
© The British Computer Society 2013. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 25 December 2013 doi:10.1093/comjnl/bxt134

Computing Optimal Repair Strategies by
Means of NdRFT Modeling and

Analysis

Marco Beccuti
1∗

, Giuliana Franceschinis
2
, Daniele Codetta-Raiteri

2
and

Serge Haddad
3

1Dipartimento di Informatica, Università di Torino, Turin, Italy
2Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy

3Laboratoire Spécification et Vérification, École Normale Supérieure de Cachan, Cachan, France
∗Corresponding author: beccuti@di.unito.it

In this paper, the Non-deterministic Repairable Fault Tree (NdRFT) formalism is proposed: it allows
the modeling of failures of complex systems in addition to their repair processes. Its originality with
respect to other Fault Tree extensions allows us to address repair strategy optimization problems: in
an NdRFT model, the decision as to whether to start or not a given repair action is non-deterministic,
so that all the possibilities are left open. The formalism is rather powerful, it allows: the specification
of self-revealing events, the representation of components degradation, the choice among local repair,
global repair, preventive maintenance, and the specification of the resources needed to start a repair
action. The optimal repair strategy with respect to some relevant system state function, e.g. system
unavailability, can then be computed by solving an optimization problem on a Markov Decision
Process derived from the NdRFT. Such derivation is obtained by converting the NdRFT model into
an intermediate formalism called Markov Decision Petri Net (MDPN). In the paper, the NdRFT
syntax and semantics are formally described, together with the conversion rules to derive from the
NdRFT the corresponding MDPN model. The application of NdRFT is illustrated through examples.

Keywords: fault tree; optimal repair strategy; Markov decision process; Markov Decision Petri Net

Received 21 February 2013; revised 9 September 2013
Handling editor: Ing-Ray Chen

1. INTRODUCTION

Fault Trees (FTs) [1] are a well-known formalism for the eval-
uation of the dependability of complex systems. They provide
an intuitive representation of the system in terms of their fail-
ures, modeling how the combinations of failure events relative
to the components of systems can cause the failures of the sub-
systems or of the whole system. A typical measure computable
by means of FTs is system reliability as a function of time.

Many extensions of this formalism have been proposed to
enhance the features of FT for the design and the assessment
of systems (e.g. Dynamic FT [2], Parametric FT [3], etc.). One
of these extensions, the repairable FT (RFT) [4], was presented
to evaluate the effect of different repair policies on a repairable
system.

In [5], we presented a new FT extension, called Non-
deterministic Repairable Fault Tree (NdRFT), which has been

designed to define and solve repair strategy optimization
problems. In an NdRFT model the possible repair strategies are
not predefined; on the contrary, the best strategy minimizing
the failure probability of the global system or, more generally,
optimizing some function of the system state is automatically
computed. This is done by defining the NdRFT semantics
in terms of a Markov Decision Process (MDP), a formalism
embedding non-deterministic and probabilistic behavior [6],
and then solving the optimization problem using the methods
available for MDPs. The generation of the MDP is achieved
by an intermediate translation of the NdRFT model into a
Markov Decision Petri Net (MDPN) [7]: this allows us to reuse
the efficient algorithms devised to derive an MDP from an
MDPN. A direct translation from NdRFT to MDP requires the
implementation of a mechanism to combine the failure/repair
events of all components into a single complex transition or

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1871

FIGURE 1. The NdRFT model of the AHRS.

action: this comes for free if the MDPN analysis algorithms
are used. Moreover, the compositional translation technique
proposed is modular, and it allows us to perform refinements
locally in the translation without the need to adjust the MDP
generation algorithm accordingly: this opens the way to several
interesting extensions mentioned in the paper.

The NdRFT formalism expresses in an elegant way several
possible start repair options that are based on the possibility
for events to be self-revealing or not (only self-revealing events
detection can trigger a repair process) and, on the notion of
local versus global repair, to account for the possibility of
repairing single components or whole subsystems. The repair
of each component can start as a consequence of the detection
of different events according to cost considerations and under
the constraint of availability of the required resources.

The NdRFT allows the modeler to express in a familiar
language (NdRFT extends FT) which events may cause the
system to fail and the repair options in the system; in this way, it
avoids dealing with a larger, unstructured and state-level MDP
model, which is instead automatically derived from the NdRFT.

This paper completes and extends the results presented in [5]
by including a proof of correctness for the proposed approach
and by presenting a new feature which allows the user to
model degradation and preventive maintenance. Moreover, a
discussion on how to improve NdRFT solution efficiency and a
new case study are added. It is structured as follows: Section 2
presents some related work concerning FT extensions and
analysis methods and tools; in Section 3 the formal definition
of the NdRFT syntax and its MDP semantics is provided;
Section 4 explains the rules for deriving from an NdRFT model
the corresponding MDPN; in the same section some efficiency
issues of the proposed solution method are discussed. A new
extension allowing the user to model degradation and preventive

maintenance of the system components is reported in Section 5.
Two examples of application are presented in Section 6. Finally,
in Appendix the correctness of the translation rules is proved.

2. RELATED WORK

Fault Trees. An FT is a Directed Acyclic Graph (DAG) with two
types of nodes: events and gates. An example is shown in Fig. 1
(disregarding node annotations). Events represent the failure of
components, subsystems or the system. We consider an event
as a Boolean variable: it is initially false and it becomes true
when the failure occurs. The events graphically represented as a
rectangle with an attached circle are called Basic Events (BEs)
and model the failure of the components of the system; such
events are stochastic, and so their occurrence is ruled by some
probability distribution. The event nodes depicted as rectangles
represent the failure of subsystems; we call them Internal Events
(IEs). Gates are connected by means of arcs to several input
(basic or internal) events and to a unique (internal) output event;
the effect of a gate is the propagation of the failure to its output
event if a particular combination of its input events occurs. In
the standard version of the FT formalism, three types of gates
are present and correspond to the AND, OR and ‘K out of N’
Boolean functions. Finally, we have a unique event called Top
Event (TE), modeling a failure of the whole system. The FT
corresponds to a Boolean formula expressing the TE truth value
as a function of its variables (BEs).

The analysis of an FT model allows the user to compute
several dependability measures such as the system reliability,
system minimal cut-sets, mean time to failure and criticality of
each component [1]; in particular, the system reliability at time
t is the probability that the system has been working in the time

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1872 M. Beccuti et al.

interval (0, t). The most efficient way to perform the analysis
of an FT consists in generating the Binary Decision Diagram
(BDD) [8] representing the same Boolean formula expressed by
the FT and computing some FT dependability measures on it.

Extending FT with repair processes. In the literature several
tools and formalisms have been proposed to extend FT with
repair processes. For instance Stars Studio and ASTRA [9]
extend the FT formalism by modeling the repair of single
components (BEs). Usually the modeler can associate with a
BE, in addition to the failure rate, also the repair time or the rate
of the component. The behavior of the component is equivalent
to a Continuous Time Markov Chain (CTMC) [10] with two
states: working and failed. The repair process is triggered by the
component failure and has effect only on the same component.

The SHARPE tool [10] allows hierarchical modeling: the
probability of a BE to occur is set equal to some measure
computed on another kind of model, for instance a CTMC or
a Generalized Stochastic Petri Net (GSPN) [11] defined by the
user. In this way, the failure and repair mode of a component
may be more complex than a simple transition from the working
state to the failure state and vice versa.

The HIMAP tool [12] deals with FTs including repairs,
according to two approaches [13]: (1) the modeler can design
an FT model and the tool automatically converts it into the
equivalent CTMC that the modeler can edit in order to represent
and analyze the presence of repairs; (2) the modeler can design
an FT model where some BEs are declared as repairable. The
tool converts the subtrees including the repairs into a CTMC,
and analyzes them in this form.

Dynamic Fault Trees (DFT) [14] are a particular extension
of FT where dependencies between BEs are set by means of
dynamic gates. The analysis of the model is performed by
exploiting Input–Output Interactive Markov Chains. In [15],
dependencies involving components or subsystems can be
expressed by means of specific arcs; the model is evaluated
by means of a Boolean logic-driven Markov process (BDMP).
In [15, 16], the model can include repair, but each repair
process involves a single component instead of a subsystem,
and the possibility of a limited number of repair facilities is not
considered. In [16], the possibility of including a Repair Station
is mentioned with the goal of representing more complex repair
processes. In [15], a component can have an increasing failure
rate and imperfect repair can be modeled.

Reliability Block Diagrams (RBD) [10] are a formalism
with the same goal of FTs. An RBD represents, in
terms of series and parallel constructs, the combinations of
components that have to be working in order for the system
to be working. As DFTs extend FTs, RBDs have been
extended by including the possibility of representing particular
forms of dependencies, multistate components and repairable
components. The resulting formalism is called Dynamic
Reliability Block Diagrams (DRBDs) [17]. The solution of a
DRBD model is performed by automatic conversion into a
GSPN, according to predefined rules.

All the works described so far consider single component
repairs. The RFT formalism [4] instead models the repair
of subsystems. This kind of repair is a complex process
characterized by several parameters defining a repair policy.
They are the event triggering the repair process, mean time
to detect the subsystem failure, set of repairable components,
mean time to repair each component, number of repair facilities,
components repair order, etc. A repair process is represented
by a new node called Repair Box (RB) and establishes several
dependencies among the events in the RFT: this requires the
analysis of the model by generating its state space, but is limited
to the modules of the RFT that contain RBs, while the rest of
the model is solved resorting to standard FT analysis. In [4],
the state space analysis of the modules containing repair has
been achieved by conversion into a GSPN. Applications of RFT
models to real cases are available in [18].

In the RFT formalism, the repair policy (or strategy) is
predefined by the modeler and is associated with the RB
primitive; therefore, the only way for the modeler to identify
the best policy consists in analyzing the system according to
several repair policies by constructing several RFT models, and
by comparing the system availability values returned by the
analysis of RFT models. Therefore the RFT formalism does not
automatically determine the best repair policy.

The ability to determine the optimal repair policy given all
the repair possibilities is an issue concerning several fields of
engineering. So far, this problem has usually been faced in the
literature in analytical ways, typically in the form of operations
research problems [19–21].

Dynamic Bayesian networks. More recently, the analysis
of DFT models has been addressed by the use of Dynamic
Bayesian Networks (DBN) [22]. DBNs extend Bayesian
Networks by providing an explicit discrete temporal dimension.
The way to convert a DFT into DBN is described in [23].
With respect to CTMC or GSPN, the use of a DBN avoids
the generation of the whole state space, and takes advantage of
the factorization in the temporal probability model. The use of
a DBN allows the modeler to compute by means of inference
procedures, predictive and diagnostic measures conditioned by
observations about the state of the system or the state of its
components, during the system mission time. The approach
based on a DBN has been extended to deal also with the repair
of components or subsystems, as shown in [24].

