
Channel Properties of
Asynchronously Composed Systems?

Serge Haddad1, Rolf Hennicker2, and Mikael H. Møller3

1 LSV, ENS Cachan & CNRS & INRIA, France
2 Ludwig-Maximilians-Universität München, Germany

3 Aalborg University, Denmark

Abstract. We consider asynchronously composed I/O-transition sys-
tems (AIOTS) with built-in communication channels and potentially in-
finite state space. For those systems we study various channel properties
that deal with the production and consumption of messages exchanged
via the communication channels. We establish useful relationships be-
tween the different properties and show that all channel properties are
preserved by asynchronous composition, i.e. they are compositional. We
focus on the subclass of those AIOTS which are generated by asyn-
chronous I/O-Petri nets and we show that this class of AIOTS is closed
under asynchronous composition. As a crucial result we prove that for
the AIOTS generated by a Petri net all channel properties are decidable.

1 Introduction

(A)synchronous composition. The design of hardware and software systems
is often component-based which well-known advantages: management of com-
plexity, reusability, separation of concerns, collaborative design, etc. One critical
feature of such systems is the protocol supporting the communication between
components and in particular the way they synchronise. Synchronous composi-
tion ensures that both parts are aware that communication has taken place and
then simplifies the validation of the system. However in a large scale distributed
environment synchronous composition may lead to redhibitory inefficiency dur-
ing execution and thus asynchronous composition should be adopted. The FIFO
requirement of communication channels is often not appropriate in this context.
This is illustrated by the concept of a software bus where applications push and
pop messages in mailboxes. Also on the modeling level FIFO ordering is often
not assumed, like for the composition of UML state machines which relies on
event pools withot specific requirements.
Compositions of Petri nets. In the context of Petri nets, composition has
been studied both from theoretical and practical points of view. The process
algebra approach has been investigated by several works leading to the Petri net
algebra [4]. Such a work is closely related to synchronous composition. In [17,
16], asynchronous composition of nets is performed via a set of places or, more

? This work has been partially sponsored by the EU project ASCENS, 257414.

generally, via a subnet modelling some medium. Then structural restrictions on
the subnets are proposed in order to preserve global properties like liveness or
deadlock-freeness. In [15], a general composition operator is proposed and its
associativity is established. A closely related concept to composition is the one
of open Petri nets which has been used in different contexts like the analysis of
web services [18]. Numerous compositional approaches have been proposed for
the modelling of complex applications but most of them are based on high-level
Petri nets; see [11] for a detailled survey.

Channel properties. With the development of component-based applications,
one is interested in verifying behavioural properties of the communication and,
in the asynchronous case, in verifying the properties related to communication
channels. In the seminal work of [5], the authors present several properties like
channel boundedness and specified receptions and propose methods to analyse
them. In [7], a two-component based system is studied using a particular (de-
cidable) channel property, the half-duplex property : at any time at most one
channel is not empty. More recently in [2] synchronizability, a property of asyn-
chronous systems, is introduced such that when it holds the system can be safely
abstracted by a synchronous one.

Our contributions. In this work we are interested in general channel properties
and not in specific system properties related to particular applications. In order
to analyse channel properties, we first introduce asynchronously composed I/O-
transition systems (AIOTS) which are open transition systems enriched with
channels. Our main hypothesis consists in omitting the FIFO requirement that
potentially can decrease the performance of large scale distributed systems. Thus
the state of a channel is determined by the number of messages that it contains.
We define an asynchronous composition operator which introduces new channels
for the communication between the composed AIOTSs.

In our study two kinds of channel properties are considered which are re-
lated to consumption requirements and to the termination of communication.
Consumption properties deal with the requirements that messages sent to a com-
munication channel should also be consumed. They can be classified w.r.t. two
criteria. The first criterium is the nature of the requirement: consuming mes-
sages, decreasing the number of messages, and emptying channels. The second
criterium expresses the way the requirement is achieved: possibly immediately,
possibly after some delay, or necessarily in each weakly fair run. Communication
termination deals with immediate or delayed closing of communication channels
if the receiver is not ready to consume anymore. We establish useful relations
between the channel properties and prove that all channel properties are com-
positional, i.e. preserved by asynchronous composition. This is an important
prerequisite for modular verification.

A natural high-level formalism for specifying AIOTS is the Petri net formal-
ism. We propose asynchronously composed Petri nets (AIOPN) with an AIOTS
semantics and we show that the class of asynchronous I/O-transition systems
generated by asynchronous I/O-Petri nets is closed under composition.

2

From a verification point of view, we study the decidability of properties in
the framework of AIOPN. Thanks to several complementary works on decidabil-
ity for Petri net problems, we show that all channel properties are decidable,
though with a high computational complexity.
Organisation. In Section 2, we introduce AIOTSs and their asynchronous com-
position. Then, we introduce AIOPNs in Section 3 lifting asynchronous compo-
sition to the net level. In Section 4, we define the channel properties and study
their relationships and their preservation under asynchronous composition. In
Section 5, we establish that all channel properties are decidable for AIOPNs.
Finally, in Section 6, we conclude and give some perspectives for future work.

2 Asynchronous I/O-Transition Systems

We first recall some basic definitions for labelled transition systems. A labeled
transition system (LTS) is a tuple S = (Σ,Q, q0,−→), such that

– Σ is a finite set of labels,
– Q is a (possibly infinite) set of states,
– q0 ∈ Q is the initial state, and
– −→ ⊆ Q×Σ ×Q is a labeled transition relation.

We will write q
a−→ q′ for (q, a, q′) ∈ −→, and we write q

a−→ if there exists

q′ ∈ Q such that q
a−→ q′. Let q1 ∈ Q. A trace of S starting in q1 is a finite or

infinite sequence ρ = q1
a1−→ q2

a2−→ q3
a3−→ · · · , such that ai ∈ Σ and qi ∈ Q for

all i. For a ∈ Σ we write a ∈ ρ, if there exists ai in the sequence ρ such that
ai = a, and]ρ(a) denotes the (possibly infinite) number of occurrences of a in
ρ. For q ∈ Q we write q ∈ ρ, if there exists qi in the sequence ρ such that qi = q.
For σ = a1a2 · · · an ∈ Σ∗ and q, q′ ∈ Q we write q

σ−→ q′ if there exists a (finite)

sequence q
a1−→ q2

a2−→ q3 · · · qn
an−→ q′. Sometimes we need to reason about the

successor states reachable from a given state q ∈ Q with a subset Σ̄ ⊆ Σ. We
define Post(q, Σ̄) = {q′ ∈ Q | ∃a ∈ Σ̄ . q

a−→ q′} and we write Post(q) for

Post(q,Σ). Further we define Post∗(q, Σ̄) = {q′ ∈ Q | ∃σ ∈ Σ̄∗ . q σ−→ q′} and
we write Post∗(q) for Post∗(q,Σ).

In this paper we consider asynchronous systems which may be open for com-
munication with other systems. The open actions are modeled by distinguished
input and output labels while communication within an asynchronous system is
modeled by communication labels. We assume that communication takes place
via unbounded channels and that for each message type to be exchanged in a
system there is exactly one communication channel. Given a finite set C of chan-
nels, an I/O-alphabet over C is the disjoint union Σ = in]out] com of pairwise
disjoint sets in of input labels, out of output labels and com of communication
labels, such that Σ ∩ C = ∅, com = {Ba, aB | a ∈ C} and in and out do not
contain labels of the form Bx or xB. For each channel a ∈ C, the communica-
tion label Ba represents consumption of a message from the channel a and aB

represents putting a message on a . To indicate the actual number of messages
on a channel in a certain state we use a channel valuation function val. Under

3

these assumptions we model asynchronous systems by the following notion of
asynchronous I/O-transition system.

