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Abstract. Markov Decision Processes (MDP) are a widely used model
including both non-deterministic and probabilistic choices. Minimal and
maximal probabilities to reach a target set of states, with respect to a
policy resolving non-determinism, may be computed by several methods
including value iteration. This algorithm, easy to implement and efficient
in terms of space complexity, consists in iteratively finding the probabil-
ities of paths of increasing length. However, it raises three issues: (1)
defining a stopping criterion ensuring a bound on the approximation,
(2) analyzing the rate of convergence, and (3) specifying an additional
procedure to obtain the exact values once a sufficient number of iter-
ations has been performed. The first two issues are still open and for
the third one a “crude” upper bound on the number of iterations has
been proposed. Based on a graph analysis and transformation of MDPs,
we address these problems. First we introduce an interval iteration al-
gorithm, for which the stopping criterion is straightforward. Then we
exhibit convergence rate. Finally we significantly improve the bound on
the number of iterations required to get the exact values.

1 Introduction

Markov Decision Processes (MDP) are a commonly used formalism for mod-
elling systems that use both probabilistic and non-deterministic behaviors. These
are generalizations of discrete-time Markov chains for which non-determinism is
forbidden. MDPs have acquired an even greater gain of interest since the de-
velopment of quantitative verification of systems, which in particular may take
into account probabilistic aspects (see [1] for a deep study of model checking
techniques, in particular for probabilistic systems). Automated verification tech-
niques have been extensively studied to handle such probabilistic models, leading
to various tools like the PRISM probabilistic model checker [9].

Value iteration for reachability problems. In the tutorial paper [5], the au-
thors cover some of the algorithms for the model-checking of MDPs and Markov
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chains. The first simple, yet intriguing, problem lies in the computation of mini-
mum and maximum probabilities to reach a target set of states of an MDP. Exact
polynomial time methods, like linear programming, exist to compute those prob-
abilities, but they seem unable to scale on large systems. Nonetheless, they are
based on the fact that these probabilities are indeed fixpoints of some operators.
Usually, numerical approximate methods are rather used in practice, the most
used one being value iteration. The algorithm consists in asymptotically reaching
the previous fixpoints by iterating the operators. However, it raises three issues.
Since the algorithm must terminates after a finite number of iterations one has
to define a stopping criterion ensuring a bound on the difference between the
computed and the exact values. From a theoretical point of view, establishing
the rate of convergence with respect to the parameters of the MDP (number of
states, smallest positive transition probability, etc.) helps to estimate the com-
plexity of value iteration. Sometimes for further application the exact values
and/or the optimal policy are required. This is generally done by performing an
additional rounding procedure once a sufficient number of iterations has been
performed. The first two issues are still open and for the third one a “crude”
upper bound on the number of iterations has been proposed [3, Sec 3.5].

Our contributions. Generally the numerical computations of optimal reach-
ability probabilities are preceded by a qualitative analysis that computes the
sets of states for which this probability is 0 or 1 and performs an appropri-
ate transformation of the MDP. We adopt here an alternative approach based
on the maximal end component (MEC) decomposition of an MDP (that can
be computed in polynomial time [4]). We show that for an MDP featuring a
particular MEC decomposition, some safety probability is null with an addi-
tional convergence rate with respect to the length of the run. Then we design
a min- (respectively, max-) reduction that ensures this feature while preserving
the minimal (respectively, maximal) reachability probabilities. In both cases,
we establish that the reachability probabilities are unique fixed points of some
operator.

So we iterate these operators starting from the maximal and the minimal pos-
sible vectors. These iterations naturally yield an interval iteration algorithm for
which the stopping criterion is straightforward since, at any step, the two current
vectors constitute a framing of the reachability probabilities. Similar computa-
tions of parallel under- and over-approximations have been used in [7], in order to
detect steady-state on-the-fly during the transient analysis of continuous-time
Markov chains. In [8], under- and over-approximations of reachability proba-
bilities in MDPs are obtained by substituting to the MDP a stochastic game.
Combining it with a CEGAR-based procedure leads to an iterative procedure
with approximations converging to the exact values. However the speed of con-
vergence is only studied from an experimental point of view. Afterwards, we
provide probabilistic interpretations for the adjacent sequences of the interval
iteration algorithm. Combining such an interpretation with the safety conver-
gence rate of the reduced MDP allows us to exhibit a convergence rate for interval
iteration algorithm. At last, exploiting this convergence rate, we significantly im-
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prove the bound on the number of iterations required to get the exact values by
a rounding procedure.