DBNs can be extended by including decision nodes and cost
nodes. The resulting formalism is called a Dynamic Decision
Network (DDN) [25, 26]. A decision node represents a decision
concerning an action to be performed, and influences a subset
or all of the random variables. A cost node, on the other hand,
represents a reward function influenced by a subset or all of the
random variables. As in DBNs, random variables are replicated
in two or more time slices1; also in DDNs, random variables,

1When the Markovian assumption holds, only two time slices are enough
to model the temporal evolution of the system state.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1873

decision nodes and cost nodes are replicated in two or more time
slices. The DDNs are exploited to solve optimization problems
that are similar to those described in this paper: random variables
represent the evolution of the state of the system, decision
nodes represent the choices, while the cost node represents the
function to be optimized. In this sense, a DDN model provides
the factorized representation of a discrete time MDP or a discrete
time Partially Observable MDP (POMDP) [27]. Despite the
fact that DDNs represent in a compact form very large complex
(PO)MDPs, such a form does not reduce the complexity of the
exact solution because it requires the generation and solution
of the underlying MDP. Some techniques have been developed
to exploit the factorized form of DDNs, in order to obtain the
approximate solution of the underlying (PO)MDP [28]. Both
DDNs and MDPNs are high-level languages to express an MDP,
but the former derives from Bayesian Networks, while the latter
derives from Petri Nets.

3. NON-DETERMINISTIC RFT

The NdRFT formalism presented in this paper provides an
intuitive notation to express alternative repair strategies and
effective methods to compute an optimal strategy w.r.t. a
given objective function (minimizing costs, maximizing system
availability or a combination of the two) defined in terms of
states and events. While in the RFT formalism, the best repair
strategy is not the result of the model analysis, in the NdRFT
formalism on the other hand, the optimal repair strategy is the
result of the model analysis. The NdRFT formalism expresses
several possible start repair options based on: (1) the concept
of self-revealing events, whose occurrence can trigger a repair
process; (2) the notion of local versus global repair action,
including the possibility that a basic component repair can be
triggered by different events; (3) the notion of global repair
supervisor component; (4) the notion of resource requirements
for each type of repair action. Given this information, the
analysis of the NdRFT model can provide an optimal repair
strategy. This is done by generating an MDP from the NdRFT,
through an intermediate translation into an MDPN [7]: this
allows us to reuse the efficient algorithms devised to derive
an MDP from an MDPN.

3.1. NdRFT syntax

In this section, the NdRFT formalism is first presented by means
of an example, and then it is formally defined.

In the NdRFT example in Fig. 1 (whose meaning will be
explained in Section 6) the events are depicted in different
ways according to their characteristics: self-revealing/not self-
revealing, repairable/not repairable and local/global repair
strategy (respectively, alarm, rep and str attributes). Down
arrows next to BEs, labeled with a number, indicate failure
probabilities; up arrows next to repairable BEs, or to internal

events with global strategy, labeled with a number, indicate the
repair continuation probability. The number of required repair
resources is also specified for these events.

Examples of not repairable BEs in the example are A3 and
P 3: these represent components that cannot be recovered after
a failure. An example of self-revealing and repairable BE is A1:
its failure immediately enables a repair action of the component,
while the repair of a non-self-revealing (but repairable) event,
like, e.g. A2, can only be enabled by a self-revealing internal
event connected to it: for A2 it can be U2 or TE. In the example
of Fig. 1, we have only one type of resource and each repair
action requires only one resource.

The event attribute str defines the granularity of the repair
process triggered by the occurrence of a self-revealing IE e:
if the repair strategy is global (as for U2 in the example), all
the repairable basic components (A2 and P 2 in the example)
involved in the repair process (expressed through attribute
e.torep and graphically represented by a set of BE identifiers
in braces next to the IE) are repaired simultaneously and
brought back to the working state when the global repair process
terminates. This means that a global repair process is a single
action (e.g. representing the substitution of a down server with a
new server); while a global repair action is ongoing, the involved
basic components (those in e.torep) cannot be simultaneously
involved in any other repair action (global or local). In the case
of local repair (as for TE in the example), for each repairable
BE component in e.torep, it is possible to decide to repair or not
such a component; moreover, the repair of single components
may not start simultaneously (e.g. when there are not enough
free repair resources).A BE can appear in the torep set of several
internal events; for example A2 and P 2 are in the torep set of
both U2 and TE: when only one of the two BEs is down, the
local strategy could be more appropriate, but it can be activated
only if TE is down. Otherwise, if both A2 and P 2 are down,
the global repair of U2 may be more convenient. Observe that,
given the example NdRFT structure, U2 can immediately detect
when one or both events A2 and P 2 are down, and trigger the
substitution of both.

To complete the example let us consider some possible cost
function, defined in terms of states and events: let FailEv

denote the subset of NdRFT events that have failed in a given
state of the system under study, and let RepairEv be the subset
of events that are undergoing a repair action (basic repairable
events for local repair actions, internal events with a global
repair strategy for global repair actions). A first cost function
example is{

cost.state(FailEv, RepairEv) = 1FailEv(TE);
∀ e, cost.event (e) = 0,

(1)

where 1A(x) is an indicator function that returns 1 when x ∈ A,
0 otherwise: in this case the goal is to minimize the probability of
a global system failure. In this example the cost of repair actions
is not taken into account, while the next example instead takes

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1874 M. Beccuti et al.

also the repair cost into account:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cost.state(FailEv, RepairEv)

= down_penalty · 1FailEv(TE)

+ ∑
e∈RepairEv rep_cost_per_t ime_unit (e);

∀ e, cost.event (e) = start_repair_cost (e);

(2)

where down_penalty is the cost per time unit of system
unavailability, rep_cost_per_t ime_unit (e) is the cost per
time unit of a repair associated with event e, and
start_repair_cost (e) is a fixed cost paid every time a repair
process associated with event e starts. In the example a repair
cost could be defined for the repair actions of events A1, P 1,
A2, P 2 and U2: the cost can be an instantaneous start repair
cost or a cost that accumulates during the whole repair process
(or both).

We now present the formal definition of the NdRFT
formalism.

Definition 3.1 (Non-deterministic RFT). An NdRFT is a six-
tuple: S = 〈E, G, A, R, res0, cost〉 where:

E is the set of events.
G is the set of gates; E ∩ G = ∅. A gate g has a type2

denoted g.type ∈ {and,or}.
A is the set of arcs, a subset of E × G ∪ G × E . For x

belonging to E ∪ G, we define x• ≡ {y | (x, y) ∈ A}
and •x ≡ {y | (y, x) ∈ A}. A satisfies the following
conditions:
(1) ∀g ∈ G, |g•| = 1 and ∀e ∈ E, |•e| ≤ 1.

(2) there is exactly one event, denoted � and called Top
Event, s.t. �• = ∅; all other events satisfy |e•| ≥ 1.

(3) The set of events can be partitioned into basic events
E ≡ {e | •e = ∅} and internal events Ē ≡ {e |
•e = 1}.

R is a finite set of repair resource types; res0 ∈
Bag(R) are the available resources, where Bag(R) is a
generalization of a set (called multiset) that can contain
several occurrences of the same element from set R.
∀e ∈ E the following attributes are defined:

(1) alarm ∈ {true, false}: it states if e is self-revealing;
(2) fprob ∈ [0, 1]: it is the failure probability associated

with e;
(3) rep ∈ {true, false}: it specifies if e is repairable. We

denote by ER the set of repairable basic components
ER = {e ∈ E |e.rep = true};

(4) rprob ∈ [0, 1]: it defines a repair continuation
probability (i.e. 1 − e.rprob is the probability to
complete the repair at each time step). It is defined
only if e.rep=true;

2Since the proposed optimization method is based on the state space, other
gate types could easily be considered, including dynamic ones: in this paper
only and/or gates are considered for the sake of space.

(5) res ∈ Bag(R): it specifies a multiset of resources
required by the local repair process of e.

∀e ∈ Ē the following attributes are introduced:
(1) alarm ∈ {true, false}: it states if e is self-revealing

and can trigger a repair process;
(2) str ∈ {local, global}: it defines the repair strategy

associated with e. It is defined only if e.alarm=true.
We denote by ĒGR the set of internal events with
global repair strategy ĒGR = {e ∈ Ē |e.alarm =
true ∧ e.str = global};

(3) rprob ∈ [0, 1]: it defines a repair continuation
probability and it is defined only if e.str=global;

(4) res ∈ Bag(R): it specifies a multiset of resources
required by the global repair process (defined only
if e.str=global);

(5) torep ∈ 2E : it denotes the set of BEs which is
repaired by a repair process triggered by e; ∀e′ ∈
e.torep a path (i.e. a set of arcs in A) connecting e

to e′ must exist and if e.str = local → e′.rep =
true;

cost: it defines the penalty produced by a failed system or
subsystem, and the repair cost. It has two components:
(1) state: 2E × 2E → R; it is applied to a subset of

down components and/or a subset of components
under repair at a given time instant giving a penalty
value;

(2) event: ĒGR ∪ ER → R; it indicates for each start
repair event the corresponding instantaneous cost.

this function is used to set the optimization problem (of
course the goal is cost minimization).

3.2. MDP semantics of NdRFT

MDP definition. A (discrete time and finite) MDP is a dynamic
system where the transitions between states follow a two-step
process. First, one non-deterministically selects an action inside
the subset of enabled actions. Then one samples the new state
w.r.t. a probability distribution depending on the current state
and the selected action. The non-deterministic step represents
a decision taken by a controller in order to manage the system
(e.g. the decision of repairing a subset of failed components).

The probabilistic step takes into account that the effect of
an action statistically depends on non-modeled (or unknown)
parameters.

To formally define the objective to optimize, one associates
a reward with any state and selected action (the reward can also
be interpreted as a cost). The following definition formalizes
these concepts.

Definition 3.2 (Markov Decision Process, MDP). An MDP
M is a four-tuple M = 〈S, A, p, r〉 where:

(1) S is a finite set of states;

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1875

TABLE 1. Table of the state change due to the choice of action a in the non-deterministic step.

Condition on a ste st′e sup′
e

a(e) = NoRepair Any ste supe

a(e) = Repaire′ , e′ = e ∨ (e′ �= e ∧ e′.str = local) Down LocRep e

a(e) = Repaire′ , e′ �= e ∧ e′.str = global ∧ e ∈ e′.torep Up GlobRepu e′
a(e) = Repaire′ , e′ �= e ∧ e′.str = global ∧ e ∈ e′.torep Down GlobRepd e′

(2) A is a finite set of actions defined as
⋃

s∈S As, where As

is the set of enabled actions in s;
(3) ∀s ∈ S, ∀a ∈ As, p(·|s, a) is a (transition) probability

distribution over S such that p(s ′|s, a) is the probability
to reach s ′ from s by triggering action a;

(4) ∀s ∈ S, ∀a ∈ As, r(s, a) ∈ R is the reward associated
with state s and action a.

Once an action choice is fixed for each state, the MDP
behaves like a Markov chain and different global measures on
the random path can be defined as, for example, the (discounted)
sum of rewards or the average of the rewards. The goal of
the analysis is computing the optimal value of the measure,
and when possible, computing the associated strategy. In finite
MDPs, efficient solution techniques have been developed for
this purpose [6] and different tools are based on this theory.