Definition 1 (Asynchronous I/O-transition system). An asynchronous
I/O-transition system (AIOTS) is a tuple S = (C,Σ,Q, q0,−→, val), such that

– (Σ,Q, q0,−→) is a labeled transition system,
– C is a finite set of channels,
– Σ = in] out] com is an I/O-alphabet over C,
– val : Q× C −→ N is a channel valuation, such that for all a ∈ C, q, q′ ∈ Q:

• val(q0, a) = 0,

• q aB−→ q′ =⇒ val(q′, a) = val(q, a) + 1,

• q
Ba−→ q′ =⇒ val(q, a) > 0 and val(q′, a) = val(q, a)− 1, and

• for all x ∈ Σ \ {Ba, aB}, q x−→ q′ =⇒ val(q′, a) = val(q, a). ♦

The first condition for val assumes that initially all communication channels
are empty, the second condition states that at most one element can be put
(removed resp.) at a time, and the last condition requires that the input and
output actions of an open system do not change the valuation of any channel,
since channels are used for the communication inside the system. Sometimes we
need to reason about the number of messages on a subset B ⊆ C of the channels
in a state q ∈ Q. We define val(q,B) =

∑
a∈B val(q, a).

Two I/O-alphabets are composable if there are no name conflicts between
labels and channels and, following [1], if shared labels are either input labels of
one alphabet and output labels of the other or conversely. For the composition
each shared label a gives rise to a new communication channel, also called a,
and hence to new communication labels aB for putting and Ba for removing
messages. The input and output labels of the alphabet composition are the non-
shared input and output labels of the underlying alphabets; they are left open.

Definition 2 (Alphabet composition). Let ΣS = inS] outS] comS and
ΣT = inT] outT] comT be two I/O-alphabets over channels CS and CT resp.
ΣS and ΣT are composable if (ΣS ∪ ΣT) ∩ (CS ∪ CT) = ∅ and ΣS ∩ ΣT =
(inS ∩ outT) ∪ (inT ∩ outS).The composition of ΣS and ΣT is the I/O-alphabet
Σ = in] out] com over the composed set of channels C = CS]CT]CST , with
new channels CST = ΣS ∩ΣT , such that

– in = (inS \ outT)] (inT \ outS),
– out = (outS \ inT)] (outT \ inS), and
– com = {aB, Ba | a ∈ C} ♦

Two AIOTSs can be asynchronously composed, if their underlying I/O-
alphabets are composable. The composition is constructed by introducing a new
communication channel for each shared input/output action and by appropriate
transitions for the corresponding communication actions that modify the valu-
ation of the new channels (see items 3 and 4 in Def. 3). It relies on a binary

4

communication style. Since the states of the composition must record the num-
ber of messages on the new channels CST , the state space of the composition
adds to the cartesian product of the underlying state spaces the set NCST of val-
uations of the new channels. For a valuation v : CST 7→ N, we use the notation

v[a 7→ n] to denote the updated map v[a 7→ n](x) =

{
n if x = a,

v(a) otherwise.

Definition 3 (Asynchronous composition).
Let S = (CS , ΣS , QS , q

0
S ,−→S , valS) and T = (CT , ΣT , QT , q

0
T ,−→T , valT) be

two AIOTSs. S and T are composable if ΣS and ΣT are composable. In this
case their asynchronous composition is the AIOTS S ⊗ T = (C,Σ,Q, q0,−→,
val) defined as follows:

– C = CS] CT] CST , with CST = ΣS ∩ΣT ,
– Σ is the alphabet composition of ΣS and ΣT ,
– Q = QS ×QT × NCST ,
– q0 = (q0

S , q
0
T ,0), with 0 being the zero-map,

– −→ is inductively defined as follows for all (qS , qT ,v) ∈ Q:

1: For all a ∈ (ΣS \ CST), if qS
a−→S q′S then (qS , qT ,v)

a−→ (q′S , qT ,v).

2: For all a ∈ (ΣT \ CST), if qT
a−→T q′T then (qS , qT ,v)

a−→ (qS , q
′
T ,v).

3: For all a ∈ inS ∩ outT ,

3.1: if qS
a−→S q′S and v(a) > 0

then (qS , qT ,v)
Ba−→ (q′S , qT ,v[a 7→ (v(a)− 1)]),

3.2: if qT
a−→T q′T then (qS , qT ,v)

aB−→ (qS , q
′
T ,v[a 7→ (v(a) + 1)]).

4: For all a ∈ inT ∩ outS ,

4.1: if qS
a−→S q′S then (qS , qT ,v)

aB−→ (q′S , qT ,v[a 7→ (v(a) + 1)]),

4.2: if qT
a−→T q′T and v(a) > 0

then (qS , qT ,v)
Ba−→ (qS , q

′
T ,v[a 7→ (v(a)− 1)]).

– For all (qS , qT ,v) ∈ Q and a ∈ C

val((qS , qT ,v), a) =

valS(qS , a) if a ∈ CS
valT (qT , a) if a ∈ CT
v(a) if a ∈ CST

For the rules (1),(3.1) and (4.1), we say that the resulting transition in the
composition is triggered by S, in the other cases it is triggered by T . Let ρ be a
trace of S ⊗ T starting from a state q = (qS , qT ,v) ∈ Q. The projection of ρ to
S, denoted by ρ|S , is the sequence of transitions of S, starting from qS , which
have triggered corresponding transitions in ρ. ♦

3 Asynchronous I/O-Petri Nets

Asynchronous I/O-Petri nets allow a finite representation of asynchronous I/O-
transition systems. First we recall some basic notions of Petri nets. A labeled
Petri net is a tuple N = (P, T,Σ,W−,W+, λ,m0), such that

5

– P is a finite set of places,
– T is a finite set of transitions with P ∩ T = ∅,
– Σ is a finite alphabet,
– W− (resp. W+) is a matrix indexed by P × T with values in N; it is called

the backward (resp. forward) incidence matrix,
– λ : T → Σ is a transition labeling function, and
– m0 is a vector indexed by P and called the initial marking.

The labeling function λ is extended as usual to sequences of transitions. The
input (output resp.) vector W−(t) (W+(t) resp.) of a transition t is the column
vector of matrix W− (W+ resp.) indexed by t. Given two vectors v and v′, one
writes v ≥ v′ if v is componentwise greater or equal than v′. A marking is a
vector indexed by P . A transition t ∈ T is firable from a marking m, denoted

by m
t−→, if m ≥ W−(t). The firing of t from m leads to the marking m′,

denoted by m
t−→ m′, and defined by m′ = m −W−(t) + W+(t). If λ(t) = a

we also write m
a−→ m′. The firing of a transition is extended as usual to firing

sequences m
σ−→ m′ with σ ∈ T ∗. A marking m is reachable if there exists a

firing sequence σ ∈ T ∗ such that m0 σ−→ m.
To any labeled Petri net N a labeled transition system can be associated

as usual. For technical simplicity, however, we consider all markings instead of
the reachable markings in the state space of the transition system. The labeled
transition system associated with N = (P, T,Σ,W−,W+, λ,m0) is given by
lts(N) = (Σ,Q, q0,−→), such that

– Q is the set of all markings of N ,
– −→ = {(m, a,m′) | a ∈ Σ and m

a−→ m′}, and
– q0 = m0.

Similarly to asynchronous I/O-transition systems also asynchronous I/O-
Petri nets (AIOPNs) are based on a finite set of communication channels and
on an I/O-alphabet. Each channel is modeled as a place and the transitions for
communication actions are modeled as expected by putting or removing tokens
from the channel places. The difference between AIOPNs and modal I/O-Petri
nets introduced in [8] is that AIOPNs comprise distinguished channel places but
they do not support modalities for refinement (yet).

Definition 4 (Asynchronous I/O-Petri net). An asynchronous I/O-Petri
net (AIOPN) is a tuple N = (C,P, T,Σ,W−,W+, λ,m0), such that

– (P, T,Σ,W−,W+, λ,m0) is a labeled Petri net,
– C is a finite set of channels,
– C ⊆ P , i.e. each channel is a place,
– Σ = in] out] com is an I/O-alphabet over C,
– for all a ∈ C and t ∈ T ,

W−(a, t) =

{
1 if λ(t) = Ba,

0 otherwise
W+(a, t) =

{
1 if λ(t) = aB,

0 otherwise

– for all a ∈ C, m0(a) = 0. ♦

6

p0

msg!

p1

in?