Related work. Interestingly, our approach has been realized in parallel of
Brázdil et al [2] that solves a different problem with similar ideas. There, authors
use some machine learning algorithm, namely real-time dynamic programming,
in order to avoid to apply the full operator at each step of the value iteration,
but rather to partially apply it based on some statistical test. Using the same
idea of lower and upper approximations, they prove that their algorithm almost
surely converges towards the optimal probability, in case of MDPs without non-
trivial end components. In the presence of non-trivial end components, rather
than computing in advance a simplified equivalent MDP as we do, they rather
compute the simplification on-the-fly. It allows them to also obtain results in the
case where the MDP is not explicitly given. However, no analysis of the speed
of convergence of their algorithm is provided, nor are given explicit stopping
criteria enabling an exact computation of values.

Outline. Section 2 introduces MDPs and the reachability/safety problems. It
also includes MEC decomposition, dedicated MDP transformations and char-
acterization of minimal and maximal reachability probabilities as unique fixed
points of operators. Section 3 presents our main contributions: the interval iter-
ation algorithm, the analysis of the convergence rate and a better bound for the
number of iterations required for obtaining the exact values by rounding. Due
to space constraints, a complete version, with full proofs, can be found in [6].

2 Reachability problems for Markov decision processes

2.1 Problem specification

We mainly follow the notations of [5]. We denote by Dist(S) the set of distribu-
tions over a finite set S, i.e., every mapping p : S → [0, 1] from S to the set [0, 1]
such that

∑
s∈S p(s) = 1. The support of a distribution p, denoted by Supp(p),

is the subset of S defined by Supp(p) = {s ∈ S | p(s) > 0}.
A Markov Decision Process (MDP) is a tupleM = (S, αM, δM) where S is a

finite set of states; αM =
⋃
s∈S A(s) where every A(s) is a non empty finite set

of actions with A(s)∩A(s′) = ∅ for all s 6= s′; and δM : S × αM → Dist(S) is a
partial probabilistic transition function defined for (s, a) if and only if a ∈ A(s).

The dynamic of the system is defined as follows. Given a current state s, an
action a ∈ A(s) is chosen non deterministically. The next state is then randomly
selected, using the corresponding distribution δM(s, a), i.e., the probability that
a transition to s′ occurs equals δM(s, a)(s′). In a more suggestive way, one de-
notes δM(s, a)(s′) by δM(s′|s, a) and

∑
s′∈S′ δM(s′|s, a) by δM(S′|s, a).

More formally, an infinite path through an MDP is a sequence π = s0
a0−→

s1
a1−→ · · · where si ∈ S, ai ∈ A(si) and δM(si+1|si, ai) > 0 for all i ∈ N: in the

following, state si is denoted by π(i). For every i ∈ N, π↑i denotes the suffix of π

starting in si, i.e., π↑i = si
ai−→ si+1 · · · . A finite path ρ = s0

a0−→ s1
a1−→ · · · an−1−−−→

sn is a prefix of an infinite path ending in a state sn, denoted by last(ρ). We
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denote by PathM,s (respectively, FPathM,s) the set of infinite paths (respectively,
finite paths) starting in state s, whereas PathM (respectively, FPathM) denotes
the set of all infinite paths (respectively, finite paths).

To associate a probability space with an MDP, we need to eliminate the non-
determinism of the behaviour. This is done by introducing policies (also called
schedulers or strategies). A policy of an MDP M = (S, αM, δM) is a function
σ : FPathM → Dist(αM) such that σ(ρ)(a) > 0 only if a ∈ A(last(ρ)). One
denotes σ(ρ)(a) by σ(a|ρ). We denote by PolM the set of all policies of M. A
policy σ is deterministic when σ(ρ) is a Dirac distribution for every ρ ∈ FPathM
(in that case, σ(ρ) denotes the action a ∈ A(last(ρ)) associated to probability
one); it is stationary (also called memoryless) if σ(ρ) only depends on last(ρ).

A policy σ and an initial state s ∈ S yields a discrete-time Markov chain
Mσ

s (see [5, Definition 10]), whose states are the finite paths of FPathM,s. The
probability measure PrMσ,s over paths of the Markov chain starting in s (with
basic cylinders being generated by finite paths) defines a probability measure
PrσM,s over PathM,s, capturing the behavior of M from state s under policy σ.

Let ρn = s0
a0−→ s1

a1−→ · · · an−1−−−→ sn and ρn+1 = s0
a0−→ s1

a1−→ · · · sn
an−−→ sn+1,

the probability measure is inductively defined by

PrσM,s0(ρn+1) = PrσM,s0(ρn)
∑

a∈A(sn)

σ(a|ρn) δM(sn+1|sn, a) .