NdRFT semantics. In this paragraph, we will define precisely
the dynamic behavior of an NdRFT, which can be described by
an MDP. Let us first define the MDP states:

MDPNdRFT state. A state of the MDP corresponding to a
given NdRFT is a pair: ρ = 〈{ste}e∈E , {supe}e∈E〉 with

(1) ste ∈ {Up, Down, LocRep, GlobRepu, GlobRepd}
represents the state of the component/subsystem
associated with event e.

If e /∈ E , ste ∈ {Up, Down} can be derived from the
FT structure and the state of all BEs;

(2) supe ∈ E ∪NULL indicates for each BE e under repair,
which is the supervisor of the repair process:

if ste ∈ Up, Down ⇒ supe = NULL

if ste = LocRep ⇒ supe = e

if ste ∈ GlobRepu, GlobRepd ⇒ supe = e′ : e ∈
e′.torep

The components involved in a local repair process are
identified by LocRep, instead GlobRepu and GlobRepd identify
components involved in a global repair, and the subscript
distinguishes between components that were Up or Down when
the repair started.

The initial state ρ0 is: ∀e ∈ E, st0
e = Up ∧ sup0

e = NULL.
We shall denote sup(E) = ⋃

e∈E supe.
For each state ρ, it is possible to define the multiset resρ

of busy resources as: resρ = ∑
e∈sup(E) e.res. Of course at each

time point the following condition must be verified: resρ ⊆ res0

defined as ∀r ∈ R, resρ(r) ≤ res0(r), where resi (r) denotes the
multiplicity of r in resi .

Actions and transitions. Let us define the set Aρ of actions
that can be chosen in state ρ: each action a ∈ Aρ is a
mapping E → {Repaire, NotRepair} satisfying the following
constraints:

(1) a(e) = Repaire ⇒ ste = Down ∧ ((e.rep = true ∧
e.alarm = true) ∨ (∃e′ : ste′ = Down ∧ e′.str =
local ∧ e ∈ e′.torep));

(2) a(e) = Repaire′ ⇒ ste ∈ Up, Down ∧ ste′ =
Down ∧ e′.alarm = true ∧ e′.str = global; in this
case it must be ∀e′′ ∈ e′.torep a(e′′) = Repaire′ ;

(3) resρ + ∑
e:∃e′,a(e′)=Repaire

rese ⊆ res0.

Once an admissible action a ∈ Aρ is chosen, an intermediate
state 〈ρ, a〉 is reached: here a probability distribution allows us
to determine the state change; the probability distribution can be
derived from the distributions of failure occurrence and repair
completion events.

Table 1 shows the state change corresponding to the non-
deterministic step due to action a in state ρ, where st′e and sup′

e

indicate the state of e in the intermediate state 〈ρ, a〉 (after
taking action a). Observe that, according to the definition of
admissible actions, any global repair must start simultaneously
for all BEs included in the torep attribute of the IE e′ which
triggers the repair; e′ is thus set as a supervisor for all BEs in
e′.torep.

Table 2 shows the state change corresponding to the
probabilistic step from the intermediate state 〈ρ, a〉 to the new
state ρ ′; in this table st′e and sup′

e indicate the state of e in
ρ ′, while ste and supe refer to 〈ρ, a〉. The probabilistic step
probability is defined as prob = ∏

e probe, where probe

is the probability indicated in the last column of the table,
and the product is indexed on the following set of events
{e ∈ E ∧ ste ∈ {Up, Down, LocRep}} ∪ {e ∈ ĒGR ∩ sup(E)},
i.e. all basic events not involved in any global repair, and all IEs
supervising an ongoing global repair.

The last two lines indicate the fact that in case of global repair
triggered by IE e′, all the basic components in e′.torep change
state simultaneously at the end of the global repair.

Summarizing, the dynamics of the MDP corresponding to an
NdRFT is defined in terms of two steps: a non-deterministic
one selecting the subset of repair actions that should start
and a probabilistic one probabilistically choosing the newly

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1876 M. Beccuti et al.

TABLE 2. Table of the state change due to the probabilistic step.

Event type ste st′e sup′
e probe

e ∈ E Down Down NULL 1
e ∈ E Up Up NULL 1 − e.fprob

e ∈ E Up Down NULL e.fprob

e ∈ E LocRep LocRep supe e.rprob

e ∈ E LocRep Up NULL 1 − e.rprob

e′ ∈ ĒGR ∩ sup(E) ∀e ∈ e′.torep GlobRepu/GlobRepd GlobRepu/GlobRepd supe e′.rprob

e′ ∈ ĒGR ∩ sup(E) ∀e ∈ e′.torep GlobRepu/GlobRepd Up NULL 1 − e′.rprob

occurred failures and which ongoing repair activities have to
be completed.

The MDP definition includes also a reward function: it is
derived from the NdRFT cost function as follows. Let ρ be
an MDP state and let a be an action corresponding to a non-
deterministic step that may occur in ρ. Then the reward function
r(ρ, a) is defined as follows:

cost.state(FailEv(ρ), RepairEv(ρ))

+
∑

e∈ev_rep(a)

cost.event (e),

where FailEv(ρ) is the set of events that are down (including
those under repair) in state ρ, RepairEv(ρ) = ρ.sup(E) is the
set of supervisors of ongoing repairs, and ev_rep(a) is the set
of events for which a start repair action exists in a. Obviously,
more complex reward functions could be defined by updating
consistently r(ρ, a), as discussed later.

This completes the definition of the MDP underlying a given
NdRFT.

The computation of the optimal strategy requires three
steps: (1) generation of the MDP from the NdRFT; (2)
analysis of the MDP; (3) presentation of the results in a form
that is understandable to the designer. These steps can be
automatized. The first step can be implemented in two ways:
defining an algorithm that generates the set of reachable states,
the corresponding non-deterministic actions and consequent
probabilistic state change, or translating the NdRFT in an
intermediate model for which the above tasks have already been
defined and implemented. In this paper, we propose to use the
second approach and provide an algorithm for translating an
NdRFT into an MDPN [7]. From the MDPN model an MDP
can be automatically derived.

3.3. Discussion

The NdRFT model is a discrete time one. This may seem in
contrast to the fact that failure models often refer to continuous
time distributions (exponential, Weibull, . . .). However, as
thoroughly discussed in [29], it is possible to capture in a quite
precise way failure processes with discrete time distributions.
This can be obtained as an approximation of a continuous

distribution (through discretization) but it may also arise
naturally when the probability of a failure occurrence is related
to the occurrence of a given number of events (e.g. when
equipment operates in cycles or on the basis of service requests,
the failure probability may depend on the number of cycles
performed or requests served rather than on the actual time
elapsed). An application of the discretization approach is
presented in [23, 24] where DFT analysis is based on DBNs, as
explained in Section 2.

Owing to the discrete time assumption, the specification
of the failure occurrence and repair process of each (basic)
repairable component x is given by probability PFail(x) and
PRepair (x). It is noted that PFail(x) (respectively, PRepair (x))
represents the probability that a failure occurs (respectively,
to stay under repair) at any (discrete) time step, provided the
corresponding component is up (respectively, is down and under
repair). As a consequence, the time to failure of a component
(T tFe), and its repair time (repT imee) have a geometric
distribution:

P(T tFe = k) = (1 − PFail(e))
k−1PFail(e),

P (repT imee = k) = PRepair (e)
k−1(1 − PRepair (e)).

Even if in the current work we only model the geometric
law, the formalism could be extended to model different (not
memoryless) probability distributions. This kind of extension
would allow one to represents component aging as well as
other interesting phenomena like, e.g. the accumulation of
corrupted data, and could be coupled with the possibility of
applying preventive maintenance rather than failure-triggered
repair only. The modular translation technique presented in the
next section makes the addition of the mentioned extensions
easier; obviously these extensions cause an increase in the
computational cost whose impact should be carefully evaluated.

In NdRFT the repair policy is not fixed a priori (as in
RFT): the choice to repair or not a failed repairable component
is non-deterministic. This leads to an MDP semantics: as
a consequence, we can compute the optimal repair strategy
minimizing some cost function. For instance, one possible goal
could be to minimize the unavailability of the global system (this
can be expressed by assigning a non-null penalty to the states
where the TE is true). Observe that even for this simple objective

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1877

function, finding the optimal strategy is not trivial, since NdRFT
accounts for limited repair resources (each repair action can be
associated with a multiset of required resources to complete it),
a constraint that is usually disregarded in other extended FT
formalisms. The introduction of penalties to account for repair
action cost and performance degradation, makes it important to
have an automatic procedure to find the optimal strategy.

In NdRFT, we can model processes where the components
or the subsystems under repair become again available as soon
as possible (maybe in a degraded state) without waiting for the
repair of all its down BE components. Moreover, the notion of
self-revealing components allows us to specify which events
are a sort of alarm, so that the corresponding repair activity can
start (this generalizes the notion of trigger event introduced in
an RFT). This feature allows us to model situations where some
faults do not generate symptoms until they are combined with
other fault events which make them emerge later on.

Finally different repair actions may share components
(although a given component can be subject to only one repair
action at a time): this increases the flexibility in the choice
among the possible repair strategies that may be pursued, while
still allowing a simple and clean semantics based on the notions
of self-revealing components and of global vs. local repair
strategy.

4. TRANSLATION FROM NDRFT TO MDPN

In this section, we describe how to obtain the corresponding
MDPN model from an NdRFT model.An informal introduction
to the MDPN formalism is provided first, and then the pattern-
based translation algorithm is presented. The generation of the
MDP from the MDPN model is performed as described in [7].

A brief introduction to MDPNs. MDPNs were first introduced
in [7] as high-level models to specify the behavior of an MDP.
The main features of the high-level formalism are the possibility
of specifying the general behavior as a composition of the
behavior of several components (those that are subject to local
non-deterministic choice are called controllable, otherwise they
are called non-controllable); moreover, any non-deterministic
or probabilistic transition of an MDP can be composed by a set
of non-deterministic or probabilistic steps, each one involving
a subset of components.

An MDPN model is composed of two parts, both specified
using the PN formalism with priorities associated with
transitions: the PNnd subnet and the PNpr subnet [describing
the non-deterministic (ND) and probabilistic (PR) behavior,
respectively]. The two subnets share the set of places, while
having disjoint transition sets. In both subnets the transitions
are partitioned into ‘run’ and ‘stop’ subsets, and each transition
has an associated set of components involved in its firing
(in the PNnd only controllable components can be involved).
Transitions in PNpr have a ‘weight’ attribute, used to compute
the probability of each firing sequence. Run transition firings

represent intermediate steps in an ND/PR transition at the MDP
level, while stop transitions represent the final step in an ND/PR
transition, for all components involved in it. An MDPN model
behavior alternates between ND transition sequences and PR
transition sequences, initially starting from an ND state. The
PR sequences are determined according to the PNpr structure,
start with a PR state reached by an ND state, and include exactly
one stop transition for each component; the ND sequences are
determined by the PNnd structure, start from an ND state reached
by a PR state, and include exactly one stop transition for each
controllable component plus possibly a stop ‘global’ transition.
Moreover, in the MDPN formalism we can specify a reward/cost
function, called rs(), associated with every system state and one,
called rt (), associated with every non-deterministic transition.