(a) N1.

p2

msg?

p3

out!

(b) N2.

p0

msgB

p1

in?

p2

Bmsg

p3

out!

msg

(c) N3.

Fig. 1: Three asynchronous I/O-Petri nets.

Example 5. Three examples of AIOPNs are shown in Fig. 1. For both N1 and
N2, the set of channels is empty. Fig. 1c models a simple producer/consumer sys-
tem with an unbounded communication channel msg. Here and in the following
drawings input labels are indicated by “?” and output labels by “!”.

To each AIOPN an asynchronous I/O-transition system can be associated.
Markings become states and the valuation of a channel in a current state m is
just the number of tokens on the channel under the marking m.

Definition 6 (Associated asynchronous I/O-transition system).
Let N = (C,P, T,Σ,W−,W+, λ,m0) be an AIOPN. The AIOTS associated
with N is given by aiots(N) = (C,Σ,Q, q0,−→, val), such that

– (Σ,Q, q0,−→) = lts(P, T,Σ,W−,W+, λ,m0),
– for all a ∈ C and m ∈ Q, val(m, a) = m(a). ♦

The asynchronous composition of two AIOPNs is constructed by taking the
disjoint union of the underlying nets and adding a channel place for each shared
label. Every transition with shared output label a becomes a transition with
the communication label aB that produces a token on the channel place a and,
similarly, any transition with shared input label a becomes a transition with the
communication label Ba that consumes a token from the channel place a.

Definition 7 (Asynchronous composition). Let N = (CN , PN , TN , ΣN ,
W−N ,W

+
N , λN ,m

0
N) and M = (CM, PM, TM, ΣM,W

−
M,W

+
M, λM,m

0
M) be two

AIOPN. N and M are composable if ΣN and ΣM are composable and if
PN ∩ PM = ∅, (PN ∪ PM) ∩ (ΣN ∩ ΣM) = ∅, TN ∩ TM = ∅. In this case,
their asynchronous composition is the AIOPN N ⊗pnM = (C,P, T,Σ,W−,
W+, λ,m0), defined as follows:

– C = CN] CM] CNM, with CNM = ΣN ∩ΣM,
– P = PN] PM] CNM,
– T = TN] TM,
– Σ is the alphabet composition of ΣS and ΣT ,

7

– W− (resp. W+) is the backward (forward) incidence matrix defined by:

for all p ∈ PN ∪ PM and t ∈ T for all a ∈ CNM and t ∈ T

W−(p, t) =

W−N (p, t) if p ∈ PN , t ∈ TN
W−M(p, t) if p ∈ PM, t ∈ TM
0 otherwise

W−(a, t) =

{
1 if λ(t) = Ba
0 otherwise

W+(p, t) =

W+
N (p, t) if p ∈ PN , t ∈ TN

W+
M(p, t) if p ∈ PM, t ∈ TM

0 otherwise
W+(a, t) =

{
1 if λ(t) = aB

0 otherwise

– λ : T → Σ is defined, for all t ∈ T , by

λ(t) =

λN (t) if t ∈ TN , λN (t) /∈ ΣN ∩ΣM
λM(t) if t ∈ TM, λM(t) /∈ ΣN ∩ΣM
BλN (t) if t ∈ TN , λN (t) ∈ inN ∩ outM
BλM(t) if t ∈ TM, λM(t) ∈ inM ∩ outN
λN (t)B if t ∈ TN , λN (t) ∈ inM ∩ outN
λM(t)B if t ∈ TM, λM(t) ∈ inN ∩ outM

– m0 is defined, for all p ∈ P , such that m0(p) = m0
N (p) if p ∈ PN ,

m0(p) = m0
M(p) if p ∈ PM, and m0(p) = 0 otherwise. ♦

Example 8. The composition of the two AIOPNs in Fig. 1a and Fig. 1b yields
the AIOPN shown in Fig. 1c.

We can now consider the class of all asynchronous I/O-transition systems
that are generated by asynchronous I/O-Petri nets and prove that this class is
closed under asynchronous composition. This is a consequence of the fact that the
generation of AIOTSs from AIOPNs commutes with asynchronous composition.
The proof of this theorem is technical, but straightforward.

Theorem 9. Let N and M be two composable AIOPN. Then it holds that
aiots(N ⊗pnM) = aiots(N)⊗ aiots(M) (upt to bijection between state spaces).

4 Channel Properties and Their Compositionality

In this section we consider various properties concerning the communication via
the channels of asynchronous I/O-transition systems. We give a classification of
the properties, show their relationships and prove compositionality of all channel
properties w.r.t. asynchronous composition. Examples will be discussed by Petri-
net representations.

4.1 Channel Properties

We consider two classes of channel properties and, additionally, channel bound-
edness. The first class deals with the requirements that messages sent to a com-
munication channel should also be consumed; the second class concerns the ter-
mination of communication in the sense that if consumption from a channel has
been stopped then also production on this channel must be stopped.

8

Some of the properties rely on the consideration of system runs. In principle
a system run is a maximal execution trace; it can be infinite but also finite if no
further actions are enabled. It is however important to note, that we deal with
open systems whose possible behaviors are also determined by the environment.
Hence, the definition of a system run must take into account the possibility
that the system may stop in a state where the environment does not serve any
offered input of the system while at the same time the system has no enabled
autonomous action, i.e. an action which is not an input from the environment.
Such states are called pure input states. Note that all possible communication
actions inside the system can be autonomously executed. The same holds for
output actions to the environment, since we are working with asynchronous
communication such that messages can always be sent, even if they are never
accepted by the environment. Formally, system runs are defined as follows.

Let S = (C,Σ,Q, q0,−→, val) be an AIOTS with Σ = in] out] com.
A state q ∈ Q is called a pure input state if Post(q,Σ \ in) = ∅, i.e. only inputs
are enabled. A pure input state is a potential deadlock, as the environment of S
might not serve any inputs for S. Let q1 ∈ Q. A run of S starting in q1 is a trace
of S starting in q1, that is either infinite or finite such that its last state is a pure
input state. We denote the set of all runs of S starting from q1 as runS(q1).

In the following we also assume that system runs are only executed in a run-
time infrastructure which follows a weakly fair scheduling policy. In our context
this means that any autonomous action a, that is always enabled from a certain
state on, will infinitley often be executed. Formally, a run ρ ∈ runS(q1) with

q1 ∈ Q, ρ = q1
a1−→ q2

a2−→ · · · , is called weakly fair if it is finite or if it is infinite
and for all a ∈ (Σ \ in) the following holds:

(∃k ≥ 1 . ∀i ≥ k . qi
a−→) =⇒ (∀k ≥ 1 . ∃i ≥ k . ai = a).

We denote the set of all weakly fair runs of S starting from q1 as wfrunS(q). It
should be noted that for our results (like compositionality later on) it is sufficient
to use weak fairness instead of strong fairness. This has the advantage that weak
fairness is decidable while strong fairness is not.

Example 10. Let S = aiots(N3) be the associated AIOTS of N3 in Fig. 1c. Recall
that the states of S are markings of N0; we use the following notation for a state
m of S: 〈m(p0),m(p1),m(msg),m(p2),m(p3)〉. The following are traces of S
from the initial marking 〈0, 1, 0, 1, 0〉:

ρ0 = 〈0, 1, 0, 1, 0〉

ρ1 = 〈0, 1, 0, 1, 0〉 in?−→ 〈1, 0, 0, 1, 0〉 msg
B

−→ 〈0, 1, 1, 1, 0〉
Bmsg−→ 〈0, 1, 0, 0, 1〉

ρ2 = 〈0, 1, 0, 1, 0〉 in?−→ 〈1, 0, 0, 1, 0〉 msg
B

−→ 〈0, 1, 1, 1, 0〉
Bmsg−→ 〈0, 1, 0, 0, 1〉 out!−→

〈0, 1, 0, 1, 0〉

Note that ρ0 and ρ2 are runs of S starting in the initial marking, while ρ1 is not

a run, as 〈0, 1, 0, 0, 1〉 out!−→. Now consider the run that is an infinite alternation
of in? and msgB. This run is not weakly fair, since Bmsg is always enabled but
never taken.

