1-B-TPNε s.t. AN =W ∆+(AN ) then N =W ∆+(AN ). �

Corollary 9. Self-modification, read, logical inhibitor and reset arcs do not add expressiveness to bounded TPNs ‘‘à la Merlin’’
w.r.t. weak timed bisimilarity.

Proof. As shown in Section 3.1.3, bounded self-modifying TPNs ‘‘à la Merlin’’ with read, logical inhibitor and reset arcs is
a subclass of B-GTPNε(≤, ≥) which is equally expressive as 1-B-TPNε(≤, ≥) and as B-TPNε(≤, ≥) (i.e. bounded TPNs ‘‘à la
Merlin’’). �

Corollary 10. Atomic and intermediate semantics are equally expressive for bounded TPNs ‘‘à la Merlin’’ w.r.t. weak timed
bisimilarity.

Proof. In [33] there is a translation from TPNswith intermediate semantics to TPNs with atomic semantics which preserves
bisimilarity when the net is 1-safe. Moreover, as shown in Section 3.1.2, GTPNs allow to express intermediate as well as
atomic semantics of TPNs. Thus, a bounded TPN ‘‘à la Merlin’’ with atomic semantics is in B-GTPNε(≤, ≥) and then, thanks
to Corollary 8, can be translated into a bisimilar net in 1-B-GTPNε(≤, ≥) i.e. a 1-safe (and then bounded) TPN ‘‘à la Merlin’’
with intermediate semantics. �

8. Conclusion

In this paper, we have investigated different questions related to the expressiveness of TPNs and GTPNs.
We have first presented a structural translation from bounded generalised TPNs (encompassing read, logical inhibitor

and reset arcs, self-modification and strict constraints) to TA preserving isomorphism of the underlying timed transitions
systems. We have shown that TA, bounded TPNs and bounded GTPNs are equivalent w.r.t. timed language acceptance. We
have also provided an effective construction of a 1-safe TPN equivalent to a TA. Finally, we have given a syntactic subclass
of TA expressively equivalent to TPNs ‘‘à la Merlin’’ w.r.t. timed bisimilarity. This enables us to obtain new results for TPNs
summarised in Table 2, page 3. Moreover these results lead to a classification of the expressiveness of different subclasses
of GTPNs and TA given in Fig. 1.
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