The generation of the MDP corresponding to a given MDPN
has been described in [7]: it consists of (1) a composition step,
merging the two subnets in a single net, (2) the generation
of the Reachability Graph (RG) of the composed net using a
conventional interleaving semantics, then any path in the RG can
be partitioned into subpaths alternating PR and ND sequences:
time advances at each start of an ND sequence, (3) two reduction
steps transforming each PR and ND sequence in the RG into
a single MDP transition. Observe that during this step, all the
PR/ND sequences that represent any interleaving corresponding
to the same deterministic or probabilistic firing sequence are
merged into a unique representative.

In the following subsections a pattern-based approach to
generate an MDPN mimicking the dynamic behavior of an
NdRFT is presented. We introduce the set Comppr = E of
components of the MDPN and the subset Compnd = ER ∪ ĒGR

of controllable components.
The PNpr and PNnd are obtained from the NdRFT model

using a pattern-based approach. We illustrate the method
describing the basic patterns, and how to instantiate and
compose them.

4.1. Generating the PR subnet

Figure 2 shows how each BE can be translated in a PNpr

submodel according to their alarm and rep attributes: each
non-repairable event is translated into subnet A, while each
repairable event is translated into subnet B. The names assigned
to the places have been chosen with the aim of making clear the
association between their marking and the event state names
that have been used to specify the MDP semantics of NdRFT
models (e.g. the marking of places Upe, Downe,UnderRepaire

represent the Up, Down and LocRep event states mentioned
in the MDP semantics section). Table 3 provides a summary
of such an association referring to non-deterministic markings,
reached at the end of a maximal probabilistic firing sequence
(defined later).A complete discussion on such a correspondence
can be found in the Appendix.

Run and stop transitions have different icons, so that they
can be easily distinguished. Moreover, each transition has a

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1878 M. Beccuti et al.

FIGURE 2. Translation of the NdRFT BEs into submodels of PNpr of an MDPN.

TABLE 3. Correspondence between MDP states and MDPN
markings.

Event status Marking

Basic events
Up m(Upe) = 1
Down m(Downe) = 1 ∧ m(NotInve) = 1
LocRep m(UnderRepaire) = 1 ∧ m(NotInve) = 0
GlobRepu/d m(Up/Downe) = 1 ∧ m(NotInve) = 0

∧∃!e′s.t.e ∈ torep(e′)∧ UnderRepaire′ = 1

Internal events
Up m(OutCompe) = 0
Down m(OutCompe) = 1
Supervisor of m(UnderRepaire) = 1
global repair ∀e′ ∈ torep(e),
(sup(e′) = e) m(NotInve′) = 0 ∧ m(UnderRepaire′) = 0

priority (label prioRi , prioSi , prioSIi and prioRIi indicated next
to each transition) and a weight, which is renormalized w.r.t.
the set of enabled transitions to obtain a firing probability. At
each probabilistic step an Up component can either remain
Up (sequence WorkRe, WorkSe) or go Down (sequence FailRe,
FailSe); each transition participating in this first step involves
only one component, namely e. The chosen priority reproduces
the propagation of basic event states to obtain intermediate event
states, so that it introduces a partial order on the NdRFT events
according to prioSI1i < prioSI2i < prioRI i < prioS1i <

prioS2i < prioRi .
A Down component can either remain Down (stop transition

FailSe) or start its repair (run transition Repair, either followed
by the sequence ContRepRe and ContRepSe, meaning that the
repair has not completed in the current time unit, or by the
sequence EndRepRe, EndRepSe if the repair completes). Place

Assignede is set by the PNnd when a decision to repair e is
taken. The marking of places AvResi represents the current
available resources, and the multiplicity of their input arcs
the resources released when the repair ends. A token in place
NotInve means that the component corresponding to the BE
is currently not involved in any repair action. The fprob and
rprob attributes associated with the events are used to properly
weight the transitions representing a failure occurrence and
end/continuation of repair actions: fprob is associated with
transition FailRe, 1−fprob is associated with transition WorkRe,
rprob (representing the probability of continuing to repair) is
associated with transition ContRepRe and finally 1 − rprob is
associated with transition EndRepRe.

Observe that the only effective conflicts to be resolved on the
PNpr model are the following free choice conflicts: WorkRe

vs. FailRe (for each basic event), ContRepRe vs. EndRepRe

(for each locally repairable basic event), plus the free choice
conflict ContRepGRe vs. EndRepGRe for each global repair
action (whose translation pattern is commented upon hereafter).
Hence the weights assigned to all other transitions are irrelevant,
since they will eventually fire once enabled (i.e. their firing never
resolves a conflict).

Let us now discuss the translation pattern ensuring the
propagation of the state from basic to internal events, and of
the global repair actions, associated with some internal event.
The conversion rule for an AND/OR gate corresponding to a
given internal event e is shown in Figs 3 and 4. Subnets C
and E simply model the propagation of the failures from the
input events of the gate to its output event. These patterns are
actually ‘templates’ that must be instantiated according to the
set of inputs of the AND/OR gate, which in general includes
a subset of internal events and a subset of basic events. The
‘run’ transition Ande can fire iff all the corresponding events
ei are down; while each ‘run’ transition OrRi can fire iff the
corresponding event ei is down. Observe that ei can be a basic
event or an internal one.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1879

FIGURE 3. Translation of the NdRFT And gate and its output event into submodels of PNpr of an MDPN.

FIGURE 4. Translation of the NdRFT OR gate and its output event into submodels of PNpr of an MDPN.

All these state propagation transitions must fire before the
firing of ‘stop’ transitions AndSe and OrSe, so that their priority
prioSI1e is the lowest one.

Subnets D and F, shown on the right of Figs 3 and 4, model
the propagation of the failures from the input events of the gate
to its output event and the associated global repair process.
In particular, place IdleSupervisore is marked when no global
repair process involving the supervisor internal event e has
started yet. The start of a global repair process, represented by
the firing of the ‘run’ transition RepairGe, involving component
e, is enabled when the Assignede place is marked (indicating
that the PNnd subnet, in the previous ND step, has decided to
assign the required resources for such a global repair process
to supervisor e). The firing of ‘stop’ transition NoGSe, instead,
means that no global repair supervised by e will start in the
current time step. Observe that this transition has lower priority
than RepairGRe; hence the repair process starts as soon as the
required resources have been assigned to supervisor e. Place

UnderRepaire represents the fact that the global repair process
supervised by e is ongoing: if the ‘run’ transition ContRepGRe

fires, followed by the ‘stop’ transition ContRepGSe, the repair
process will not end in the current time step, while if the
‘run’ transition EndRepGRe fires (setting the resources free),
followed by the ‘stop’ transition EndRepGSe, the global repair
process will end in the current time step (all the above-
mentioned transitions involve component e): this triggers the
firing of the transitions ResetR1 and ResetRn (all involving basic
component ei in the set of basic events supervised by e in the
global repair process), ensuring that all basic events involved in
the repair process are reset to the Up state (place Upi marked)
and the corresponding NotInve place is marked again.

The translation algorithm visits all the events in the NdRFT
and generates an appropriate PN submodel for each of them
(the selection of the appropriate PN submodel follows the
indications depicted in the template figures). Finally, all
submodels are composed by merging the places with identical

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1880 M. Beccuti et al.

FIGURE 5. Translation of the NdRFT BEs into submodels of PNnd of an MDPN.

FIGURE 6. Translation of the NdRFT gate into submodels of PNnd of an MDPN.

label, leading to the entire probabilistic subnet of the MDPN.
The complete specification of the translation algorithm from
NdRFT to MDPN can be found in [30].

4.2. Generation of the ND subnet

The corresponding PNnd subnet is built from the template
subnets depicted in Figs 5 and 6. The basic idea is that the
PNnd submodel must decide whether a repair action must be
started for each down BE and for each self-revealing internal
event which may trigger a global repair process. For any
repairable BE e (corresponding to a controllable component
in the MDPN), firing of stop transition NotRepaire, involving
only component e, means that a non-repair decision has been
taken for event e, while firing of stop transition Repaire,
also involving only component e, corresponds to the opposite
decision: observe that the second decision can be taken only
if e is self-revealing and, in state Down, the needed resources

are available (input places AvResi contain enough tokens) and
the event is not involved in any global repair process (input
place NotInve marked). In detail the subnet H models the non-
deterministic behavior of not self-revealing repairable BEs,
while the subnet G models the non-deterministic behavior of
self-revealing repairable BEs.

The start of local repair actions triggered by self-
revealing internal events is modeled by subnet L, where it is
possible to observe the repetition of subnet G for as many
times as the number of local repairs potentially triggered by
the internal event e (the test arcs from place OutCompe to the
Repairi transitions model the fact that the repair can start only if
the internal event e is Down). Finally, the start of a global repair
action triggered by an internal event e is modeled by subnet
M: observe that a global repair process requires a single set of
resources, starts for the set of supervised BEs as a whole and
requires that none of the supervised BEs be involved in any other
repair process; on the other hand, a local repair action triggered

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1881

by an internal event e may start in different time steps for each
basic event supervised by e (as long as e is still down and the
conditions to start the local repair are satisfied). The two stop
transitions Repaire and NotRepaire represent the two possible
choices: each of them involves only component e.

Subnet I (as well as the RUNGLe transition in subnet L) is
needed for technical reasons: it is used to ‘clear’ the state of the
internal events which must be recomputed at the end of each
probabilistic step (after all fail/repair choices have been taken
for all BEs and the continue/end of repair choices have been
taken for all ongoing global repairs).

Again the final PNnd submodel is obtained by properly
composing the subnets generated for each event in the NdRFT
and the special transition StopGL (subnet M) used to end
the non-deterministic phase of the global system. During the
composition phase the places and the transitions with identical
label are merged.

Finally, the MDPN reward functions rs() and rt () have to be
defined. They can be derived from the NdRFT cost as follows:
let mρ denote a marking of the MDPN corresponding to state
ρ in the MDP defining the NdRFT semantics (it is shown in
Appendix that there is a one-to-one correspondence between
the states of the MDP defining the semantics of a given NdRFT
and the non-deterministic markings reached by a probabilistic
step in the MDPN obtained by translation): rs(mρ) =
cost.state(FailEv(ρ), RepairEv(ρ)) and rt (Repaire) =
cost.event (e), rt (t) = 0, ∀t ∈ T nd\{Repaire : e ∈ ĒGR ∪ER}

In summary, the cost definition of an NdRFT can be
automatically translated into the MDPN reward functions, and
the optimization problem expressed on the NdRFT can be
transposed to an equivalent optimization problem in the MDPN.

The correctness of this translation is proved in Appendix.

4.3. Improving NdRFT efficiency

In this subsection, we introduce two methods to improve the
NdRFT efficiency in terms of reduction of the RG size.