9

Our first class of channel properties deals with the consumption of previously
produced messages. We consider four groups of such properties (P1) - (P4) with
different strength. In each case we consider three variants which all are param-
eterized w.r.t. a subset B of the communication channels. For instance, (P1.a)
requires for each channel a ∈ B, that if in a reachable state q there is a message
available on a then the message can be consumed possibly after the execution of
some autonomous actions. To allow autonomous actions before consumption is
inspired by the property of weak compatibility studied for synchronously com-
posed transition systems in [3]. For the compositionality results later on, it will
be important that we only allow autonomous actions and no (open) inputs before
the consumption. Property (P1.b) requires that the message can be immediately
consumed which is a stronger requirement similar to the property of specified
reception in [5]. Property (P1.c) requires that the message will definitely be
consumed on each weakly fair run starting from q and, due to the definition of
a system run, that this will happen in any environment. The other groups of
properties (P2) - (P4) express successively stronger (or equivalent) requirements
on the kind of consumption. For instance, (P3) requires that the consumption
will lead to a state in which the channel is empty. Again we distinguish if this
can be achieved after some autonomous actions (P3.a), can be achieved imme-
diately (P3.b), or must be achieved in any weakly fair run (P3.c).

Definition 11 (Consumption requirements). Let S = (C,Σ,Q, q0,−→,
val) be an AIOTS with I/O-alphabet Σ = in] out] com and let B ⊆ C be
a subset of its channels.

P1: (Consuming)
a) S is B-consuming, if for all q ∈ Post∗(q0) and a ∈ B,

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . q′
Ba−→ .

b) S is strongly B-consuming, if for all q ∈ Post∗(q0) and a ∈ B,

val(q, a) > 0 =⇒ q
Ba−→ .

c) S is necessarily B-consuming, if for all q ∈ Post∗(q0) and a ∈ B,
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q) . Ba ∈ ρ .

P2: (Decreasing)
a) S is B-decreasing, if for all q ∈ Post∗(q0) and a ∈ B,

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, a) < val(q, a) .

b) S is strongly B-decreasing, if for all q ∈ Post∗(q0) and a ∈ B,
val(q, a) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, a) < val(q, a) .

c) S is necessarily B-decreasing, if for all q ∈ Post∗(q0) and a ∈ B,
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, a) < val(q, a) .

P3: (Emptying)
a) S is B-emptying, if for all q ∈ Post∗(q0) and a ∈ B,

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, a) = 0 .

b) S is strongly B-emptying, if for all q ∈ Post∗(q0) and a ∈ B,
val(q, a) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, a) = 0 .

10

c) S is B-necessarily emptying, if for all q ∈ Post∗(q0) and a ∈ B,
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, a) = 0 .

P4: (Wholly emptying)
a) S is B-wholly emptying, if for all q ∈ Post∗(q0),

val(q,B) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, B) = 0.

b) S is strongly B-wholly emptying, if for all q ∈ Post∗(q0),
val(q,B) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, B) = 0.

c) S is B-necessarily wholly emptying, if for all q ∈ Post∗(q0),
val(q,B) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, B) = 0 . ♦

Note if the initial state of S is reachable from all other reachable states, i.e. the
initial state is a home state, then S is B-wholly emptying.

The next class of channel properties concerns the termination of communi-
cation. We consider two variants: (P5.a) requires that in any weakly fair run, in
which consumption from a channel a has stopped, only finitely many subsequent
productions are possible, i.e. the channel is closed after a while. Property (P5.b)
expresses that the channel is immediately closed.

Definition 12 (Communication stopping). Let S be an AIOTS and B ⊆ C
be a subset of its channels.

P5: (Communication stopping)
a) S is B-communication stopping, if for all q ∈ Post∗(q0), ρ ∈ wfrunS(q)

and a ∈ B,]ρ(
Ba) = 0 =⇒]ρ(a

B) <∞ .

b) S is strongly B-communication stopping, if for all q ∈ Post∗(q0), ρ ∈
wfrunS(q) and a ∈ B,]ρ(

Ba) = 0 =⇒]ρ(a
B) = 0 . ♦

A standard property concerns boundedness of a channel which we do not
explicitely discuss here; all results presented in the following would also hold for
boundedness. It may be observed that channel boundedness implies communi-
cation stopping. Moreover, if S is strongly B-emptying then any channel a ∈ B
is bounded by 1, and if S is strongly B-wholly emptying then then the whole
channel set B is bounded by 1.

Let P be an arbitrary channel property as defined above. We say that an
AIOTS S has property P, if S has property P with respect to the set C of all
channels of S; we say that an AIOPN N has property P if its generated AIOTS
has property P.

4.2 Relationships Between Channel Properties

Tab. 1 shows relationships between the channel properties. All the downward
implications inside the boxes are direct consequences of the definitions. It is
trivial to see that downward implication 3 is an equivalence, since immediate
consumption leads to a decreasing valuation. Downward implications 9 and 16
are both equivalences, since repeated decreasing of messages on a channel will
eventually lead to an empty channel. The implications 4, 5 and 7 will be proved

11

b) c) a)

Strongly wholly emptying
4⇒ Necessarily wholly emptying

11⇒ Wholly emptying
⇓1 ⇓8 ⇓15

Strongly emptying
5⇒ Necessarily emptying

12⇒ Emptying
⇓2 m9 m16

Strongly decreasing
6

6⇒ Necessarily decreasing
13⇒ Decreasing

m3 ⇓10 ⇓17

Strongly consuming
7⇒ Necessarily consuming

14⇒ Consuming

⇓18

Strongly stopping
⇓19

Stopping

Table 1: Relationships between communication properties.

in Prop. 13, the implications 11-14 in Prop. 14, and implication 18 in Prop. 15.
In the propositions we assume given an AIOTS S = (C,Σ,Q, q0,−→, val) and
a subset B ⊆ C.

Proposition 13. If S is strongly B-wholly emptying (strongly B-emptying,
strongly B-consuming resp.), then S is necessarily B-wholly emptying (neces-
sarily B-emptying, necessarily B-consuming resp.).

Proof. We only prove that strongly consuming implies necessarily consuming.
The other implications are simple extensions of this proof. Let q ∈ Post∗(q0),
a ∈ B such that val(q, a) > 0, and let ρ ∈ runS(q) be a weakly fair run. Assume
for the contrary that Ba 6∈ ρ. By definition of AIOTS we get that for all q′ ∈ ρ,
val(q′, a),≥ val(q, a). By assumption S is strongly B-consuming, which implies

that q′
Ba−→ for all q′ ∈ ρ. This is a contradiction to ρ being a weakly fair run. ut

Proposition 14. If S is necessarily B-wholly emptying (necessarily
B-emptying, necessarily decreasing, necessarily B-consuming resp.), then S is
B-wholly emptying (B-emptying, B-decreasing, B-consuming resp.).

Proof. The proof relies on the fact that for each q ∈ Post∗(q0) there exists a
weakly fair run ρ ∈ wfrunS(q), such that for all a ∈ in, a 6∈ ρ. This run can be
constructed by choosing, in a weakly fair manner in each reached state, some
enabled non-input action. If no such action is enabled in the last visited state,
the last state is a pure input state and we are done. Otherwise the resulting
infinite run has the required property.

With this fact, we can prove the implication 14 in Tab. 1 as follows: Let
q ∈ Post∗(q0), a ∈ B such that val(q, a) > 0. By necessarily consuming, for all
ρ ∈ wfrunS(q) we have Ba ∈ ρ. Since we know there exists a weakly fair run ρ
without input actions, we get that there exists q′ ∈ Post∗(q,Σ \ in) such that

q′
Ba−→. The other implications are proven in the same way. ut

12

Proposition 15. If S is necessarily B-consuming then S is strongly B-stopping.