One specifies properties on infinite paths as follows. Given a subset S′ ⊆ S
of states and π = s0

a0−→ s1
a1−→ · · · ∈ PathM, π |= S′ iff s0 ∈ S′. The atomic

proposition {s} is more concisely denoted by s. One also uses Boolean operators
¬, ∧ and ∨ for building formulas. We finally use temporal operators F (for
Finally) and G (for Globally). For a property ϕ, we let π |= Fϕ if there exists
i ∈ N such that the suffix π↑i of π verifies π↑i |= ϕ. The dual operator G is
defined by Gϕ ≡ ¬F¬ϕ. One also considers restricted scopes of these operators:
π |= F6n ϕ if there exists 0 6 i 6 n such that π↑i |= ϕ, and G6n ϕ ≡ ¬F6n ¬ϕ.
Given a property ϕ on infinite paths one denotes PrσM,s({π ∈ PathM,s | π |= ϕ})
more concisely by PrσM,s(ϕ).

Given a subset of target states T , reachability properties are specified by
FT and safety properties by G¬T . Our main goal is to compute the infimum
and supremum reachability and safety probabilities, with respect to the policies,
i.e., for ϕ ∈ {FT,G¬T}: Prmin

M,s(ϕ) = infσ∈PolM PrσM,s(ϕ) and Prmax
M,s(ϕ) =

supσ∈PolM PrσM,s(ϕ). Since PrσM,s(G¬T ) = 1 − PrσM,s(FT ), one immediately

gets: Prmax
M,s(G¬T ) = 1− Prmin

M,s(FT ) , and Prmin
M,s(G¬T ) = 1− Prmax

M,s(FT ) .

Thus we focus on reachability problems and without loss of generality, all
the states of T may be merged in a single state called s+ with A(s+) = {loop+}
such that δM(s+|s+, loop+) = 1. In the sequel, the vector (PrσM,s(ϕ))s∈S (re-

spectively, (Prmin
M,s(ϕ))s∈S and (Prmax

M,s(ϕ))s∈S) of probabilities will be denoted

by PrσM(ϕ) (respectively, Prmin
M (ϕ) and Prmax

M (ϕ)).
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2.2 MEC decomposition and transient behaviour

In our approach, we first reduce an MDP by a qualitative analysis based on end
components. We adopt here a slightly different definition of the usual one by
allowing trivial end components (see later on). Preliminarily, the graph of an
MDP M is defined as follows: the set of its vertices is S and there is an edge
from s to s′ if there is some a ∈ A(s) with δM(s′|s, a) > 0.

Definition 1 (end component). Let M = (S, αM, δM). Then (S′, α′) with
∅ 6= S′ ⊆ S and α′ ⊆

⋃
s∈S′ A(s) is an end component if (i) for all s ∈ S′ and a ∈

A(s) ∩ α′, Supp(δM(s, a)) ⊆ S′; (ii) the graph of (S′, α′) is strongly connected.

Given two end components, one says that (S′, α′) is smaller than (S′′, α′′),
denoted by (S′, α′) � (S′′, α′′), if S′ ⊆ S′′ and α′ ⊆ α′′. Given some state s, there
is a minimal end component containing s namely ({s}, ∅). Such end components
are called trivial end components. The union of two end components that share
a state is also an end component. Hence, maximal end components (MEC) do
not share states and cover all states of S. Furthermore, we consider bottom
MEC (BMEC): a MEC (S′, α′) is a BMEC if α′ =

⋃
s∈S′ A(s). For instance

({s+}, {loop+}) is a BMEC. Every MDP contains at least one BMEC.
Fig. 1-(a) shows the decomposition in MEC of an MDP. There are two

BMECs ({s+}, {loop+}) and ({b, b′}, {d, e}), one trivial MEC ({t}, ∅) and an-
other MEC ({s, s′}, {a, c}).

The set of MECs of an MDP can be computed in polynomial time (see for

instance [4]). It defines a partition of S =
⊎K
i=k Sk ]

⊎L
`=1{t`}]

⊎M
m=0Bm where

{t`} is the set of states of a trivial MEC, Bm is the set of states a BMEC and
Sk’s are the set of states of the other MECs. By convention, B0 = {s+}. The
next proposition is the key ingredient of our approach.