A transition priority assignment. This method of associating
priorities with the MDPN transitions reduces the possible
interleavings corresponding to equivalent non-deterministic or
probabilistic firing sequences, so that it allows a reduction of
the number of states of RG.3 The method requires fixing a total
order on the NdRFT events that must be compatible with the
partial order induced by the NdRFT structure that is based on
the dependencies: the TE is the lowest among all the events and
two events are in relation e < e′ if e′ is in the subtree of e.
The total order can be specified through an injective function
(ord : E → N) so that ∀e, e′e < e′ ⇒ ord(e) < ord(e′).
Hence the priority assignment for the PR subnet is defined as

3Observe that the assignment of a different priority level to a pair of
transitions that cannot be in conflict is irrelevant; on the other hand, if the
transitions are potentially in conflict, then their priority assignment can constrain
the set of possible strategies that will be considered at the MDP level and may
exclude the optimal one.

follows:

∀te ∈ T pr ⇒ priote
= PrioTemplate(te) + ord(e) ∗ Cpr,

where PrioTemplate : T → {prioS1, prioS2, prioR, prioSI1,

prioSI2, prioRI} is a function that returns the template priority
associated with a transition and Cpr is a constant equal to
|{prioS1, prioS2, prioR}| = |{prioSI1, prioSI2, prioRI}| = 3.

A similar priority assignment method is adopted for the ND

subnet.

(1) ∀te ∈ Tstopnd ⇒ priote
= ord(e), where e is an event

in Compnd ;
(2) STOPGL ⇒ prioSTOPGL = Maxe∈E(ord(e)) + 1;
(3) ∀RunGLe, RunGLe′ ∈ Trunnd ⇒ prioRunGLe

,
prioRunGLe′ > Maxe∈E(ord(e)) + 1 ∧ prioRunGLe

�=
prioRunGLe′ .

The experiments presented in Section 6 have been performed
by applying the priority assignment method described above.

Replacing independent subtrees with BEs.Another method to
reduce the number of states of the RG is based on replacing the
NdRFT independent subtrees (modules) with BEs. In fact, such
subtrees can be solved in isolation with the proper technique:
combinatorial or state space analysis, respectively. Then they
can be replaced by a BE with a properly computed failure
and repair probability: the MDP can then be generated from
this simplified NdRFT model. Unfortunately, the possibility
to specify several repair options and to share repair resources
among different repair actions, introduces strong dependencies
among the events that cause state changes in the model, so
that it is not so frequent that independent subtrees are present
in the model. Anyway a subtree sharing no events with other
subtrees can be a module in a NdRFT model, in (at least) the
following particular situation: the subtree contains no repairable
components and only OR gates.

5. AN NDRFT EXTENSION TO PROVIDE
DEGRADATION AND PREVENTIVE
MAINTENANCE

In this section, we introduce a possible extension to the
formalism that allows one to account for the components aging
or the accumulation of corrupted data increasing the failure
probability. This, combined with the possibility of adding
preventive maintenance, extends the possible strategies that can
be studied with our proposed approach and relaxes the constraint
of using only geometric distribution to model the BE failure
probability.

Such extension, owing to the proposed modular translation
technique can be smoothly introduced, requiring only to
locally update the BE definition and its (probabilistic and non-
deterministic) MDPN templates.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1882 M. Beccuti et al.

TABLE 4. Attributes associated with a BE.

Name Values Description

D N Number of degradation/aging stages
fprob(i), i ∈ [0, . . . , D] R Failure probability associated with the stage i

sprob(i), i ∈ [0, . . . , D − 1] R Probability to move into the stage i + 1 from stage i remaining Up
rep {true,false} It indicates whether the event is locally repairable or not.

If rep= true, then the following attributes are defined
rprob R Probability to continue the current repair in the next time step
res(j) N Number of required resources j needed to trigger a repair process
prev(k), k ∈ [1, . . . , D] {true,false} It indicates if the preventive maintenance can be initiated in stage k

5.1. New definition for BE

To take into account the components degradation and aging, the
following BE attributes must be introduced or updated:

(1) D ∈ N: it is a new attribute defining the number of
degradation/aging stages;

(2) sprob : [0, . . . , D − 1] → [0, 1]: it is a new
attribute associating each degradation/aging stage with
the corresponding probability to move into the next
stage remaining Up. Observe that sprob(0) is the
probability to move into the first degradation/aging
stage.

(3) fprob : [0, . . . , D] → [0, 1]: this attribute is redefined
so that it associates with each degradation/aging stage
the corresponding failure probability. Observe that
fprob(0) is the failure probability when the BE is
not degraded and 1 − e.fprob(i) − e.sprob(i) is the
probability for a BE e to remain Up in the stage i.

To account for preventive maintenance of a repairable BE e

(i.e. e.rep = true), it is necessary to introduce the following
new attribute:

(1) prev : [1, . . . , D] → {true,false}: it defines
the degradation/aging stages in which preventive
maintenance may be executed.

In Table 4, all the attributes associated with BEs are
summarized.

Before presenting the new BE translation, it is important to
highlight that in this extension we do not consider long jumps
between stages (i.e. stage i + j with j > 1 is not directly
reachable from stage i), however, this constraint could be easily
removed, increasing the complexity of the BE definition and
translation. The number of stages (D) has a considerable impact
on the cost (memory and execution time) of the model solution
since the RG of the composed model and the MDP size grow
exponentially with respect to it. Instead, the number of stages
enabling preventive maintenance can substantially impact the
MDP solution cost since a larger number of possible repair
strategies must be investigated.

5.2. New translation modules for BEs

Figure 7 shows how each BE e is translated in a PNpr

submodel according to its alarm and rep attributes: each
non-repairable event is translated into subnet A, while each
repairable event is translated into subnet B. In particular the
submodels’ portion highlighted by a dashed box corresponds to
a single degradation/aging stage, and it is repeated e.D times.
Hence, a token in place Up-ie means that the BE e is the ith
degradation/aging stage.

The fprob(i) and sprob(i) with i > 0 are used to properly
weight the transitions FailR-ie and WorkMovS-ie, respectively,
while the weight of transition WorkR-ie is 1 − e.fprob(i) −
e.sprob(i).

Moreover, for each degradation/aging stage in which a
preventive maintenance may be executed we insert a transition
RepairMR-ie connected in input to places Up-ie and Assignede

and in output to places Downe and UnderRapaire.
Figure 8 shows how each BE e with preventive maintenance

is translated in a PNnd submodel according to its attribute alarm:
each repairable not self-revealing component is translated into
subnet C, while each repairable self-revealing component is
translated into subnet D. Practically, with respect to the previous
translation in Fig 5 a stop transition RepairM-ie is introduced
for each stage in which it is possible to activate a preventive
maintenance. Observe that place Up-ie is connected with a test
arc with RepairM-ie to assure that the preventive maintenance
can be chosen only when the component e is in the stage i.

6. APPLICATION EXAMPLES

In this section, we describe two application examples. The first
example is used to show how NdRFT allows us to efficiently
investigate different optimal repair strategies by changing the
associated cost function and how the model complexity depends
on the repair options represented in the model. The second one,
instead, has been developed to present in details an example of
optimal repair policy and to discuss a possible extension in the
direction of preventive maintenance.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1883

FIGURE 7. Translation of NdRFT BEs with degradation and preventive maintenance into submodels of PNpr .

FIGURE 8. Translation of NdRFT BEs with degradation and preventive maintenance into submodels of PNnd .

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1884 M. Beccuti et al.

All the obtained results have been performed owing to a
framework for the design and the solution of NdRFT models
that we have developed extending the one presented in [31].

First application example. The example we report is inspired
to the Active Heat Rejection System (AHRS) presented in [32].
The block scheme of our version of the AHRS’s architecture
is composed by three redundant thermal rejection units U1,
U2 and U3. Each Ui is composed of the heat source Ai and the
power source P i. The Ui unit fails if its heat source Ai has failed
or if its power source P i has failed. The failure of the whole
system (TE) occurs if all the thermal rejection units have failed.

The NdRFT model in Fig. 1 shows that, in our version of the
AHRS, several components are repairable (A1, P 1, A2, P 2),
where their failures can be self-revealing or not. Two repair
processes can be activated: (1) a global repair process in case
of the failure of U2 and involving the components A2 and P 2;
(2) a local repair process in case of the system failure (TE)
and involving the components A1, P 1, A2 and P 2 or in case of
failure ofA1 (respectively,P 1) and involving the componentA1
(respectively, P 1). In case of global repair, one repair resource
is used to repair the subsystem; on the other hand, in case of
local repair, one resource has to be dedicated to the repair of
each component of the system. We suppose that, in our case
study, two repair resources are available (Fig. 1).

Two cost functions defined according to Equation (2) in
Section 3 have been studied: the former allows minimization
of the TE probability:

down_penalty = −1000
∀e ∈ RepairEv,
rep_cost_per_time_unit(e) = start_repair_cost(e) =
0,

while the latter allows the minimization of the average repair
cost (including a penalty for TE being down), given the local
and global start repair costs:

down_penalty = −1000
∀e ∈ RepairEv,
rep_cost_per_time_unit(e) = 0

start_repair_cost(e) =
{

−1 e.str = global

−100 otherwise

The RG of the MDPN model obtained by the NdRFT in Fig. 1
has 3189 states, while the underlying MDP has 389 states. This
difference in the number of states between the RG of the MDPN
and the MDP is due to the fact that the MDPN formalism gives
a component-based view of probabilistic and non-deterministic
behaviors of the system. At the MDPN level, complex non-
deterministic and probabilistic behaviors are expressed as a
composition of simpler non-deterministic or probabilistic steps,
which are reduced to a single step in the final MDP.

Since the failure of the two non-repairable components (A3
and P 3) alone is not sufficient to induce the failure of the TE,
the system can always come back to the up state (possibly

in the degraded mode); hence it is interesting to compute the
average reward and the optimal strategy of the underlying MDP
at infinite horizon. For the two considered cost functions, and
the corresponding derived optimal strategy, we have computed
the TE probability by solving the DTMC obtained from the
underlying MDP, assuming the optimal strategy is always
applied. In particular we have obtained that the TE probability
in steady state for the first case is 0.0151943, while in the second
case the TE probability increases to 0.0161111 due to the fact
that P 2 and A2 will always be repaired by the global repair
process triggered by U2, since it has a lower repair cost; on the
other hand U2 takes longer to complete the repair because it
has an rprob higher than those of the P 2 and A2 local repair
processes.

For a further illustration of the potential of NdRFT we have
performed two additional experiments: by manually modifying
the MDPN model obtained from the NdRFT, we have imposed
the immediate repair of a component upon a failure occurrence
(this corresponds to assigning a higher priority to transitions
Repair than to transitions NotRepair in the non-deterministic
subnet, so that if there are available resources, a repair cannot
be postponed). In details, in the first experiment when more
than one component is down, the repair ordering is not fixed a
priori, but it is dynamically computed when solving the MDP
to minimize the TE probability; while in the second experiment
the repair order is fixed a priori (i.e. A1, A2 − P 2, P 1): this is
implemented by imposing the same ordering to the priorities
associated with the Repair transitions. As expected, the TE
probabilities derived by solving the DTMCs implementing the
computed repair strategies for these two experiments are greater
(i.e. prob(TE) is 0.0161134 and 0.0920372, respectively) than
the one obtained in the previous experiment in which we let
the MDP compute the optimal repair strategy w.r.t. the TE
probability minimization.