Proof. Assume the contrary, that S is not strongly B-stopping. This means that
there exists q ∈ Post∗(q0), a ∈ B and a weakly fair run ρ ∈ wfrunS(q) such that
]ρ(

Ba) = 0 and]ρ(a
B) > 0. Then there exists q′ ∈ ρ reached after q, such that

val(q′, a) > 0. Let ρ′ be the suffix of ρ starting from q′ which is weakly fair as
well. Since]ρ′(

Ba) = 0, S is not necessarily consuming. ut

Additionally we have that all properties in box b) of Tab. 1 imply the
strongest property in box a). In particular, if S is strongly B-consuming then S is
B-wholly emptying. This implication is true, since if S is strongly B-consuming
we can by repeated consumption empty all channels in B.

Let us now discuss some counterexamples. An obvious counterexample for
implication 6 and also for the converse of implication 2 is shown in Fig. 2a.
Fig. 2b shows a counterexample for implication 15. The net can empty each
single channel a and b but it can never have both channels empty at the same
time (after the first message has been produced on a channel). The reason is
that whenever a token is consumed from a then a new token will be produced
in b. Counterexamples for the converse directions of implications 10 and 17 rely
on the idea to produce twice while consuming once. A counterexample for the
converse of implication 18 is provided by a net that first produces a finite number
n of messages on a channel, then it consumes less than n of these messages
and then it stops. Counterexamples for the remaining converse implications are
straightforward to construct.

aB a Ba

(a) Counterexample 1.

aB

Bb

a

b

Ba

bB

2

2

(b) Counterexample 2.

Fig. 2: Counterexamples for non-implications in Tab 1

4.3 Compositionality of Channel Properties

Modular verification of systems is an important goal in any development method.
In our context this concerns the question whether channel properties are pre-
served in arbitrary environments or, more precisely, whether they are preserved
under asynchronous composition. In this section we show that indeed all channel
properties defined above are compositional.

In order to relate channel properties of asynchronous compositions to chan-
nel properties of their constituent parts we need the next two lemmas. The first

13

one shows that autonomous executions of constituent parts (not involving in-
puts) can be lifted to executions of compositions. This is the crucial essence to
prove compositionality of the properties of type (a) in Def. 11 since they rely on
autonomously reachable states.4

Lemma 16. Let S = (CS , ΣS , QS , q
0
S ,−→S , valS), T = (CT , ΣT , QT , q

0
T ,−→T ,

valT) be two composable AIOTSs, and let S ⊗ T = (C,Σ,Q, q0,−→, val). For
all (qS , qT ,v) ∈ Post∗(q0) and σ ∈ ((ΣS)τ \ inS)∗ it holds that

qS
σ−→S q′S =⇒ ∃v′ . (qS , qT ,v)

σ̄−→ (q′S , qT ,v
′),

with σ̄ ∈ (Σ \ in)∗ obtained from σ by replacing any occurrence of a shared label
a ∈ outS ∩ inT by the communication label aB.

Proof. Obviously it is sufficient to show the claim for an arbitrary a ∈ (ΣS \ inS).
The general result then follows by induction on the length of σ.

1. a ∈ outS ∩ inT : By rule (3.1) in Def. 3 it follows that there exists v′ such

that qS
a−→S q′S =⇒ (qS , qT ,v)

aB−→ (q′S , qT ,v
′).

2. a 6∈ outS ∩ inT : There are two subcases, either a ∈ comS , or a ∈ outS \ inT .
In both cases we get from rule (1) in Def. 3,

qS
a−→S q′S =⇒ (qS , qT ,v)

a−→ (q′S , qT ,v). ut

The second lemma shows that the projection of a weakly fair run of a com-
position to a constituent part yields a weakly fair run of the constituent. This
is crucial to prove compositionality of the properties of type (c) in Def. 11 and
the stopping properties in Def. 12 since they rely on weakly fair runs.

Lemma 17. Let S, T be two composable AIOTSs, and S ⊗ T = (C,Σ,Q, q0,
−→, val). Let q = (qS , qT ,v) ∈ Q and ρ ∈ wfrunS⊗T (q) be a weakly fair run.
Then ρ|S ∈ wfrunS(qS), is a weakly fair run.

Proof. Since ρ is weakly fair, it is straightforward to show that ρ|S is weakly
fair as well. It remains to prove that ρ|S ∈ runS(qS). There are two main cases.
Either ρ is finite or infinite.

Assume ρ is finite with its last state being q′ = (q′S , q
′
T ,v

′). Clearly q′S must
be the last state of ρ|S . By definition of a run, q′ is a pure input state. Then q′S
must be a pure input state of S, hence ρ|S ∈ runS(qS).

Now assume that ρ is infinite and weakly fair. In this case there are two
subcases. Either ρ|S is finite or infinite. If ρ|S is infinite, then ρ|S ∈ runS(qS).

Assume ρ|S is finite such that its last state is q′S , with (q′S , q
′
T ,v

′) ∈ ρ. Since
ρ is weakly fair we can prove that q′S is a pure input state as follows: Assume the
contrary, that q′S is not a pure input state, i.e. there exists a ∈ (Σ \ in) such that

q′S
a−→. As ρ is infinite we get that a is enabled always from (q′S , q

′
T ,v

′) ∈ ρ,

4 This also justifies why we did not allow inputs in the properties of type (a) in Def. 11.
In fact for any input action a of a single AIOTS there is always an environment
which will not serve the input and therefore a will not induce a transition with
communication label Ba in any composition.

14

which is a contradiction, since ρ is fair and a is not occurring infinitely often
after (q′S , q

′
T ,v

′) ∈ ρ as ρ|S is finite. Now, knowing that q′S is a pure input state,
we get that ρ|S ∈ runS(qS). ut

Theorem 18 (Compositionality). Let S and T be two composable AIOTSs
with CS being the set of channels of S. Let B ⊆ CS and let P be an arbitrary
channel property as defined in Sec. 4.1. If S has property P with respect to the
channels B, then S ⊗ T has property P with respect to the channels B.

Proof. We split the proof into two parts: consumption requirement properties
and communication stopping properties.

Consumption requirement properties: We only provide a proof for the
properties (P1.a),(P1.b) and (P1.c) here. The full proof can be found in ap-
pendix A.

Let S = (CS , ΣS , QS , q
0
S ,−→S , valS), T = (CT , ΣT , QT , q

0
T ,−→T , valT),

S ⊗T = (C,Σ,Q, q0,−→, val) with ΣS = inS] outS] comS and Σ = in] out]
com. Let (qS , qT ,v) ∈ Post∗(q0) and a ∈ B, such that val((qS , qT ,v), a) > 0.

P1.a: Assume that S is B-consuming. Obviously qS ∈ Post∗(q0
S). By assump-

tion there exists q′S ∈ Post∗(qS , (ΣS)τ \ inS) such that q′S
Ba−→S . As a di-

rect consequence of Lem. 16, we get there exists v′ such that (q′S , qT ,v
′) ∈

Post∗((qS , qT ,v), Σ \ in), and by definition of ⊗ we get (q′S , qT ,v
′)

Ba−→.

P1.b: Assume that S is strongly B-consuming. We get by assumption that qS
Ba−→.

By definition of ⊗ this means that (qS , qT ,v)
Ba−→.

P1.c: Assume that S is necessarily B-comsuming. Let ρ ∈ wfrunS⊗T (qS , qT ,v) be
a weakly fair run. By Lem. 17 we get that ρ|S is a weakly fair run of S. By
assumption Ba ∈ ρ|S , hence it follows that Ba ∈ ρ.