Proposition 2. Let M be an MDP such that its MEC decomposition only con-
tains trivial MECs and BMECs, i.e., S =

⊎L
`=1{t`} ]

⊎M
m=0Bm. Then:

1. There is a partition S =
⊎

06i6I Gi such that G0 =
⊎M
m=0Bm and for all 1 6

i 6 I, s ∈ Gi and a ∈ A(s), there is s′ ∈
⋃
j<iGj such that δM(s′|s, a) > 0.

2. Let η be the smallest positive probability occurring in the distributions of M.
Then for all n ∈ N, and for all s ∈ S, Prmax

M,s(G
6nI ¬G0) 6 (1− ηI)n.

3. For all s ∈ S, Prmax
M,s(G¬G0) = 0.

Proof. (Sketch) 1. One builds the partition of S by induction. We first let G0 =⊎M
m=0Bm. Then, assuming that G0, . . . , Gi have been defined, we let Gi+1 =
{s ∈ S \

⋃
j6iGj | ∀a ∈ A(s) ∃s′ ∈

⋃
j6iGj δM(s′|s, a) > 0}. The construction

stops when some Gi is empty. If GI is the last non-empty set, it can easily be
checked that S =

⋃
i6I Gi.

2. One observes that the path property G6n ¬G0 only depends on the prefix of
length n. So there is only a finite number of policies up to n and we denote
σn the policy that achieves Prmax

M,s(G
6n ¬G0). Observe also that after a path of

length k < n leading to state s /∈ G0, policy σn may behave as policy σn−k
starting in s. The property may then be shown by using the fact that for all
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Fig. 1. (a) An MDP and its MEC decomposition, (b) its min-reduction, and (c) its
max-reduction

state s and policy σ, there is a path of length at most I inMσ from s to ρ with
last(ρ) ∈ G0, showing that PrσM,s(G

6I ¬G0) 6 (1− ηI).
3. The last assertion is a straightforward consequence of the previous one. ut

This proposition shows the interest of eliminating MECs that are neither triv-
ial ones nor BMECs. In the following, we consider the partition S =

⊎K
i=k Sk ]⊎L

`=1{t`} ]
⊎M
m=0Bm where {t`}’s are trivial MECs, Bm’s are BMECs and Sk’s

are all the other MECs. A quotienting of an MDP has been introduced in [4, Algo-
rithm 3.3] in order to decrease the complexity of the computation for reachability
properties. We now introduce two variants of reductions for MDPs depending
on the kind of probabilities we want to compute.

2.3 Characterization of minimal reachability probabilities

The reduction in the case of minimal reachability probabilities consists in merg-
ing all non-trivial MECs different from ({s+}, {loop+}) into a fresh state s−: all
these states merged into s− will have a zero minimal reachability probability.

Definition 3 (min-reduction). Let M be an MDP with the partition of S =⊎K
i=k Sk ]

⊎L
`=1{t`} ]

⊎M
m=0Bm. We define M• = (S•, αM• , δM•) by:

– S• = {s−, s+, t1, . . . , tL}, and for all s ∈ S, s• is defined by: (1) s• = tl if
s = t`, (2) s• = s+ if s = s+, and (3) s• = s− otherwise.

– A•(s−) = {loop−}, A•(s+) = {loop+} and for all 1 6 ` 6 L, A•(t`) = A(t`).
– For all 1 6 `, `′ 6 L, a ∈ A•(t`),

δM•(s−|t`, a) = δM(
⊎K
i=kSk ]

⊎M
m=1Bm|t`, a),

δM•(s+|t`, a) = δM(s+|t`, a), δM•(t`′ |t`, a) = δM(t`′ |t`, a),

δM•(s+|s+, loop+) = δM(s−|s−, loop−) = 1 .

An MDP M is called min-reduced if M = N • for some MDP N . The min-
reduction of an MDP is illustrated in Fig. 1-(b). The single trivial MEC ({t}, ∅)
is preserved while MECs ({b, b′}, {d, e}) and ({s, s′}, {a, c}) are merged in s−.
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Proposition 4. Let M be an MDP and M• be its min-reduced MDP. Then for
all s ∈ S, Prmin

M,s(F s+) = Prmin
M•,s•(F s+).

We now establish another property of the min-reduced MDP that allows us
to use Proposition 2.

Lemma 5. Let M• be the min-reduced MDP of an MDP M. Then every state
s ∈ S• \ {s−, s+} is a trivial MEC.