Table 5 shows some experiments in which the dimension of
our example is increased. We have replicated the subtrees of
the NdRFT model in Fig. 1. For instance, in Table 5, ‘2, 2, 2’
means that we have duplicated the subtrees rooted in U1, U2,
U3, respectively, while 1, 1, 2 means that we have duplicated
only the subtree of U3. In particular, the first column shows
the model complexity, the second and the third one the RG size
(number of states) and its computation time, and the next two
columns the MDP size (number of states) and its generation
and solution time. The computation has been performed with
an INTEL Centrino DUO 2.4 with 2 GB memory capacity.
These results show that the state space grows very fast when
redundancy is increased, so that the model becomes quickly
intractable even using the priority-based optimization presented
in Section 4. Moreover, we have to highlight that the state space
growth depends also on the repair options (actions) applied in
the model (Table 5). For case 2,2,2, if we remove the repair
process triggered by the TE, then the state space size decreases
by a factor of ∼ 2, while if we remove the global repair process
triggered by U2, then it decreases by a factor of ∼ 4.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1885

TABLE 5. Experimental results.

Without the repair processes Without global repair processes
Same repair policy of Fig. 1 triggered by TE triggered by U2

RG MDPRG Time RG MDPRG Time RG MDPRG Time
Occurrences
U1,U2,U3 States States RG + MDP States States RG + MDP States States RG + MDP

2,1,1 3.5E+4 937 12 s 2.7E+4 93 0 s 1.7E+4 122 0 s
2,2,1 4.5E+5 7754 32 m 3.8E+5 483 30 m 2.5E+5 633 16 m
2,2,2 2.9E+6 32 558 236 m 1.7E+6 2567 120 m 7.5E+5 3005 70 m

Second application example. This second example is inspired
by the Multiprocessor system presented in [3]. The system
is composed of two units: the disk access (DA) and the
computation unit (CM). The DA unit is composed by two disks
(D1 and D2) in mirroring (RAID-1) connected through a bus
(DBUS); while the CM unit is composed of two processing units:
PU1 and PU2. Each processing unit includes a processor P i and
two banks of local memory MEMi composed of a memory (RMi)
and its bus (BMi). Moreover, the two processing units share a
global memory SM composed of two redundant memory banks
BRi, each including a memory (Ri) and its bus (Bi).

Figure 9 shows the NdRFT model for this system. The failure
of the whole system (TE) occurs if the DA unit or the CM unit
has failed. The DA unit fails if the two disks have failed or if
its BUS has failed; while the CM fails if PU1 and PU2 have
failed. Then, the failure of each PUi occurs if its processor
has failed or if its local memory banks and the global memory
have failed. Finally, SM fails if its two memory banks have failed
or if its BUS has failed. The NdRFT model in Fig. 9 shows that
in our version of multiprocessor system, five components are
repairable (R1, B1, D1, D2, DBUS), so that their local repair
processes can be activated in case of failure of SM, involving R1
and B1, in case of failure of DA, involving D1, D2 and DBUS,
and in case of failure of D1 (respectively, D2), involving D1
(respectively, D2). In our case study we assume that only one
repair resource is available and each repair process requires one
resource to complete.

For this model we have computed the optimal repair policy
that minimizes the TE probability at time t . The computation of
the optimal repair policy has been performed in two steps: first,
the independent and not repairable subtrees MM1, MM2 and
BR2 have been replaced with BEs as described in Section 4.3;
then the simplified NdRFT has been solved. The RG of the
MDPN model obtained by the simplified NdRFT has 586 826
states and it has been generated in 88 s on a Intel Centrino Duo
2.4 Ghz; the underlying MDP has 8875 states and it has been
generated and solved in 697 s. The computed optimal repair
policy is not trivial even if the system has only five repairable
components, since when more repairable components have
failed, their repair order must be dynamically chosen according

to the whole system state. The optimal repair policy can be
synthesized as shown in Table 6, where the first three columns
show the state of subsystems CM, DA, SM, and the last column
shows the corresponding optimal repair order. For instance, if
all subsystems have failed, then the optimal repair order is B1,
R1, DBUS, D1, D2; otherwise, if only CM is working, then the
optimal repair order is DBUS, D1, B1, R1, D2.

To study this optimal repair strategy, we have computed the
corresponding TE probability at time t by solving the DTMC
obtained from the underlying MDP, fixing the action to be
taken in every state according to the computed optimal strategy.
We have compared this probability with those computed using
the two following repair orders: (1) always repair first all the
failed components in subsystem CM; (2) always repair first all
the failed components in subsystem DA. Figure 10 plots the
obtained TE probabilities at time t with 400 ≤ t ≤ 9600 and
highlights that the TE probability associated with the optimal
strategy is lower than those computed according to the other
repair policies (e.g when t = 9600, it is reduced by a factor of
∼1.20 w.r.t. the others).

Moreover, if we want to study the multiprocessor system
taking into account the aging or the accumulation of corrupted
data for D1 ad D2 components, then we need to consider the
NdRFT extension introduced in Section 5 since the standard
NdRFT does not allow us to model these aspects.

According to the new extension, we consider for these two
components two stages (D1.D = D2.D = 2) with the
following associated fprob, sprob and prev:

Di.fprob(0) = 0.006 Di.sprob(0) = 0.04
Di.fprob(1) = 0.012 Di.sprob(1) = 0.04 Di.prev(1) =
true
Di.fprob(2) = 0.15 Di.prev(2) = true

where i ∈ {1, 2}.
Moreover, for each of these components we model the

possibility of preventive maintenance when they reach the last
stage (i.e. Up-2D1 and Up-2D2 marked). Figures 11 and 12 show
the probabilistic and non-deterministic translation for the D1
component. The translation for D2 can be directly derived from

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1886 M. Beccuti et al.

FIGURE 9. The NdRFT model of the multiprocessor system.

FIGURE 10. TE probability at time t (400 ≤ t ≤ 9600, with step 400).

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1887

TABLE 6. The repair order suggested by the optimal repair policy.

CM DA SM Repair order

Working Failed Failed/Working DBUS,D1,D2,B1,R1
Failed/Working Working Failed B1,R1,D1,D2
Working Failed Failed DBUS,D1,B1,R1,D2
Failed Failed Failed B1,R1,DBUS,D1,D2

that of D1 by replacing every occurrence of D1 with D2 in the
name of each transition and place, and in the priority labels.

The optimal strategy (minimizing the TE probability) without
and with preventive maintenance are studied, and the results
in Fig. 13 show, as expected, that the TE probability obtained
by applying the optimal strategy with preventive maintenance
performs better than that obtained by only providing repair upon
failure.

The size of MDPN model without preventive maintenance
is increased by a factor of ∼ 7.24 (i.e. 4 250 598 states) with
respect to the original one where the aging of components D1
and D2 is not modeled, and it has been generated in 398 s. In
the same way, its underlying MDP is greater than the original
one by a factor of ∼ 2.74 (i.e. 24 353 states) and it has been
generated and solved in 1089 s.

Instead, the stored space size of MDPN model with preventive
maintenance is increased by a factor of ∼ 7.29 (i.e. 4 280 094
states) with respect to the original one, and it has been generated
in 452 s. Even if the underlying MDP has the same size of the
one derived considering only the aging of components D1 and
D2, its solution requires more time (1389 s.) since a greater
number of possible repair strategies must be evaluated.

7. CONCLUSION AND FUTURE WORK

We have defined a new FT extension called NdRFT that
allows us to model failures of complex systems as well as
their repair processes. The originality of this formalism w.r.t.
other proposals is that it allows us to manage repair strategy
optimization problems. Therefore, NdRFT provides an optimal
repair strategy that minimizes a given cost function defined by
the modeler (e.g. minimize the TE probability or minimize the
system repair cost).

This is done by defining the NdRFT semantics in terms
of an MDP and then solving the optimization problem using
the techniques available for MDPs. The reason for keeping an
FT-like formalism to specify the system structure is the fact
that this is well established and (more) familiar to designers
than the MDP. The generation of the MDP is achieved by an

FIGURE 11. Translation of D1 with degradation and preventive maintenance into submodels of PNpr of an MDPN.

FIGURE 12. Translation of D1 with degradation and preventive maintenance into submodels of PNnd of an MDPN.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1888 M. Beccuti et al.

FIGURE 13. TE probability at time t (20 000 ≤ t ≤ 30 000, with
step 1000), assuming D1 and D2 degradation with/without preventive
maintenance.

intermediate translation of the NdRFT model into an MDPN,
so that we can reuse the efficient algorithms devised to derive
an MDP from an MDPN (and even more efficient ones when
translating NdRFT with redundancy into Markov Decision
Well-Formed Net (MDWN) [7]). The proposed translation is
modular, which makes it easier to implement new features added
in the formalism. Throughout the paper we have explained
how NdRFT allows us to express in an elegant way several
possible repair options based on the following concepts: self-
revealing events, the notion of local versus global repair action
and the notion of repair supervisor component in the case of
global repair. Components degradation as well as preventive
maintenance of system components have also been considered,
and a novel extension in this direction has been developed in
detail in Section 5, and illustrated through a new example in
Section 6. This extension also shows the effectiveness of the
proposed modular translation approach.

NdRFT allows us to represent systems with shared repair
resources (possibly of different types) with a limited number of
repair resources of each type and concurrent repairs: currently,
this is the only kind of external constraint included in the model;
to the best of our knowledge the main FT extensions appearing
in the literature do not take this constraint into account. In its
current definition NdRFT looks for an optimal repair strategy,
assuming that the only constraint in deciding the start of a repair
action is the availability of resources. The formalism could be
rather easily extended to add other types of constraints like,
e.g. fixing some priorities among conflicting components when
resources are assigned (this would actually reduce the space of
possible policies to consider).

Some variations to the repair modes presented in this
paper (local or global) will be considered in the future. In
particular, in the current definition of the global repair of
a subsystem, its components may be Up or Down during

the repair. Instead, we may assume that all the subsystem
components are considered as Down during the global repair
(the global repair may be intended as the replacement of the
subsystem). Such an assumption may influence the status (up
or down) of some internal event of the NdRFT model and,
consequently, the possible triggering of other repair actions
concerning components (basic events) not involved in the global
repair.

Recently, we have proposed the Parametric NdRFT
(ParNdRFT) [33], an extension of the NdRFT that automatically
exploits the presence of redundancy in the system to reduce
the complexity of the model and of its analysis. It is based on
the translation of the ParNdRFT into a MDWN, i.e. a model
specified by means of a High-Level Petri Net formalism. A
MDWN allows us to mitigate the state space explosion problem
owing to an existing algorithm that generates a reduced state
space called Symbolic Reachability Graph (SRG) [34]. From
the SRG it is possible to derive an MDP of reduced size w.r.t.
that obtained from the RG, and on which the same results
can be computed more efficiently. This allows a computational
cost reduction, without losing precision: in fact the optimal
strategy computed on the reduced MDP is equivalent to the one
computed on the ordinary MDP. This possibility is useful when
the system is characterized by symmetries and redundancies in
its structure.