Communication stopping properties: We will only prove the claim for prop-
erty (P5.a), it can be proven analogously for (P5.b). Let S ⊗ T = (C,Σ,Q, q0,
−→, val), (qS , qT ,v) ∈ Post∗(q0), a ∈ B and ρ ∈ wfrunS⊗T (qS , qT ,v), such that
]ρ(

Ba) = 0. By Lem. 17 we get that ρ|S ∈ wfrunS(qS). By assumption S is
B-stopping, thus]ρ|S (aB) <∞. Finally as aB is triggered by S in S ⊗T , we get
that]ρ(a

B) <∞.

As a consequence of Thm. 18 we get the desired modular verification result:
In order to prove that a composition S ⊗ T has a channel property P , i.e. P
holds for all channels of the composition, it is sufficient to prove that S and T
have property P for all their channels and to prove that S ⊗ T has property P
with respect to the new channels corresponding to the shared labels ΣS ∩ΣT .

5 Decidability Issues

We begin this section by recalling some information related to semi-linear sets
and decision procedures in Petri nets that we use in our proofs.

15

Let E ⊆ Nk, E is a linear set if there exists a finite set of vectors of Nk
{v0, . . . , vn} such that E = {v0 +

∑
1≤i≤n λivi | ∀i λi ∈ N}. A semi-linear

set [10] is a finite union of linear sets; a representation of it is given by the
family of finite sets of vectors defining the corresponding linear sets. Semi-linear
sets are effectively closed w.r.t. union, intersection and complementation. This
means that one can compute a representation of the union, intersection and
complementation starting from a representation of the original semi-linear sets.
E is an upward closed set if ∀v ∈ E. v′ ≥ v ⇒ v′ ∈ E. An upward closed set
has a finite set of minimal vectors denoted min(E). An upward closed set is a
semi-linear set which has a representation that can be derived from the equation
E = min(E) + Nk if min(E) is computable.

Given a Petri net N and a marking m, the reachability problem consists in
deciding whether m is reachable from m0 in N . This problem is decidable [13]
but none of the associated algorithms are primitive recursive. Furthermore this
procedure can be adapted to semi-linear sets when markings are identified to
vectors of N|P |. Based on reachability analysis, the authors of [9] design an
algorithm that decides whether a marking m is a home state, i.e. m is reachable
from any reachable marking. A more general problem is in fact decidable: given
a subset of places P ′ and a (sub)marking m on this subset, is it possible from
any reachable marking to reach a marking that coincides on P ′ with m?

In [14], the coverability and the boundedness problems are shown to be
EXPSPACE-complete. The coverability problem consists in determining, given
a net and a target marking, whether one can reach a marking greater or equal
than the target. The boundedness problem consists in determining whether there
exists a bound for every reachable marking of every place. This procedure can
be adapted to check boundedness for a subset of places. In [19] given a Petri net,
several procedures have been designed to compute the minimal set of markings
of several interesting upward closed sets. In particular, given an upward closed
set Target, by a backward analysis one can compute the (representation of)
upward closed set from which Target is reachable. Using the results of [14], this
algorithm performs in EXPSPACE.

While in Petri nets, strong fairness is undecidable [6], weak fairness is decid-
able and more generally, the existence of an infinite sequence fulfilling a formula
of the following fragment of LTL is decidable [12]. The literals are (1) compar-
isons between places markings and values, (2) transition firings and, (3) their
negations. Formulas are inductively defined as literals, conjunction or disjunc-
tion of formulas and GFϕ where GF is the infinitely often operator and ϕ is a
formula.

The next theorem establishes the decidability of the strong properties of type
(b) of Def. 11. Observe that their proofs given in Appendix B are closely related
and that they rely on the decidability of reachability and coverability problems.

Theorem 19. The following problems are decidable for AIOPNs: Is an AIOPN
N strongly B-consuming, strongly B-decreasing, strongly B-emptying, strongly
B-wholly emptying?

16

The next theorem establishes the decidability of the properties of type (a)
of Def. 11. Observe that their proofs rely on (1) the effectiveness of backward
analysis for upward closed marking sets (2) the decidability of reachability and
home space problems and, (3) appropriate transformations of the net.

Theorem 20. The following problems are decidable for AIOPNs: Is an AIOPN
N B-consuming, B-decreasing, B-emptying, B-wholly emptying?

Proof.
B-consuming. Given an AIOPN N and B a subset of its channels, one decides
whether N is B-consuming as follows.

Let a ∈ B and Ea be the upward closed set of markings defined by:
Ea = {m | ∃t ∈ T with λ(t) = Ba and m ≥W−(t)}

Ea is the set of markings from which one can immediately consume some mes-
sage a. Let Fa be the upward closed set of markings defined by:

Fa = {m | ∃m′ ∈ Ea ∃σ ∈ T ∗. λ(σ) ∈ (Σ \ in)∗ ∧m σ−→ m′}
Fa is the set of markings from which one can later (without the help of the en-
vironment) consume some message a. One computes Fa by backward analysis.
Let G be defined by: G = {m | ∃a ∈ B. m(a) > 0 ∧m /∈ Fa}
G is a semi-linear set corresponding to the markings from which some message
a ∈ B will never be consumed. Then N is not B-consuming iff G is reachable.

B-emptying (and B-decreasing). Given an AIOPN N and B a subset of its
channels, one decides whether N is B-emptying as follows. First one builds a
net N ′:
– P ′ = P] {run}
– T ′ = T] {stop}
– ∀p ∈ P ∀t ∈ T W ′−(p, t) = W−(p, t),W ′+(p, t) = W+(p, t), m′0(p) = m0(p)
– W ′−(run, stop) = 1,, W ′+(run, stop) = 0, m′0(run) = 1
– ∀p ∈ P W ′−(p, stop) = W ′+(p, stop) = 0
– ∀t ∈ T such that λ(t) ∈ in W ′−(run, t) = W ′+(run, t) = 1
– ∀t ∈ T such that λ(t) /∈ in W ′−(run, t) = W ′+(run, t) = 0
N ′ behaves as N as long as stop is not fired. When stop is fired only transitions
not labelled by inputs are fireable. Thus N is B-emptying iff for all a ∈ B the
set of markings Za = {m | m(a) = 0} is a home space for N ′.
B-wholly emptying. Using the same construction N is B-weakly wholly emp-
tying if ZB = {m | m(B) = 0} is a home space for N ′.

ut

The next theorem establishes the decidability of the necessarily properties of
type (c) of Def. 11. Observe that their proofs rely on (1) the proofs of ordinary
properties (2) on the decidability of the logic expressing weak fairness and, (3)
on appropriate transformations of the net.

Theorem 21. The following problems are decidable for AIOPNs: Is an AIOPN
N necessarily B-consuming, necessarily B-decreasing, necessarily B-emptying,
necessarily B-wholly emptying?

17

Proof.
Necessarily B-consuming. Given an AIOPNN and B a subset of its channels,
one decides whether N is necessarily B-consuming as follows.
First one checks whether N is B-consuming, a necessary condition for being
necessarily B-consuming. If N is B-consuming, then one checks whether for
some a ∈ B, there exists a reachable marking m fulfilling m(a) > 0 from which
an infinite sequence is fireable without occurrence of transitions labelled by Ba.
To perform this test, one builds a net N ′ as follows.
– P ′ = P] {run}
– T ′ = T] {stop}
– ∀p ∈ P ∀t ∈ T W ′−(p, t) = W−(p, t),W ′+(p, t) = W+(p, t), m′0(p) = m0(p)
– W ′−(run, stop) = 1,, W ′+(run, stop) = 0, m′0(run) = 1
– W ′−(a, stop) = W ′+(a, stop) = 1
– ∀p ∈ P \ {a} W ′−(p, stop) = W ′+(p, stop) = 0
– ∀t ∈ T such that λ(t) = Ba W ′−(run, t) = W ′+(run, t) = 1
– ∀t ∈ T such that λ(t) 6= Ba W ′−(run, t) = W ′+(run, t) = 0
N ′ behaves as N as long as stop is not fired. Transition stop can be fired only
if m(a) > 0. When stop is fired only transitions not labelled by Ba are fireable.
Then one checks whether there exists an infinite weakly fair sequence that fulfills
formula GFrun = 0 (witnessing the firing of stop) in N ′. Then N is necessarily
B-consuming iff there is no such sequence.