In order to characterize PrσM(F s+) with a fixpoint equation, we define the
set of S-vectors as V = {x = (xs)s∈S | ∀s ∈ S \ {s−, s+} 0 6 xs 6 1 ∧ xs+ =
1 ∧ xs− = 0}. We also introduce the operator fmin : V → V by letting for all
x ∈ V: fmin(x)s = mina∈A(s)

∑
s′∈S δM(s′|s, a)xs′ for every s ∈ S \ {s−, s+},

fmin(x)s− = 0 and fmin(x)s+ = 1.
We claim that there is a single fixed point of fmin. In order to establish that

claim, given a stationary deterministic strategy σ, we introduce the operator
fσ : V → V defined for all x ∈ V by: fσ(x)s =

∑
s′∈S δM(s′|s, σ(s))xs′ for every

s ∈ S \ {s−, s+}, fσ(x)s− = 0 and fσ(x)s+ = 1.

Proposition 6. Let M be a min-reduced MDP. PrσM(F s+) is the unique fixed
point of fσ. Prmin

M (F s+) is the unique fixed point of fmin and it is obtained by a
stationary deterministic policy.

2.4 Characterization of maximal reachability probabilities

The reduction for maximal reachability probabilities is more complex. Indeed,
we cannot merge any non-trivial MEC different from ({s+}, {loop+}) into the
state s− anymore, since some of these states may have a non-zero maximal
reachability probability. Hence, we consider a fresh state sk for each MEC Sk
and simply merge all BMECs Bm’s different from ({s+}, {loop+}) into state s−.

Definition 7 (max-reduction). Let M be a MDP with the partition of S =⊎K
i=k Sk ]

⊎L
`=1{t`} ]

⊎M
m=0Bm. Then the max-reduced M• = (S•, αM• , δM•)

is defined by:
– S• = {s−, s+, t1, . . . , tL, s1, . . . , sK}. For all s ∈ S, one defines s• by: (1)
s• = tl if s = tl, (2) s• = s+ if s = s+, (3) s• = sk if s ∈ SK , and (4)
s• = s− otherwise.

– A•(s−) = {loop−}, A•(s+) = {loop+} for all 1 6 ` 6 L, A•(t`) = A(t`), and
for all 1 6 k 6 K, A•(sk) = {a | ∃s ∈ Sk a ∈ A(s) ∧ Supp(δM(s, a)) * Sk}.

– For all 1 6 `, `′ 6 L, a ∈ A•(t`), 1 6 k, k′ 6 K, b ∈ A•(sk)∩As with s ∈ Sk,

δM•(s−|t`, a) = δM(
⊎M
m=1Bm|t`, a), δM•(s+|t`, a) = δM(s+|t`, a),

δM•(t`′ |t`, a) = δM(t`′ |t`, a), δM•(sk|t`, a) = δM(Sk|t`, a),

δM•(s−|sk, b) = δM(
⊎M
m=1Bm|s, b), δM•(s+|sk, b) = δM(s+|s, b),

δM•(t`|sk, b) = δM(t`|s, b), δM•(sk′ |sk, b) = δM(Sk′ |s, b),
δM•(s+|s+, loop+) = δM(s−|s−, loop−) = 1 .
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Observe thatM• is indeed an MDP since A•(sk) cannot be empty (otherwise
Sk would be BMEC). Fig. 1-(c) illustrates the max-reduction of an MDP. The
single trivial MEC ({t}, ∅) is preserved while MEC ({b, b′}, {d, e}) is merged in
s−. The MEC ({s, s′}, {a, c}) is now merged into s1 with only action g preserved.

The following propositions are similar to Proposition 4 and Lemma 5 for the
min-reductions.

Proposition 8 ([4, Thm. 3.8]). LetM be an MDP andM• be its max-reduced
MDP. Then for all s ∈ S, Prmax

M,s(F s+) = Prmax
M•,s•(F s+).

Lemma 9. Let M• be the max-reduced MDP of an MDP M. Then every state
s ∈ S• \ {s−, s+} is a trivial MEC.

As for minimal reachability probabilities, we introduce operator fmax : V → V
by letting for all x ∈ V: fmax(x)s = maxa∈A(s)

∑
s′∈S δM(s, a)(s′)xs′ for all

s ∈ S \ {s−, s+}, fmax(x)s− = 0 and fmax(x)s+ = 1.

We observe that Lemma 9 combined with Proposition 2 ensures that in a
max-reduced MDP M, for any policy σ, S \ {s−, s+} is a set of transient states
ofMσ. This helps to prove that Proposition 6 also holds for max-reduced MDPs:

Proposition 10. LetM be a max-reduced MDP. PrσM(F s+) is the unique fixed
point of fσ. Prmax

M (F s+) is the unique fixed point of fmax and it is obtained by
a stationary deterministic policy.