The NdRFT formalism could also be extended by considering
dynamic gates [2], which allow us to express functional and
temporal dependencies among component failures, as well
as preemption of repair resources. A particular dynamic gate
allows us to model the presence of spare components able to
replace the main ones in case of failure. The presence of spare
components may be integrated in the repair mode: for instance,
while a main component is under repair, it may be replaced in
its function by a spare.

Finally, we are evaluating the possibility of introducing in
the NdRFT formalism the concept of partially observable state,
which implies that the repair action choice is based on a partial
knowledge of the system state: this requires one to redefine
the NdRFT semantics in terms of a Partially Observable MDP.
This new feature would allow one to take decisions on the most
promising repair actions even in case of incomplete failure
identification (a situation that may arise when faults do not
generate symptoms or when different failures generate the same
symptoms).

FUNDING

The work of Marco Beccuti has been supported in part by
project “AMALFI—Advanced Methodologies for the Analysis
and management of Future Internet" sponsored by Universitá
di Torino and Compagnia di San Paolo, and by project grant Nr.
10-15-1432/HICI from the King Abdulaziz University of Saudi
Arabia.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1889

REFERENCES

[1] Schneeweiss, W. (1999) The Fault Tree Method. LiLoLe, Hagen,
Germany.

[2] Manian, R., Coppit, D., Sullivan, K. and Dugan, J. (1999)
Bridging the Gap Between Systems and Dynamic Fault Tree
Models. Annual Reliability and Maintainability Symposium,
Washington, DC, USA, January 18–21, pp. 105–111. IEEE,
Piscataway, NJ, USA.

[3] Bobbio, A., Franceschinis, G., Gaeta, R. and Portinale, G. (2003)
Parametric fault tree for the dependability analysis of redundant
systems and its high-level Petri net semantics. IEEE Trans. Softw.
Eng., 29, 270–287.

[4] Codetta-Raiteri, D., Franceschinis, G., Iacono, M. and Vittorini,
V. (2004) Repairable Fault Tree for the Automatic Evaluation of
Repair Policies. Int. Conf. on Dependable Systems and Networks,
Florence, Italy, June 28–July 1, pp. 659–668. IEEE Computer
Society, Los Alamitos, CA, USA.

[5] Beccuti, M., Codetta-Raiteri, D., Franceschinis, G. and Haddad,
S. (2008) Non-Deterministic Repairable Fault Trees for
Computing Optimal Repair Strategy. Int. Conf. on Performance
Evaluation, Methodologies and Tools, Athens, Greece, October
20–24, pp. 56:1–10. ICST, Gent, Belgium.

[6] Puterman, M. (1994) Markov Decision Processes: Discrete
Stochastic Dynamic Programming. JohnWiley & Sons, Hoboken,
NJ, USA.

[7] Beccuti, M., Franceschinis, G. and Haddad, S. (2007) Markov
decision petri net and Markov decision well-formed net
formalisms. Lect. Notes Comput. Sci., 4546, 43–62.

[8] Rauzy, A. (1993) New algorithms for fault trees analysis. Reliab.
Eng. Syst. Saf., 40, 203–211.

[9] JRC 56318 (2010) ASTRA 3.0: Logical and Probabilistic
Analysis Methods. European Commission Joint Research Centre.
Luxembourg.

[10] Sahner, R.A., Trivedi, K.S. and Puliafito, A. (1996) Performance
and Reliability Analysis of Computer Systems; An Example-
based Approach Using the SHARPE Software Package. Kluwer
Academic, Dordrecht, Netherlands.

[11] Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S. and
Franceschinis, G. (1995) Modelling with Generalized Stochastic
Petri Nets. John Wiley and Sons, Hoboken, NJ, USA.

[12] Krishnamurthi, G., Gupta, A. and Somani, A.K. (1998) HIMAP:
architecture, features, and hierarchical model specification
techniques. Lect. Notes Comput. Sci., 1469, 348–351.

[13] Anand, A. and Somani, A.K. (1998) Hierarchical Analysis of
Fault Trees with Dependencies, Using Decomposition. Annual
Reliability and Maintainability Symposium, Anaheim, CA, USA,
January 19–22, pp. 69–75. IEEE, Piscataway, NJ, USA.

[14] Dugan, J., Bavuso, S. and Boyd, M. (1992) Dynamic fault-tree
models for fault-tolerant computer system. IEEE Trans. Reliab.,
41, 363–377.

[15] Bouissou, M. and Bon, J.-L. (2003) A new formalism that
combines advantages of fault-trees and markov models: Boolean
logic driven Markov processes. Reliab. Eng. Syst. Saf., 82,
149–163.

[16] Boudali, H., Crouzen, P. and Stoelinga, M. (2007) Dynamic Fault
Tree Analysis Using Input/Output Interactive Markov Chains.
Int. Conf. on Dependable Systems and Networks, Edinburgh, UK,

June 25–28, pp. 708–717. IEEE Computer Society, LosAlamitos,
CA, USA.

[17] Distefano, S. and Puliafito, A. (2009) Dependability evaluation
with dynamic reliability block diagrams and dynamic fault trees.
IEEE Trans. Dependable Secur. Comput., 6, 4–17.

[18] Flammini, F., Mazzocca, N., Iacono, M. and Marrone, S. (2005)
Using Repairable Fault Trees for the Evaluation of Design
Choices for Critical Repairable Systems. Int. Symp. High-
Assurance Systems Engineering, Heidelberg, Germany, October
12–14, pp. 163–172. IEEE Computer Society, Los Alamitos, CA,
USA.

[19] Castroa, I. and Sanjuan, E. (2008) An optimal repair policy for
systems with a limited number of repairs. Eur. J. Oper. Res., 187,
84–97.

[20] Righter, R. (2002) Optimal maintenance and operation of a
system with backup components. Probab. Eng. Inform. Sci., 16,
339–349.

[21] Wang, G.J. and Zhang, Y.L. (2006) Optimal periodic preventive
repair and replacement policy assuming geometric process repair.
IEEE Trans. Reliab., 55, 118–122.

[22] Weber, P. and Jouffe, L. (2003) Reliability Modelling with
Dynamic Bayesian Networks. Symp. on Fault Detection,
Supervision and Safety of Technical Processes, Washington, DC,
USA, June 9–11, pp. 57–62. IFAC, Laxenburg, Austria.

[23] Portinale, L., Bobbio, A., Codetta-Raiteri, D. and Montani, S.
(2007) Compiling Dyanamic Fault Trees into Dynamic Bayesian
Nets for Reliability Analysis: the RADYBAN Tool. In Laskey,
K. B., Mahoney, S. M. and Goldsmith, J. (eds) CEUR Workshop
Proc., Bayesian Modeling Application Workshop, July 19, 2007,
Vol. 268. Vancouver, British Columbia, Canada. CEUR-WS.org.

[24] Portinale, L., Codetta-Raiteri, D. and Montani, S. (2010)
Supporting reliability engineers in exploiting the power of
dynamic Bayesian networks. Int. J. Approx. Reason., 51,
179–195.

[25] Dean, T. and Kanazawa, K. (1989) A Model for Projection
and Action. Int. Joint Conf. on Artificial Intelligence, Detroit,
MI, USA, August 20–25, pp. 985–990. Morgan Kaufmann, San
Francisco, CA, USA.

[26] Dean, T. and Wellman, M.P. (1991) Planning and Control.
Morgan Kaufmann, San Francisco, CA, USA.

[27] Lovejoy, W.S. (1991) A survey of algorithmic methods for
partially observed Markov decision processes. Ann. Oper. Res.,
28, 47–66.

[28] Koller, D. and Parr, R. (2000) Policy Iteration for Factored MDP.
Annual Conf. on Uncertainty in Artificial Intelligence, Stanford,
CA, USA, June 30–July 2, pp. 326–334. Morgan Kaufmann, San
Francisco, CA, USA.

[29] Bracquemond, C. and Gaudoin, O. (2004) A survey on discrete
lifetime distributions. Int. J. Reliab. Qual. Saf. Eng., 10, 69–98.

[30] TR-INF-2008-07-05 (2008) Non-Deterministic Repairable Fault
Trees for Computing Optimal Repair Strategy. Dipartimento
di Informatica, Università del Piemonte Orientale. Alessandria,
Italy.

[31] Beccuti, M., Codetta-Raiteri, D., Franceschinis, G. and Haddad,
S. (2007) A Framework to Design and Solve Markov Decision
Well-Formed Net Models. Int. Conf. on Quantitative Evaluation
of Systems, Edinburgh, UK, September 16–19, pp. 165–166.
IEEE Computer Society, Los Alamitos, CA, USA.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1890 M. Beccuti et al.

[32] Assaf, T. and Dugan, J.B. (2004) Diagnostic Expert Systems from
Dynamic Fault Trees. Annual Reliability and Maintainability
Symposium, Los Angeles, CA, USA, January 26–29, pp. 444–
450. IEEE, Piscataway, NJ, USA.

[33] Beccuti, M., Franceschinis, G., Codetta-Raiteri, D. and Haddad,
S. (2009) Parametric NdRFT for the Derivation of Optimal Repair
Strategies. Int. Conf. on Dependable Systems and Networks,
Estoril, Portugal, June 29–July 2, pp. 399–408. IEEE Computer
Society, Los Alamitos, CA, USA.

[34] Chiola, G., Dutheillet, C., Franceschinis, G. and Haddad, S.
(1993) Stochastic well-formed coloured nets for symmetric
modelling applications. IEEE Trans. Comput., 42, 1343–1360.

APPENDIX. TRANSLATION CORRECTNESS

Let us prove that the MDPN obtained by applying the translation
procedure described in Section 4 produces a RG from which one
can derive the MDP corresponding to the NdRFT semantics,
defined in Section 3.2.

For this purpose, we must define maximal non-deterministic
or probabilistic firing sequences of an MDPN.

Definition A.1. A maximal non-deterministic firing sequence
(MNDFS) is characterized by the following properties: (1) it
starts either in the initial state or in a state reached by a maximal
probabilistic firing sequence; (2) it contains exactly one stop
transition for each controllable component, and one ‘global’
stop transition.

Definition A.2. A maximal probabilistic firing (MPRFS)

sequence is characterized by the following properties: (1) it
starts in a state reached by a maximal non-deterministic firing
sequence, (2) it contains exactly one stop transition for each
component.

In the sequel the correspondence between MDPN and MDP
states, as well as the correspondence between MNDFS and
MPRFS in the MDPN and MDP actions and probabilistic
transitions, are stated and proved.

MDPN states vs. MDP states. First of all we need to define the
correspondence between a subset of states appearing in the RG
of the MDPN (both those reached immediately after the firing
of an MPRFS and those reached immediately after an MNDFS,
i.e. an action) and the MDP states (see Table 3).