Necessarily B-emptying (and B-decreasing). Given an AIOPN N and B
a subset of its channels, one decides whether N is necessarily B-emptying as
follows.
First one checks whether N is B-emptying, a necessary condition for being nec-
essarily B-emptying. If N is B-emptying, then one checks whether for some
a ∈ B, there exists a reachable marking m from which an infinite sequence is
fireable such that for every marking m′ visited, m′(a) > 0. To perform this test,
one builds a net N ′ as follows.
– P ′ = P] {run}
– T ′ = T] {stop} with λ(stop) = stop
– ∀p ∈ P ∀t ∈ T W ′−(p, t) = W−(p, t),W ′+(p, t) = W+(p, t), m′0(p) = m0(p)
– W ′−(run, stop) = 1, W ′+(run, stop) = 0, m′0(run) = 1,
– W ′−(a, stop) = 1, W ′+(a, stop) = 0
– ∀p ∈ P \ {a} W ′−(p, stop) = W ′+(p, stop) = 0
– ∀t ∈ T W ′−(run, t) = W ′+(run, t) = 0
N ′ behaves as N as long as stop is not fired. Transition stop can be fired only if
m(a) > 0 and it consumes one token of a. Transition stop can be fired only once
due to place run. Then one checks whether there exists an infinite weakly fair
sequence that fulfills formula GFrun = 0 (witnessing the firing of stop) in N ′.
Then N is necessarily B-emptying iff there is no such sequence. Indeed there is
an infinite infinite weakly fair sequence in N ′ after the firing of stop iff from some
marking m in N , there is an infinite weakly fair sequence where the marking of
a is never null from some state.

Necessarily B-wholly emptying. Given an AIOPN N and B a subset of its
channels, one decides whether N is necessarily B-wholly emptying as follows.

18

First one checks whether N is B-wholly emptying, a necessary condition for
being necessarily B-wholly emptying. IfN is B-wholly emptying, then one checks
whether there exists a reachable marking m from which an infinite sequence is
fireable such that for every marking m′ visited, m′(B) > 0. To perform this test,
one builds a net N ′ as follows.

– P ′ = P] {run,B}
– T ′ = T] {stop} with λ(stop) = stop

– ∀p ∈ P ∀t ∈ T W ′−(p, t) = W−(p, t),W ′+(p, t) = W+(p, t), m′0(p) = m0(p)

– ∀t ∈ T W ′−(B, t) =
∑
a∈BW

−(a, t),
W ′+(B, t) =

∑
a∈BW

+(a, t), m′0(B) = 0

– W ′−(run, stop) = 1, W ′+(run, stop) = 0, m′0(run) = 1,

– W ′−(B, stop) = 1, W ′+(B, stop) = 0

– ∀p ∈ P W ′−(p, stop) = W ′+(p, stop) = 0

– ∀t ∈ T W ′−(run, t) = W ′+(run, t) = 0

In N ′ there is an additional place B containing the sum of tokens of places a ∈ B
whose management is straightforward. As in the previous constructions, there
is a control transition stop that modifies the behaviour of N . As long as stop
is not fired, N ′ behaves as N . In order to fire stop (which can be done only
once), B is decreased. Then one checks whether there exists an infinite weakly
fair sequence that fulfills formula GFrun = 0 (witnessing the firing of stop) in
N ′. N is necessarily B-wholly emptying iff there is no such sequence. ut

The next theorem, whose proof is given in Appendix B, establishes the de-
cidability of the communication stopping properties.

Theorem 22. The following problems are decidable for AIOPNs: Is an AIOPN
N B-stopping, B-strongly stopping?

6 Conclusion and Future Work

We have introduced asynchronously composed I/O-transition systems and stud-
ied various properties of communication channels. Useful links between the chan-
nel properties are established and we have shown that all channel properties are
compositional. When AIOPNs are generated by asynchronous I/O-Petri nets we
have proved that all channel properties are decidable.

This work can be extended in at least three directions. The first direction
would introduce new operations on AIOTS, like hiding, which would allow to
design component systems in a hierarchical way by encapsulating subsystems.
The second direction concerns more general communication schemes like broad-
casting. Finally, we want to establish conditions for the preservation of channel
properties along the “vertical axis” namely by refinement, in particular within
the framework of modal Petri nets as considered in [8].

19

References

1. L. de Alfaro, T. A. Henzinger. Interface-based Design Engineering Theories
of Software-intensive Systems, NATO Science Series: Mathematics, Physics, and
Chemistry, Vol. 195, Springer, pp. 83-104, 2005.

2. S. Basu, T. Bultan, M. Ouederni. Synchronizability for verification of asyn-
chronously communicating systems. Proc. of the 13th Int. Conf. on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2012), LNCS 7148, 56-71,
2012.

3. S. Bauer and P. Mayer and A. Schroeder and R. Hennicker. On weak modal
compatibility, refinement, and the MIO workbench. In Proc. 16th Int. Conf. Tools
and Algor. for the Constr. and Analysis of Systems (TACAS’10), vol. 6015 of
LNCS, pages 175–189, Springer, 2010.

4. E. Best, R. Devillers, M. Koutny. Petri Net Algebra. Springer Monographs in
Theoretical Computer Science, 2001.

5. D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM,
volume 30(2), pages 323–342,1983.

6. H. Carstensen. Decidability questions for fairness in Petri nets. 4th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), LNCS 247, 396-407,
1987.

7. G. Cécé and A. Finkel. Verification of programs with half-duplex communication.
Information and Computation, 202(2): 166-190, 2005.

8. D. Elhog-Benzina, S. Haddad and R. Hennicker. Refinement and asynchronous
composition of modal Petri nets. In Transactions on Petri Nets and Other Models
of Concurrency, V, LNCS 6900, 96-120, 2012.

9. D. Frutos and C. Johnen. Decidability of home space property. LRI, report 503,
1989.

10. S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages.
Pacific Journal of Mathematics, 16(2) pages 285–296, 1966.

11. L. Gomes, J.P. Barros. Structuring and composability issues in Petri Nets model-
ing. IEEE Transactions on Industrial Informatics 1(2), 112123, 2005.

12. P. Jancar. Decidability of a temporal logic problem for Petri nets. Theor. Comput.
Sci., 74(1): 71-93, 1990.

13. E. Mayr. An algorithm for the general Petri net reachability problem. In Proc.
of the 13th Annual ACM Symposium on Theory of Computing (STOC’81) pages
238–246, 1981.

14. C. Rackoff. The covering and boundedness problems for vector addition systems.
TCS, 6: 223-231, 1978.

15. W. Reisig. Simple composition of nets. 30th Int. Conf. on Applications and Theory
of Petri Nets, LNCS 5606, 23-42, 2009.

16. Y. Souissi. On liveness preservation by composition of nets via a set of places. 11th
Int. Conf. on Applications and Theory of Petri Nets, LNCS 524, 277-295, 1990.

17. Y. Souissi, G. Memmi. Composition of nets via a communication medium. 10th
Int. Conf. on Applications and Theory of Petri Nets, LNCS 483, 457-470, 1989.

18. C. Stahl, K. Wolf. Deciding service composition and substitutability using extended
operating guidelines. Data Knowl. Eng., 68(9): 819-833, 2009.

19. R. Valk, M. Jantzen. The residue of vector sets with applications to decidability
problems in Petri nets Advances in Petri Nets 1984, LNCS volume 188 pages
234–258, 1984.

20

A Additional Compositionality Proofs

Proof. (of Theorem 18)
Let S = (CS , ΣS , QS , q

0
S ,−→S , valS), T = (CT , ΣT , QT , q

0
T ,−→T , valT), S ⊗

T = (C,Σ,Q, q0,−→, val) with ΣS = inS]outS]comS and Σ = in]out]com.
We split this proof into the following three parts, non-necessarily channel prop-
erties, necessarily channel properties, and communication stopping properties.