Discussion. Usually, algorithms that compute maximal and minimal reacha-
bility probabilities first determine the set of states for which those probabilities
are 0 or 1, and merge them in states s− and s+ respectively (see for instance [5,
Algorithms 1-4]). For the case of minimal reachability probabilities, the MDP
obtained after this transformation—which is a quotient of our M•—fulfills the
hypotheses of Proposition 2 and our further development is still valid.

Unfortunately, it does not hold in the maximal case: for the MDP on the left
of Fig. 1-(a), the obtained MDP, that we callM′, simply merges {b, b′} into s−,
without merging {s, s′} (since the maximal probability to reach s+ from s or
s′ is equal to 0.5, when choosing action b in s′). Moreover, Proposition 10 does
not hold either inM′ for maximal probabilities3. In fact, the vector of maximal
probabilities inM′ is only the smallest fixed point of fmax. Indeed, the reader can
check that the vector which is equal to 0 for s−, 0.7 for t, and 1 for all the other
states is also a fixed point of fmax, whereas the maximal reachability probability
to reach s+ from s or s′ is equal to 0.5. Notice that in the max-reductionM• of
this MDP, the MEC ({s, s′}, {a, c}) is merged into a single state, hence removing
this non-unicity problem, as shown in Proposition 10.

While this issue does not preclude the standard computation of the proba-
bilities, the approach we have followed enables us to solve the convergence issues
of the previous methods. This is the subject of the next section.

3 This is already observed in [5], but a wrong statement is made in [1, Thm. 10.100].
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3 Value iteration for reachability objectives

This section presents the value iteration algorithm used, for example in the
PRISM model-checker [9], to compute optimal reachability probabilities of an
MDP. After stating convergence issues of this method, we give a new algorithm,
called interval iteration algorithm, and the strong guarantees that it gives.

3.1 Convergence issues

The idea of the value iteration algorithm is to compute the fixed points of fmin

and fmax (more precisely, the smallest fixed points of fmin and fmax) by iterating
them on a given initial vector, until a certain convergence criterion is met. More

precisely, as recalled in [5], we let x(0) defined by x
(0)
s+ = 1 and x

(0)
s = 0 for s 6= s+

(observe that x(0) is the minimal vector of V for the pointwise order), and we
then build one of the two sequences x = (x(n))n∈N or x = (x(n))n∈N defined by
– x(0) = x(0) and for all n ∈ N, x(n+1) = fmin(x(n));
– x(0) = x(0) and for all n ∈ N, x(n+1) = fmax(x(n)).

Since fmin and fmax are monotonous operators and due to the choice of the initial
vector, x and x are non-decreasing bounded sequences, hence convergent. Let
x(∞) and x(∞) be their respective limits. By continuity of fmin and fmax, x(∞)

(respectively, x(∞)) is a fixed point of fmin (respectively, fmax). Due to Proposi-
tions 6 and 10, x(∞) (respectively, x(∞)) is the vector Prmin

M (F s+) (respectively,
Prmax
M (F s+)) of minimal (respectively, maximal) reachability probabilities.
In practice, several stopping criteria can be chosen. In the model-checker

PRISM [9], two criteria are implemented. For a vector x ∈ V, we let ‖x‖ =
maxs∈S |xs|. For x ∈ {x, x} and a given threshold ε > 0, the absolute crite-
rion consists in stopping once ‖x(n+1) − x(n)‖ 6 ε, whereas the relative crite-

rion considers maxs∈S(x
(n+1)
s − x(n)s )/x

(n)
s 6 ε. However, as noticed in [5], no

guarantees are obtained when using such value iteration algorithms, whatever
the stopping criterion. As an example, consider the MDP (indeed the Markov
chain) of Fig. 2. It is easy to check that (minimal and maximal) reachability
probability of s+ = 0 in state n is 1/2. However, if ε is chosen as 1/2n (or
any value above), the sequence of vectors computed by the value iteration al-
gorithm will be x(0) = (1, 0, 0, . . . , 0, 0, . . . , 0), x(1) = (1, 1/2, 0, . . . , 0, 0, . . . , 0),
x(2) = (1, 1/2, 1/4, . . . , 0, 0, . . . , 0), . . . , x(n) = (1, 1/2, 1/4, . . . , 1/2n, 0, . . . , 0), at
which point the absolute stopping criterion is met. Hence, the algorithm outputs

x
(n)
n = 1/2n as the reachability probability of s+ = {0} in state n.