The state of each BE e (Up, Down, LocRep, GlobRep∗) is
represented by the following places:

(1) ste = Up if place UPe is marked;
(2) ste = Down if place DOWNe is marked and place

NotInve is marked;
(3) ste = LocRep if place UnderRepaire is marked;
(4) ste = GlobRepd (ste = GlobRepu) when place

DOWNe (UPe) is marked, and places UnderRepaire

and NotInvolvede are not marked; in this case there
must exist exactly one internal event e′ s.t. e′.obs =

true and e′.str = global and e ∈ e′.torep and place
UnderRepaire′ is marked, so that supe = e′.

The Up/Down state of internal events are derived according
to the FT structure (represented by subnets C and E in Figs 3
and 4): an IE e is Down if place OUTCOMPe is marked at the
end of an MPRFS.

It is thus possible to establish a correspondence between each
non-deterministic marking m (reached immediately after the
firing of an MPRFS) of the MDPN and a state ρ of the MDP:
we use the notation mρ to indicate a non-deterministic marking
of the MDPN corresponding to state ρ of the MDP. Similarly,
it is possible to establish a correspondence between each
intermediate state 〈ρ, a〉 of the MDP and a marking m′ reached
immediately after the firing of an MNDFS of the MDPN. The set
of resources in use, expressed by resρ in the MDP, is represented
in the MDPN by resource-indexed places AV_RESr : the initial
marking of AV_RESr corresponds to the multiplicity of resource
r in res0, while the set resρ of resources in use in state ρ

corresponds to: resρ(r) = res0(r) − mρ(AV_RESr).
The initial marking, corresponding to the initial MDP state,

has one token in each place UPe and as many tokens as the
number of available resources of type r in places AV_RESr .

To prove that the translation is correct, we have to show
that there is a one to one correspondence4 between the actions
a ∈ Aρ and the MNDFS σa enabled in mρ , and that the
intermediate state 〈ρ, a〉 corresponds to the marking m〈ρ,a〉
reached by firing σa in mρ . Moreover there is a correspondence
between the states reachable from the intermediate state 〈ρ, a〉
and those reachable from m〈ρ,a〉 through some MPRFS. Finally,
the probability of transition 〈ρ, a〉 → ρ ′ is equal to the sum of
probabilities associated with the set of MPRFS leading from
m〈ρ,a〉 to mρ′ .

MDPN non-deterministic sequences vs. MDP actions.
From a non-deterministic state of the MDPN, one or more
alternative MNDFS may fire, each comprising exactly one
stop transition for each controllable component (BE repairable
event or IE event with a global repair strategy) plus one
global stop transition: the combination of all stop transitions
in each MNDFS defines a possible action at the MDP
level, corresponding to the set of decisions—start repair
of component e (‘stop’ transition Repaire) or do not start
repair of component e (‘stop’ transition NotRepaire)—for each
controllable component.

The set of decisions characterizing a specific action a

causes a state change (corresponding to the Non-Deterministic
step described in Section 3.2) witnessed by the marking
of the Assignede places in the MDPN at the end of
the corresponding MNDFS σa . Observe that the conditions
expressed in Section 3.2 for moving a BE e from the Down state
to the LocRep state or for moving a set of BE to their current
state to the GlobRep∗ state (provided they are in the torep set of

4The correspondence is one to one assuming that the transition priorities
are set as explained in Section 4.3.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computing Optimal Repair Strategies by Means of NdRFT Modeling and Analysis 1891

a Down IE e′) correspond to the conditions for firing transitions
Repaire or Repaire′ in the PNnd subnet.

Indeed, if we consider subnet G in Fig. 5, corresponding to
a self-revealing and repairable BE e, a decision to start (local)
repair may be taken if (1) e is in state Down, (2) the required
resources are available and (3) the component is not yet involved
in any other repair action. As an alternative, if the BE e is
repairable but not self-revealing, and it is in the torep set of
some internal event e′ with a local repair strategy, then the local
repair can start if (1) both the BE e and the internal event e′
are Down, (2) the required resources are available and (3) e is
not yet involved in any other repair action: this is modeled by
subnet L in Fig. 6.

The state change from state Down to state GlobRep∗ instead
is modeled by subnet M in Fig. 6, and corresponds to the firing
of the stop transition Repaire where e is a self-revealing internal
event with associated global repair strategy: this transition may
occur only when IE e is in state Down, the resources needed for
the global repair are all available and none of the BE in e.torep
are involved in any other repair process (places NotInvolvedei

marked). Observe that the start of global repair for internal event
e actually causes all the BEs in e.torep to switch to the GlobRep∗
state simultaneously.

Observe that any MNDFS must include exactly one stop
transition for each controllable component, corresponding to
a decision to repair or not repair that component: since it is
always possible to take a NotRepair decision, and if the state
allows so it is also possible to take the alternative Repair
decision, then all possible combinations of start/do not start
repair decisions corresponding to the allowed actions in the
MDP can be obtained, and due to the conditions on the Repair
transitions no combination of decisions corresponding to an
impossible action can be fired in the MDPN.

MDPN probabilistic sequences vs. MDP probabilistic state
change following an action. After each MDP action a
probabilistic state change occurs: in the MDPN this corresponds
to the MPRFS that may follow an MNDFS. The probability of
each path is obtained as the product of the probability associated
with each transition in the path. Observe that a probabilistic path
can be described as the interleaving of several subpaths, one for
each component e represented in the MDPN, and ending with a
stop transition involving e. The transitions firing in each subpath
depend on the initial status of the component:

(1) if e is Up (place UPe marked) and not involved in any
global repair action (place NotInvolvede marked), then either the
subpath contains the sequence WorkRe, WorkSe, or it contains
the sequence FailRe, FailSe: the former does not cause a state
change for e, while the second corresponds to a change from
Up to Down. Observe that if e is Up but it is involved in a
global repair process, then the subpath for e depends on the
probabilistic evolution of its supervisor, hence this case will be
discussed together with such evolution;

(2) if e is Down (place DOWNe marked) and not involved in
any repair action (place NotInvolvede marked), the subpath shall

include only the stop transition FailSe, which does not cause any
state change (e remains Down);

(3) if e is in LocRep, which includes also the case of place
Assignede just marked by the last non-deterministic sequence
(hence allowing run transition Repaire to fire, thus marking the
UnderRepaire place), then either the repair process continues
(sequence ContRepRe, ContRepSe), thus leaving the component
in LocRep, or the repair process ends (sequence EndRepRe,
EndRepSe), which causes e to come back to Up;

(4) global repair processes influence the state of the
supervised basic events; if a given internal event e′ with global
repair strategy is Down, and the basic events in e′.torep are not
involved in any repair process, it can be assigned the resources
for the corresponding global repair to start (place Assignede′
marked at the end of an MNDFS): as a consequence the global
repair process can start (transition RepairGe′ , marking the place
UnderRepaire′), causing a state change of the BEs in e′.torep to
GlobRep∗ (where ∗ stands for u or d depending on the previous
BE status). As in the case of local repair, the GlobRep state
is an intermediate one, which can become stable if the repair
does not end in the current time step (transitions ContRepGRe′ ,
ContRepGSe′), while in the case in which the repair process ends
(transitions EndRepGRe′ , EndRepGSe′), all the BEs supervised
by e′ are reset to the Up state: this is achieved by firing the
transitions ResetRei , ResetSei , or transitions FreeRei , FreeSei

(the last two transitions fire in the case in which UPei
is already

marked, to reset the marking of NotInvolvedei). In all cases
all BEs supervised by e′ switch from Up/Down to GlobRep∗
simultaneously, and from GlobRep∗ to Up (or from Down to Up
if the repair process lasts only one time step) simultaneously.

It may be the case that while a global repair process is
ongoing, some of the BEs in e′.torep that have not yet failed
fail in the current time step (transitions FailRei

, FailSei
may

fire if the choice of continuing the repair supervised by e′ has
already been taken, i.e. if transition ContRepGRe′ , which has
priority prio5, has already fired). In this case their state changes
from Up to GlobRepd (with a not observable passage through
the Down state), and will be reset to the Up state as soon as
the global repair process ends (which might happen in the same
time unit). The possible state changes described above for each
component are exactly the same as illustrated in the probabilistic
step of the MDP semantics of the NdRFT (see Section 3.2).

The probability of each possible MPRFS is obtained as a
product of the normalized weight of the enabled transitions.
Transitions corresponding to different components are never
in conflict (the failure or end-repair choice of one component
cannot influence the choice of any other component, by
construction): this means that independently of the chosen
interleaving order of the components, the overall probability
of moving from a given marking m to a new marking m′ only
depends on the failure probability of the Up components, and
on the end-repair probability of the components under repair.
If the priorities are set so that a specific order is forced in the
MDPN, there will be a single MPRFS leading from a given

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1892 M. Beccuti et al.

state m (corresponding to an MDP intermediate state 〈ρ, a〉)
to a new marking m′ (corresponding to an MDP state ρ ′),
and its probability will be exactly the same as that of the
probabilistic step from 〈ρ, a〉 to ρ ′. If instead priorities are set
so that alternative interleavings may be chosen, leading from
m to m′, the final result will not change: indeed the sum of the
probabilities of the set of MPRFS leading from m to m′ can
be expressed as the product of the probabilities of the choices
taken in each component (which are necessarily the same since
the initial and final markings are the same) multiplied by a
summation of probabilities that sum up to 1 (these are the
relative weights of the possible interleavings, which eventually
converge to the same final state).

Finally, observe that each MPRFS comprises a subsequence
of ANDe and ORe transitions, which are needed to propagate
the correct Up or Down state (place OUTCOMPe unmarked
or marked, respectively) of all IEs. This subsequence is

deterministic (although different interleavings could be possible
depending on the priority assignment) since it depends only on
the state of the BEs, and hence it contributes as a factor 1 to the
probability product. The priorities of these transitions are set so
that they are fired after all probabilistic choices have been made,
but before the firing of the stop transitions of all components.

This completes the proof. In fact, from the initial marking
the set of possible actions in the MDP are in one to one
correspondence with the MNDFS of the MDPN; the reached
intermediate states are in one to one correspondence and from
these the same probabilistic state changes may occur, leading
to corresponding new states. This also indicates how the MDP
can be derived from the MDPN RG, only the markings from
which maximal firing sequences are originated are kept and the
maximal firing sequences are substituted with the corresponding
transitions in the MDP. This translation is performed in linear
time w.r.t. the number of NdRFT nodes.

The Computer Journal, Vol. 57 No. 12, 2014

 at R
yerson U

niversity on June 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Related work
	3 Non-deterministic RFT
	3.1 NdRFT syntax
	3.2 MDP semantics of NdRFT
	3.3 Discussion

	4 Translation from NdRFT to MDPN
	4.1 Generating the PR subnet
	4.2 Generation of the ND subnet
	4.3 Improving NdRFT efficiency

	5 An NdRFT extension to provide degradation and preventive maintenance
	5.1 New definition for BE
	5.2 New translation modules for BEs

	6 Application examples
	7 Conclusion and future work