Non-necessarily channel properties: Before we prove each case we state two
simple consequences of Lem. 16: For all (qS , qT ,v) ∈ Post∗(q0) and q′S ∈ QS ,

(1) q′S ∈ Post∗(qS , (ΣS)τ \ inS)⇒ ∃v′.(q′S , qT ,v
′) ∈ Post∗((qS , qT ,v), Σ \ in)

(2) q′S ∈ Post(qS , (ΣS)τ \ inS) ⇒ ∃v′.(q′S , qT ,v
′) ∈ Post((qS , qT ,v), Σ \ in)

P1: Assume that S is B-consuming, and let (qS , qT ,v) ∈ Post∗(q0) and a ∈ B
such that val((qS , qT ,v), a) > 0. Obviously qS ∈ Post∗(q0

S). By assumption

there exists q′S ∈ Post∗(qS , (ΣS)τ \inS) such that q′S
Ba−→S . By (1) above there

exists v′ such that (q′S , qT ,v
′) ∈ Post∗((qS , qT ,v), Σ \ in), and by definition

of ⊗ we get (q′S , qT ,v
′)

Ba−→.

If S is strongly B-consuming, we get by assumption that qS
Ba−→. By defini-

tion of ⊗ this means that (qS , qT ,v)
Ba−→.

P2: Assume that S is B-decreasing, and let (qS , qT ,v) ∈ Post∗(q0) and a ∈ B
such that val((qS , qT ,v), a) > 0. Then qS ∈ Post∗(q0

S). By assumption there
exists q′S ∈ Post∗(qS , (ΣS)τ \ inS) such that valS(q′S , a) < valS(qS , a). By
(1) there exists v′ such that (q′S , qT ,v

′) ∈ Post∗((qS , qT ,v), Σ \ in). Finally
as a ∈ CS and valS(q′S , a) < valS(qS , a) we get that val((q′S , qT ,v

′), a) <
val((qS , qT ,v), a).
If S is strongly B-decreasing the claim follows by the same reasoning using
(2) from above.

P3: The proof is totally analogous to the case P2.
P4: Assume that S is B-wholly emptying, and let (qS , qT ,v) ∈ Post∗(q0) such

that val((qS , qT ,v), B) > 0. Then qS ∈ Post∗(q0
S). By assumption there

exists q′S ∈ Post∗(qS , (ΣS)τ \ inS) such that valS(q′S , B) = 0. By (1) there
exists v′ such that (q′S , qT ,v

′) ∈ Post∗((qS , qT ,v), Σ \ in). Finally as B ⊆ CS
we get that val((q′S , qT ,v

′), B) = valS(q′S , B) = 0.
If S is strongly B-wholly emptying the claim follows by the same reasoning
using (2) from above.

Necessarily channel properties: We will only prove the claim for property
(P1.c), as it can be proven analogously for the other necessarily properties.

Let S ⊗ T = (C,Σ,Q, q0,−→, val), (qS , qT ,v) ∈ Post∗(q0) and a ∈ B, such
that val((qS , qT ,v), a) > 0. Let ρ ∈ wfrunS⊗T ((qS , qT ,v)) be weakly fair.

By Lem. 17 we get that ρ|S is a weak fair run of S. By assumption Ba ∈ ρ|S ,
hence it follows that Ba ∈ ρ. ut
Stopping properties: We will only prove the claim for property (P5.a), it can
be proven analogously for (P5.b).

21

Let S ⊗ T = (C,Σ,Q, q0,−→, val), (qS , qT ,v) ∈ Post∗(q0), a ∈ B and
ρ ∈ wfrunS⊗T ((qS , qT ,v)), such that]ρ(

Ba) = 0.
By Lem. 17 we get that ρ|S ∈ wfrunS(qS). By assumption S is B-stopping,

thus]ρ|S (aB) < ∞. Finally as aB is triggered by S in S ⊗ T , we get that
]ρ(a

B) <∞.

B Additional Decidability Proofs

Proof. (of Theorem 19)
Strongly B-consuming (and strongly B-decreasing). Given an AIOPN N
and B a subset of its channels, one decides whether N is B-strongly consuming
as follows. Let E be the set of markings defined by:

E = {m | ∃a ∈ B m(a) > 0 and ∀t ∈ T with λ(t) = Ba m 6≥W−(t)}
N is B-strongly consuming iff E is not reachable. Since E is a semi-linear set,
its reachability is decidable.

Strongly B-emptying. Given an AIOPN N and B a subset of its channels,
one decides whether N is B-strongly emptying as follows.

First by coverability analysis, one decides whether the following upward closed
subset is reachable.

E = {m | ∃a ∈ B m(a) > 1}
If E is reachable then N is not B-strongly emptying. Otherwise one checks
whether N is B-strongly consuming in order to decide.

Strongly B-wholly emptying. Given an AIOPN N and B a subset of its
channels, one decides whether N is B-strongly wholly emptying as follows.

First by coverability analysis, one decides whether the following upward closed
subset is reachable.

E = {m | m(B) > 1}
If E is reachable then N is not B-strongly wholly emptying. Otherwise one
checks whether N is B-strongly consuming in order to decide. ut

Proof. (of Theorem 22)
B-stopping. Given an AIOPN N and B a subset of its channels, one decides
whether N is B-stopping as follows. Observe that this property is expressed by
the event-based LTL formula ϕ =

∧
a∈B GFa

B ⇒ GF Ba. By definition, this
property is satisfied for finite runs. However ¬ϕ is not a formula of the fragment
of [12]. In order to check whether there exists a weakly fair infinite sequence
falsifying this formula one builds net Na as follows.
– P ′ = P] {run}
– T ′ = T] {stop}
– ∀p ∈ P ∀t ∈ T W ′−(p, t) = W−(p, t),W ′+(p, t) = W+(p, t), m′0(p) = m0(p)
– W ′−(run, stop) = 1,, W ′+(run, stop) = 0, m′0(run) = 1
– ∀p ∈ P W ′−(p, stop) = W ′+(p, stop) = 0
– ∀t ∈ T such that λ(t) = Ba W ′−(run, t) = W ′+(run, t) = 1
– ∀t ∈ T such that λ(t) 6= Ba W ′−(run, t) = W ′+(run, t) = 0

22

Na behaves as N as long as stop is not fired. Transition stop can be fired only
once. When stop is fired only transitions not labelled by Ba are fireable. Then one
checks whether there exists an infinite weakly fair sequence that fulfills formula
GFrun = 0 ∧GFaB in N ′. Then N is B-stopping iff there is no such sequence
in any Na.

B-strongly stopping. Given an AIOPN N and B a subset of its channels, one
decides whether N is necessarily B-strongly stopping as follows.

For all a ∈ B, one builds a net Na starting from N . Since the formal specification
of Na is cumbersome, one describes it in words.
– Na has two additional places run and wit, with m′0(run) = 1, m′0(wit) = 0.
– Place run loops around all transitions labelled by Ba.
– Every transition t labelled by aB has a copy t′ with the same inputs and

outputs, plus an additional input run and an additional output wit.
Na behaves as N until a transition t′ is fired. This firing is possible only once.
Once a transition t′ is fired place wit is marked and transitions labelled by Ba
are no more fireable. Define the semi-linear set Ea by:

Ea = {m | m(wit) = 1 ∧ ∀t ∈ T λ(t) /∈ in m 6≥W−(t)}
Observe that a marking of Ea is a pure input marking of the original net (i.e.
when restricted to P) that has been reached by a finite sequence when an oc-
currence of aB has not been followed later by an occurrence of Ba.

So N is strongly B-stopping iff for all a ∈ B, in Na there does not exist
an infinite weakly fair sequence fulfilling GFrun = 0 (witnessing a bad weakly
fair infinite sequence in N) and Ea is not reachable (witnessing a bad maximal
sequence in N). ut

23