Example 11. The use of PRISM confirms this phenomenon. On this MDP, choos-
ing n = 10 and threshold ε = 10−3 < 1/210, the absolute stopping criterion leads
to the probability 9.77 × 10−4 ≈ 1/210, whereas the relative stopping criterion
leads to the probability 0.198. It has to be noticed that the tool indicates that
the value iteration has converged, and does not warn the user that a possible
problem may have arisen.
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Fig. 2. A Markov chain with problems of convergence in value iteration

Algorithm 1: Interval iteration algorithm for minimum reachability

Input: Min-reduced MDP M = (S, αM, δM), convergence threshold ε
1 xs+ := 1; xs− := 0; ys+ := 1; ys− := 0
2 foreach s ∈ S \ {s+, s−} do xs := 0; ys := 1
3 repeat
4 foreach s ∈ S \ {s+, s−} do
5 x′s := mina∈A(s)

∑
s′∈S δM(s, a)(s′)xs′

6 y′s := mina∈A(s)

∑
s′∈S δM(s, a)(s′) ys′

7 δ := maxs∈S(y′s − x′s)
8 foreach s ∈ S \ {s+, s−} do x′s := xs; y′s := ys
9 until δ 6 ε

10 return (xs)s∈S , (ys)s∈S

We consider a modification of the algorithm in order to obtain a convergence
guarantee when stopping the value iteration algorithm. We provide (1) stopping
criteria for approximation and exact computations and, (2) rate of convergence.

3.2 Stopping criterion for ε-approximation

Here, we introduce two other sequences. For that, let vector y(0) be the maximal

vector of V, defined by y
(0)
s− = 0 and y

(0)
s = 1 for s 6= s−. We then define

inductively the two sequences y and y of vectors by

– y(0) = y(0) and for all n ∈ N, y(n+1) = fmin(y(n));

– y(0) = y(0) and for all n ∈ N, y(n+1) = fmax(y(n)).
Because of the new choice for the initial vector, notice that y and y are non-
increasing sequences. Hence, with the same reasoning as above, we know that
these sequences converge, and that their limit, denoted by y(∞) and y(∞) re-
spectively, are the minimal (respectively, maximal) reachability probabilities. In
particular, notice that x and y, as well as x and y, are adjacent sequences, and

that x(∞) = y(∞) = Prmin
M (F s+) and x(∞) = y(∞) = Prmax

M (F s+) .
Let us first consider a min-reduced MDP M. Then, our new value iteration

algorithm computes both in the same time sequences x and y and stops as soon
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Fig. 3. A Markov chain with less iterations for the initial state

as ‖y(n) − x(n)‖ 6 ε. In case this criterion is satisfied, which will happen after
a finite (yet possibly large and not bounded a priori) number of iterations, we
can guarantee that we obtained over- and underapproximations of Prmin

M (F s+)
with precision at least ε on every component. Because of the simultaneous com-
putation of lower and upper bounds, we call this algorithm interval iteration
algorithm, and specify it in Algorithm 1. A similar algorithm can be designed
for maximum reachability probabilities, by considering max-reduced MDPs and
replacing min operations of lines 5 and 6 by max operations.

Theorem 12. For every min-reduced (respectively, max-reduced) MDPM, and
threshold ε, if the interval iteration algorithm returns the vectors x and y on
those inputs, then for all s ∈ S, Prmin

M,s(F s+) (respectively, Prmax
M,s(F s+)) is in

the interval [xs, ys] of length at most ε.

Example 13. For the same example as the one in Example 11, our algorithm
converges after 10548 steps, and outputs, for the initial state s = n, xn = 0.4995
and yn = 0.5005, given a good confidence to the user.

Notice that it is possible to speed up the convergence if we are only interested
in the optimal reachability probability of a given state s0. Indeed, we can simply

replace the stopping criterion ‖y(n) − x(n)‖ 6 ε by y
(n)
s0 − x

(n)
s0 6 ε.

Example 14. Let us look at the MDP (in fact a Markov chain) of Fig. 3 with
initial state s0 = n. Assume that we select threshold ε = 2−(n−1). For state s0,
the algorithm stops after n−1 iterations with interval

[
1
3 ,

1
3 (1 + 2−(n−2))

]
for the

reachability probability. However, for the reaching probability of state 1, the in-

terval after k iterations is
[

1
2n

∑
06i<k(1− 1

n )i, 1
2n

∑
06i<k(1− 1

n )i + (1− 1
n )k
]
.

So it will stop when (1− 1
n )k 6 2−(n−1), i.e., k > − (n−1)

log2(1− 1
n )

implying k = Θ(n2).

3.3 Rate of convergence

We now establish guarantees on the rate of convergence of the interval iteration
algorithm. Notice that the results also apply to the usual value iteration algo-
rithm, even though the proof relies on the introduction of adjacent sequences. In
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the sequel, we assume that there is at least one transition probability 0 < δ < 1
(otherwise the problems are trivial).

Theorem 15. For a min- or max-reduced MDP M, and a convergence thresh-
old ε, the interval iteration algorithm converges in at most Id log ε

log(1−ηI)e steps,

where I and η are introduced in Proposition 2.

Proof. Let σ be the policy corresponding to the minimal probability of satisfying
G6n ¬s− and σ′ be the policy corresponding to the minimal probability of satis-
fying F6n s+. In particular, notice that PrσM,s(G

6nI ¬s−) 6 Prσ
′

M,s(G
6nI ¬s−).

Since G6n ¬s− ≡ G6n ¬(s−∨ s+)∨F6n s+, with the disjunction being exclu-
sive, we have for all s ∈ S,

Prmin
M,s(G

6nI ¬s−)− Prmin
M,s(F

6nI s+)) = PrσM,s(G
6nI ¬s−)− Prσ

′

M,s(F
6nI s+)

6 Prσ
′

M,s(G
6nI ¬s−)− Prσ

′

M,s(F
6nI s+) = Prσ

′

M,s(G
6nI ¬(s− ∨ s+) 6 (1− ηI)n

due to Proposition 2. It is easy to show by induction that x(n) = Prmin
M (F6n s+)

and y(n) = Prmin
M (G6n ¬s−). Then, we have ‖y(nI) − x(nI)‖ 6 (1 − ηI)n. In

conclusion, the stopping criterion is met when (1− ηI)n 6 ε, i.e., after at most
Id I log ε

log(1−ηI)e steps. A similar proof can be made for maximal probabilities. ut

It may also be noticed, from similar arguments, that for all n, ‖y((n+1)I) −
x((n+1)I)‖ 6 (1 − ηI)‖y(nI) − x(nI)‖ (and similarly for the maximum case),
implying that the value iteration algorithm has a linear rate of convergence.

Remark 16. One may use this convergence rate to delay the computation of one
of the two adjacent sequences of Algorithm 1. Indeed assume that only x(n) is
computed until step n. To use the stopping criterion provided by the adjacent

sequences, one sets the upper sequence with y
(n)
s = min(x

(n)
s + (1 − ηI)bnI c, 1)

for all s /∈ {s−, s+}, y(n)s+ = 1, and y
(n)
s− = 0 and then applies the algorithm. In

the favorable cases, this could divide by almost 2 the computation time.

3.4 Stopping criterion for exact computation

In [3], a convergence guarantee was given for MDPs with rational transition
probabilities. For such an MDPM, let d be the largest denominator of transition
probabilities (expressed as irreducible fractions), N the number |S| of states, and
M the number of transitions with non-zero probabilities. A bound γ = d4M was
announced so that, after γ2 iterations, the obtained probabilities lie in intervals
that could only contain one possible probability value for the system, permitting
to claim for the convergence of the algorithm. So after γ2 iterations, the actual
probability might me computed by considering the rational of the form α/γ
closest to the current estimate. However, no proof of this result is given in [3].

Using our simultaneous computation of under- and over-approximations of
the probabilities, we provide an alternative stopping criterion for exact compu-
tation that moreover exhibits an optimal policy. Its proof is based on the fact
that optimal probabilities are rational for which we can control the size of the
denominator, and strongly relies on the existence of stationary optimal policies.
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Theorem 17. Let M be a reduced MDP with rational transition probabilities.
Optimal reachability probabilities and optimal policies can be computed by the
interval iteration algorithm in at most O((1/η)NN3 log d).

The theorem also holds for the value iteration algorithm. Observe that our
stopping criterion is significantly better than the bound d8M claimed in [3] since
N 6 M and 1/η 6 d. Furthermore M may be in Ω(N2) even with a single
action per state and 1/η may be significantly smaller than d as for instance in
the extreme case η = 1

2 −
1

10n and d = 10n for some large n.

4 Conclusion

We have provided a framework allowing to guarantee good properties when
value iteration algorithm is used to compute optimal reachability probabilities
of Markov decision processes. Our study pointed out some difficulties related to
non-trivial end components in MDPs, that was not clearly described previously.
Moreover, we gave results over the convergence speed, as well as criteria for
obtaining exact convergence. As future works, it seems particularly interesting to
test this algorithm on real instances, as it is done in [2], where authors moreover
apply machine learning techniques.

Acknowledgments. We thank the reviewer that pointed out the similarities
between our approach and [2] (to be presented at the next ATVA, in Nov. 2014).
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